SEBA-949 support for publishing bbsim events on kafka

Change-Id: I4354cd026bbadc801e4d6d08b2f9cd3462917b4c
diff --git a/vendor/github.com/klauspost/compress/snappy/snappy.go b/vendor/github.com/klauspost/compress/snappy/snappy.go
new file mode 100644
index 0000000..74a3668
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/snappy/snappy.go
@@ -0,0 +1,98 @@
+// Copyright 2011 The Snappy-Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package snappy implements the Snappy compression format. It aims for very
+// high speeds and reasonable compression.
+//
+// There are actually two Snappy formats: block and stream. They are related,
+// but different: trying to decompress block-compressed data as a Snappy stream
+// will fail, and vice versa. The block format is the Decode and Encode
+// functions and the stream format is the Reader and Writer types.
+//
+// The block format, the more common case, is used when the complete size (the
+// number of bytes) of the original data is known upfront, at the time
+// compression starts. The stream format, also known as the framing format, is
+// for when that isn't always true.
+//
+// The canonical, C++ implementation is at https://github.com/google/snappy and
+// it only implements the block format.
+package snappy
+
+import (
+	"hash/crc32"
+)
+
+/*
+Each encoded block begins with the varint-encoded length of the decoded data,
+followed by a sequence of chunks. Chunks begin and end on byte boundaries. The
+first byte of each chunk is broken into its 2 least and 6 most significant bits
+called l and m: l ranges in [0, 4) and m ranges in [0, 64). l is the chunk tag.
+Zero means a literal tag. All other values mean a copy tag.
+
+For literal tags:
+  - If m < 60, the next 1 + m bytes are literal bytes.
+  - Otherwise, let n be the little-endian unsigned integer denoted by the next
+    m - 59 bytes. The next 1 + n bytes after that are literal bytes.
+
+For copy tags, length bytes are copied from offset bytes ago, in the style of
+Lempel-Ziv compression algorithms. In particular:
+  - For l == 1, the offset ranges in [0, 1<<11) and the length in [4, 12).
+    The length is 4 + the low 3 bits of m. The high 3 bits of m form bits 8-10
+    of the offset. The next byte is bits 0-7 of the offset.
+  - For l == 2, the offset ranges in [0, 1<<16) and the length in [1, 65).
+    The length is 1 + m. The offset is the little-endian unsigned integer
+    denoted by the next 2 bytes.
+  - For l == 3, this tag is a legacy format that is no longer issued by most
+    encoders. Nonetheless, the offset ranges in [0, 1<<32) and the length in
+    [1, 65). The length is 1 + m. The offset is the little-endian unsigned
+    integer denoted by the next 4 bytes.
+*/
+const (
+	tagLiteral = 0x00
+	tagCopy1   = 0x01
+	tagCopy2   = 0x02
+	tagCopy4   = 0x03
+)
+
+const (
+	checksumSize    = 4
+	chunkHeaderSize = 4
+	magicChunk      = "\xff\x06\x00\x00" + magicBody
+	magicBody       = "sNaPpY"
+
+	// maxBlockSize is the maximum size of the input to encodeBlock. It is not
+	// part of the wire format per se, but some parts of the encoder assume
+	// that an offset fits into a uint16.
+	//
+	// Also, for the framing format (Writer type instead of Encode function),
+	// https://github.com/google/snappy/blob/master/framing_format.txt says
+	// that "the uncompressed data in a chunk must be no longer than 65536
+	// bytes".
+	maxBlockSize = 65536
+
+	// maxEncodedLenOfMaxBlockSize equals MaxEncodedLen(maxBlockSize), but is
+	// hard coded to be a const instead of a variable, so that obufLen can also
+	// be a const. Their equivalence is confirmed by
+	// TestMaxEncodedLenOfMaxBlockSize.
+	maxEncodedLenOfMaxBlockSize = 76490
+
+	obufHeaderLen = len(magicChunk) + checksumSize + chunkHeaderSize
+	obufLen       = obufHeaderLen + maxEncodedLenOfMaxBlockSize
+)
+
+const (
+	chunkTypeCompressedData   = 0x00
+	chunkTypeUncompressedData = 0x01
+	chunkTypePadding          = 0xfe
+	chunkTypeStreamIdentifier = 0xff
+)
+
+var crcTable = crc32.MakeTable(crc32.Castagnoli)
+
+// crc implements the checksum specified in section 3 of
+// https://github.com/google/snappy/blob/master/framing_format.txt
+func crc(b []byte) uint32 {
+	c := crc32.Update(0, crcTable, b)
+	return uint32(c>>15|c<<17) + 0xa282ead8
+}