SEBA-in-a-Box

This document describes how to set up SEBA-in-a-Box (SiaB). SiaB is a functional SEBA pod capable of running E2E tests. It takes about 10 minutes to install on a physical server or VM.

The default configuration of SiaB incorporates an emulated OLT/ONU provided by Ponsim and an emulated AGG switch provided by Mininet. Mininet is also configured with a host that stands in as the BNG and runs a DHCP server. The Ponsim setup installs a single OLT, ONU, and RG. The RG is able to authenticate itself via 802.1x, run dhclient to get an IP address from the DHCP server in Mininet, and finally ping the BNG. This demonstrates end-to-end connectivity between the RG and BNG via the ONU, OLT, and agg switch.

This page describes how to set up SiaB with a physical switch instead of an emulated Mininet topology. An external server running DHCP services connected to the switch acts as the BNG.

Quick start

A Makefile can be used to install SEBA-in-a-Box in an automated manner on an Ubuntu 16.04 system:

mkdir -p ~/cord
cd ~/cord
git clone https://gerrit.opencord.org/automation-tools
cd automation-tools/seba-in-a-box

Quick start: Build SiaB using released charts

To build a SiaB that uses the released service versions specified in the Helm charts:

make [stable] [NUM_OLTS=n] [NUM_ONUS_PER_OLT=m]    # `make` and `make stable` are the same

NOTE that make or make stable will install SEBA with the container versions that are defined in the helm charts. If you want to install SEBA 2.0 please use: make siab-2.0-alpha1

You can specify the number of OLTs (up to 4) and number of ONUs per OLT (up to 4) that you want to create.

After a successful install, you will see the message:

SEBA-in-a-Box installation finished!

If the install fails for some reason, you can re-run the make command and the install will try to resume where it left off.

You can optionally install the logging and nem-monitoring charts during the installation by passing one or both of them (space delimited) via the INFRA_CHARTS variable.  E.g.:

make INFRA_CHARTS='logging nem-monitoring' stable

To test basic SEBA functionality, you can run:

make run-tests

Note that the tests currently assume a single OLT/ONU, so some tests will likely fail if you have configured multiple OLTs and ONUs.

Quick start: Build SiaB using latest development code

To build a SiaB that uses the latest development code:

make latest [NUM_OLTS=n] [NUM_ONUS_PER_OLT=m]

You can specify the number of OLTs (up to 4) and number of ONUs per OLT (up to 4) that you want to create.

After a successful install, you will see the message:

SEBA-in-a-Box installation finished!

If the install fails for some reason, you can re-run the make command and the install will try to resume where it left off.

To test basic SEBA functionality using the development code, you can run:

make run-tests-latest

Note that the tests currently assume a single OLT/ONU, so some tests will likely fail if you have configured multiple OLTs and ONUs.

Installation procedure

The rest of this page describes a manual method for installing SEBA-in-a-Box. It also provides an overview of what is installed by each chart.

Prerequisites

Before installing SiaB, you need a Kubernetes cluster (can be a single node) with the Calico CNI plugin installed.  You also need Helm and a few other software packages.

The server or VM on which you are installing SEBA-in-a-Box should have at least two CPU cores, 8GB RAM, and 30GB disk space.

Kubernetes

You need to have Kubernetes with CNI enabled.  An easy way to set up a single-node Kubernetes that meets the requirements is with kubeadm. Instructions for installing kubeadm on various platforms can be found [here](https://www.google.com/url?q=https://kubernetes.io/docs/setup/inde pendent/install-kubeadm/&sa=D&ust=1542238113244000).

NOTE: the setup has not been made to work with minikube; we recommend installing kubeadm instead.

Here’s an example of installing kubeadm on an Ubuntu 16.04 server:

echo "Installing docker..."
sudo apt-get update
sudo apt-get install -y software-properties-common
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 0EBFCD88
sudo add-apt-repository \
       "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
       $(lsb_release -cs) \
       stable"
sudo apt-get update
sudo apt-get install -y "docker-ce=17.06*"

echo "Installing kubeadm..."
sudo apt-get update
sudo apt-get install -y ebtables ethtool apt-transport-https curl
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
cat <<EOF >/tmp/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF
sudo cp /tmp/kubernetes.list /etc/apt/sources.list.d/kubernetes.list
sudo apt-get update
sudo apt install -y "kubeadm=1.12.7-*" "kubelet=1.12.7-*" "kubectl=1.12.7-*"
sudo swapoff -a
sudo kubeadm init --pod-network-cidr=192.168.0.0/16
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

If running on a single node, taint the master node so that we can schedule pods on it:

kubectl taint nodes --all node-role.kubernetes.io/master-

Calico CNI Plugin

Install the Calico CNI plugin in Kubernetes:

kubectl apply -f \
  https://docs.projectcalico.org/v3.3/getting-started/kubernetes/installation/hosted/rbac-kdd.yaml
kubectl apply -f \
  https://docs.projectcalico.org/v3.3/getting-started/kubernetes/installation/hosted/kubernetes-datastore/calico-networking/1.7/calico.yaml

Helm

An example of installing Helm:

echo "Installing helm..."
curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get > install-helm.sh
bash install-helm.sh -v v2.12.1
kubectl create serviceaccount --namespace kube-system tiller
kubectl create clusterrolebinding tiller-cluster-rule --clusterrole=cluster-admin --serviceaccount=kube-system:tiller
helm init --service-account tiller
helm repo add incubator https://kubernetes-charts-incubator.storage.googleapis.com/

Cordctl

Install the cordctl command line tool:

export CORDCTL_VERSION=1.1.2
export CORDCTL_PLATFORM=linux-amd64
curl -L -o /tmp/cordctl "https://github.com/opencord/cordctl/releases/download/$CORDCTL_VERSION/cordctl-$CORDCTL_PLATFORM"
sudo mv /tmp/cordctl /usr/local/bin/cordctl
sudo chmod a+x /usr/local/bin/cordctl
mkdir -p ~/.cord
printf "server: 127.0.0.1:30011\nusername: admin@opencord.org\npassword: letmein\ngrpc:\n  timeout: 10s\n" > ~/.cord/config

Other prerequisites

Install the http and jq commands.  Run: sudo apt install -y httpie jq

Get the Helm charts

Before we can start installing SEBA components, we need to get the charts.

mkdir -p cord
cd cord
git clone https://gerrit.opencord.org/helm-charts

Install Kafka and ONOS

Run these commands:

cd ~/cord/helm-charts
helm repo add incubator http://storage.googleapis.com/kubernetes-charts-incubator
helm install -n cord-kafka --version=0.13.3 -f examples/kafka-single.yaml incubator/kafka
# Wait for Kafka to come up
kubectl wait pod/cord-kafka-0 --for condition=Ready --timeout=180s
helm install -n onos onos

You should see the following pods running:

$ kubectl get pod
NAME                     READY   STATUS    RESTARTS   AGE
cord-kafka-0             1/1     Running   1          14h
cord-kafka-zookeeper-0   1/1     Running   0          14h
onos-558445d9bc-c2cd5    2/2     Running   0          14h

Install VOLTHA charts

Run these commands to install VOLTHA:

cd ~/cord/helm-charts
# Install the etcd-operator helm chart:
helm install -n etcd-operator stable/etcd-operator --version 0.8.3
# Allow etcd-operator enough time to create the EtdcCluster
# CustomResourceDefinitions. This should only be a couple of seconds after the
# etcd-operator pods are running. Wait for the CRD to be ready by running the following:
until kubectl get crd | grep etcdclusters; \
do \
    echo 'Waiting for etcdclusters CRD to be available'; \
    sleep 5; \
done
# After EtcdCluster CRD is in place
helm dep up voltha
helm install -n voltha voltha  --set etcd-cluster.clusterSize=1

Before proceeding

Run: kubectl get pod -l app=etcd

You should see the etcd-cluster pod up and running.

$ kubectl get pod -l app=etcd
NAME                      READY   STATUS    RESTARTS   AGE
etcd-cluster-jcjk2x97w6   1/1     Running   0          14h

You should see the VOLTHA pods created:

$ kubectl get pod -n voltha
NAME                                        READY   STATUS    RESTARTS   AGE
default-http-backend-798fb4f44c-fb696       1/1     Running   0          14h
freeradius-754bc76b5-22lcm                  1/1     Running   0          14h
netconf-66b767bddc-hbsgr                    1/1     Running   0          14h
nginx-ingress-controller-5fc7b87c86-bd55x   1/1     Running   0          14h
ofagent-556cd6c978-lknd4                    1/1     Running   0          14h
vcli-67c996f87d-vw4pk                       1/1     Running   0          14h
vcore-0                                     1/1     Running   0          14h
voltha-6f8d7bf7b-4gkkj                      1/1     Running   1          14h

Install Ponsim charts

Run these commands to install Ponsim (after installing VOLTHA):

cd ~/cord/helm-charts
NUM_OLTS=1          # can be between 1 and 4
NUM_ONUS_PER_OLT=1  # can be between 1 and 4
helm install -n ponnet ponnet --set numOlts=$NUM_OLTS --set numOnus=$NUM_ONUS_PER_OLT
# Wait for CNI changes
~/cord/helm-charts/scripts/wait_for_pods.sh kube-system
helm install -n ponsimv2 ponsimv2 --set numOlts=$NUM_OLTS --set numOnus=$NUM_ONUS_PER_OLT
# Iptables setup
sudo iptables -P FORWARD ACCEPT

Setting numOlts and numOnus is optional; the default is 1.

Before proceeding

Run: kubectl -n voltha get pod -l app=ponsim

$ kubectl -n voltha get pod -l app=ponsim
NAME                      READY   STATUS    RESTARTS   AGE
olt0-f4744dc5-xdrjb       1/1     Running   0          15h
onu0-0-6bf67bf6c6-76gn7   1/1     Running   0          15h
rg0-0-7b9d5cdb5c-jc8p5    1/1     Running   0          14h

Make sure that all of the pods in the voltha namespace are in Running state. If you see the olt0 pod in CrashLoopBackOff state, try deleting (helm delete --purge) and reinstalling the ponsimv2 chart.

If you install more than one OLT/ONU then you will see more containers above. The naming convention:

1st OLT - olt0-xxx
2nd OLT - olt1-xxx
1st ONU attached to 1st OLT - onu0-0-xx (onu<olt>-<onu>)
2nd ONU attached to 1st OLT - onu0-1-xx
1st ONU attached to 2nd OLT - onu1-0-xx
2nd ONU attached to 2nd OLT - onu1-1-xx
RG follows the same naming logic as ONU (rg0-0-xx, rg0-1-xx, rg1-0-xx, rg1-1-xx)
Linux bridges interconnecting ONU and RG follow the same naming logic as ONU (pon0.0, pon0.1 ...)
Linux bridges interconnecting OLT and Mininet follow same naming logic as OLT (nni0, nni1, ...)

Run http GET http://127.0.0.1:30125/health|jq '.state'. It should return "HEALTHY":

$ http GET http://127.0.0.1:30125/health|jq '.state'
"HEALTHY"

Install NEM charts

Run these commands:

cd ~/cord/helm-charts
helm dep update xos-core
helm install -n xos-core xos-core
helm dep update xos-profiles/seba-services
helm install -n seba-services xos-profiles/seba-services
helm dep update workflows/att-workflow
helm install -n att-workflow workflows/att-workflow -f configs/seba-ponsim.yaml
helm dep update xos-profiles/base-kubernetes
helm install -n base-kubernetes xos-profiles/base-kubernetes

Before proceeding

Run:  kubectl get pod

You should see all the NEM pods in Running state, except a number of *-tosca-loader pods which should eventually be in Completed state.   To wait until this occurs you can run:

~/cord/helm-charts/scripts/wait_for_pods.sh

Load TOSCA into NEM

Run these commands:

helm install -n ponsim-pod xos-profiles/ponsim-pod --set numOlts=$NUM_OLTS --set numOnus=$NUM_ONUS_PER_OLT
~/cord/helm-charts/scripts/wait_for_pods.sh

The TOSCA creates a subscriber for each RG rg<olt>-<onu> with S-tag of 222+<olt> and C-tag of 111+<onu>.

Before proceeding

Log into the XOS GUI at http://<hostname>:30001 (credentials: admin@opencord.org / letmein).  You should see an AttWorkflowDriver Service Instance with authentication state AWAITING. To check this from the command line:

cordctl model list AttWorkflowDriverServiceInstance -f "authentication_state=AWAITING"

This will show only the AttWorkflowDriver Service Instances in AWAITING state. Wait until you see a line for each ONU:

$ cordctl model list AttWorkflowDriverServiceInstance -f "authentication_state=AWAITING"
ID    NAME    OF_DPID                OWNER_ID    SERIAL_NUMBER    STATUS_MESSAGE                                      UNI_PORT_ID
56            of:0000d0d3e158fede    2           PSMO00000000     ONU has been validated - Awaiting Authentication    128

Install Mininet

Ensure that the openvswitch kernel module is loaded:

sudo modprobe openvswitch

Wait for the ofdpa-ovs switch driver setting to be sync'ed to ONOS:

cordctl model sync Switch -f 'driver=ofdpa-ovs'

Next install the Mininet chart:

cd ~/cord/helm-charts
helm install -n mininet mininet --set numOlts=$NUM_OLTS --set numOnus=$NUM_ONUS_PER_OLT
~/cord/helm-charts/scripts/wait_for_pods.sh

After the Mininet pod is running, you can get to the mininet> prompt using:

kubectl attach -ti deployment.apps/mininet

To detach press Ctrl-P Ctrl-Q.

Before proceeding

Run: brctl show

You should see two interfaces on the ponX.Y and nniX Linux bridges.

$ brctl show
bridge name     bridge id               STP enabled     interfaces
docker0         8000.02429d07b4e2       no
pon0.0          8000.bec4912b1f6a       no              veth25c1f40b
                                                        veth2a4c914f
nni0            8000.0a580a170001       no              veth3cc603fe
                                                        vethb6820963

You will see more bridges if you've configured multiple OLTs and ONUs. All of the nniX Linux bridges connect to the agg switch in Mininet on different ports.

Enable pon bridges to forward EAPOL packets

This is necessary to enable the RG to authenticate:

echo 8 > /tmp/group_fwd_mask
for BRIDGE in /sys/class/net/pon*; \
do \
    sudo cp /tmp/group_fwd_mask $BRIDGE/bridge/group_fwd_mask; \
done

ONOS customizations

It’s necessary to install some custom configuration to ONOS directly.  Run this command:

http -a karaf:karaf POST \
    http://127.0.0.1:30120/onos/v1/configuration/org.opencord.olt.impl.Olt defaultVlan=65535

The above command instructs the ONU to exchange untagged packets with the RG, rather than packets tagged with VLAN 0.

At this point the system should be fully installed and functional.

Validating the install

Authenticate the RG

Enter the RG pod in the voltha namespace:

RG_POD=$( kubectl -n voltha get pod | grep rg0-0 | awk '{print $1}' )
kubectl -n voltha exec -ti $RG_POD bash

If you built SiaB with multiple OLTs and ONUs, you can choose any RG to authenticate. Inside the pod, run this command:

wpa_supplicant -i eth0 -Dwired -c /etc/wpa_supplicant/wpa_supplicant.conf

You should see output like the following:

$ wpa_supplicant -i eth0 -Dwired -c /etc/wpa_supplicant/wpa_supplicant.conf
Successfully initialized wpa_supplicant
eth0: Associated with 01:80:c2:00:00:03
WMM AC: Missing IEs
eth0: CTRL-EVENT-EAP-STARTED EAP authentication started
eth0: CTRL-EVENT-EAP-PROPOSED-METHOD vendor=0 method=4
eth0: CTRL-EVENT-EAP-METHOD EAP vendor 0 method 4 (MD5) selected
eth0: CTRL-EVENT-EAP-SUCCESS EAP authentication completed successfully

Hit Ctrl-C after this point to get back to the shell prompt.

Before proceeding

In the XOS GUI, the AttDriverWorkflow Service Instance should now be in APPROVED state.  You can check for this on the command line by running:

cordctl model list AttWorkflowDriverServiceInstance -f "authentication_state=APPROVED"

It should return output like this:

$ cordctl model list AttWorkflowDriverServiceInstance -f "authentication_state=APPROVED"
ID    NAME    OF_DPID                OWNER_ID    SERIAL_NUMBER    STATUS_MESSAGE                                       UNI_PORT_ID
56            of:0000d0d3e158fede    2           PSMO00000000     ONU has been validated - Authentication succeeded    128

The FabricCrossconnect Service Instance should have a check in the Backend status column in the GUI. You can check for this on the command line by running:

cordctl model list FabricCrossconnectServiceInstance -f 'backend_status=OK'

Wait until it returns output like this:

$ cordctl model list FabricCrossconnectServiceInstance -f 'backend_status=OK'
ID    NAME    OWNER_ID    S_TAG    SOURCE_PORT    SWITCH_DATAPATH_ID
59            4           222      2              of:0000000000000001

Obtain an IP address for the RG

On the host, remove the dhclient profile from apparmor if present:

sudo apparmor_parser -R /etc/apparmor.d/sbin.dhclient || true

Next run the following commands inside the RG pod.

ifconfig eth0 0.0.0.0
dhclient

You should see output like the following:

$ dhclient
mv: cannot move '/etc/resolv.conf.dhclient-new.46' to '/etc/resolv.conf': Device or resource busy

You can ignore the Device or resource busy errors.  The issue is that /etc/resolv.conf is mounted into the RG container by Kubernetes and dhclient wants to overwrite it.

Before proceeding

rg<olt>-<onu> will get an IP address on subnet 172.18+<olt>.<onu>.0/24. Make sure that eth0 inside the RG container has an IP address on the proper subnet:

$ ifconfig eth0
eth0      Link encap:Ethernet  HWaddr 0a:58:0a:16:00:06
          inet addr:172.18.0.54  Bcast:172.18.0.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:600 errors:0 dropped:559 overruns:0 frame:0
          TX packets:15 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:57517 (57.5 KB)  TX bytes:3042 (3.0 KB)

Ping the emulated BNG

rg<olt>-<onu> pings 172.18+<olt>.<onu>.10 as its BNG.

$ ping -c 3 172.18.0.10
PING 172.18.0.10 (172.18.0.10) 56(84) bytes of data.
64 bytes from 172.18.0.10: icmp_seq=1 ttl=64 time=34.9 ms
64 bytes from 172.18.0.10: icmp_seq=2 ttl=64 time=39.6 ms
64 bytes from 172.18.0.10: icmp_seq=3 ttl=64 time=37.4 ms

--- 172.18.0.10 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2002ms

rtt min/avg/max/mdev = 34.940/37.343/39.615/1.917 ms

That’s it.  Currently it’s not possible to send traffic to destinations on the Internet.

Restarting SEBA-in-a-Box after a reboot

After a reboot of a server running SiaB, some services (such as etcd) will likely come up in a broken state. The easiest thing to do in this situation is to teardown SiaB using make reset-kubeadm and then rebuild it.

Uninstall SEBA-in-a-Box

If you're done with your testing, or want to change the version you are installing, the easiest way to remove a SiaB installation is to use the make reset-kubeadm target.

Getting help

Report any problems to acb on the CORD Slack channel.