[SEBA-881] move device-management to go mod
Change-Id: Idf082ee75c157f72fd4173f653d9e13c1c55fcd3
diff --git a/vendor/gopkg.in/jcmturner/gokrb5.v7/crypto/common/common.go b/vendor/gopkg.in/jcmturner/gokrb5.v7/crypto/common/common.go
new file mode 100644
index 0000000..96ae549
--- /dev/null
+++ b/vendor/gopkg.in/jcmturner/gokrb5.v7/crypto/common/common.go
@@ -0,0 +1,143 @@
+// Package common provides encryption methods common across encryption types
+package common
+
+import (
+ "bytes"
+ "crypto/hmac"
+ "encoding/binary"
+ "encoding/hex"
+ "errors"
+ "fmt"
+
+ "gopkg.in/jcmturner/gokrb5.v7/crypto/etype"
+)
+
+// ZeroPad pads bytes with zeros to nearest multiple of message size m.
+func ZeroPad(b []byte, m int) ([]byte, error) {
+ if m <= 0 {
+ return nil, errors.New("Invalid message block size when padding")
+ }
+ if b == nil || len(b) == 0 {
+ return nil, errors.New("Data not valid to pad: Zero size")
+ }
+ if l := len(b) % m; l != 0 {
+ n := m - l
+ z := make([]byte, n)
+ b = append(b, z...)
+ }
+ return b, nil
+}
+
+// PKCS7Pad pads bytes according to RFC 2315 to nearest multiple of message size m.
+func PKCS7Pad(b []byte, m int) ([]byte, error) {
+ if m <= 0 {
+ return nil, errors.New("Invalid message block size when padding")
+ }
+ if b == nil || len(b) == 0 {
+ return nil, errors.New("Data not valid to pad: Zero size")
+ }
+ n := m - (len(b) % m)
+ pb := make([]byte, len(b)+n)
+ copy(pb, b)
+ copy(pb[len(b):], bytes.Repeat([]byte{byte(n)}, n))
+ return pb, nil
+}
+
+// PKCS7Unpad removes RFC 2315 padding from byes where message size is m.
+func PKCS7Unpad(b []byte, m int) ([]byte, error) {
+ if m <= 0 {
+ return nil, errors.New("invalid message block size when unpadding")
+ }
+ if b == nil || len(b) == 0 {
+ return nil, errors.New("padded data not valid: Zero size")
+ }
+ if len(b)%m != 0 {
+ return nil, errors.New("padded data not valid: Not multiple of message block size")
+ }
+ c := b[len(b)-1]
+ n := int(c)
+ if n == 0 || n > len(b) {
+ return nil, errors.New("padded data not valid: Data may not have been padded")
+ }
+ for i := 0; i < n; i++ {
+ if b[len(b)-n+i] != c {
+ return nil, errors.New("padded data not valid")
+ }
+ }
+ return b[:len(b)-n], nil
+}
+
+// GetHash generates the keyed hash value according to the etype's hash function.
+func GetHash(pt, key []byte, usage []byte, etype etype.EType) ([]byte, error) {
+ k, err := etype.DeriveKey(key, usage)
+ if err != nil {
+ return nil, fmt.Errorf("unable to derive key for checksum: %v", err)
+ }
+ mac := hmac.New(etype.GetHashFunc(), k)
+ p := make([]byte, len(pt))
+ copy(p, pt)
+ mac.Write(p)
+ return mac.Sum(nil)[:etype.GetHMACBitLength()/8], nil
+}
+
+// GetChecksumHash returns a keyed checksum hash of the bytes provided.
+func GetChecksumHash(b, key []byte, usage uint32, etype etype.EType) ([]byte, error) {
+ return GetHash(b, key, GetUsageKc(usage), etype)
+}
+
+// GetIntegrityHash returns a keyed integrity hash of the bytes provided.
+func GetIntegrityHash(b, key []byte, usage uint32, etype etype.EType) ([]byte, error) {
+ return GetHash(b, key, GetUsageKi(usage), etype)
+}
+
+// VerifyChecksum compares the checksum of the msg bytes is the same as the checksum provided.
+func VerifyChecksum(key, chksum, msg []byte, usage uint32, etype etype.EType) bool {
+ //The ciphertext output is the concatenation of the output of the basic
+ //encryption function E and a (possibly truncated) HMAC using the
+ //specified hash function H, both applied to the plaintext with a
+ //random confounder prefix and sufficient padding to bring it to a
+ //multiple of the message block size. When the HMAC is computed, the
+ //key is used in the protocol key form.
+ expectedMAC, _ := GetChecksumHash(msg, key, usage, etype)
+ return hmac.Equal(chksum, expectedMAC)
+}
+
+// GetUsageKc returns the checksum key usage value for the usage number un.
+//
+// RFC 3961: The "well-known constant" used for the DK function is the key usage number, expressed as four octets in big-endian order, followed by one octet indicated below.
+//
+// Kc = DK(base-key, usage | 0x99);
+func GetUsageKc(un uint32) []byte {
+ return getUsage(un, 0x99)
+}
+
+// GetUsageKe returns the encryption key usage value for the usage number un
+//
+// RFC 3961: The "well-known constant" used for the DK function is the key usage number, expressed as four octets in big-endian order, followed by one octet indicated below.
+//
+// Ke = DK(base-key, usage | 0xAA);
+func GetUsageKe(un uint32) []byte {
+ return getUsage(un, 0xAA)
+}
+
+// GetUsageKi returns the integrity key usage value for the usage number un
+//
+// RFC 3961: The "well-known constant" used for the DK function is the key usage number, expressed as four octets in big-endian order, followed by one octet indicated below.
+//
+// Ki = DK(base-key, usage | 0x55);
+func GetUsageKi(un uint32) []byte {
+ return getUsage(un, 0x55)
+}
+
+func getUsage(un uint32, o byte) []byte {
+ var buf bytes.Buffer
+ binary.Write(&buf, binary.BigEndian, un)
+ return append(buf.Bytes(), o)
+}
+
+// IterationsToS2Kparams converts the number of iterations as an integer to a string representation.
+func IterationsToS2Kparams(i uint32) string {
+ b := make([]byte, 4, 4)
+ binary.BigEndian.PutUint32(b, i)
+ return hex.EncodeToString(b)
+}