[VOL-3711] Watching for pods and fetch information as soon as they are available

Change-Id: I266b36a652c80561048c4efcbf7b0f1f561b9641
diff --git a/vendor/github.com/google/go-cmp/cmp/internal/diff/debug_disable.go b/vendor/github.com/google/go-cmp/cmp/internal/diff/debug_disable.go
new file mode 100644
index 0000000..fe98dcc
--- /dev/null
+++ b/vendor/github.com/google/go-cmp/cmp/internal/diff/debug_disable.go
@@ -0,0 +1,17 @@
+// Copyright 2017, The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE.md file.
+
+// +build !cmp_debug
+
+package diff
+
+var debug debugger
+
+type debugger struct{}
+
+func (debugger) Begin(_, _ int, f EqualFunc, _, _ *EditScript) EqualFunc {
+	return f
+}
+func (debugger) Update() {}
+func (debugger) Finish() {}
diff --git a/vendor/github.com/google/go-cmp/cmp/internal/diff/debug_enable.go b/vendor/github.com/google/go-cmp/cmp/internal/diff/debug_enable.go
new file mode 100644
index 0000000..597b6ae
--- /dev/null
+++ b/vendor/github.com/google/go-cmp/cmp/internal/diff/debug_enable.go
@@ -0,0 +1,122 @@
+// Copyright 2017, The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE.md file.
+
+// +build cmp_debug
+
+package diff
+
+import (
+	"fmt"
+	"strings"
+	"sync"
+	"time"
+)
+
+// The algorithm can be seen running in real-time by enabling debugging:
+//	go test -tags=cmp_debug -v
+//
+// Example output:
+//	=== RUN   TestDifference/#34
+//	┌───────────────────────────────┐
+//	│ \ · · · · · · · · · · · · · · │
+//	│ · # · · · · · · · · · · · · · │
+//	│ · \ · · · · · · · · · · · · · │
+//	│ · · \ · · · · · · · · · · · · │
+//	│ · · · X # · · · · · · · · · · │
+//	│ · · · # \ · · · · · · · · · · │
+//	│ · · · · · # # · · · · · · · · │
+//	│ · · · · · # \ · · · · · · · · │
+//	│ · · · · · · · \ · · · · · · · │
+//	│ · · · · · · · · \ · · · · · · │
+//	│ · · · · · · · · · \ · · · · · │
+//	│ · · · · · · · · · · \ · · # · │
+//	│ · · · · · · · · · · · \ # # · │
+//	│ · · · · · · · · · · · # # # · │
+//	│ · · · · · · · · · · # # # # · │
+//	│ · · · · · · · · · # # # # # · │
+//	│ · · · · · · · · · · · · · · \ │
+//	└───────────────────────────────┘
+//	[.Y..M.XY......YXYXY.|]
+//
+// The grid represents the edit-graph where the horizontal axis represents
+// list X and the vertical axis represents list Y. The start of the two lists
+// is the top-left, while the ends are the bottom-right. The '·' represents
+// an unexplored node in the graph. The '\' indicates that the two symbols
+// from list X and Y are equal. The 'X' indicates that two symbols are similar
+// (but not exactly equal) to each other. The '#' indicates that the two symbols
+// are different (and not similar). The algorithm traverses this graph trying to
+// make the paths starting in the top-left and the bottom-right connect.
+//
+// The series of '.', 'X', 'Y', and 'M' characters at the bottom represents
+// the currently established path from the forward and reverse searches,
+// separated by a '|' character.
+
+const (
+	updateDelay  = 100 * time.Millisecond
+	finishDelay  = 500 * time.Millisecond
+	ansiTerminal = true // ANSI escape codes used to move terminal cursor
+)
+
+var debug debugger
+
+type debugger struct {
+	sync.Mutex
+	p1, p2           EditScript
+	fwdPath, revPath *EditScript
+	grid             []byte
+	lines            int
+}
+
+func (dbg *debugger) Begin(nx, ny int, f EqualFunc, p1, p2 *EditScript) EqualFunc {
+	dbg.Lock()
+	dbg.fwdPath, dbg.revPath = p1, p2
+	top := "┌─" + strings.Repeat("──", nx) + "┐\n"
+	row := "│ " + strings.Repeat("· ", nx) + "│\n"
+	btm := "└─" + strings.Repeat("──", nx) + "┘\n"
+	dbg.grid = []byte(top + strings.Repeat(row, ny) + btm)
+	dbg.lines = strings.Count(dbg.String(), "\n")
+	fmt.Print(dbg)
+
+	// Wrap the EqualFunc so that we can intercept each result.
+	return func(ix, iy int) (r Result) {
+		cell := dbg.grid[len(top)+iy*len(row):][len("│ ")+len("· ")*ix:][:len("·")]
+		for i := range cell {
+			cell[i] = 0 // Zero out the multiple bytes of UTF-8 middle-dot
+		}
+		switch r = f(ix, iy); {
+		case r.Equal():
+			cell[0] = '\\'
+		case r.Similar():
+			cell[0] = 'X'
+		default:
+			cell[0] = '#'
+		}
+		return
+	}
+}
+
+func (dbg *debugger) Update() {
+	dbg.print(updateDelay)
+}
+
+func (dbg *debugger) Finish() {
+	dbg.print(finishDelay)
+	dbg.Unlock()
+}
+
+func (dbg *debugger) String() string {
+	dbg.p1, dbg.p2 = *dbg.fwdPath, dbg.p2[:0]
+	for i := len(*dbg.revPath) - 1; i >= 0; i-- {
+		dbg.p2 = append(dbg.p2, (*dbg.revPath)[i])
+	}
+	return fmt.Sprintf("%s[%v|%v]\n\n", dbg.grid, dbg.p1, dbg.p2)
+}
+
+func (dbg *debugger) print(d time.Duration) {
+	if ansiTerminal {
+		fmt.Printf("\x1b[%dA", dbg.lines) // Reset terminal cursor
+	}
+	fmt.Print(dbg)
+	time.Sleep(d)
+}
diff --git a/vendor/github.com/google/go-cmp/cmp/internal/diff/diff.go b/vendor/github.com/google/go-cmp/cmp/internal/diff/diff.go
new file mode 100644
index 0000000..3d2e426
--- /dev/null
+++ b/vendor/github.com/google/go-cmp/cmp/internal/diff/diff.go
@@ -0,0 +1,372 @@
+// Copyright 2017, The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE.md file.
+
+// Package diff implements an algorithm for producing edit-scripts.
+// The edit-script is a sequence of operations needed to transform one list
+// of symbols into another (or vice-versa). The edits allowed are insertions,
+// deletions, and modifications. The summation of all edits is called the
+// Levenshtein distance as this problem is well-known in computer science.
+//
+// This package prioritizes performance over accuracy. That is, the run time
+// is more important than obtaining a minimal Levenshtein distance.
+package diff
+
+// EditType represents a single operation within an edit-script.
+type EditType uint8
+
+const (
+	// Identity indicates that a symbol pair is identical in both list X and Y.
+	Identity EditType = iota
+	// UniqueX indicates that a symbol only exists in X and not Y.
+	UniqueX
+	// UniqueY indicates that a symbol only exists in Y and not X.
+	UniqueY
+	// Modified indicates that a symbol pair is a modification of each other.
+	Modified
+)
+
+// EditScript represents the series of differences between two lists.
+type EditScript []EditType
+
+// String returns a human-readable string representing the edit-script where
+// Identity, UniqueX, UniqueY, and Modified are represented by the
+// '.', 'X', 'Y', and 'M' characters, respectively.
+func (es EditScript) String() string {
+	b := make([]byte, len(es))
+	for i, e := range es {
+		switch e {
+		case Identity:
+			b[i] = '.'
+		case UniqueX:
+			b[i] = 'X'
+		case UniqueY:
+			b[i] = 'Y'
+		case Modified:
+			b[i] = 'M'
+		default:
+			panic("invalid edit-type")
+		}
+	}
+	return string(b)
+}
+
+// stats returns a histogram of the number of each type of edit operation.
+func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) {
+	for _, e := range es {
+		switch e {
+		case Identity:
+			s.NI++
+		case UniqueX:
+			s.NX++
+		case UniqueY:
+			s.NY++
+		case Modified:
+			s.NM++
+		default:
+			panic("invalid edit-type")
+		}
+	}
+	return
+}
+
+// Dist is the Levenshtein distance and is guaranteed to be 0 if and only if
+// lists X and Y are equal.
+func (es EditScript) Dist() int { return len(es) - es.stats().NI }
+
+// LenX is the length of the X list.
+func (es EditScript) LenX() int { return len(es) - es.stats().NY }
+
+// LenY is the length of the Y list.
+func (es EditScript) LenY() int { return len(es) - es.stats().NX }
+
+// EqualFunc reports whether the symbols at indexes ix and iy are equal.
+// When called by Difference, the index is guaranteed to be within nx and ny.
+type EqualFunc func(ix int, iy int) Result
+
+// Result is the result of comparison.
+// NumSame is the number of sub-elements that are equal.
+// NumDiff is the number of sub-elements that are not equal.
+type Result struct{ NumSame, NumDiff int }
+
+// BoolResult returns a Result that is either Equal or not Equal.
+func BoolResult(b bool) Result {
+	if b {
+		return Result{NumSame: 1} // Equal, Similar
+	} else {
+		return Result{NumDiff: 2} // Not Equal, not Similar
+	}
+}
+
+// Equal indicates whether the symbols are equal. Two symbols are equal
+// if and only if NumDiff == 0. If Equal, then they are also Similar.
+func (r Result) Equal() bool { return r.NumDiff == 0 }
+
+// Similar indicates whether two symbols are similar and may be represented
+// by using the Modified type. As a special case, we consider binary comparisons
+// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
+//
+// The exact ratio of NumSame to NumDiff to determine similarity may change.
+func (r Result) Similar() bool {
+	// Use NumSame+1 to offset NumSame so that binary comparisons are similar.
+	return r.NumSame+1 >= r.NumDiff
+}
+
+// Difference reports whether two lists of lengths nx and ny are equal
+// given the definition of equality provided as f.
+//
+// This function returns an edit-script, which is a sequence of operations
+// needed to convert one list into the other. The following invariants for
+// the edit-script are maintained:
+//	• eq == (es.Dist()==0)
+//	• nx == es.LenX()
+//	• ny == es.LenY()
+//
+// This algorithm is not guaranteed to be an optimal solution (i.e., one that
+// produces an edit-script with a minimal Levenshtein distance). This algorithm
+// favors performance over optimality. The exact output is not guaranteed to
+// be stable and may change over time.
+func Difference(nx, ny int, f EqualFunc) (es EditScript) {
+	// This algorithm is based on traversing what is known as an "edit-graph".
+	// See Figure 1 from "An O(ND) Difference Algorithm and Its Variations"
+	// by Eugene W. Myers. Since D can be as large as N itself, this is
+	// effectively O(N^2). Unlike the algorithm from that paper, we are not
+	// interested in the optimal path, but at least some "decent" path.
+	//
+	// For example, let X and Y be lists of symbols:
+	//	X = [A B C A B B A]
+	//	Y = [C B A B A C]
+	//
+	// The edit-graph can be drawn as the following:
+	//	   A B C A B B A
+	//	  ┌─────────────┐
+	//	C │_|_|\|_|_|_|_│ 0
+	//	B │_|\|_|_|\|\|_│ 1
+	//	A │\|_|_|\|_|_|\│ 2
+	//	B │_|\|_|_|\|\|_│ 3
+	//	A │\|_|_|\|_|_|\│ 4
+	//	C │ | |\| | | | │ 5
+	//	  └─────────────┘ 6
+	//	   0 1 2 3 4 5 6 7
+	//
+	// List X is written along the horizontal axis, while list Y is written
+	// along the vertical axis. At any point on this grid, if the symbol in
+	// list X matches the corresponding symbol in list Y, then a '\' is drawn.
+	// The goal of any minimal edit-script algorithm is to find a path from the
+	// top-left corner to the bottom-right corner, while traveling through the
+	// fewest horizontal or vertical edges.
+	// A horizontal edge is equivalent to inserting a symbol from list X.
+	// A vertical edge is equivalent to inserting a symbol from list Y.
+	// A diagonal edge is equivalent to a matching symbol between both X and Y.
+
+	// Invariants:
+	//	• 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
+	//	• 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
+	//
+	// In general:
+	//	• fwdFrontier.X < revFrontier.X
+	//	• fwdFrontier.Y < revFrontier.Y
+	// Unless, it is time for the algorithm to terminate.
+	fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
+	revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
+	fwdFrontier := fwdPath.point // Forward search frontier
+	revFrontier := revPath.point // Reverse search frontier
+
+	// Search budget bounds the cost of searching for better paths.
+	// The longest sequence of non-matching symbols that can be tolerated is
+	// approximately the square-root of the search budget.
+	searchBudget := 4 * (nx + ny) // O(n)
+
+	// The algorithm below is a greedy, meet-in-the-middle algorithm for
+	// computing sub-optimal edit-scripts between two lists.
+	//
+	// The algorithm is approximately as follows:
+	//	• Searching for differences switches back-and-forth between
+	//	a search that starts at the beginning (the top-left corner), and
+	//	a search that starts at the end (the bottom-right corner). The goal of
+	//	the search is connect with the search from the opposite corner.
+	//	• As we search, we build a path in a greedy manner, where the first
+	//	match seen is added to the path (this is sub-optimal, but provides a
+	//	decent result in practice). When matches are found, we try the next pair
+	//	of symbols in the lists and follow all matches as far as possible.
+	//	• When searching for matches, we search along a diagonal going through
+	//	through the "frontier" point. If no matches are found, we advance the
+	//	frontier towards the opposite corner.
+	//	• This algorithm terminates when either the X coordinates or the
+	//	Y coordinates of the forward and reverse frontier points ever intersect.
+	//
+	// This algorithm is correct even if searching only in the forward direction
+	// or in the reverse direction. We do both because it is commonly observed
+	// that two lists commonly differ because elements were added to the front
+	// or end of the other list.
+	//
+	// Running the tests with the "cmp_debug" build tag prints a visualization
+	// of the algorithm running in real-time. This is educational for
+	// understanding how the algorithm works. See debug_enable.go.
+	f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
+	for {
+		// Forward search from the beginning.
+		if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
+			break
+		}
+		for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
+			// Search in a diagonal pattern for a match.
+			z := zigzag(i)
+			p := point{fwdFrontier.X + z, fwdFrontier.Y - z}
+			switch {
+			case p.X >= revPath.X || p.Y < fwdPath.Y:
+				stop1 = true // Hit top-right corner
+			case p.Y >= revPath.Y || p.X < fwdPath.X:
+				stop2 = true // Hit bottom-left corner
+			case f(p.X, p.Y).Equal():
+				// Match found, so connect the path to this point.
+				fwdPath.connect(p, f)
+				fwdPath.append(Identity)
+				// Follow sequence of matches as far as possible.
+				for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
+					if !f(fwdPath.X, fwdPath.Y).Equal() {
+						break
+					}
+					fwdPath.append(Identity)
+				}
+				fwdFrontier = fwdPath.point
+				stop1, stop2 = true, true
+			default:
+				searchBudget-- // Match not found
+			}
+			debug.Update()
+		}
+		// Advance the frontier towards reverse point.
+		if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y {
+			fwdFrontier.X++
+		} else {
+			fwdFrontier.Y++
+		}
+
+		// Reverse search from the end.
+		if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
+			break
+		}
+		for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
+			// Search in a diagonal pattern for a match.
+			z := zigzag(i)
+			p := point{revFrontier.X - z, revFrontier.Y + z}
+			switch {
+			case fwdPath.X >= p.X || revPath.Y < p.Y:
+				stop1 = true // Hit bottom-left corner
+			case fwdPath.Y >= p.Y || revPath.X < p.X:
+				stop2 = true // Hit top-right corner
+			case f(p.X-1, p.Y-1).Equal():
+				// Match found, so connect the path to this point.
+				revPath.connect(p, f)
+				revPath.append(Identity)
+				// Follow sequence of matches as far as possible.
+				for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
+					if !f(revPath.X-1, revPath.Y-1).Equal() {
+						break
+					}
+					revPath.append(Identity)
+				}
+				revFrontier = revPath.point
+				stop1, stop2 = true, true
+			default:
+				searchBudget-- // Match not found
+			}
+			debug.Update()
+		}
+		// Advance the frontier towards forward point.
+		if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y {
+			revFrontier.X--
+		} else {
+			revFrontier.Y--
+		}
+	}
+
+	// Join the forward and reverse paths and then append the reverse path.
+	fwdPath.connect(revPath.point, f)
+	for i := len(revPath.es) - 1; i >= 0; i-- {
+		t := revPath.es[i]
+		revPath.es = revPath.es[:i]
+		fwdPath.append(t)
+	}
+	debug.Finish()
+	return fwdPath.es
+}
+
+type path struct {
+	dir   int // +1 if forward, -1 if reverse
+	point     // Leading point of the EditScript path
+	es    EditScript
+}
+
+// connect appends any necessary Identity, Modified, UniqueX, or UniqueY types
+// to the edit-script to connect p.point to dst.
+func (p *path) connect(dst point, f EqualFunc) {
+	if p.dir > 0 {
+		// Connect in forward direction.
+		for dst.X > p.X && dst.Y > p.Y {
+			switch r := f(p.X, p.Y); {
+			case r.Equal():
+				p.append(Identity)
+			case r.Similar():
+				p.append(Modified)
+			case dst.X-p.X >= dst.Y-p.Y:
+				p.append(UniqueX)
+			default:
+				p.append(UniqueY)
+			}
+		}
+		for dst.X > p.X {
+			p.append(UniqueX)
+		}
+		for dst.Y > p.Y {
+			p.append(UniqueY)
+		}
+	} else {
+		// Connect in reverse direction.
+		for p.X > dst.X && p.Y > dst.Y {
+			switch r := f(p.X-1, p.Y-1); {
+			case r.Equal():
+				p.append(Identity)
+			case r.Similar():
+				p.append(Modified)
+			case p.Y-dst.Y >= p.X-dst.X:
+				p.append(UniqueY)
+			default:
+				p.append(UniqueX)
+			}
+		}
+		for p.X > dst.X {
+			p.append(UniqueX)
+		}
+		for p.Y > dst.Y {
+			p.append(UniqueY)
+		}
+	}
+}
+
+func (p *path) append(t EditType) {
+	p.es = append(p.es, t)
+	switch t {
+	case Identity, Modified:
+		p.add(p.dir, p.dir)
+	case UniqueX:
+		p.add(p.dir, 0)
+	case UniqueY:
+		p.add(0, p.dir)
+	}
+	debug.Update()
+}
+
+type point struct{ X, Y int }
+
+func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
+
+// zigzag maps a consecutive sequence of integers to a zig-zag sequence.
+//	[0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
+func zigzag(x int) int {
+	if x&1 != 0 {
+		x = ^x
+	}
+	return x >> 1
+}