SEBA-949 support for publishing bbsim events on kafka

Change-Id: I4354cd026bbadc801e4d6d08b2f9cd3462917b4c
diff --git a/vendor/github.com/davecgh/go-spew/LICENSE b/vendor/github.com/davecgh/go-spew/LICENSE
new file mode 100644
index 0000000..bc52e96
--- /dev/null
+++ b/vendor/github.com/davecgh/go-spew/LICENSE
@@ -0,0 +1,15 @@
+ISC License
+
+Copyright (c) 2012-2016 Dave Collins <dave@davec.name>
+
+Permission to use, copy, modify, and/or distribute this software for any
+purpose with or without fee is hereby granted, provided that the above
+copyright notice and this permission notice appear in all copies.
+
+THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
diff --git a/vendor/github.com/davecgh/go-spew/spew/bypass.go b/vendor/github.com/davecgh/go-spew/spew/bypass.go
new file mode 100644
index 0000000..7929947
--- /dev/null
+++ b/vendor/github.com/davecgh/go-spew/spew/bypass.go
@@ -0,0 +1,145 @@
+// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
+//
+// Permission to use, copy, modify, and distribute this software for any
+// purpose with or without fee is hereby granted, provided that the above
+// copyright notice and this permission notice appear in all copies.
+//
+// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+
+// NOTE: Due to the following build constraints, this file will only be compiled
+// when the code is not running on Google App Engine, compiled by GopherJS, and
+// "-tags safe" is not added to the go build command line.  The "disableunsafe"
+// tag is deprecated and thus should not be used.
+// Go versions prior to 1.4 are disabled because they use a different layout
+// for interfaces which make the implementation of unsafeReflectValue more complex.
+// +build !js,!appengine,!safe,!disableunsafe,go1.4
+
+package spew
+
+import (
+	"reflect"
+	"unsafe"
+)
+
+const (
+	// UnsafeDisabled is a build-time constant which specifies whether or
+	// not access to the unsafe package is available.
+	UnsafeDisabled = false
+
+	// ptrSize is the size of a pointer on the current arch.
+	ptrSize = unsafe.Sizeof((*byte)(nil))
+)
+
+type flag uintptr
+
+var (
+	// flagRO indicates whether the value field of a reflect.Value
+	// is read-only.
+	flagRO flag
+
+	// flagAddr indicates whether the address of the reflect.Value's
+	// value may be taken.
+	flagAddr flag
+)
+
+// flagKindMask holds the bits that make up the kind
+// part of the flags field. In all the supported versions,
+// it is in the lower 5 bits.
+const flagKindMask = flag(0x1f)
+
+// Different versions of Go have used different
+// bit layouts for the flags type. This table
+// records the known combinations.
+var okFlags = []struct {
+	ro, addr flag
+}{{
+	// From Go 1.4 to 1.5
+	ro:   1 << 5,
+	addr: 1 << 7,
+}, {
+	// Up to Go tip.
+	ro:   1<<5 | 1<<6,
+	addr: 1 << 8,
+}}
+
+var flagValOffset = func() uintptr {
+	field, ok := reflect.TypeOf(reflect.Value{}).FieldByName("flag")
+	if !ok {
+		panic("reflect.Value has no flag field")
+	}
+	return field.Offset
+}()
+
+// flagField returns a pointer to the flag field of a reflect.Value.
+func flagField(v *reflect.Value) *flag {
+	return (*flag)(unsafe.Pointer(uintptr(unsafe.Pointer(v)) + flagValOffset))
+}
+
+// unsafeReflectValue converts the passed reflect.Value into a one that bypasses
+// the typical safety restrictions preventing access to unaddressable and
+// unexported data.  It works by digging the raw pointer to the underlying
+// value out of the protected value and generating a new unprotected (unsafe)
+// reflect.Value to it.
+//
+// This allows us to check for implementations of the Stringer and error
+// interfaces to be used for pretty printing ordinarily unaddressable and
+// inaccessible values such as unexported struct fields.
+func unsafeReflectValue(v reflect.Value) reflect.Value {
+	if !v.IsValid() || (v.CanInterface() && v.CanAddr()) {
+		return v
+	}
+	flagFieldPtr := flagField(&v)
+	*flagFieldPtr &^= flagRO
+	*flagFieldPtr |= flagAddr
+	return v
+}
+
+// Sanity checks against future reflect package changes
+// to the type or semantics of the Value.flag field.
+func init() {
+	field, ok := reflect.TypeOf(reflect.Value{}).FieldByName("flag")
+	if !ok {
+		panic("reflect.Value has no flag field")
+	}
+	if field.Type.Kind() != reflect.TypeOf(flag(0)).Kind() {
+		panic("reflect.Value flag field has changed kind")
+	}
+	type t0 int
+	var t struct {
+		A t0
+		// t0 will have flagEmbedRO set.
+		t0
+		// a will have flagStickyRO set
+		a t0
+	}
+	vA := reflect.ValueOf(t).FieldByName("A")
+	va := reflect.ValueOf(t).FieldByName("a")
+	vt0 := reflect.ValueOf(t).FieldByName("t0")
+
+	// Infer flagRO from the difference between the flags
+	// for the (otherwise identical) fields in t.
+	flagPublic := *flagField(&vA)
+	flagWithRO := *flagField(&va) | *flagField(&vt0)
+	flagRO = flagPublic ^ flagWithRO
+
+	// Infer flagAddr from the difference between a value
+	// taken from a pointer and not.
+	vPtrA := reflect.ValueOf(&t).Elem().FieldByName("A")
+	flagNoPtr := *flagField(&vA)
+	flagPtr := *flagField(&vPtrA)
+	flagAddr = flagNoPtr ^ flagPtr
+
+	// Check that the inferred flags tally with one of the known versions.
+	for _, f := range okFlags {
+		if flagRO == f.ro && flagAddr == f.addr {
+			return
+		}
+	}
+	panic("reflect.Value read-only flag has changed semantics")
+}
diff --git a/vendor/github.com/davecgh/go-spew/spew/bypasssafe.go b/vendor/github.com/davecgh/go-spew/spew/bypasssafe.go
new file mode 100644
index 0000000..205c28d
--- /dev/null
+++ b/vendor/github.com/davecgh/go-spew/spew/bypasssafe.go
@@ -0,0 +1,38 @@
+// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
+//
+// Permission to use, copy, modify, and distribute this software for any
+// purpose with or without fee is hereby granted, provided that the above
+// copyright notice and this permission notice appear in all copies.
+//
+// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+
+// NOTE: Due to the following build constraints, this file will only be compiled
+// when the code is running on Google App Engine, compiled by GopherJS, or
+// "-tags safe" is added to the go build command line.  The "disableunsafe"
+// tag is deprecated and thus should not be used.
+// +build js appengine safe disableunsafe !go1.4
+
+package spew
+
+import "reflect"
+
+const (
+	// UnsafeDisabled is a build-time constant which specifies whether or
+	// not access to the unsafe package is available.
+	UnsafeDisabled = true
+)
+
+// unsafeReflectValue typically converts the passed reflect.Value into a one
+// that bypasses the typical safety restrictions preventing access to
+// unaddressable and unexported data.  However, doing this relies on access to
+// the unsafe package.  This is a stub version which simply returns the passed
+// reflect.Value when the unsafe package is not available.
+func unsafeReflectValue(v reflect.Value) reflect.Value {
+	return v
+}
diff --git a/vendor/github.com/davecgh/go-spew/spew/common.go b/vendor/github.com/davecgh/go-spew/spew/common.go
new file mode 100644
index 0000000..1be8ce9
--- /dev/null
+++ b/vendor/github.com/davecgh/go-spew/spew/common.go
@@ -0,0 +1,341 @@
+/*
+ * Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+package spew
+
+import (
+	"bytes"
+	"fmt"
+	"io"
+	"reflect"
+	"sort"
+	"strconv"
+)
+
+// Some constants in the form of bytes to avoid string overhead.  This mirrors
+// the technique used in the fmt package.
+var (
+	panicBytes            = []byte("(PANIC=")
+	plusBytes             = []byte("+")
+	iBytes                = []byte("i")
+	trueBytes             = []byte("true")
+	falseBytes            = []byte("false")
+	interfaceBytes        = []byte("(interface {})")
+	commaNewlineBytes     = []byte(",\n")
+	newlineBytes          = []byte("\n")
+	openBraceBytes        = []byte("{")
+	openBraceNewlineBytes = []byte("{\n")
+	closeBraceBytes       = []byte("}")
+	asteriskBytes         = []byte("*")
+	colonBytes            = []byte(":")
+	colonSpaceBytes       = []byte(": ")
+	openParenBytes        = []byte("(")
+	closeParenBytes       = []byte(")")
+	spaceBytes            = []byte(" ")
+	pointerChainBytes     = []byte("->")
+	nilAngleBytes         = []byte("<nil>")
+	maxNewlineBytes       = []byte("<max depth reached>\n")
+	maxShortBytes         = []byte("<max>")
+	circularBytes         = []byte("<already shown>")
+	circularShortBytes    = []byte("<shown>")
+	invalidAngleBytes     = []byte("<invalid>")
+	openBracketBytes      = []byte("[")
+	closeBracketBytes     = []byte("]")
+	percentBytes          = []byte("%")
+	precisionBytes        = []byte(".")
+	openAngleBytes        = []byte("<")
+	closeAngleBytes       = []byte(">")
+	openMapBytes          = []byte("map[")
+	closeMapBytes         = []byte("]")
+	lenEqualsBytes        = []byte("len=")
+	capEqualsBytes        = []byte("cap=")
+)
+
+// hexDigits is used to map a decimal value to a hex digit.
+var hexDigits = "0123456789abcdef"
+
+// catchPanic handles any panics that might occur during the handleMethods
+// calls.
+func catchPanic(w io.Writer, v reflect.Value) {
+	if err := recover(); err != nil {
+		w.Write(panicBytes)
+		fmt.Fprintf(w, "%v", err)
+		w.Write(closeParenBytes)
+	}
+}
+
+// handleMethods attempts to call the Error and String methods on the underlying
+// type the passed reflect.Value represents and outputes the result to Writer w.
+//
+// It handles panics in any called methods by catching and displaying the error
+// as the formatted value.
+func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) {
+	// We need an interface to check if the type implements the error or
+	// Stringer interface.  However, the reflect package won't give us an
+	// interface on certain things like unexported struct fields in order
+	// to enforce visibility rules.  We use unsafe, when it's available,
+	// to bypass these restrictions since this package does not mutate the
+	// values.
+	if !v.CanInterface() {
+		if UnsafeDisabled {
+			return false
+		}
+
+		v = unsafeReflectValue(v)
+	}
+
+	// Choose whether or not to do error and Stringer interface lookups against
+	// the base type or a pointer to the base type depending on settings.
+	// Technically calling one of these methods with a pointer receiver can
+	// mutate the value, however, types which choose to satisify an error or
+	// Stringer interface with a pointer receiver should not be mutating their
+	// state inside these interface methods.
+	if !cs.DisablePointerMethods && !UnsafeDisabled && !v.CanAddr() {
+		v = unsafeReflectValue(v)
+	}
+	if v.CanAddr() {
+		v = v.Addr()
+	}
+
+	// Is it an error or Stringer?
+	switch iface := v.Interface().(type) {
+	case error:
+		defer catchPanic(w, v)
+		if cs.ContinueOnMethod {
+			w.Write(openParenBytes)
+			w.Write([]byte(iface.Error()))
+			w.Write(closeParenBytes)
+			w.Write(spaceBytes)
+			return false
+		}
+
+		w.Write([]byte(iface.Error()))
+		return true
+
+	case fmt.Stringer:
+		defer catchPanic(w, v)
+		if cs.ContinueOnMethod {
+			w.Write(openParenBytes)
+			w.Write([]byte(iface.String()))
+			w.Write(closeParenBytes)
+			w.Write(spaceBytes)
+			return false
+		}
+		w.Write([]byte(iface.String()))
+		return true
+	}
+	return false
+}
+
+// printBool outputs a boolean value as true or false to Writer w.
+func printBool(w io.Writer, val bool) {
+	if val {
+		w.Write(trueBytes)
+	} else {
+		w.Write(falseBytes)
+	}
+}
+
+// printInt outputs a signed integer value to Writer w.
+func printInt(w io.Writer, val int64, base int) {
+	w.Write([]byte(strconv.FormatInt(val, base)))
+}
+
+// printUint outputs an unsigned integer value to Writer w.
+func printUint(w io.Writer, val uint64, base int) {
+	w.Write([]byte(strconv.FormatUint(val, base)))
+}
+
+// printFloat outputs a floating point value using the specified precision,
+// which is expected to be 32 or 64bit, to Writer w.
+func printFloat(w io.Writer, val float64, precision int) {
+	w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision)))
+}
+
+// printComplex outputs a complex value using the specified float precision
+// for the real and imaginary parts to Writer w.
+func printComplex(w io.Writer, c complex128, floatPrecision int) {
+	r := real(c)
+	w.Write(openParenBytes)
+	w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision)))
+	i := imag(c)
+	if i >= 0 {
+		w.Write(plusBytes)
+	}
+	w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision)))
+	w.Write(iBytes)
+	w.Write(closeParenBytes)
+}
+
+// printHexPtr outputs a uintptr formatted as hexadecimal with a leading '0x'
+// prefix to Writer w.
+func printHexPtr(w io.Writer, p uintptr) {
+	// Null pointer.
+	num := uint64(p)
+	if num == 0 {
+		w.Write(nilAngleBytes)
+		return
+	}
+
+	// Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix
+	buf := make([]byte, 18)
+
+	// It's simpler to construct the hex string right to left.
+	base := uint64(16)
+	i := len(buf) - 1
+	for num >= base {
+		buf[i] = hexDigits[num%base]
+		num /= base
+		i--
+	}
+	buf[i] = hexDigits[num]
+
+	// Add '0x' prefix.
+	i--
+	buf[i] = 'x'
+	i--
+	buf[i] = '0'
+
+	// Strip unused leading bytes.
+	buf = buf[i:]
+	w.Write(buf)
+}
+
+// valuesSorter implements sort.Interface to allow a slice of reflect.Value
+// elements to be sorted.
+type valuesSorter struct {
+	values  []reflect.Value
+	strings []string // either nil or same len and values
+	cs      *ConfigState
+}
+
+// newValuesSorter initializes a valuesSorter instance, which holds a set of
+// surrogate keys on which the data should be sorted.  It uses flags in
+// ConfigState to decide if and how to populate those surrogate keys.
+func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface {
+	vs := &valuesSorter{values: values, cs: cs}
+	if canSortSimply(vs.values[0].Kind()) {
+		return vs
+	}
+	if !cs.DisableMethods {
+		vs.strings = make([]string, len(values))
+		for i := range vs.values {
+			b := bytes.Buffer{}
+			if !handleMethods(cs, &b, vs.values[i]) {
+				vs.strings = nil
+				break
+			}
+			vs.strings[i] = b.String()
+		}
+	}
+	if vs.strings == nil && cs.SpewKeys {
+		vs.strings = make([]string, len(values))
+		for i := range vs.values {
+			vs.strings[i] = Sprintf("%#v", vs.values[i].Interface())
+		}
+	}
+	return vs
+}
+
+// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted
+// directly, or whether it should be considered for sorting by surrogate keys
+// (if the ConfigState allows it).
+func canSortSimply(kind reflect.Kind) bool {
+	// This switch parallels valueSortLess, except for the default case.
+	switch kind {
+	case reflect.Bool:
+		return true
+	case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
+		return true
+	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
+		return true
+	case reflect.Float32, reflect.Float64:
+		return true
+	case reflect.String:
+		return true
+	case reflect.Uintptr:
+		return true
+	case reflect.Array:
+		return true
+	}
+	return false
+}
+
+// Len returns the number of values in the slice.  It is part of the
+// sort.Interface implementation.
+func (s *valuesSorter) Len() int {
+	return len(s.values)
+}
+
+// Swap swaps the values at the passed indices.  It is part of the
+// sort.Interface implementation.
+func (s *valuesSorter) Swap(i, j int) {
+	s.values[i], s.values[j] = s.values[j], s.values[i]
+	if s.strings != nil {
+		s.strings[i], s.strings[j] = s.strings[j], s.strings[i]
+	}
+}
+
+// valueSortLess returns whether the first value should sort before the second
+// value.  It is used by valueSorter.Less as part of the sort.Interface
+// implementation.
+func valueSortLess(a, b reflect.Value) bool {
+	switch a.Kind() {
+	case reflect.Bool:
+		return !a.Bool() && b.Bool()
+	case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
+		return a.Int() < b.Int()
+	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
+		return a.Uint() < b.Uint()
+	case reflect.Float32, reflect.Float64:
+		return a.Float() < b.Float()
+	case reflect.String:
+		return a.String() < b.String()
+	case reflect.Uintptr:
+		return a.Uint() < b.Uint()
+	case reflect.Array:
+		// Compare the contents of both arrays.
+		l := a.Len()
+		for i := 0; i < l; i++ {
+			av := a.Index(i)
+			bv := b.Index(i)
+			if av.Interface() == bv.Interface() {
+				continue
+			}
+			return valueSortLess(av, bv)
+		}
+	}
+	return a.String() < b.String()
+}
+
+// Less returns whether the value at index i should sort before the
+// value at index j.  It is part of the sort.Interface implementation.
+func (s *valuesSorter) Less(i, j int) bool {
+	if s.strings == nil {
+		return valueSortLess(s.values[i], s.values[j])
+	}
+	return s.strings[i] < s.strings[j]
+}
+
+// sortValues is a sort function that handles both native types and any type that
+// can be converted to error or Stringer.  Other inputs are sorted according to
+// their Value.String() value to ensure display stability.
+func sortValues(values []reflect.Value, cs *ConfigState) {
+	if len(values) == 0 {
+		return
+	}
+	sort.Sort(newValuesSorter(values, cs))
+}
diff --git a/vendor/github.com/davecgh/go-spew/spew/config.go b/vendor/github.com/davecgh/go-spew/spew/config.go
new file mode 100644
index 0000000..2e3d22f
--- /dev/null
+++ b/vendor/github.com/davecgh/go-spew/spew/config.go
@@ -0,0 +1,306 @@
+/*
+ * Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+package spew
+
+import (
+	"bytes"
+	"fmt"
+	"io"
+	"os"
+)
+
+// ConfigState houses the configuration options used by spew to format and
+// display values.  There is a global instance, Config, that is used to control
+// all top-level Formatter and Dump functionality.  Each ConfigState instance
+// provides methods equivalent to the top-level functions.
+//
+// The zero value for ConfigState provides no indentation.  You would typically
+// want to set it to a space or a tab.
+//
+// Alternatively, you can use NewDefaultConfig to get a ConfigState instance
+// with default settings.  See the documentation of NewDefaultConfig for default
+// values.
+type ConfigState struct {
+	// Indent specifies the string to use for each indentation level.  The
+	// global config instance that all top-level functions use set this to a
+	// single space by default.  If you would like more indentation, you might
+	// set this to a tab with "\t" or perhaps two spaces with "  ".
+	Indent string
+
+	// MaxDepth controls the maximum number of levels to descend into nested
+	// data structures.  The default, 0, means there is no limit.
+	//
+	// NOTE: Circular data structures are properly detected, so it is not
+	// necessary to set this value unless you specifically want to limit deeply
+	// nested data structures.
+	MaxDepth int
+
+	// DisableMethods specifies whether or not error and Stringer interfaces are
+	// invoked for types that implement them.
+	DisableMethods bool
+
+	// DisablePointerMethods specifies whether or not to check for and invoke
+	// error and Stringer interfaces on types which only accept a pointer
+	// receiver when the current type is not a pointer.
+	//
+	// NOTE: This might be an unsafe action since calling one of these methods
+	// with a pointer receiver could technically mutate the value, however,
+	// in practice, types which choose to satisify an error or Stringer
+	// interface with a pointer receiver should not be mutating their state
+	// inside these interface methods.  As a result, this option relies on
+	// access to the unsafe package, so it will not have any effect when
+	// running in environments without access to the unsafe package such as
+	// Google App Engine or with the "safe" build tag specified.
+	DisablePointerMethods bool
+
+	// DisablePointerAddresses specifies whether to disable the printing of
+	// pointer addresses. This is useful when diffing data structures in tests.
+	DisablePointerAddresses bool
+
+	// DisableCapacities specifies whether to disable the printing of capacities
+	// for arrays, slices, maps and channels. This is useful when diffing
+	// data structures in tests.
+	DisableCapacities bool
+
+	// ContinueOnMethod specifies whether or not recursion should continue once
+	// a custom error or Stringer interface is invoked.  The default, false,
+	// means it will print the results of invoking the custom error or Stringer
+	// interface and return immediately instead of continuing to recurse into
+	// the internals of the data type.
+	//
+	// NOTE: This flag does not have any effect if method invocation is disabled
+	// via the DisableMethods or DisablePointerMethods options.
+	ContinueOnMethod bool
+
+	// SortKeys specifies map keys should be sorted before being printed. Use
+	// this to have a more deterministic, diffable output.  Note that only
+	// native types (bool, int, uint, floats, uintptr and string) and types
+	// that support the error or Stringer interfaces (if methods are
+	// enabled) are supported, with other types sorted according to the
+	// reflect.Value.String() output which guarantees display stability.
+	SortKeys bool
+
+	// SpewKeys specifies that, as a last resort attempt, map keys should
+	// be spewed to strings and sorted by those strings.  This is only
+	// considered if SortKeys is true.
+	SpewKeys bool
+}
+
+// Config is the active configuration of the top-level functions.
+// The configuration can be changed by modifying the contents of spew.Config.
+var Config = ConfigState{Indent: " "}
+
+// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
+// passed with a Formatter interface returned by c.NewFormatter.  It returns
+// the formatted string as a value that satisfies error.  See NewFormatter
+// for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Errorf(format, c.NewFormatter(a), c.NewFormatter(b))
+func (c *ConfigState) Errorf(format string, a ...interface{}) (err error) {
+	return fmt.Errorf(format, c.convertArgs(a)...)
+}
+
+// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
+// passed with a Formatter interface returned by c.NewFormatter.  It returns
+// the number of bytes written and any write error encountered.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Fprint(w, c.NewFormatter(a), c.NewFormatter(b))
+func (c *ConfigState) Fprint(w io.Writer, a ...interface{}) (n int, err error) {
+	return fmt.Fprint(w, c.convertArgs(a)...)
+}
+
+// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
+// passed with a Formatter interface returned by c.NewFormatter.  It returns
+// the number of bytes written and any write error encountered.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Fprintf(w, format, c.NewFormatter(a), c.NewFormatter(b))
+func (c *ConfigState) Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
+	return fmt.Fprintf(w, format, c.convertArgs(a)...)
+}
+
+// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
+// passed with a Formatter interface returned by c.NewFormatter.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Fprintln(w, c.NewFormatter(a), c.NewFormatter(b))
+func (c *ConfigState) Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
+	return fmt.Fprintln(w, c.convertArgs(a)...)
+}
+
+// Print is a wrapper for fmt.Print that treats each argument as if it were
+// passed with a Formatter interface returned by c.NewFormatter.  It returns
+// the number of bytes written and any write error encountered.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Print(c.NewFormatter(a), c.NewFormatter(b))
+func (c *ConfigState) Print(a ...interface{}) (n int, err error) {
+	return fmt.Print(c.convertArgs(a)...)
+}
+
+// Printf is a wrapper for fmt.Printf that treats each argument as if it were
+// passed with a Formatter interface returned by c.NewFormatter.  It returns
+// the number of bytes written and any write error encountered.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Printf(format, c.NewFormatter(a), c.NewFormatter(b))
+func (c *ConfigState) Printf(format string, a ...interface{}) (n int, err error) {
+	return fmt.Printf(format, c.convertArgs(a)...)
+}
+
+// Println is a wrapper for fmt.Println that treats each argument as if it were
+// passed with a Formatter interface returned by c.NewFormatter.  It returns
+// the number of bytes written and any write error encountered.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Println(c.NewFormatter(a), c.NewFormatter(b))
+func (c *ConfigState) Println(a ...interface{}) (n int, err error) {
+	return fmt.Println(c.convertArgs(a)...)
+}
+
+// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
+// passed with a Formatter interface returned by c.NewFormatter.  It returns
+// the resulting string.  See NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Sprint(c.NewFormatter(a), c.NewFormatter(b))
+func (c *ConfigState) Sprint(a ...interface{}) string {
+	return fmt.Sprint(c.convertArgs(a)...)
+}
+
+// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
+// passed with a Formatter interface returned by c.NewFormatter.  It returns
+// the resulting string.  See NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Sprintf(format, c.NewFormatter(a), c.NewFormatter(b))
+func (c *ConfigState) Sprintf(format string, a ...interface{}) string {
+	return fmt.Sprintf(format, c.convertArgs(a)...)
+}
+
+// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
+// were passed with a Formatter interface returned by c.NewFormatter.  It
+// returns the resulting string.  See NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Sprintln(c.NewFormatter(a), c.NewFormatter(b))
+func (c *ConfigState) Sprintln(a ...interface{}) string {
+	return fmt.Sprintln(c.convertArgs(a)...)
+}
+
+/*
+NewFormatter returns a custom formatter that satisfies the fmt.Formatter
+interface.  As a result, it integrates cleanly with standard fmt package
+printing functions.  The formatter is useful for inline printing of smaller data
+types similar to the standard %v format specifier.
+
+The custom formatter only responds to the %v (most compact), %+v (adds pointer
+addresses), %#v (adds types), and %#+v (adds types and pointer addresses) verb
+combinations.  Any other verbs such as %x and %q will be sent to the the
+standard fmt package for formatting.  In addition, the custom formatter ignores
+the width and precision arguments (however they will still work on the format
+specifiers not handled by the custom formatter).
+
+Typically this function shouldn't be called directly.  It is much easier to make
+use of the custom formatter by calling one of the convenience functions such as
+c.Printf, c.Println, or c.Printf.
+*/
+func (c *ConfigState) NewFormatter(v interface{}) fmt.Formatter {
+	return newFormatter(c, v)
+}
+
+// Fdump formats and displays the passed arguments to io.Writer w.  It formats
+// exactly the same as Dump.
+func (c *ConfigState) Fdump(w io.Writer, a ...interface{}) {
+	fdump(c, w, a...)
+}
+
+/*
+Dump displays the passed parameters to standard out with newlines, customizable
+indentation, and additional debug information such as complete types and all
+pointer addresses used to indirect to the final value.  It provides the
+following features over the built-in printing facilities provided by the fmt
+package:
+
+	* Pointers are dereferenced and followed
+	* Circular data structures are detected and handled properly
+	* Custom Stringer/error interfaces are optionally invoked, including
+	  on unexported types
+	* Custom types which only implement the Stringer/error interfaces via
+	  a pointer receiver are optionally invoked when passing non-pointer
+	  variables
+	* Byte arrays and slices are dumped like the hexdump -C command which
+	  includes offsets, byte values in hex, and ASCII output
+
+The configuration options are controlled by modifying the public members
+of c.  See ConfigState for options documentation.
+
+See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
+get the formatted result as a string.
+*/
+func (c *ConfigState) Dump(a ...interface{}) {
+	fdump(c, os.Stdout, a...)
+}
+
+// Sdump returns a string with the passed arguments formatted exactly the same
+// as Dump.
+func (c *ConfigState) Sdump(a ...interface{}) string {
+	var buf bytes.Buffer
+	fdump(c, &buf, a...)
+	return buf.String()
+}
+
+// convertArgs accepts a slice of arguments and returns a slice of the same
+// length with each argument converted to a spew Formatter interface using
+// the ConfigState associated with s.
+func (c *ConfigState) convertArgs(args []interface{}) (formatters []interface{}) {
+	formatters = make([]interface{}, len(args))
+	for index, arg := range args {
+		formatters[index] = newFormatter(c, arg)
+	}
+	return formatters
+}
+
+// NewDefaultConfig returns a ConfigState with the following default settings.
+//
+// 	Indent: " "
+// 	MaxDepth: 0
+// 	DisableMethods: false
+// 	DisablePointerMethods: false
+// 	ContinueOnMethod: false
+// 	SortKeys: false
+func NewDefaultConfig() *ConfigState {
+	return &ConfigState{Indent: " "}
+}
diff --git a/vendor/github.com/davecgh/go-spew/spew/doc.go b/vendor/github.com/davecgh/go-spew/spew/doc.go
new file mode 100644
index 0000000..aacaac6
--- /dev/null
+++ b/vendor/github.com/davecgh/go-spew/spew/doc.go
@@ -0,0 +1,211 @@
+/*
+ * Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/*
+Package spew implements a deep pretty printer for Go data structures to aid in
+debugging.
+
+A quick overview of the additional features spew provides over the built-in
+printing facilities for Go data types are as follows:
+
+	* Pointers are dereferenced and followed
+	* Circular data structures are detected and handled properly
+	* Custom Stringer/error interfaces are optionally invoked, including
+	  on unexported types
+	* Custom types which only implement the Stringer/error interfaces via
+	  a pointer receiver are optionally invoked when passing non-pointer
+	  variables
+	* Byte arrays and slices are dumped like the hexdump -C command which
+	  includes offsets, byte values in hex, and ASCII output (only when using
+	  Dump style)
+
+There are two different approaches spew allows for dumping Go data structures:
+
+	* Dump style which prints with newlines, customizable indentation,
+	  and additional debug information such as types and all pointer addresses
+	  used to indirect to the final value
+	* A custom Formatter interface that integrates cleanly with the standard fmt
+	  package and replaces %v, %+v, %#v, and %#+v to provide inline printing
+	  similar to the default %v while providing the additional functionality
+	  outlined above and passing unsupported format verbs such as %x and %q
+	  along to fmt
+
+Quick Start
+
+This section demonstrates how to quickly get started with spew.  See the
+sections below for further details on formatting and configuration options.
+
+To dump a variable with full newlines, indentation, type, and pointer
+information use Dump, Fdump, or Sdump:
+	spew.Dump(myVar1, myVar2, ...)
+	spew.Fdump(someWriter, myVar1, myVar2, ...)
+	str := spew.Sdump(myVar1, myVar2, ...)
+
+Alternatively, if you would prefer to use format strings with a compacted inline
+printing style, use the convenience wrappers Printf, Fprintf, etc with
+%v (most compact), %+v (adds pointer addresses), %#v (adds types), or
+%#+v (adds types and pointer addresses):
+	spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
+	spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
+	spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
+	spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
+
+Configuration Options
+
+Configuration of spew is handled by fields in the ConfigState type.  For
+convenience, all of the top-level functions use a global state available
+via the spew.Config global.
+
+It is also possible to create a ConfigState instance that provides methods
+equivalent to the top-level functions.  This allows concurrent configuration
+options.  See the ConfigState documentation for more details.
+
+The following configuration options are available:
+	* Indent
+		String to use for each indentation level for Dump functions.
+		It is a single space by default.  A popular alternative is "\t".
+
+	* MaxDepth
+		Maximum number of levels to descend into nested data structures.
+		There is no limit by default.
+
+	* DisableMethods
+		Disables invocation of error and Stringer interface methods.
+		Method invocation is enabled by default.
+
+	* DisablePointerMethods
+		Disables invocation of error and Stringer interface methods on types
+		which only accept pointer receivers from non-pointer variables.
+		Pointer method invocation is enabled by default.
+
+	* DisablePointerAddresses
+		DisablePointerAddresses specifies whether to disable the printing of
+		pointer addresses. This is useful when diffing data structures in tests.
+
+	* DisableCapacities
+		DisableCapacities specifies whether to disable the printing of
+		capacities for arrays, slices, maps and channels. This is useful when
+		diffing data structures in tests.
+
+	* ContinueOnMethod
+		Enables recursion into types after invoking error and Stringer interface
+		methods. Recursion after method invocation is disabled by default.
+
+	* SortKeys
+		Specifies map keys should be sorted before being printed. Use
+		this to have a more deterministic, diffable output.  Note that
+		only native types (bool, int, uint, floats, uintptr and string)
+		and types which implement error or Stringer interfaces are
+		supported with other types sorted according to the
+		reflect.Value.String() output which guarantees display
+		stability.  Natural map order is used by default.
+
+	* SpewKeys
+		Specifies that, as a last resort attempt, map keys should be
+		spewed to strings and sorted by those strings.  This is only
+		considered if SortKeys is true.
+
+Dump Usage
+
+Simply call spew.Dump with a list of variables you want to dump:
+
+	spew.Dump(myVar1, myVar2, ...)
+
+You may also call spew.Fdump if you would prefer to output to an arbitrary
+io.Writer.  For example, to dump to standard error:
+
+	spew.Fdump(os.Stderr, myVar1, myVar2, ...)
+
+A third option is to call spew.Sdump to get the formatted output as a string:
+
+	str := spew.Sdump(myVar1, myVar2, ...)
+
+Sample Dump Output
+
+See the Dump example for details on the setup of the types and variables being
+shown here.
+
+	(main.Foo) {
+	 unexportedField: (*main.Bar)(0xf84002e210)({
+	  flag: (main.Flag) flagTwo,
+	  data: (uintptr) <nil>
+	 }),
+	 ExportedField: (map[interface {}]interface {}) (len=1) {
+	  (string) (len=3) "one": (bool) true
+	 }
+	}
+
+Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C
+command as shown.
+	([]uint8) (len=32 cap=32) {
+	 00000000  11 12 13 14 15 16 17 18  19 1a 1b 1c 1d 1e 1f 20  |............... |
+	 00000010  21 22 23 24 25 26 27 28  29 2a 2b 2c 2d 2e 2f 30  |!"#$%&'()*+,-./0|
+	 00000020  31 32                                             |12|
+	}
+
+Custom Formatter
+
+Spew provides a custom formatter that implements the fmt.Formatter interface
+so that it integrates cleanly with standard fmt package printing functions. The
+formatter is useful for inline printing of smaller data types similar to the
+standard %v format specifier.
+
+The custom formatter only responds to the %v (most compact), %+v (adds pointer
+addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
+combinations.  Any other verbs such as %x and %q will be sent to the the
+standard fmt package for formatting.  In addition, the custom formatter ignores
+the width and precision arguments (however they will still work on the format
+specifiers not handled by the custom formatter).
+
+Custom Formatter Usage
+
+The simplest way to make use of the spew custom formatter is to call one of the
+convenience functions such as spew.Printf, spew.Println, or spew.Printf.  The
+functions have syntax you are most likely already familiar with:
+
+	spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
+	spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
+	spew.Println(myVar, myVar2)
+	spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
+	spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
+
+See the Index for the full list convenience functions.
+
+Sample Formatter Output
+
+Double pointer to a uint8:
+	  %v: <**>5
+	 %+v: <**>(0xf8400420d0->0xf8400420c8)5
+	 %#v: (**uint8)5
+	%#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5
+
+Pointer to circular struct with a uint8 field and a pointer to itself:
+	  %v: <*>{1 <*><shown>}
+	 %+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>}
+	 %#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>}
+	%#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>}
+
+See the Printf example for details on the setup of variables being shown
+here.
+
+Errors
+
+Since it is possible for custom Stringer/error interfaces to panic, spew
+detects them and handles them internally by printing the panic information
+inline with the output.  Since spew is intended to provide deep pretty printing
+capabilities on structures, it intentionally does not return any errors.
+*/
+package spew
diff --git a/vendor/github.com/davecgh/go-spew/spew/dump.go b/vendor/github.com/davecgh/go-spew/spew/dump.go
new file mode 100644
index 0000000..f78d89f
--- /dev/null
+++ b/vendor/github.com/davecgh/go-spew/spew/dump.go
@@ -0,0 +1,509 @@
+/*
+ * Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+package spew
+
+import (
+	"bytes"
+	"encoding/hex"
+	"fmt"
+	"io"
+	"os"
+	"reflect"
+	"regexp"
+	"strconv"
+	"strings"
+)
+
+var (
+	// uint8Type is a reflect.Type representing a uint8.  It is used to
+	// convert cgo types to uint8 slices for hexdumping.
+	uint8Type = reflect.TypeOf(uint8(0))
+
+	// cCharRE is a regular expression that matches a cgo char.
+	// It is used to detect character arrays to hexdump them.
+	cCharRE = regexp.MustCompile(`^.*\._Ctype_char$`)
+
+	// cUnsignedCharRE is a regular expression that matches a cgo unsigned
+	// char.  It is used to detect unsigned character arrays to hexdump
+	// them.
+	cUnsignedCharRE = regexp.MustCompile(`^.*\._Ctype_unsignedchar$`)
+
+	// cUint8tCharRE is a regular expression that matches a cgo uint8_t.
+	// It is used to detect uint8_t arrays to hexdump them.
+	cUint8tCharRE = regexp.MustCompile(`^.*\._Ctype_uint8_t$`)
+)
+
+// dumpState contains information about the state of a dump operation.
+type dumpState struct {
+	w                io.Writer
+	depth            int
+	pointers         map[uintptr]int
+	ignoreNextType   bool
+	ignoreNextIndent bool
+	cs               *ConfigState
+}
+
+// indent performs indentation according to the depth level and cs.Indent
+// option.
+func (d *dumpState) indent() {
+	if d.ignoreNextIndent {
+		d.ignoreNextIndent = false
+		return
+	}
+	d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth))
+}
+
+// unpackValue returns values inside of non-nil interfaces when possible.
+// This is useful for data types like structs, arrays, slices, and maps which
+// can contain varying types packed inside an interface.
+func (d *dumpState) unpackValue(v reflect.Value) reflect.Value {
+	if v.Kind() == reflect.Interface && !v.IsNil() {
+		v = v.Elem()
+	}
+	return v
+}
+
+// dumpPtr handles formatting of pointers by indirecting them as necessary.
+func (d *dumpState) dumpPtr(v reflect.Value) {
+	// Remove pointers at or below the current depth from map used to detect
+	// circular refs.
+	for k, depth := range d.pointers {
+		if depth >= d.depth {
+			delete(d.pointers, k)
+		}
+	}
+
+	// Keep list of all dereferenced pointers to show later.
+	pointerChain := make([]uintptr, 0)
+
+	// Figure out how many levels of indirection there are by dereferencing
+	// pointers and unpacking interfaces down the chain while detecting circular
+	// references.
+	nilFound := false
+	cycleFound := false
+	indirects := 0
+	ve := v
+	for ve.Kind() == reflect.Ptr {
+		if ve.IsNil() {
+			nilFound = true
+			break
+		}
+		indirects++
+		addr := ve.Pointer()
+		pointerChain = append(pointerChain, addr)
+		if pd, ok := d.pointers[addr]; ok && pd < d.depth {
+			cycleFound = true
+			indirects--
+			break
+		}
+		d.pointers[addr] = d.depth
+
+		ve = ve.Elem()
+		if ve.Kind() == reflect.Interface {
+			if ve.IsNil() {
+				nilFound = true
+				break
+			}
+			ve = ve.Elem()
+		}
+	}
+
+	// Display type information.
+	d.w.Write(openParenBytes)
+	d.w.Write(bytes.Repeat(asteriskBytes, indirects))
+	d.w.Write([]byte(ve.Type().String()))
+	d.w.Write(closeParenBytes)
+
+	// Display pointer information.
+	if !d.cs.DisablePointerAddresses && len(pointerChain) > 0 {
+		d.w.Write(openParenBytes)
+		for i, addr := range pointerChain {
+			if i > 0 {
+				d.w.Write(pointerChainBytes)
+			}
+			printHexPtr(d.w, addr)
+		}
+		d.w.Write(closeParenBytes)
+	}
+
+	// Display dereferenced value.
+	d.w.Write(openParenBytes)
+	switch {
+	case nilFound:
+		d.w.Write(nilAngleBytes)
+
+	case cycleFound:
+		d.w.Write(circularBytes)
+
+	default:
+		d.ignoreNextType = true
+		d.dump(ve)
+	}
+	d.w.Write(closeParenBytes)
+}
+
+// dumpSlice handles formatting of arrays and slices.  Byte (uint8 under
+// reflection) arrays and slices are dumped in hexdump -C fashion.
+func (d *dumpState) dumpSlice(v reflect.Value) {
+	// Determine whether this type should be hex dumped or not.  Also,
+	// for types which should be hexdumped, try to use the underlying data
+	// first, then fall back to trying to convert them to a uint8 slice.
+	var buf []uint8
+	doConvert := false
+	doHexDump := false
+	numEntries := v.Len()
+	if numEntries > 0 {
+		vt := v.Index(0).Type()
+		vts := vt.String()
+		switch {
+		// C types that need to be converted.
+		case cCharRE.MatchString(vts):
+			fallthrough
+		case cUnsignedCharRE.MatchString(vts):
+			fallthrough
+		case cUint8tCharRE.MatchString(vts):
+			doConvert = true
+
+		// Try to use existing uint8 slices and fall back to converting
+		// and copying if that fails.
+		case vt.Kind() == reflect.Uint8:
+			// We need an addressable interface to convert the type
+			// to a byte slice.  However, the reflect package won't
+			// give us an interface on certain things like
+			// unexported struct fields in order to enforce
+			// visibility rules.  We use unsafe, when available, to
+			// bypass these restrictions since this package does not
+			// mutate the values.
+			vs := v
+			if !vs.CanInterface() || !vs.CanAddr() {
+				vs = unsafeReflectValue(vs)
+			}
+			if !UnsafeDisabled {
+				vs = vs.Slice(0, numEntries)
+
+				// Use the existing uint8 slice if it can be
+				// type asserted.
+				iface := vs.Interface()
+				if slice, ok := iface.([]uint8); ok {
+					buf = slice
+					doHexDump = true
+					break
+				}
+			}
+
+			// The underlying data needs to be converted if it can't
+			// be type asserted to a uint8 slice.
+			doConvert = true
+		}
+
+		// Copy and convert the underlying type if needed.
+		if doConvert && vt.ConvertibleTo(uint8Type) {
+			// Convert and copy each element into a uint8 byte
+			// slice.
+			buf = make([]uint8, numEntries)
+			for i := 0; i < numEntries; i++ {
+				vv := v.Index(i)
+				buf[i] = uint8(vv.Convert(uint8Type).Uint())
+			}
+			doHexDump = true
+		}
+	}
+
+	// Hexdump the entire slice as needed.
+	if doHexDump {
+		indent := strings.Repeat(d.cs.Indent, d.depth)
+		str := indent + hex.Dump(buf)
+		str = strings.Replace(str, "\n", "\n"+indent, -1)
+		str = strings.TrimRight(str, d.cs.Indent)
+		d.w.Write([]byte(str))
+		return
+	}
+
+	// Recursively call dump for each item.
+	for i := 0; i < numEntries; i++ {
+		d.dump(d.unpackValue(v.Index(i)))
+		if i < (numEntries - 1) {
+			d.w.Write(commaNewlineBytes)
+		} else {
+			d.w.Write(newlineBytes)
+		}
+	}
+}
+
+// dump is the main workhorse for dumping a value.  It uses the passed reflect
+// value to figure out what kind of object we are dealing with and formats it
+// appropriately.  It is a recursive function, however circular data structures
+// are detected and handled properly.
+func (d *dumpState) dump(v reflect.Value) {
+	// Handle invalid reflect values immediately.
+	kind := v.Kind()
+	if kind == reflect.Invalid {
+		d.w.Write(invalidAngleBytes)
+		return
+	}
+
+	// Handle pointers specially.
+	if kind == reflect.Ptr {
+		d.indent()
+		d.dumpPtr(v)
+		return
+	}
+
+	// Print type information unless already handled elsewhere.
+	if !d.ignoreNextType {
+		d.indent()
+		d.w.Write(openParenBytes)
+		d.w.Write([]byte(v.Type().String()))
+		d.w.Write(closeParenBytes)
+		d.w.Write(spaceBytes)
+	}
+	d.ignoreNextType = false
+
+	// Display length and capacity if the built-in len and cap functions
+	// work with the value's kind and the len/cap itself is non-zero.
+	valueLen, valueCap := 0, 0
+	switch v.Kind() {
+	case reflect.Array, reflect.Slice, reflect.Chan:
+		valueLen, valueCap = v.Len(), v.Cap()
+	case reflect.Map, reflect.String:
+		valueLen = v.Len()
+	}
+	if valueLen != 0 || !d.cs.DisableCapacities && valueCap != 0 {
+		d.w.Write(openParenBytes)
+		if valueLen != 0 {
+			d.w.Write(lenEqualsBytes)
+			printInt(d.w, int64(valueLen), 10)
+		}
+		if !d.cs.DisableCapacities && valueCap != 0 {
+			if valueLen != 0 {
+				d.w.Write(spaceBytes)
+			}
+			d.w.Write(capEqualsBytes)
+			printInt(d.w, int64(valueCap), 10)
+		}
+		d.w.Write(closeParenBytes)
+		d.w.Write(spaceBytes)
+	}
+
+	// Call Stringer/error interfaces if they exist and the handle methods flag
+	// is enabled
+	if !d.cs.DisableMethods {
+		if (kind != reflect.Invalid) && (kind != reflect.Interface) {
+			if handled := handleMethods(d.cs, d.w, v); handled {
+				return
+			}
+		}
+	}
+
+	switch kind {
+	case reflect.Invalid:
+		// Do nothing.  We should never get here since invalid has already
+		// been handled above.
+
+	case reflect.Bool:
+		printBool(d.w, v.Bool())
+
+	case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
+		printInt(d.w, v.Int(), 10)
+
+	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
+		printUint(d.w, v.Uint(), 10)
+
+	case reflect.Float32:
+		printFloat(d.w, v.Float(), 32)
+
+	case reflect.Float64:
+		printFloat(d.w, v.Float(), 64)
+
+	case reflect.Complex64:
+		printComplex(d.w, v.Complex(), 32)
+
+	case reflect.Complex128:
+		printComplex(d.w, v.Complex(), 64)
+
+	case reflect.Slice:
+		if v.IsNil() {
+			d.w.Write(nilAngleBytes)
+			break
+		}
+		fallthrough
+
+	case reflect.Array:
+		d.w.Write(openBraceNewlineBytes)
+		d.depth++
+		if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
+			d.indent()
+			d.w.Write(maxNewlineBytes)
+		} else {
+			d.dumpSlice(v)
+		}
+		d.depth--
+		d.indent()
+		d.w.Write(closeBraceBytes)
+
+	case reflect.String:
+		d.w.Write([]byte(strconv.Quote(v.String())))
+
+	case reflect.Interface:
+		// The only time we should get here is for nil interfaces due to
+		// unpackValue calls.
+		if v.IsNil() {
+			d.w.Write(nilAngleBytes)
+		}
+
+	case reflect.Ptr:
+		// Do nothing.  We should never get here since pointers have already
+		// been handled above.
+
+	case reflect.Map:
+		// nil maps should be indicated as different than empty maps
+		if v.IsNil() {
+			d.w.Write(nilAngleBytes)
+			break
+		}
+
+		d.w.Write(openBraceNewlineBytes)
+		d.depth++
+		if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
+			d.indent()
+			d.w.Write(maxNewlineBytes)
+		} else {
+			numEntries := v.Len()
+			keys := v.MapKeys()
+			if d.cs.SortKeys {
+				sortValues(keys, d.cs)
+			}
+			for i, key := range keys {
+				d.dump(d.unpackValue(key))
+				d.w.Write(colonSpaceBytes)
+				d.ignoreNextIndent = true
+				d.dump(d.unpackValue(v.MapIndex(key)))
+				if i < (numEntries - 1) {
+					d.w.Write(commaNewlineBytes)
+				} else {
+					d.w.Write(newlineBytes)
+				}
+			}
+		}
+		d.depth--
+		d.indent()
+		d.w.Write(closeBraceBytes)
+
+	case reflect.Struct:
+		d.w.Write(openBraceNewlineBytes)
+		d.depth++
+		if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
+			d.indent()
+			d.w.Write(maxNewlineBytes)
+		} else {
+			vt := v.Type()
+			numFields := v.NumField()
+			for i := 0; i < numFields; i++ {
+				d.indent()
+				vtf := vt.Field(i)
+				d.w.Write([]byte(vtf.Name))
+				d.w.Write(colonSpaceBytes)
+				d.ignoreNextIndent = true
+				d.dump(d.unpackValue(v.Field(i)))
+				if i < (numFields - 1) {
+					d.w.Write(commaNewlineBytes)
+				} else {
+					d.w.Write(newlineBytes)
+				}
+			}
+		}
+		d.depth--
+		d.indent()
+		d.w.Write(closeBraceBytes)
+
+	case reflect.Uintptr:
+		printHexPtr(d.w, uintptr(v.Uint()))
+
+	case reflect.UnsafePointer, reflect.Chan, reflect.Func:
+		printHexPtr(d.w, v.Pointer())
+
+	// There were not any other types at the time this code was written, but
+	// fall back to letting the default fmt package handle it in case any new
+	// types are added.
+	default:
+		if v.CanInterface() {
+			fmt.Fprintf(d.w, "%v", v.Interface())
+		} else {
+			fmt.Fprintf(d.w, "%v", v.String())
+		}
+	}
+}
+
+// fdump is a helper function to consolidate the logic from the various public
+// methods which take varying writers and config states.
+func fdump(cs *ConfigState, w io.Writer, a ...interface{}) {
+	for _, arg := range a {
+		if arg == nil {
+			w.Write(interfaceBytes)
+			w.Write(spaceBytes)
+			w.Write(nilAngleBytes)
+			w.Write(newlineBytes)
+			continue
+		}
+
+		d := dumpState{w: w, cs: cs}
+		d.pointers = make(map[uintptr]int)
+		d.dump(reflect.ValueOf(arg))
+		d.w.Write(newlineBytes)
+	}
+}
+
+// Fdump formats and displays the passed arguments to io.Writer w.  It formats
+// exactly the same as Dump.
+func Fdump(w io.Writer, a ...interface{}) {
+	fdump(&Config, w, a...)
+}
+
+// Sdump returns a string with the passed arguments formatted exactly the same
+// as Dump.
+func Sdump(a ...interface{}) string {
+	var buf bytes.Buffer
+	fdump(&Config, &buf, a...)
+	return buf.String()
+}
+
+/*
+Dump displays the passed parameters to standard out with newlines, customizable
+indentation, and additional debug information such as complete types and all
+pointer addresses used to indirect to the final value.  It provides the
+following features over the built-in printing facilities provided by the fmt
+package:
+
+	* Pointers are dereferenced and followed
+	* Circular data structures are detected and handled properly
+	* Custom Stringer/error interfaces are optionally invoked, including
+	  on unexported types
+	* Custom types which only implement the Stringer/error interfaces via
+	  a pointer receiver are optionally invoked when passing non-pointer
+	  variables
+	* Byte arrays and slices are dumped like the hexdump -C command which
+	  includes offsets, byte values in hex, and ASCII output
+
+The configuration options are controlled by an exported package global,
+spew.Config.  See ConfigState for options documentation.
+
+See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
+get the formatted result as a string.
+*/
+func Dump(a ...interface{}) {
+	fdump(&Config, os.Stdout, a...)
+}
diff --git a/vendor/github.com/davecgh/go-spew/spew/format.go b/vendor/github.com/davecgh/go-spew/spew/format.go
new file mode 100644
index 0000000..b04edb7
--- /dev/null
+++ b/vendor/github.com/davecgh/go-spew/spew/format.go
@@ -0,0 +1,419 @@
+/*
+ * Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+package spew
+
+import (
+	"bytes"
+	"fmt"
+	"reflect"
+	"strconv"
+	"strings"
+)
+
+// supportedFlags is a list of all the character flags supported by fmt package.
+const supportedFlags = "0-+# "
+
+// formatState implements the fmt.Formatter interface and contains information
+// about the state of a formatting operation.  The NewFormatter function can
+// be used to get a new Formatter which can be used directly as arguments
+// in standard fmt package printing calls.
+type formatState struct {
+	value          interface{}
+	fs             fmt.State
+	depth          int
+	pointers       map[uintptr]int
+	ignoreNextType bool
+	cs             *ConfigState
+}
+
+// buildDefaultFormat recreates the original format string without precision
+// and width information to pass in to fmt.Sprintf in the case of an
+// unrecognized type.  Unless new types are added to the language, this
+// function won't ever be called.
+func (f *formatState) buildDefaultFormat() (format string) {
+	buf := bytes.NewBuffer(percentBytes)
+
+	for _, flag := range supportedFlags {
+		if f.fs.Flag(int(flag)) {
+			buf.WriteRune(flag)
+		}
+	}
+
+	buf.WriteRune('v')
+
+	format = buf.String()
+	return format
+}
+
+// constructOrigFormat recreates the original format string including precision
+// and width information to pass along to the standard fmt package.  This allows
+// automatic deferral of all format strings this package doesn't support.
+func (f *formatState) constructOrigFormat(verb rune) (format string) {
+	buf := bytes.NewBuffer(percentBytes)
+
+	for _, flag := range supportedFlags {
+		if f.fs.Flag(int(flag)) {
+			buf.WriteRune(flag)
+		}
+	}
+
+	if width, ok := f.fs.Width(); ok {
+		buf.WriteString(strconv.Itoa(width))
+	}
+
+	if precision, ok := f.fs.Precision(); ok {
+		buf.Write(precisionBytes)
+		buf.WriteString(strconv.Itoa(precision))
+	}
+
+	buf.WriteRune(verb)
+
+	format = buf.String()
+	return format
+}
+
+// unpackValue returns values inside of non-nil interfaces when possible and
+// ensures that types for values which have been unpacked from an interface
+// are displayed when the show types flag is also set.
+// This is useful for data types like structs, arrays, slices, and maps which
+// can contain varying types packed inside an interface.
+func (f *formatState) unpackValue(v reflect.Value) reflect.Value {
+	if v.Kind() == reflect.Interface {
+		f.ignoreNextType = false
+		if !v.IsNil() {
+			v = v.Elem()
+		}
+	}
+	return v
+}
+
+// formatPtr handles formatting of pointers by indirecting them as necessary.
+func (f *formatState) formatPtr(v reflect.Value) {
+	// Display nil if top level pointer is nil.
+	showTypes := f.fs.Flag('#')
+	if v.IsNil() && (!showTypes || f.ignoreNextType) {
+		f.fs.Write(nilAngleBytes)
+		return
+	}
+
+	// Remove pointers at or below the current depth from map used to detect
+	// circular refs.
+	for k, depth := range f.pointers {
+		if depth >= f.depth {
+			delete(f.pointers, k)
+		}
+	}
+
+	// Keep list of all dereferenced pointers to possibly show later.
+	pointerChain := make([]uintptr, 0)
+
+	// Figure out how many levels of indirection there are by derferencing
+	// pointers and unpacking interfaces down the chain while detecting circular
+	// references.
+	nilFound := false
+	cycleFound := false
+	indirects := 0
+	ve := v
+	for ve.Kind() == reflect.Ptr {
+		if ve.IsNil() {
+			nilFound = true
+			break
+		}
+		indirects++
+		addr := ve.Pointer()
+		pointerChain = append(pointerChain, addr)
+		if pd, ok := f.pointers[addr]; ok && pd < f.depth {
+			cycleFound = true
+			indirects--
+			break
+		}
+		f.pointers[addr] = f.depth
+
+		ve = ve.Elem()
+		if ve.Kind() == reflect.Interface {
+			if ve.IsNil() {
+				nilFound = true
+				break
+			}
+			ve = ve.Elem()
+		}
+	}
+
+	// Display type or indirection level depending on flags.
+	if showTypes && !f.ignoreNextType {
+		f.fs.Write(openParenBytes)
+		f.fs.Write(bytes.Repeat(asteriskBytes, indirects))
+		f.fs.Write([]byte(ve.Type().String()))
+		f.fs.Write(closeParenBytes)
+	} else {
+		if nilFound || cycleFound {
+			indirects += strings.Count(ve.Type().String(), "*")
+		}
+		f.fs.Write(openAngleBytes)
+		f.fs.Write([]byte(strings.Repeat("*", indirects)))
+		f.fs.Write(closeAngleBytes)
+	}
+
+	// Display pointer information depending on flags.
+	if f.fs.Flag('+') && (len(pointerChain) > 0) {
+		f.fs.Write(openParenBytes)
+		for i, addr := range pointerChain {
+			if i > 0 {
+				f.fs.Write(pointerChainBytes)
+			}
+			printHexPtr(f.fs, addr)
+		}
+		f.fs.Write(closeParenBytes)
+	}
+
+	// Display dereferenced value.
+	switch {
+	case nilFound:
+		f.fs.Write(nilAngleBytes)
+
+	case cycleFound:
+		f.fs.Write(circularShortBytes)
+
+	default:
+		f.ignoreNextType = true
+		f.format(ve)
+	}
+}
+
+// format is the main workhorse for providing the Formatter interface.  It
+// uses the passed reflect value to figure out what kind of object we are
+// dealing with and formats it appropriately.  It is a recursive function,
+// however circular data structures are detected and handled properly.
+func (f *formatState) format(v reflect.Value) {
+	// Handle invalid reflect values immediately.
+	kind := v.Kind()
+	if kind == reflect.Invalid {
+		f.fs.Write(invalidAngleBytes)
+		return
+	}
+
+	// Handle pointers specially.
+	if kind == reflect.Ptr {
+		f.formatPtr(v)
+		return
+	}
+
+	// Print type information unless already handled elsewhere.
+	if !f.ignoreNextType && f.fs.Flag('#') {
+		f.fs.Write(openParenBytes)
+		f.fs.Write([]byte(v.Type().String()))
+		f.fs.Write(closeParenBytes)
+	}
+	f.ignoreNextType = false
+
+	// Call Stringer/error interfaces if they exist and the handle methods
+	// flag is enabled.
+	if !f.cs.DisableMethods {
+		if (kind != reflect.Invalid) && (kind != reflect.Interface) {
+			if handled := handleMethods(f.cs, f.fs, v); handled {
+				return
+			}
+		}
+	}
+
+	switch kind {
+	case reflect.Invalid:
+		// Do nothing.  We should never get here since invalid has already
+		// been handled above.
+
+	case reflect.Bool:
+		printBool(f.fs, v.Bool())
+
+	case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
+		printInt(f.fs, v.Int(), 10)
+
+	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
+		printUint(f.fs, v.Uint(), 10)
+
+	case reflect.Float32:
+		printFloat(f.fs, v.Float(), 32)
+
+	case reflect.Float64:
+		printFloat(f.fs, v.Float(), 64)
+
+	case reflect.Complex64:
+		printComplex(f.fs, v.Complex(), 32)
+
+	case reflect.Complex128:
+		printComplex(f.fs, v.Complex(), 64)
+
+	case reflect.Slice:
+		if v.IsNil() {
+			f.fs.Write(nilAngleBytes)
+			break
+		}
+		fallthrough
+
+	case reflect.Array:
+		f.fs.Write(openBracketBytes)
+		f.depth++
+		if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
+			f.fs.Write(maxShortBytes)
+		} else {
+			numEntries := v.Len()
+			for i := 0; i < numEntries; i++ {
+				if i > 0 {
+					f.fs.Write(spaceBytes)
+				}
+				f.ignoreNextType = true
+				f.format(f.unpackValue(v.Index(i)))
+			}
+		}
+		f.depth--
+		f.fs.Write(closeBracketBytes)
+
+	case reflect.String:
+		f.fs.Write([]byte(v.String()))
+
+	case reflect.Interface:
+		// The only time we should get here is for nil interfaces due to
+		// unpackValue calls.
+		if v.IsNil() {
+			f.fs.Write(nilAngleBytes)
+		}
+
+	case reflect.Ptr:
+		// Do nothing.  We should never get here since pointers have already
+		// been handled above.
+
+	case reflect.Map:
+		// nil maps should be indicated as different than empty maps
+		if v.IsNil() {
+			f.fs.Write(nilAngleBytes)
+			break
+		}
+
+		f.fs.Write(openMapBytes)
+		f.depth++
+		if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
+			f.fs.Write(maxShortBytes)
+		} else {
+			keys := v.MapKeys()
+			if f.cs.SortKeys {
+				sortValues(keys, f.cs)
+			}
+			for i, key := range keys {
+				if i > 0 {
+					f.fs.Write(spaceBytes)
+				}
+				f.ignoreNextType = true
+				f.format(f.unpackValue(key))
+				f.fs.Write(colonBytes)
+				f.ignoreNextType = true
+				f.format(f.unpackValue(v.MapIndex(key)))
+			}
+		}
+		f.depth--
+		f.fs.Write(closeMapBytes)
+
+	case reflect.Struct:
+		numFields := v.NumField()
+		f.fs.Write(openBraceBytes)
+		f.depth++
+		if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
+			f.fs.Write(maxShortBytes)
+		} else {
+			vt := v.Type()
+			for i := 0; i < numFields; i++ {
+				if i > 0 {
+					f.fs.Write(spaceBytes)
+				}
+				vtf := vt.Field(i)
+				if f.fs.Flag('+') || f.fs.Flag('#') {
+					f.fs.Write([]byte(vtf.Name))
+					f.fs.Write(colonBytes)
+				}
+				f.format(f.unpackValue(v.Field(i)))
+			}
+		}
+		f.depth--
+		f.fs.Write(closeBraceBytes)
+
+	case reflect.Uintptr:
+		printHexPtr(f.fs, uintptr(v.Uint()))
+
+	case reflect.UnsafePointer, reflect.Chan, reflect.Func:
+		printHexPtr(f.fs, v.Pointer())
+
+	// There were not any other types at the time this code was written, but
+	// fall back to letting the default fmt package handle it if any get added.
+	default:
+		format := f.buildDefaultFormat()
+		if v.CanInterface() {
+			fmt.Fprintf(f.fs, format, v.Interface())
+		} else {
+			fmt.Fprintf(f.fs, format, v.String())
+		}
+	}
+}
+
+// Format satisfies the fmt.Formatter interface. See NewFormatter for usage
+// details.
+func (f *formatState) Format(fs fmt.State, verb rune) {
+	f.fs = fs
+
+	// Use standard formatting for verbs that are not v.
+	if verb != 'v' {
+		format := f.constructOrigFormat(verb)
+		fmt.Fprintf(fs, format, f.value)
+		return
+	}
+
+	if f.value == nil {
+		if fs.Flag('#') {
+			fs.Write(interfaceBytes)
+		}
+		fs.Write(nilAngleBytes)
+		return
+	}
+
+	f.format(reflect.ValueOf(f.value))
+}
+
+// newFormatter is a helper function to consolidate the logic from the various
+// public methods which take varying config states.
+func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter {
+	fs := &formatState{value: v, cs: cs}
+	fs.pointers = make(map[uintptr]int)
+	return fs
+}
+
+/*
+NewFormatter returns a custom formatter that satisfies the fmt.Formatter
+interface.  As a result, it integrates cleanly with standard fmt package
+printing functions.  The formatter is useful for inline printing of smaller data
+types similar to the standard %v format specifier.
+
+The custom formatter only responds to the %v (most compact), %+v (adds pointer
+addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
+combinations.  Any other verbs such as %x and %q will be sent to the the
+standard fmt package for formatting.  In addition, the custom formatter ignores
+the width and precision arguments (however they will still work on the format
+specifiers not handled by the custom formatter).
+
+Typically this function shouldn't be called directly.  It is much easier to make
+use of the custom formatter by calling one of the convenience functions such as
+Printf, Println, or Fprintf.
+*/
+func NewFormatter(v interface{}) fmt.Formatter {
+	return newFormatter(&Config, v)
+}
diff --git a/vendor/github.com/davecgh/go-spew/spew/spew.go b/vendor/github.com/davecgh/go-spew/spew/spew.go
new file mode 100644
index 0000000..32c0e33
--- /dev/null
+++ b/vendor/github.com/davecgh/go-spew/spew/spew.go
@@ -0,0 +1,148 @@
+/*
+ * Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+package spew
+
+import (
+	"fmt"
+	"io"
+)
+
+// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
+// passed with a default Formatter interface returned by NewFormatter.  It
+// returns the formatted string as a value that satisfies error.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Errorf(format, spew.NewFormatter(a), spew.NewFormatter(b))
+func Errorf(format string, a ...interface{}) (err error) {
+	return fmt.Errorf(format, convertArgs(a)...)
+}
+
+// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
+// passed with a default Formatter interface returned by NewFormatter.  It
+// returns the number of bytes written and any write error encountered.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Fprint(w, spew.NewFormatter(a), spew.NewFormatter(b))
+func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
+	return fmt.Fprint(w, convertArgs(a)...)
+}
+
+// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
+// passed with a default Formatter interface returned by NewFormatter.  It
+// returns the number of bytes written and any write error encountered.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Fprintf(w, format, spew.NewFormatter(a), spew.NewFormatter(b))
+func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
+	return fmt.Fprintf(w, format, convertArgs(a)...)
+}
+
+// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
+// passed with a default Formatter interface returned by NewFormatter.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Fprintln(w, spew.NewFormatter(a), spew.NewFormatter(b))
+func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
+	return fmt.Fprintln(w, convertArgs(a)...)
+}
+
+// Print is a wrapper for fmt.Print that treats each argument as if it were
+// passed with a default Formatter interface returned by NewFormatter.  It
+// returns the number of bytes written and any write error encountered.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Print(spew.NewFormatter(a), spew.NewFormatter(b))
+func Print(a ...interface{}) (n int, err error) {
+	return fmt.Print(convertArgs(a)...)
+}
+
+// Printf is a wrapper for fmt.Printf that treats each argument as if it were
+// passed with a default Formatter interface returned by NewFormatter.  It
+// returns the number of bytes written and any write error encountered.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Printf(format, spew.NewFormatter(a), spew.NewFormatter(b))
+func Printf(format string, a ...interface{}) (n int, err error) {
+	return fmt.Printf(format, convertArgs(a)...)
+}
+
+// Println is a wrapper for fmt.Println that treats each argument as if it were
+// passed with a default Formatter interface returned by NewFormatter.  It
+// returns the number of bytes written and any write error encountered.  See
+// NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Println(spew.NewFormatter(a), spew.NewFormatter(b))
+func Println(a ...interface{}) (n int, err error) {
+	return fmt.Println(convertArgs(a)...)
+}
+
+// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
+// passed with a default Formatter interface returned by NewFormatter.  It
+// returns the resulting string.  See NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Sprint(spew.NewFormatter(a), spew.NewFormatter(b))
+func Sprint(a ...interface{}) string {
+	return fmt.Sprint(convertArgs(a)...)
+}
+
+// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
+// passed with a default Formatter interface returned by NewFormatter.  It
+// returns the resulting string.  See NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Sprintf(format, spew.NewFormatter(a), spew.NewFormatter(b))
+func Sprintf(format string, a ...interface{}) string {
+	return fmt.Sprintf(format, convertArgs(a)...)
+}
+
+// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
+// were passed with a default Formatter interface returned by NewFormatter.  It
+// returns the resulting string.  See NewFormatter for formatting details.
+//
+// This function is shorthand for the following syntax:
+//
+//	fmt.Sprintln(spew.NewFormatter(a), spew.NewFormatter(b))
+func Sprintln(a ...interface{}) string {
+	return fmt.Sprintln(convertArgs(a)...)
+}
+
+// convertArgs accepts a slice of arguments and returns a slice of the same
+// length with each argument converted to a default spew Formatter interface.
+func convertArgs(args []interface{}) (formatters []interface{}) {
+	formatters = make([]interface{}, len(args))
+	for index, arg := range args {
+		formatters[index] = NewFormatter(arg)
+	}
+	return formatters
+}