[VOL-3678] First implementation of the BBSim-sadis-server
Change-Id: I5077a8f861f4cc6af9759f31a4a415042c05eba3
diff --git a/vendor/k8s.io/apimachinery/pkg/api/resource/math.go b/vendor/k8s.io/apimachinery/pkg/api/resource/math.go
new file mode 100644
index 0000000..8ffcb9f
--- /dev/null
+++ b/vendor/k8s.io/apimachinery/pkg/api/resource/math.go
@@ -0,0 +1,310 @@
+/*
+Copyright 2014 The Kubernetes Authors.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+package resource
+
+import (
+ "math/big"
+
+ inf "gopkg.in/inf.v0"
+)
+
+const (
+ // maxInt64Factors is the highest value that will be checked when removing factors of 10 from an int64.
+ // It is also the maximum decimal digits that can be represented with an int64.
+ maxInt64Factors = 18
+)
+
+var (
+ // Commonly needed big.Int values-- treat as read only!
+ bigTen = big.NewInt(10)
+ bigZero = big.NewInt(0)
+ bigOne = big.NewInt(1)
+ bigThousand = big.NewInt(1000)
+ big1024 = big.NewInt(1024)
+
+ // Commonly needed inf.Dec values-- treat as read only!
+ decZero = inf.NewDec(0, 0)
+ decOne = inf.NewDec(1, 0)
+
+ // Largest (in magnitude) number allowed.
+ maxAllowed = infDecAmount{inf.NewDec((1<<63)-1, 0)} // == max int64
+
+ // The maximum value we can represent milli-units for.
+ // Compare with the return value of Quantity.Value() to
+ // see if it's safe to use Quantity.MilliValue().
+ MaxMilliValue = int64(((1 << 63) - 1) / 1000)
+)
+
+const mostNegative = -(mostPositive + 1)
+const mostPositive = 1<<63 - 1
+
+// int64Add returns a+b, or false if that would overflow int64.
+func int64Add(a, b int64) (int64, bool) {
+ c := a + b
+ switch {
+ case a > 0 && b > 0:
+ if c < 0 {
+ return 0, false
+ }
+ case a < 0 && b < 0:
+ if c > 0 {
+ return 0, false
+ }
+ if a == mostNegative && b == mostNegative {
+ return 0, false
+ }
+ }
+ return c, true
+}
+
+// int64Multiply returns a*b, or false if that would overflow or underflow int64.
+func int64Multiply(a, b int64) (int64, bool) {
+ if a == 0 || b == 0 || a == 1 || b == 1 {
+ return a * b, true
+ }
+ if a == mostNegative || b == mostNegative {
+ return 0, false
+ }
+ c := a * b
+ return c, c/b == a
+}
+
+// int64MultiplyScale returns a*b, assuming b is greater than one, or false if that would overflow or underflow int64.
+// Use when b is known to be greater than one.
+func int64MultiplyScale(a int64, b int64) (int64, bool) {
+ if a == 0 || a == 1 {
+ return a * b, true
+ }
+ if a == mostNegative && b != 1 {
+ return 0, false
+ }
+ c := a * b
+ return c, c/b == a
+}
+
+// int64MultiplyScale10 multiplies a by 10, or returns false if that would overflow. This method is faster than
+// int64Multiply(a, 10) because the compiler can optimize constant factor multiplication.
+func int64MultiplyScale10(a int64) (int64, bool) {
+ if a == 0 || a == 1 {
+ return a * 10, true
+ }
+ if a == mostNegative {
+ return 0, false
+ }
+ c := a * 10
+ return c, c/10 == a
+}
+
+// int64MultiplyScale100 multiplies a by 100, or returns false if that would overflow. This method is faster than
+// int64Multiply(a, 100) because the compiler can optimize constant factor multiplication.
+func int64MultiplyScale100(a int64) (int64, bool) {
+ if a == 0 || a == 1 {
+ return a * 100, true
+ }
+ if a == mostNegative {
+ return 0, false
+ }
+ c := a * 100
+ return c, c/100 == a
+}
+
+// int64MultiplyScale1000 multiplies a by 1000, or returns false if that would overflow. This method is faster than
+// int64Multiply(a, 1000) because the compiler can optimize constant factor multiplication.
+func int64MultiplyScale1000(a int64) (int64, bool) {
+ if a == 0 || a == 1 {
+ return a * 1000, true
+ }
+ if a == mostNegative {
+ return 0, false
+ }
+ c := a * 1000
+ return c, c/1000 == a
+}
+
+// positiveScaleInt64 multiplies base by 10^scale, returning false if the
+// value overflows. Passing a negative scale is undefined.
+func positiveScaleInt64(base int64, scale Scale) (int64, bool) {
+ switch scale {
+ case 0:
+ return base, true
+ case 1:
+ return int64MultiplyScale10(base)
+ case 2:
+ return int64MultiplyScale100(base)
+ case 3:
+ return int64MultiplyScale1000(base)
+ case 6:
+ return int64MultiplyScale(base, 1000000)
+ case 9:
+ return int64MultiplyScale(base, 1000000000)
+ default:
+ value := base
+ var ok bool
+ for i := Scale(0); i < scale; i++ {
+ if value, ok = int64MultiplyScale(value, 10); !ok {
+ return 0, false
+ }
+ }
+ return value, true
+ }
+}
+
+// negativeScaleInt64 reduces base by the provided scale, rounding up, until the
+// value is zero or the scale is reached. Passing a negative scale is undefined.
+// The value returned, if not exact, is rounded away from zero.
+func negativeScaleInt64(base int64, scale Scale) (result int64, exact bool) {
+ if scale == 0 {
+ return base, true
+ }
+
+ value := base
+ var fraction bool
+ for i := Scale(0); i < scale; i++ {
+ if !fraction && value%10 != 0 {
+ fraction = true
+ }
+ value = value / 10
+ if value == 0 {
+ if fraction {
+ if base > 0 {
+ return 1, false
+ }
+ return -1, false
+ }
+ return 0, true
+ }
+ }
+ if fraction {
+ if base > 0 {
+ value++
+ } else {
+ value--
+ }
+ }
+ return value, !fraction
+}
+
+func pow10Int64(b int64) int64 {
+ switch b {
+ case 0:
+ return 1
+ case 1:
+ return 10
+ case 2:
+ return 100
+ case 3:
+ return 1000
+ case 4:
+ return 10000
+ case 5:
+ return 100000
+ case 6:
+ return 1000000
+ case 7:
+ return 10000000
+ case 8:
+ return 100000000
+ case 9:
+ return 1000000000
+ case 10:
+ return 10000000000
+ case 11:
+ return 100000000000
+ case 12:
+ return 1000000000000
+ case 13:
+ return 10000000000000
+ case 14:
+ return 100000000000000
+ case 15:
+ return 1000000000000000
+ case 16:
+ return 10000000000000000
+ case 17:
+ return 100000000000000000
+ case 18:
+ return 1000000000000000000
+ default:
+ return 0
+ }
+}
+
+// negativeScaleInt64 returns the result of dividing base by scale * 10 and the remainder, or
+// false if no such division is possible. Dividing by negative scales is undefined.
+func divideByScaleInt64(base int64, scale Scale) (result, remainder int64, exact bool) {
+ if scale == 0 {
+ return base, 0, true
+ }
+ // the max scale representable in base 10 in an int64 is 18 decimal places
+ if scale >= 18 {
+ return 0, base, false
+ }
+ divisor := pow10Int64(int64(scale))
+ return base / divisor, base % divisor, true
+}
+
+// removeInt64Factors divides in a loop; the return values have the property that
+// value == result * base ^ scale
+func removeInt64Factors(value int64, base int64) (result int64, times int32) {
+ times = 0
+ result = value
+ negative := result < 0
+ if negative {
+ result = -result
+ }
+ switch base {
+ // allow the compiler to optimize the common cases
+ case 10:
+ for result >= 10 && result%10 == 0 {
+ times++
+ result = result / 10
+ }
+ // allow the compiler to optimize the common cases
+ case 1024:
+ for result >= 1024 && result%1024 == 0 {
+ times++
+ result = result / 1024
+ }
+ default:
+ for result >= base && result%base == 0 {
+ times++
+ result = result / base
+ }
+ }
+ if negative {
+ result = -result
+ }
+ return result, times
+}
+
+// removeBigIntFactors divides in a loop; the return values have the property that
+// d == result * factor ^ times
+// d may be modified in place.
+// If d == 0, then the return values will be (0, 0)
+func removeBigIntFactors(d, factor *big.Int) (result *big.Int, times int32) {
+ q := big.NewInt(0)
+ m := big.NewInt(0)
+ for d.Cmp(bigZero) != 0 {
+ q.DivMod(d, factor, m)
+ if m.Cmp(bigZero) != 0 {
+ break
+ }
+ times++
+ d, q = q, d
+ }
+ return d, times
+}