[VOL-3678] First implementation of the BBSim-sadis-server

Change-Id: I5077a8f861f4cc6af9759f31a4a415042c05eba3
diff --git a/vendor/k8s.io/apimachinery/pkg/api/resource/quantity.go b/vendor/k8s.io/apimachinery/pkg/api/resource/quantity.go
new file mode 100644
index 0000000..d95e03a
--- /dev/null
+++ b/vendor/k8s.io/apimachinery/pkg/api/resource/quantity.go
@@ -0,0 +1,733 @@
+/*
+Copyright 2014 The Kubernetes Authors.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+package resource
+
+import (
+	"bytes"
+	"errors"
+	"fmt"
+	"math/big"
+	"strconv"
+	"strings"
+
+	inf "gopkg.in/inf.v0"
+)
+
+// Quantity is a fixed-point representation of a number.
+// It provides convenient marshaling/unmarshaling in JSON and YAML,
+// in addition to String() and AsInt64() accessors.
+//
+// The serialization format is:
+//
+// <quantity>        ::= <signedNumber><suffix>
+//   (Note that <suffix> may be empty, from the "" case in <decimalSI>.)
+// <digit>           ::= 0 | 1 | ... | 9
+// <digits>          ::= <digit> | <digit><digits>
+// <number>          ::= <digits> | <digits>.<digits> | <digits>. | .<digits>
+// <sign>            ::= "+" | "-"
+// <signedNumber>    ::= <number> | <sign><number>
+// <suffix>          ::= <binarySI> | <decimalExponent> | <decimalSI>
+// <binarySI>        ::= Ki | Mi | Gi | Ti | Pi | Ei
+//   (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)
+// <decimalSI>       ::= m | "" | k | M | G | T | P | E
+//   (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)
+// <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber>
+//
+// No matter which of the three exponent forms is used, no quantity may represent
+// a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal
+// places. Numbers larger or more precise will be capped or rounded up.
+// (E.g.: 0.1m will rounded up to 1m.)
+// This may be extended in the future if we require larger or smaller quantities.
+//
+// When a Quantity is parsed from a string, it will remember the type of suffix
+// it had, and will use the same type again when it is serialized.
+//
+// Before serializing, Quantity will be put in "canonical form".
+// This means that Exponent/suffix will be adjusted up or down (with a
+// corresponding increase or decrease in Mantissa) such that:
+//   a. No precision is lost
+//   b. No fractional digits will be emitted
+//   c. The exponent (or suffix) is as large as possible.
+// The sign will be omitted unless the number is negative.
+//
+// Examples:
+//   1.5 will be serialized as "1500m"
+//   1.5Gi will be serialized as "1536Mi"
+//
+// Note that the quantity will NEVER be internally represented by a
+// floating point number. That is the whole point of this exercise.
+//
+// Non-canonical values will still parse as long as they are well formed,
+// but will be re-emitted in their canonical form. (So always use canonical
+// form, or don't diff.)
+//
+// This format is intended to make it difficult to use these numbers without
+// writing some sort of special handling code in the hopes that that will
+// cause implementors to also use a fixed point implementation.
+//
+// +protobuf=true
+// +protobuf.embed=string
+// +protobuf.options.marshal=false
+// +protobuf.options.(gogoproto.goproto_stringer)=false
+// +k8s:deepcopy-gen=true
+// +k8s:openapi-gen=true
+type Quantity struct {
+	// i is the quantity in int64 scaled form, if d.Dec == nil
+	i int64Amount
+	// d is the quantity in inf.Dec form if d.Dec != nil
+	d infDecAmount
+	// s is the generated value of this quantity to avoid recalculation
+	s string
+
+	// Change Format at will. See the comment for Canonicalize for
+	// more details.
+	Format
+}
+
+// CanonicalValue allows a quantity amount to be converted to a string.
+type CanonicalValue interface {
+	// AsCanonicalBytes returns a byte array representing the string representation
+	// of the value mantissa and an int32 representing its exponent in base-10. Callers may
+	// pass a byte slice to the method to avoid allocations.
+	AsCanonicalBytes(out []byte) ([]byte, int32)
+	// AsCanonicalBase1024Bytes returns a byte array representing the string representation
+	// of the value mantissa and an int32 representing its exponent in base-1024. Callers
+	// may pass a byte slice to the method to avoid allocations.
+	AsCanonicalBase1024Bytes(out []byte) ([]byte, int32)
+}
+
+// Format lists the three possible formattings of a quantity.
+type Format string
+
+const (
+	DecimalExponent = Format("DecimalExponent") // e.g., 12e6
+	BinarySI        = Format("BinarySI")        // e.g., 12Mi (12 * 2^20)
+	DecimalSI       = Format("DecimalSI")       // e.g., 12M  (12 * 10^6)
+)
+
+// MustParse turns the given string into a quantity or panics; for tests
+// or others cases where you know the string is valid.
+func MustParse(str string) Quantity {
+	q, err := ParseQuantity(str)
+	if err != nil {
+		panic(fmt.Errorf("cannot parse '%v': %v", str, err))
+	}
+	return q
+}
+
+const (
+	// splitREString is used to separate a number from its suffix; as such,
+	// this is overly permissive, but that's OK-- it will be checked later.
+	splitREString = "^([+-]?[0-9.]+)([eEinumkKMGTP]*[-+]?[0-9]*)$"
+)
+
+var (
+	// Errors that could happen while parsing a string.
+	ErrFormatWrong = errors.New("quantities must match the regular expression '" + splitREString + "'")
+	ErrNumeric     = errors.New("unable to parse numeric part of quantity")
+	ErrSuffix      = errors.New("unable to parse quantity's suffix")
+)
+
+// parseQuantityString is a fast scanner for quantity values.
+func parseQuantityString(str string) (positive bool, value, num, denom, suffix string, err error) {
+	positive = true
+	pos := 0
+	end := len(str)
+
+	// handle leading sign
+	if pos < end {
+		switch str[0] {
+		case '-':
+			positive = false
+			pos++
+		case '+':
+			pos++
+		}
+	}
+
+	// strip leading zeros
+Zeroes:
+	for i := pos; ; i++ {
+		if i >= end {
+			num = "0"
+			value = num
+			return
+		}
+		switch str[i] {
+		case '0':
+			pos++
+		default:
+			break Zeroes
+		}
+	}
+
+	// extract the numerator
+Num:
+	for i := pos; ; i++ {
+		if i >= end {
+			num = str[pos:end]
+			value = str[0:end]
+			return
+		}
+		switch str[i] {
+		case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
+		default:
+			num = str[pos:i]
+			pos = i
+			break Num
+		}
+	}
+
+	// if we stripped all numerator positions, always return 0
+	if len(num) == 0 {
+		num = "0"
+	}
+
+	// handle a denominator
+	if pos < end && str[pos] == '.' {
+		pos++
+	Denom:
+		for i := pos; ; i++ {
+			if i >= end {
+				denom = str[pos:end]
+				value = str[0:end]
+				return
+			}
+			switch str[i] {
+			case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
+			default:
+				denom = str[pos:i]
+				pos = i
+				break Denom
+			}
+		}
+		// TODO: we currently allow 1.G, but we may not want to in the future.
+		// if len(denom) == 0 {
+		// 	err = ErrFormatWrong
+		// 	return
+		// }
+	}
+	value = str[0:pos]
+
+	// grab the elements of the suffix
+	suffixStart := pos
+	for i := pos; ; i++ {
+		if i >= end {
+			suffix = str[suffixStart:end]
+			return
+		}
+		if !strings.ContainsAny(str[i:i+1], "eEinumkKMGTP") {
+			pos = i
+			break
+		}
+	}
+	if pos < end {
+		switch str[pos] {
+		case '-', '+':
+			pos++
+		}
+	}
+Suffix:
+	for i := pos; ; i++ {
+		if i >= end {
+			suffix = str[suffixStart:end]
+			return
+		}
+		switch str[i] {
+		case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
+		default:
+			break Suffix
+		}
+	}
+	// we encountered a non decimal in the Suffix loop, but the last character
+	// was not a valid exponent
+	err = ErrFormatWrong
+	return
+}
+
+// ParseQuantity turns str into a Quantity, or returns an error.
+func ParseQuantity(str string) (Quantity, error) {
+	if len(str) == 0 {
+		return Quantity{}, ErrFormatWrong
+	}
+	if str == "0" {
+		return Quantity{Format: DecimalSI, s: str}, nil
+	}
+
+	positive, value, num, denom, suf, err := parseQuantityString(str)
+	if err != nil {
+		return Quantity{}, err
+	}
+
+	base, exponent, format, ok := quantitySuffixer.interpret(suffix(suf))
+	if !ok {
+		return Quantity{}, ErrSuffix
+	}
+
+	precision := int32(0)
+	scale := int32(0)
+	mantissa := int64(1)
+	switch format {
+	case DecimalExponent, DecimalSI:
+		scale = exponent
+		precision = maxInt64Factors - int32(len(num)+len(denom))
+	case BinarySI:
+		scale = 0
+		switch {
+		case exponent >= 0 && len(denom) == 0:
+			// only handle positive binary numbers with the fast path
+			mantissa = int64(int64(mantissa) << uint64(exponent))
+			// 1Mi (2^20) has ~6 digits of decimal precision, so exponent*3/10 -1 is roughly the precision
+			precision = 15 - int32(len(num)) - int32(float32(exponent)*3/10) - 1
+		default:
+			precision = -1
+		}
+	}
+
+	if precision >= 0 {
+		// if we have a denominator, shift the entire value to the left by the number of places in the
+		// denominator
+		scale -= int32(len(denom))
+		if scale >= int32(Nano) {
+			shifted := num + denom
+
+			var value int64
+			value, err := strconv.ParseInt(shifted, 10, 64)
+			if err != nil {
+				return Quantity{}, ErrNumeric
+			}
+			if result, ok := int64Multiply(value, int64(mantissa)); ok {
+				if !positive {
+					result = -result
+				}
+				// if the number is in canonical form, reuse the string
+				switch format {
+				case BinarySI:
+					if exponent%10 == 0 && (value&0x07 != 0) {
+						return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
+					}
+				default:
+					if scale%3 == 0 && !strings.HasSuffix(shifted, "000") && shifted[0] != '0' {
+						return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
+					}
+				}
+				return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format}, nil
+			}
+		}
+	}
+
+	amount := new(inf.Dec)
+	if _, ok := amount.SetString(value); !ok {
+		return Quantity{}, ErrNumeric
+	}
+
+	// So that no one but us has to think about suffixes, remove it.
+	if base == 10 {
+		amount.SetScale(amount.Scale() + Scale(exponent).infScale())
+	} else if base == 2 {
+		// numericSuffix = 2 ** exponent
+		numericSuffix := big.NewInt(1).Lsh(bigOne, uint(exponent))
+		ub := amount.UnscaledBig()
+		amount.SetUnscaledBig(ub.Mul(ub, numericSuffix))
+	}
+
+	// Cap at min/max bounds.
+	sign := amount.Sign()
+	if sign == -1 {
+		amount.Neg(amount)
+	}
+
+	// This rounds non-zero values up to the minimum representable value, under the theory that
+	// if you want some resources, you should get some resources, even if you asked for way too small
+	// of an amount.  Arguably, this should be inf.RoundHalfUp (normal rounding), but that would have
+	// the side effect of rounding values < .5n to zero.
+	if v, ok := amount.Unscaled(); v != int64(0) || !ok {
+		amount.Round(amount, Nano.infScale(), inf.RoundUp)
+	}
+
+	// The max is just a simple cap.
+	// TODO: this prevents accumulating quantities greater than int64, for instance quota across a cluster
+	if format == BinarySI && amount.Cmp(maxAllowed.Dec) > 0 {
+		amount.Set(maxAllowed.Dec)
+	}
+
+	if format == BinarySI && amount.Cmp(decOne) < 0 && amount.Cmp(decZero) > 0 {
+		// This avoids rounding and hopefully confusion, too.
+		format = DecimalSI
+	}
+	if sign == -1 {
+		amount.Neg(amount)
+	}
+
+	return Quantity{d: infDecAmount{amount}, Format: format}, nil
+}
+
+// DeepCopy returns a deep-copy of the Quantity value.  Note that the method
+// receiver is a value, so we can mutate it in-place and return it.
+func (q Quantity) DeepCopy() Quantity {
+	if q.d.Dec != nil {
+		tmp := &inf.Dec{}
+		q.d.Dec = tmp.Set(q.d.Dec)
+	}
+	return q
+}
+
+// OpenAPISchemaType is used by the kube-openapi generator when constructing
+// the OpenAPI spec of this type.
+//
+// See: https://github.com/kubernetes/kube-openapi/tree/master/pkg/generators
+func (_ Quantity) OpenAPISchemaType() []string { return []string{"string"} }
+
+// OpenAPISchemaFormat is used by the kube-openapi generator when constructing
+// the OpenAPI spec of this type.
+func (_ Quantity) OpenAPISchemaFormat() string { return "" }
+
+// CanonicalizeBytes returns the canonical form of q and its suffix (see comment on Quantity).
+//
+// Note about BinarySI:
+// * If q.Format is set to BinarySI and q.Amount represents a non-zero value between
+//   -1 and +1, it will be emitted as if q.Format were DecimalSI.
+// * Otherwise, if q.Format is set to BinarySI, fractional parts of q.Amount will be
+//   rounded up. (1.1i becomes 2i.)
+func (q *Quantity) CanonicalizeBytes(out []byte) (result, suffix []byte) {
+	if q.IsZero() {
+		return zeroBytes, nil
+	}
+
+	var rounded CanonicalValue
+	format := q.Format
+	switch format {
+	case DecimalExponent, DecimalSI:
+	case BinarySI:
+		if q.CmpInt64(-1024) > 0 && q.CmpInt64(1024) < 0 {
+			// This avoids rounding and hopefully confusion, too.
+			format = DecimalSI
+		} else {
+			var exact bool
+			if rounded, exact = q.AsScale(0); !exact {
+				// Don't lose precision-- show as DecimalSI
+				format = DecimalSI
+			}
+		}
+	default:
+		format = DecimalExponent
+	}
+
+	// TODO: If BinarySI formatting is requested but would cause rounding, upgrade to
+	// one of the other formats.
+	switch format {
+	case DecimalExponent, DecimalSI:
+		number, exponent := q.AsCanonicalBytes(out)
+		suffix, _ := quantitySuffixer.constructBytes(10, exponent, format)
+		return number, suffix
+	default:
+		// format must be BinarySI
+		number, exponent := rounded.AsCanonicalBase1024Bytes(out)
+		suffix, _ := quantitySuffixer.constructBytes(2, exponent*10, format)
+		return number, suffix
+	}
+}
+
+// AsInt64 returns a representation of the current value as an int64 if a fast conversion
+// is possible. If false is returned, callers must use the inf.Dec form of this quantity.
+func (q *Quantity) AsInt64() (int64, bool) {
+	if q.d.Dec != nil {
+		return 0, false
+	}
+	return q.i.AsInt64()
+}
+
+// ToDec promotes the quantity in place to use an inf.Dec representation and returns itself.
+func (q *Quantity) ToDec() *Quantity {
+	if q.d.Dec == nil {
+		q.d.Dec = q.i.AsDec()
+		q.i = int64Amount{}
+	}
+	return q
+}
+
+// AsDec returns the quantity as represented by a scaled inf.Dec.
+func (q *Quantity) AsDec() *inf.Dec {
+	if q.d.Dec != nil {
+		return q.d.Dec
+	}
+	q.d.Dec = q.i.AsDec()
+	q.i = int64Amount{}
+	return q.d.Dec
+}
+
+// AsCanonicalBytes returns the canonical byte representation of this quantity as a mantissa
+// and base 10 exponent. The out byte slice may be passed to the method to avoid an extra
+// allocation.
+func (q *Quantity) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
+	if q.d.Dec != nil {
+		return q.d.AsCanonicalBytes(out)
+	}
+	return q.i.AsCanonicalBytes(out)
+}
+
+// IsZero returns true if the quantity is equal to zero.
+func (q *Quantity) IsZero() bool {
+	if q.d.Dec != nil {
+		return q.d.Dec.Sign() == 0
+	}
+	return q.i.value == 0
+}
+
+// Sign returns 0 if the quantity is zero, -1 if the quantity is less than zero, or 1 if the
+// quantity is greater than zero.
+func (q *Quantity) Sign() int {
+	if q.d.Dec != nil {
+		return q.d.Dec.Sign()
+	}
+	return q.i.Sign()
+}
+
+// AsScale returns the current value, rounded up to the provided scale, and returns
+// false if the scale resulted in a loss of precision.
+func (q *Quantity) AsScale(scale Scale) (CanonicalValue, bool) {
+	if q.d.Dec != nil {
+		return q.d.AsScale(scale)
+	}
+	return q.i.AsScale(scale)
+}
+
+// RoundUp updates the quantity to the provided scale, ensuring that the value is at
+// least 1. False is returned if the rounding operation resulted in a loss of precision.
+// Negative numbers are rounded away from zero (-9 scale 1 rounds to -10).
+func (q *Quantity) RoundUp(scale Scale) bool {
+	if q.d.Dec != nil {
+		q.s = ""
+		d, exact := q.d.AsScale(scale)
+		q.d = d
+		return exact
+	}
+	// avoid clearing the string value if we have already calculated it
+	if q.i.scale >= scale {
+		return true
+	}
+	q.s = ""
+	i, exact := q.i.AsScale(scale)
+	q.i = i
+	return exact
+}
+
+// Add adds the provide y quantity to the current value. If the current value is zero,
+// the format of the quantity will be updated to the format of y.
+func (q *Quantity) Add(y Quantity) {
+	q.s = ""
+	if q.d.Dec == nil && y.d.Dec == nil {
+		if q.i.value == 0 {
+			q.Format = y.Format
+		}
+		if q.i.Add(y.i) {
+			return
+		}
+	} else if q.IsZero() {
+		q.Format = y.Format
+	}
+	q.ToDec().d.Dec.Add(q.d.Dec, y.AsDec())
+}
+
+// Sub subtracts the provided quantity from the current value in place. If the current
+// value is zero, the format of the quantity will be updated to the format of y.
+func (q *Quantity) Sub(y Quantity) {
+	q.s = ""
+	if q.IsZero() {
+		q.Format = y.Format
+	}
+	if q.d.Dec == nil && y.d.Dec == nil && q.i.Sub(y.i) {
+		return
+	}
+	q.ToDec().d.Dec.Sub(q.d.Dec, y.AsDec())
+}
+
+// Cmp returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the
+// quantity is greater than y.
+func (q *Quantity) Cmp(y Quantity) int {
+	if q.d.Dec == nil && y.d.Dec == nil {
+		return q.i.Cmp(y.i)
+	}
+	return q.AsDec().Cmp(y.AsDec())
+}
+
+// CmpInt64 returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the
+// quantity is greater than y.
+func (q *Quantity) CmpInt64(y int64) int {
+	if q.d.Dec != nil {
+		return q.d.Dec.Cmp(inf.NewDec(y, inf.Scale(0)))
+	}
+	return q.i.Cmp(int64Amount{value: y})
+}
+
+// Neg sets quantity to be the negative value of itself.
+func (q *Quantity) Neg() {
+	q.s = ""
+	if q.d.Dec == nil {
+		q.i.value = -q.i.value
+		return
+	}
+	q.d.Dec.Neg(q.d.Dec)
+}
+
+// Equal checks equality of two Quantities. This is useful for testing with
+// cmp.Equal.
+func (q Quantity) Equal(v Quantity) bool {
+	return q.Cmp(v) == 0
+}
+
+// int64QuantityExpectedBytes is the expected width in bytes of the canonical string representation
+// of most Quantity values.
+const int64QuantityExpectedBytes = 18
+
+// String formats the Quantity as a string, caching the result if not calculated.
+// String is an expensive operation and caching this result significantly reduces the cost of
+// normal parse / marshal operations on Quantity.
+func (q *Quantity) String() string {
+	if len(q.s) == 0 {
+		result := make([]byte, 0, int64QuantityExpectedBytes)
+		number, suffix := q.CanonicalizeBytes(result)
+		number = append(number, suffix...)
+		q.s = string(number)
+	}
+	return q.s
+}
+
+// MarshalJSON implements the json.Marshaller interface.
+func (q Quantity) MarshalJSON() ([]byte, error) {
+	if len(q.s) > 0 {
+		out := make([]byte, len(q.s)+2)
+		out[0], out[len(out)-1] = '"', '"'
+		copy(out[1:], q.s)
+		return out, nil
+	}
+	result := make([]byte, int64QuantityExpectedBytes, int64QuantityExpectedBytes)
+	result[0] = '"'
+	number, suffix := q.CanonicalizeBytes(result[1:1])
+	// if the same slice was returned to us that we passed in, avoid another allocation by copying number into
+	// the source slice and returning that
+	if len(number) > 0 && &number[0] == &result[1] && (len(number)+len(suffix)+2) <= int64QuantityExpectedBytes {
+		number = append(number, suffix...)
+		number = append(number, '"')
+		return result[:1+len(number)], nil
+	}
+	// if CanonicalizeBytes needed more space than our slice provided, we may need to allocate again so use
+	// append
+	result = result[:1]
+	result = append(result, number...)
+	result = append(result, suffix...)
+	result = append(result, '"')
+	return result, nil
+}
+
+// ToUnstructured implements the value.UnstructuredConverter interface.
+func (q Quantity) ToUnstructured() interface{} {
+	return q.String()
+}
+
+// UnmarshalJSON implements the json.Unmarshaller interface.
+// TODO: Remove support for leading/trailing whitespace
+func (q *Quantity) UnmarshalJSON(value []byte) error {
+	l := len(value)
+	if l == 4 && bytes.Equal(value, []byte("null")) {
+		q.d.Dec = nil
+		q.i = int64Amount{}
+		return nil
+	}
+	if l >= 2 && value[0] == '"' && value[l-1] == '"' {
+		value = value[1 : l-1]
+	}
+
+	parsed, err := ParseQuantity(strings.TrimSpace(string(value)))
+	if err != nil {
+		return err
+	}
+
+	// This copy is safe because parsed will not be referred to again.
+	*q = parsed
+	return nil
+}
+
+// NewQuantity returns a new Quantity representing the given
+// value in the given format.
+func NewQuantity(value int64, format Format) *Quantity {
+	return &Quantity{
+		i:      int64Amount{value: value},
+		Format: format,
+	}
+}
+
+// NewMilliQuantity returns a new Quantity representing the given
+// value * 1/1000 in the given format. Note that BinarySI formatting
+// will round fractional values, and will be changed to DecimalSI for
+// values x where (-1 < x < 1) && (x != 0).
+func NewMilliQuantity(value int64, format Format) *Quantity {
+	return &Quantity{
+		i:      int64Amount{value: value, scale: -3},
+		Format: format,
+	}
+}
+
+// NewScaledQuantity returns a new Quantity representing the given
+// value * 10^scale in DecimalSI format.
+func NewScaledQuantity(value int64, scale Scale) *Quantity {
+	return &Quantity{
+		i:      int64Amount{value: value, scale: scale},
+		Format: DecimalSI,
+	}
+}
+
+// Value returns the unscaled value of q rounded up to the nearest integer away from 0.
+func (q *Quantity) Value() int64 {
+	return q.ScaledValue(0)
+}
+
+// MilliValue returns the value of ceil(q * 1000); this could overflow an int64;
+// if that's a concern, call Value() first to verify the number is small enough.
+func (q *Quantity) MilliValue() int64 {
+	return q.ScaledValue(Milli)
+}
+
+// ScaledValue returns the value of ceil(q / 10^scale).
+// For example, NewQuantity(1, DecimalSI).ScaledValue(Milli) returns 1000.
+// This could overflow an int64.
+// To detect overflow, call Value() first and verify the expected magnitude.
+func (q *Quantity) ScaledValue(scale Scale) int64 {
+	if q.d.Dec == nil {
+		i, _ := q.i.AsScaledInt64(scale)
+		return i
+	}
+	dec := q.d.Dec
+	return scaledValue(dec.UnscaledBig(), int(dec.Scale()), int(scale.infScale()))
+}
+
+// Set sets q's value to be value.
+func (q *Quantity) Set(value int64) {
+	q.SetScaled(value, 0)
+}
+
+// SetMilli sets q's value to be value * 1/1000.
+func (q *Quantity) SetMilli(value int64) {
+	q.SetScaled(value, Milli)
+}
+
+// SetScaled sets q's value to be value * 10^scale
+func (q *Quantity) SetScaled(value int64, scale Scale) {
+	q.s = ""
+	q.d.Dec = nil
+	q.i = int64Amount{value: value, scale: scale}
+}