Merge "Enable tag and push script for all docker images"
diff --git a/developer/README.md b/developer/README.md
index a0f1569..e2c0350 100644
--- a/developer/README.md
+++ b/developer/README.md
@@ -4,8 +4,8 @@
 
 ## Tag and Push Docker images to a remote registry
 
-The `tag_and_push.sh` script will read your local docker images starting with `xosproject`, tag and push them to a docker registry.
-Please use `bash tag_and_push.sh -h` for usage instructions.
+`tag_and_push.sh` tags and pushes to a remote registry all the images present in the local docker registry.
+Please use `bash tag_and_push.sh -h` to see instructions.
 
 ## Imagebuilder
 
@@ -13,4 +13,4 @@
 
 ```
 python imagebuilder.py -f ../../helm-charts/examples/filter-images.yaml -x
-```
\ No newline at end of file
+```
diff --git a/developer/tag_and_push.sh b/developer/tag_and_push.sh
index add3272..7ec0730 100644
--- a/developer/tag_and_push.sh
+++ b/developer/tag_and_push.sh
@@ -24,10 +24,12 @@
 # Displays the help menu.
 #
 display_help () {
+  echo "Tags and pushes to a remote registry all the images present in the local docker registry." >&2
+  echo " "
   echo "Usage: $0 {--push|--help} [docker-registry] [tag=candidate] " >&2
   echo " "
-  echo "   -h, --help              Display this help message."
-  echo "   -r, --registry          Tags and push all the local docker images to <docker-registry>"
+  echo "   -h, --help              Displays this help message."
+  echo "   -r, --registry          Tags and pushes all the local docker images to the remote <docker-registry>"
   echo " "
   echo "   docker-registry         The address of the registry"
   echo "   tag                     The tag to be used"
@@ -45,7 +47,7 @@
   echo " "
 
   # reading docker images
-  DOCKER_IMAGES=$(docker images --format="{{.Repository}}:{{.Tag}}" --filter "dangling=false" | grep -v none | grep "^xosproject")
+  DOCKER_IMAGES=$(docker images --format="{{.Repository}}:{{.Tag}}" --filter "dangling=false" | grep -v none)
 
   # split string to list only on newlines
   IFS=$'\n'