initial add - go fmt on grpc

Change-Id: Ib0afadd2fe5571d1456a091f94f5644458f7d3f4
diff --git a/vendor/golang.org/x/text/unicode/bidi/bracket.go b/vendor/golang.org/x/text/unicode/bidi/bracket.go
new file mode 100644
index 0000000..1853939
--- /dev/null
+++ b/vendor/golang.org/x/text/unicode/bidi/bracket.go
@@ -0,0 +1,335 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bidi
+
+import (
+	"container/list"
+	"fmt"
+	"sort"
+)
+
+// This file contains a port of the reference implementation of the
+// Bidi Parentheses Algorithm:
+// https://www.unicode.org/Public/PROGRAMS/BidiReferenceJava/BidiPBAReference.java
+//
+// The implementation in this file covers definitions BD14-BD16 and rule N0
+// of UAX#9.
+//
+// Some preprocessing is done for each rune before data is passed to this
+// algorithm:
+//  - opening and closing brackets are identified
+//  - a bracket pair type, like '(' and ')' is assigned a unique identifier that
+//    is identical for the opening and closing bracket. It is left to do these
+//    mappings.
+//  - The BPA algorithm requires that bracket characters that are canonical
+//    equivalents of each other be able to be substituted for each other.
+//    It is the responsibility of the caller to do this canonicalization.
+//
+// In implementing BD16, this implementation departs slightly from the "logical"
+// algorithm defined in UAX#9. In particular, the stack referenced there
+// supports operations that go beyond a "basic" stack. An equivalent
+// implementation based on a linked list is used here.
+
+// Bidi_Paired_Bracket_Type
+// BD14. An opening paired bracket is a character whose
+// Bidi_Paired_Bracket_Type property value is Open.
+//
+// BD15. A closing paired bracket is a character whose
+// Bidi_Paired_Bracket_Type property value is Close.
+type bracketType byte
+
+const (
+	bpNone bracketType = iota
+	bpOpen
+	bpClose
+)
+
+// bracketPair holds a pair of index values for opening and closing bracket
+// location of a bracket pair.
+type bracketPair struct {
+	opener int
+	closer int
+}
+
+func (b *bracketPair) String() string {
+	return fmt.Sprintf("(%v, %v)", b.opener, b.closer)
+}
+
+// bracketPairs is a slice of bracketPairs with a sort.Interface implementation.
+type bracketPairs []bracketPair
+
+func (b bracketPairs) Len() int           { return len(b) }
+func (b bracketPairs) Swap(i, j int)      { b[i], b[j] = b[j], b[i] }
+func (b bracketPairs) Less(i, j int) bool { return b[i].opener < b[j].opener }
+
+// resolvePairedBrackets runs the paired bracket part of the UBA algorithm.
+//
+// For each rune, it takes the indexes into the original string, the class the
+// bracket type (in pairTypes) and the bracket identifier (pairValues). It also
+// takes the direction type for the start-of-sentence and the embedding level.
+//
+// The identifiers for bracket types are the rune of the canonicalized opening
+// bracket for brackets (open or close) or 0 for runes that are not brackets.
+func resolvePairedBrackets(s *isolatingRunSequence) {
+	p := bracketPairer{
+		sos:              s.sos,
+		openers:          list.New(),
+		codesIsolatedRun: s.types,
+		indexes:          s.indexes,
+	}
+	dirEmbed := L
+	if s.level&1 != 0 {
+		dirEmbed = R
+	}
+	p.locateBrackets(s.p.pairTypes, s.p.pairValues)
+	p.resolveBrackets(dirEmbed, s.p.initialTypes)
+}
+
+type bracketPairer struct {
+	sos Class // direction corresponding to start of sequence
+
+	// The following is a restatement of BD 16 using non-algorithmic language.
+	//
+	// A bracket pair is a pair of characters consisting of an opening
+	// paired bracket and a closing paired bracket such that the
+	// Bidi_Paired_Bracket property value of the former equals the latter,
+	// subject to the following constraints.
+	// - both characters of a pair occur in the same isolating run sequence
+	// - the closing character of a pair follows the opening character
+	// - any bracket character can belong at most to one pair, the earliest possible one
+	// - any bracket character not part of a pair is treated like an ordinary character
+	// - pairs may nest properly, but their spans may not overlap otherwise
+
+	// Bracket characters with canonical decompositions are supposed to be
+	// treated as if they had been normalized, to allow normalized and non-
+	// normalized text to give the same result. In this implementation that step
+	// is pushed out to the caller. The caller has to ensure that the pairValue
+	// slices contain the rune of the opening bracket after normalization for
+	// any opening or closing bracket.
+
+	openers *list.List // list of positions for opening brackets
+
+	// bracket pair positions sorted by location of opening bracket
+	pairPositions bracketPairs
+
+	codesIsolatedRun []Class // directional bidi codes for an isolated run
+	indexes          []int   // array of index values into the original string
+
+}
+
+// matchOpener reports whether characters at given positions form a matching
+// bracket pair.
+func (p *bracketPairer) matchOpener(pairValues []rune, opener, closer int) bool {
+	return pairValues[p.indexes[opener]] == pairValues[p.indexes[closer]]
+}
+
+const maxPairingDepth = 63
+
+// locateBrackets locates matching bracket pairs according to BD16.
+//
+// This implementation uses a linked list instead of a stack, because, while
+// elements are added at the front (like a push) they are not generally removed
+// in atomic 'pop' operations, reducing the benefit of the stack archetype.
+func (p *bracketPairer) locateBrackets(pairTypes []bracketType, pairValues []rune) {
+	// traverse the run
+	// do that explicitly (not in a for-each) so we can record position
+	for i, index := range p.indexes {
+
+		// look at the bracket type for each character
+		if pairTypes[index] == bpNone || p.codesIsolatedRun[i] != ON {
+			// continue scanning
+			continue
+		}
+		switch pairTypes[index] {
+		case bpOpen:
+			// check if maximum pairing depth reached
+			if p.openers.Len() == maxPairingDepth {
+				p.openers.Init()
+				return
+			}
+			// remember opener location, most recent first
+			p.openers.PushFront(i)
+
+		case bpClose:
+			// see if there is a match
+			count := 0
+			for elem := p.openers.Front(); elem != nil; elem = elem.Next() {
+				count++
+				opener := elem.Value.(int)
+				if p.matchOpener(pairValues, opener, i) {
+					// if the opener matches, add nested pair to the ordered list
+					p.pairPositions = append(p.pairPositions, bracketPair{opener, i})
+					// remove up to and including matched opener
+					for ; count > 0; count-- {
+						p.openers.Remove(p.openers.Front())
+					}
+					break
+				}
+			}
+			sort.Sort(p.pairPositions)
+			// if we get here, the closing bracket matched no openers
+			// and gets ignored
+		}
+	}
+}
+
+// Bracket pairs within an isolating run sequence are processed as units so
+// that both the opening and the closing paired bracket in a pair resolve to
+// the same direction.
+//
+// N0. Process bracket pairs in an isolating run sequence sequentially in
+// the logical order of the text positions of the opening paired brackets
+// using the logic given below. Within this scope, bidirectional types EN
+// and AN are treated as R.
+//
+// Identify the bracket pairs in the current isolating run sequence
+// according to BD16. For each bracket-pair element in the list of pairs of
+// text positions:
+//
+// a Inspect the bidirectional types of the characters enclosed within the
+// bracket pair.
+//
+// b If any strong type (either L or R) matching the embedding direction is
+// found, set the type for both brackets in the pair to match the embedding
+// direction.
+//
+// o [ e ] o -> o e e e o
+//
+// o [ o e ] -> o e o e e
+//
+// o [ NI e ] -> o e NI e e
+//
+// c Otherwise, if a strong type (opposite the embedding direction) is
+// found, test for adjacent strong types as follows: 1 First, check
+// backwards before the opening paired bracket until the first strong type
+// (L, R, or sos) is found. If that first preceding strong type is opposite
+// the embedding direction, then set the type for both brackets in the pair
+// to that type. 2 Otherwise, set the type for both brackets in the pair to
+// the embedding direction.
+//
+// o [ o ] e -> o o o o e
+//
+// o [ o NI ] o -> o o o NI o o
+//
+// e [ o ] o -> e e o e o
+//
+// e [ o ] e -> e e o e e
+//
+// e ( o [ o ] NI ) e -> e e o o o o NI e e
+//
+// d Otherwise, do not set the type for the current bracket pair. Note that
+// if the enclosed text contains no strong types the paired brackets will
+// both resolve to the same level when resolved individually using rules N1
+// and N2.
+//
+// e ( NI ) o -> e ( NI ) o
+
+// getStrongTypeN0 maps character's directional code to strong type as required
+// by rule N0.
+//
+// TODO: have separate type for "strong" directionality.
+func (p *bracketPairer) getStrongTypeN0(index int) Class {
+	switch p.codesIsolatedRun[index] {
+	// in the scope of N0, number types are treated as R
+	case EN, AN, AL, R:
+		return R
+	case L:
+		return L
+	default:
+		return ON
+	}
+}
+
+// classifyPairContent reports the strong types contained inside a Bracket Pair,
+// assuming the given embedding direction.
+//
+// It returns ON if no strong type is found. If a single strong type is found,
+// it returns this type. Otherwise it returns the embedding direction.
+//
+// TODO: use separate type for "strong" directionality.
+func (p *bracketPairer) classifyPairContent(loc bracketPair, dirEmbed Class) Class {
+	dirOpposite := ON
+	for i := loc.opener + 1; i < loc.closer; i++ {
+		dir := p.getStrongTypeN0(i)
+		if dir == ON {
+			continue
+		}
+		if dir == dirEmbed {
+			return dir // type matching embedding direction found
+		}
+		dirOpposite = dir
+	}
+	// return ON if no strong type found, or class opposite to dirEmbed
+	return dirOpposite
+}
+
+// classBeforePair determines which strong types are present before a Bracket
+// Pair. Return R or L if strong type found, otherwise ON.
+func (p *bracketPairer) classBeforePair(loc bracketPair) Class {
+	for i := loc.opener - 1; i >= 0; i-- {
+		if dir := p.getStrongTypeN0(i); dir != ON {
+			return dir
+		}
+	}
+	// no strong types found, return sos
+	return p.sos
+}
+
+// assignBracketType implements rule N0 for a single bracket pair.
+func (p *bracketPairer) assignBracketType(loc bracketPair, dirEmbed Class, initialTypes []Class) {
+	// rule "N0, a", inspect contents of pair
+	dirPair := p.classifyPairContent(loc, dirEmbed)
+
+	// dirPair is now L, R, or N (no strong type found)
+
+	// the following logical tests are performed out of order compared to
+	// the statement of the rules but yield the same results
+	if dirPair == ON {
+		return // case "d" - nothing to do
+	}
+
+	if dirPair != dirEmbed {
+		// case "c": strong type found, opposite - check before (c.1)
+		dirPair = p.classBeforePair(loc)
+		if dirPair == dirEmbed || dirPair == ON {
+			// no strong opposite type found before - use embedding (c.2)
+			dirPair = dirEmbed
+		}
+	}
+	// else: case "b", strong type found matching embedding,
+	// no explicit action needed, as dirPair is already set to embedding
+	// direction
+
+	// set the bracket types to the type found
+	p.setBracketsToType(loc, dirPair, initialTypes)
+}
+
+func (p *bracketPairer) setBracketsToType(loc bracketPair, dirPair Class, initialTypes []Class) {
+	p.codesIsolatedRun[loc.opener] = dirPair
+	p.codesIsolatedRun[loc.closer] = dirPair
+
+	for i := loc.opener + 1; i < loc.closer; i++ {
+		index := p.indexes[i]
+		if initialTypes[index] != NSM {
+			break
+		}
+		p.codesIsolatedRun[i] = dirPair
+	}
+
+	for i := loc.closer + 1; i < len(p.indexes); i++ {
+		index := p.indexes[i]
+		if initialTypes[index] != NSM {
+			break
+		}
+		p.codesIsolatedRun[i] = dirPair
+	}
+}
+
+// resolveBrackets implements rule N0 for a list of pairs.
+func (p *bracketPairer) resolveBrackets(dirEmbed Class, initialTypes []Class) {
+	for _, loc := range p.pairPositions {
+		p.assignBracketType(loc, dirEmbed, initialTypes)
+	}
+}