initial add - go fmt on grpc

Change-Id: Ib0afadd2fe5571d1456a091f94f5644458f7d3f4
diff --git a/vendor/google.golang.org/grpc/internal/channelz/types.go b/vendor/google.golang.org/grpc/internal/channelz/types.go
new file mode 100644
index 0000000..17c2274
--- /dev/null
+++ b/vendor/google.golang.org/grpc/internal/channelz/types.go
@@ -0,0 +1,702 @@
+/*
+ *
+ * Copyright 2018 gRPC authors.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ */
+
+package channelz
+
+import (
+	"net"
+	"sync"
+	"sync/atomic"
+	"time"
+
+	"google.golang.org/grpc/connectivity"
+	"google.golang.org/grpc/credentials"
+	"google.golang.org/grpc/grpclog"
+)
+
+// entry represents a node in the channelz database.
+type entry interface {
+	// addChild adds a child e, whose channelz id is id to child list
+	addChild(id int64, e entry)
+	// deleteChild deletes a child with channelz id to be id from child list
+	deleteChild(id int64)
+	// triggerDelete tries to delete self from channelz database. However, if child
+	// list is not empty, then deletion from the database is on hold until the last
+	// child is deleted from database.
+	triggerDelete()
+	// deleteSelfIfReady check whether triggerDelete() has been called before, and whether child
+	// list is now empty. If both conditions are met, then delete self from database.
+	deleteSelfIfReady()
+	// getParentID returns parent ID of the entry. 0 value parent ID means no parent.
+	getParentID() int64
+}
+
+// dummyEntry is a fake entry to handle entry not found case.
+type dummyEntry struct {
+	idNotFound int64
+}
+
+func (d *dummyEntry) addChild(id int64, e entry) {
+	// Note: It is possible for a normal program to reach here under race condition.
+	// For example, there could be a race between ClientConn.Close() info being propagated
+	// to addrConn and http2Client. ClientConn.Close() cancel the context and result
+	// in http2Client to error. The error info is then caught by transport monitor
+	// and before addrConn.tearDown() is called in side ClientConn.Close(). Therefore,
+	// the addrConn will create a new transport. And when registering the new transport in
+	// channelz, its parent addrConn could have already been torn down and deleted
+	// from channelz tracking, and thus reach the code here.
+	grpclog.Infof("attempt to add child of type %T with id %d to a parent (id=%d) that doesn't currently exist", e, id, d.idNotFound)
+}
+
+func (d *dummyEntry) deleteChild(id int64) {
+	// It is possible for a normal program to reach here under race condition.
+	// Refer to the example described in addChild().
+	grpclog.Infof("attempt to delete child with id %d from a parent (id=%d) that doesn't currently exist", id, d.idNotFound)
+}
+
+func (d *dummyEntry) triggerDelete() {
+	grpclog.Warningf("attempt to delete an entry (id=%d) that doesn't currently exist", d.idNotFound)
+}
+
+func (*dummyEntry) deleteSelfIfReady() {
+	// code should not reach here. deleteSelfIfReady is always called on an existing entry.
+}
+
+func (*dummyEntry) getParentID() int64 {
+	return 0
+}
+
+// ChannelMetric defines the info channelz provides for a specific Channel, which
+// includes ChannelInternalMetric and channelz-specific data, such as channelz id,
+// child list, etc.
+type ChannelMetric struct {
+	// ID is the channelz id of this channel.
+	ID int64
+	// RefName is the human readable reference string of this channel.
+	RefName string
+	// ChannelData contains channel internal metric reported by the channel through
+	// ChannelzMetric().
+	ChannelData *ChannelInternalMetric
+	// NestedChans tracks the nested channel type children of this channel in the format of
+	// a map from nested channel channelz id to corresponding reference string.
+	NestedChans map[int64]string
+	// SubChans tracks the subchannel type children of this channel in the format of a
+	// map from subchannel channelz id to corresponding reference string.
+	SubChans map[int64]string
+	// Sockets tracks the socket type children of this channel in the format of a map
+	// from socket channelz id to corresponding reference string.
+	// Note current grpc implementation doesn't allow channel having sockets directly,
+	// therefore, this is field is unused.
+	Sockets map[int64]string
+	// Trace contains the most recent traced events.
+	Trace *ChannelTrace
+}
+
+// SubChannelMetric defines the info channelz provides for a specific SubChannel,
+// which includes ChannelInternalMetric and channelz-specific data, such as
+// channelz id, child list, etc.
+type SubChannelMetric struct {
+	// ID is the channelz id of this subchannel.
+	ID int64
+	// RefName is the human readable reference string of this subchannel.
+	RefName string
+	// ChannelData contains subchannel internal metric reported by the subchannel
+	// through ChannelzMetric().
+	ChannelData *ChannelInternalMetric
+	// NestedChans tracks the nested channel type children of this subchannel in the format of
+	// a map from nested channel channelz id to corresponding reference string.
+	// Note current grpc implementation doesn't allow subchannel to have nested channels
+	// as children, therefore, this field is unused.
+	NestedChans map[int64]string
+	// SubChans tracks the subchannel type children of this subchannel in the format of a
+	// map from subchannel channelz id to corresponding reference string.
+	// Note current grpc implementation doesn't allow subchannel to have subchannels
+	// as children, therefore, this field is unused.
+	SubChans map[int64]string
+	// Sockets tracks the socket type children of this subchannel in the format of a map
+	// from socket channelz id to corresponding reference string.
+	Sockets map[int64]string
+	// Trace contains the most recent traced events.
+	Trace *ChannelTrace
+}
+
+// ChannelInternalMetric defines the struct that the implementor of Channel interface
+// should return from ChannelzMetric().
+type ChannelInternalMetric struct {
+	// current connectivity state of the channel.
+	State connectivity.State
+	// The target this channel originally tried to connect to.  May be absent
+	Target string
+	// The number of calls started on the channel.
+	CallsStarted int64
+	// The number of calls that have completed with an OK status.
+	CallsSucceeded int64
+	// The number of calls that have a completed with a non-OK status.
+	CallsFailed int64
+	// The last time a call was started on the channel.
+	LastCallStartedTimestamp time.Time
+}
+
+// ChannelTrace stores traced events on a channel/subchannel and related info.
+type ChannelTrace struct {
+	// EventNum is the number of events that ever got traced (i.e. including those that have been deleted)
+	EventNum int64
+	// CreationTime is the creation time of the trace.
+	CreationTime time.Time
+	// Events stores the most recent trace events (up to $maxTraceEntry, newer event will overwrite the
+	// oldest one)
+	Events []*TraceEvent
+}
+
+// TraceEvent represent a single trace event
+type TraceEvent struct {
+	// Desc is a simple description of the trace event.
+	Desc string
+	// Severity states the severity of this trace event.
+	Severity Severity
+	// Timestamp is the event time.
+	Timestamp time.Time
+	// RefID is the id of the entity that gets referenced in the event. RefID is 0 if no other entity is
+	// involved in this event.
+	// e.g. SubChannel (id: 4[]) Created. --> RefID = 4, RefName = "" (inside [])
+	RefID int64
+	// RefName is the reference name for the entity that gets referenced in the event.
+	RefName string
+	// RefType indicates the referenced entity type, i.e Channel or SubChannel.
+	RefType RefChannelType
+}
+
+// Channel is the interface that should be satisfied in order to be tracked by
+// channelz as Channel or SubChannel.
+type Channel interface {
+	ChannelzMetric() *ChannelInternalMetric
+}
+
+type dummyChannel struct{}
+
+func (d *dummyChannel) ChannelzMetric() *ChannelInternalMetric {
+	return &ChannelInternalMetric{}
+}
+
+type channel struct {
+	refName     string
+	c           Channel
+	closeCalled bool
+	nestedChans map[int64]string
+	subChans    map[int64]string
+	id          int64
+	pid         int64
+	cm          *channelMap
+	trace       *channelTrace
+	// traceRefCount is the number of trace events that reference this channel.
+	// Non-zero traceRefCount means the trace of this channel cannot be deleted.
+	traceRefCount int32
+}
+
+func (c *channel) addChild(id int64, e entry) {
+	switch v := e.(type) {
+	case *subChannel:
+		c.subChans[id] = v.refName
+	case *channel:
+		c.nestedChans[id] = v.refName
+	default:
+		grpclog.Errorf("cannot add a child (id = %d) of type %T to a channel", id, e)
+	}
+}
+
+func (c *channel) deleteChild(id int64) {
+	delete(c.subChans, id)
+	delete(c.nestedChans, id)
+	c.deleteSelfIfReady()
+}
+
+func (c *channel) triggerDelete() {
+	c.closeCalled = true
+	c.deleteSelfIfReady()
+}
+
+func (c *channel) getParentID() int64 {
+	return c.pid
+}
+
+// deleteSelfFromTree tries to delete the channel from the channelz entry relation tree, which means
+// deleting the channel reference from its parent's child list.
+//
+// In order for a channel to be deleted from the tree, it must meet the criteria that, removal of the
+// corresponding grpc object has been invoked, and the channel does not have any children left.
+//
+// The returned boolean value indicates whether the channel has been successfully deleted from tree.
+func (c *channel) deleteSelfFromTree() (deleted bool) {
+	if !c.closeCalled || len(c.subChans)+len(c.nestedChans) != 0 {
+		return false
+	}
+	// not top channel
+	if c.pid != 0 {
+		c.cm.findEntry(c.pid).deleteChild(c.id)
+	}
+	return true
+}
+
+// deleteSelfFromMap checks whether it is valid to delete the channel from the map, which means
+// deleting the channel from channelz's tracking entirely. Users can no longer use id to query the
+// channel, and its memory will be garbage collected.
+//
+// The trace reference count of the channel must be 0 in order to be deleted from the map. This is
+// specified in the channel tracing gRFC that as long as some other trace has reference to an entity,
+// the trace of the referenced entity must not be deleted. In order to release the resource allocated
+// by grpc, the reference to the grpc object is reset to a dummy object.
+//
+// deleteSelfFromMap must be called after deleteSelfFromTree returns true.
+//
+// It returns a bool to indicate whether the channel can be safely deleted from map.
+func (c *channel) deleteSelfFromMap() (delete bool) {
+	if c.getTraceRefCount() != 0 {
+		c.c = &dummyChannel{}
+		return false
+	}
+	return true
+}
+
+// deleteSelfIfReady tries to delete the channel itself from the channelz database.
+// The delete process includes two steps:
+// 1. delete the channel from the entry relation tree, i.e. delete the channel reference from its
+//    parent's child list.
+// 2. delete the channel from the map, i.e. delete the channel entirely from channelz. Lookup by id
+//    will return entry not found error.
+func (c *channel) deleteSelfIfReady() {
+	if !c.deleteSelfFromTree() {
+		return
+	}
+	if !c.deleteSelfFromMap() {
+		return
+	}
+	c.cm.deleteEntry(c.id)
+	c.trace.clear()
+}
+
+func (c *channel) getChannelTrace() *channelTrace {
+	return c.trace
+}
+
+func (c *channel) incrTraceRefCount() {
+	atomic.AddInt32(&c.traceRefCount, 1)
+}
+
+func (c *channel) decrTraceRefCount() {
+	atomic.AddInt32(&c.traceRefCount, -1)
+}
+
+func (c *channel) getTraceRefCount() int {
+	i := atomic.LoadInt32(&c.traceRefCount)
+	return int(i)
+}
+
+func (c *channel) getRefName() string {
+	return c.refName
+}
+
+type subChannel struct {
+	refName       string
+	c             Channel
+	closeCalled   bool
+	sockets       map[int64]string
+	id            int64
+	pid           int64
+	cm            *channelMap
+	trace         *channelTrace
+	traceRefCount int32
+}
+
+func (sc *subChannel) addChild(id int64, e entry) {
+	if v, ok := e.(*normalSocket); ok {
+		sc.sockets[id] = v.refName
+	} else {
+		grpclog.Errorf("cannot add a child (id = %d) of type %T to a subChannel", id, e)
+	}
+}
+
+func (sc *subChannel) deleteChild(id int64) {
+	delete(sc.sockets, id)
+	sc.deleteSelfIfReady()
+}
+
+func (sc *subChannel) triggerDelete() {
+	sc.closeCalled = true
+	sc.deleteSelfIfReady()
+}
+
+func (sc *subChannel) getParentID() int64 {
+	return sc.pid
+}
+
+// deleteSelfFromTree tries to delete the subchannel from the channelz entry relation tree, which
+// means deleting the subchannel reference from its parent's child list.
+//
+// In order for a subchannel to be deleted from the tree, it must meet the criteria that, removal of
+// the corresponding grpc object has been invoked, and the subchannel does not have any children left.
+//
+// The returned boolean value indicates whether the channel has been successfully deleted from tree.
+func (sc *subChannel) deleteSelfFromTree() (deleted bool) {
+	if !sc.closeCalled || len(sc.sockets) != 0 {
+		return false
+	}
+	sc.cm.findEntry(sc.pid).deleteChild(sc.id)
+	return true
+}
+
+// deleteSelfFromMap checks whether it is valid to delete the subchannel from the map, which means
+// deleting the subchannel from channelz's tracking entirely. Users can no longer use id to query
+// the subchannel, and its memory will be garbage collected.
+//
+// The trace reference count of the subchannel must be 0 in order to be deleted from the map. This is
+// specified in the channel tracing gRFC that as long as some other trace has reference to an entity,
+// the trace of the referenced entity must not be deleted. In order to release the resource allocated
+// by grpc, the reference to the grpc object is reset to a dummy object.
+//
+// deleteSelfFromMap must be called after deleteSelfFromTree returns true.
+//
+// It returns a bool to indicate whether the channel can be safely deleted from map.
+func (sc *subChannel) deleteSelfFromMap() (delete bool) {
+	if sc.getTraceRefCount() != 0 {
+		// free the grpc struct (i.e. addrConn)
+		sc.c = &dummyChannel{}
+		return false
+	}
+	return true
+}
+
+// deleteSelfIfReady tries to delete the subchannel itself from the channelz database.
+// The delete process includes two steps:
+// 1. delete the subchannel from the entry relation tree, i.e. delete the subchannel reference from
+//    its parent's child list.
+// 2. delete the subchannel from the map, i.e. delete the subchannel entirely from channelz. Lookup
+//    by id will return entry not found error.
+func (sc *subChannel) deleteSelfIfReady() {
+	if !sc.deleteSelfFromTree() {
+		return
+	}
+	if !sc.deleteSelfFromMap() {
+		return
+	}
+	sc.cm.deleteEntry(sc.id)
+	sc.trace.clear()
+}
+
+func (sc *subChannel) getChannelTrace() *channelTrace {
+	return sc.trace
+}
+
+func (sc *subChannel) incrTraceRefCount() {
+	atomic.AddInt32(&sc.traceRefCount, 1)
+}
+
+func (sc *subChannel) decrTraceRefCount() {
+	atomic.AddInt32(&sc.traceRefCount, -1)
+}
+
+func (sc *subChannel) getTraceRefCount() int {
+	i := atomic.LoadInt32(&sc.traceRefCount)
+	return int(i)
+}
+
+func (sc *subChannel) getRefName() string {
+	return sc.refName
+}
+
+// SocketMetric defines the info channelz provides for a specific Socket, which
+// includes SocketInternalMetric and channelz-specific data, such as channelz id, etc.
+type SocketMetric struct {
+	// ID is the channelz id of this socket.
+	ID int64
+	// RefName is the human readable reference string of this socket.
+	RefName string
+	// SocketData contains socket internal metric reported by the socket through
+	// ChannelzMetric().
+	SocketData *SocketInternalMetric
+}
+
+// SocketInternalMetric defines the struct that the implementor of Socket interface
+// should return from ChannelzMetric().
+type SocketInternalMetric struct {
+	// The number of streams that have been started.
+	StreamsStarted int64
+	// The number of streams that have ended successfully:
+	// On client side, receiving frame with eos bit set.
+	// On server side, sending frame with eos bit set.
+	StreamsSucceeded int64
+	// The number of streams that have ended unsuccessfully:
+	// On client side, termination without receiving frame with eos bit set.
+	// On server side, termination without sending frame with eos bit set.
+	StreamsFailed int64
+	// The number of messages successfully sent on this socket.
+	MessagesSent     int64
+	MessagesReceived int64
+	// The number of keep alives sent.  This is typically implemented with HTTP/2
+	// ping messages.
+	KeepAlivesSent int64
+	// The last time a stream was created by this endpoint.  Usually unset for
+	// servers.
+	LastLocalStreamCreatedTimestamp time.Time
+	// The last time a stream was created by the remote endpoint.  Usually unset
+	// for clients.
+	LastRemoteStreamCreatedTimestamp time.Time
+	// The last time a message was sent by this endpoint.
+	LastMessageSentTimestamp time.Time
+	// The last time a message was received by this endpoint.
+	LastMessageReceivedTimestamp time.Time
+	// The amount of window, granted to the local endpoint by the remote endpoint.
+	// This may be slightly out of date due to network latency.  This does NOT
+	// include stream level or TCP level flow control info.
+	LocalFlowControlWindow int64
+	// The amount of window, granted to the remote endpoint by the local endpoint.
+	// This may be slightly out of date due to network latency.  This does NOT
+	// include stream level or TCP level flow control info.
+	RemoteFlowControlWindow int64
+	// The locally bound address.
+	LocalAddr net.Addr
+	// The remote bound address.  May be absent.
+	RemoteAddr net.Addr
+	// Optional, represents the name of the remote endpoint, if different than
+	// the original target name.
+	RemoteName    string
+	SocketOptions *SocketOptionData
+	Security      credentials.ChannelzSecurityValue
+}
+
+// Socket is the interface that should be satisfied in order to be tracked by
+// channelz as Socket.
+type Socket interface {
+	ChannelzMetric() *SocketInternalMetric
+}
+
+type listenSocket struct {
+	refName string
+	s       Socket
+	id      int64
+	pid     int64
+	cm      *channelMap
+}
+
+func (ls *listenSocket) addChild(id int64, e entry) {
+	grpclog.Errorf("cannot add a child (id = %d) of type %T to a listen socket", id, e)
+}
+
+func (ls *listenSocket) deleteChild(id int64) {
+	grpclog.Errorf("cannot delete a child (id = %d) from a listen socket", id)
+}
+
+func (ls *listenSocket) triggerDelete() {
+	ls.cm.deleteEntry(ls.id)
+	ls.cm.findEntry(ls.pid).deleteChild(ls.id)
+}
+
+func (ls *listenSocket) deleteSelfIfReady() {
+	grpclog.Errorf("cannot call deleteSelfIfReady on a listen socket")
+}
+
+func (ls *listenSocket) getParentID() int64 {
+	return ls.pid
+}
+
+type normalSocket struct {
+	refName string
+	s       Socket
+	id      int64
+	pid     int64
+	cm      *channelMap
+}
+
+func (ns *normalSocket) addChild(id int64, e entry) {
+	grpclog.Errorf("cannot add a child (id = %d) of type %T to a normal socket", id, e)
+}
+
+func (ns *normalSocket) deleteChild(id int64) {
+	grpclog.Errorf("cannot delete a child (id = %d) from a normal socket", id)
+}
+
+func (ns *normalSocket) triggerDelete() {
+	ns.cm.deleteEntry(ns.id)
+	ns.cm.findEntry(ns.pid).deleteChild(ns.id)
+}
+
+func (ns *normalSocket) deleteSelfIfReady() {
+	grpclog.Errorf("cannot call deleteSelfIfReady on a normal socket")
+}
+
+func (ns *normalSocket) getParentID() int64 {
+	return ns.pid
+}
+
+// ServerMetric defines the info channelz provides for a specific Server, which
+// includes ServerInternalMetric and channelz-specific data, such as channelz id,
+// child list, etc.
+type ServerMetric struct {
+	// ID is the channelz id of this server.
+	ID int64
+	// RefName is the human readable reference string of this server.
+	RefName string
+	// ServerData contains server internal metric reported by the server through
+	// ChannelzMetric().
+	ServerData *ServerInternalMetric
+	// ListenSockets tracks the listener socket type children of this server in the
+	// format of a map from socket channelz id to corresponding reference string.
+	ListenSockets map[int64]string
+}
+
+// ServerInternalMetric defines the struct that the implementor of Server interface
+// should return from ChannelzMetric().
+type ServerInternalMetric struct {
+	// The number of incoming calls started on the server.
+	CallsStarted int64
+	// The number of incoming calls that have completed with an OK status.
+	CallsSucceeded int64
+	// The number of incoming calls that have a completed with a non-OK status.
+	CallsFailed int64
+	// The last time a call was started on the server.
+	LastCallStartedTimestamp time.Time
+}
+
+// Server is the interface to be satisfied in order to be tracked by channelz as
+// Server.
+type Server interface {
+	ChannelzMetric() *ServerInternalMetric
+}
+
+type server struct {
+	refName       string
+	s             Server
+	closeCalled   bool
+	sockets       map[int64]string
+	listenSockets map[int64]string
+	id            int64
+	cm            *channelMap
+}
+
+func (s *server) addChild(id int64, e entry) {
+	switch v := e.(type) {
+	case *normalSocket:
+		s.sockets[id] = v.refName
+	case *listenSocket:
+		s.listenSockets[id] = v.refName
+	default:
+		grpclog.Errorf("cannot add a child (id = %d) of type %T to a server", id, e)
+	}
+}
+
+func (s *server) deleteChild(id int64) {
+	delete(s.sockets, id)
+	delete(s.listenSockets, id)
+	s.deleteSelfIfReady()
+}
+
+func (s *server) triggerDelete() {
+	s.closeCalled = true
+	s.deleteSelfIfReady()
+}
+
+func (s *server) deleteSelfIfReady() {
+	if !s.closeCalled || len(s.sockets)+len(s.listenSockets) != 0 {
+		return
+	}
+	s.cm.deleteEntry(s.id)
+}
+
+func (s *server) getParentID() int64 {
+	return 0
+}
+
+type tracedChannel interface {
+	getChannelTrace() *channelTrace
+	incrTraceRefCount()
+	decrTraceRefCount()
+	getRefName() string
+}
+
+type channelTrace struct {
+	cm          *channelMap
+	createdTime time.Time
+	eventCount  int64
+	mu          sync.Mutex
+	events      []*TraceEvent
+}
+
+func (c *channelTrace) append(e *TraceEvent) {
+	c.mu.Lock()
+	if len(c.events) == getMaxTraceEntry() {
+		del := c.events[0]
+		c.events = c.events[1:]
+		if del.RefID != 0 {
+			// start recursive cleanup in a goroutine to not block the call originated from grpc.
+			go func() {
+				// need to acquire c.cm.mu lock to call the unlocked attemptCleanup func.
+				c.cm.mu.Lock()
+				c.cm.decrTraceRefCount(del.RefID)
+				c.cm.mu.Unlock()
+			}()
+		}
+	}
+	e.Timestamp = time.Now()
+	c.events = append(c.events, e)
+	c.eventCount++
+	c.mu.Unlock()
+}
+
+func (c *channelTrace) clear() {
+	c.mu.Lock()
+	for _, e := range c.events {
+		if e.RefID != 0 {
+			// caller should have already held the c.cm.mu lock.
+			c.cm.decrTraceRefCount(e.RefID)
+		}
+	}
+	c.mu.Unlock()
+}
+
+// Severity is the severity level of a trace event.
+// The canonical enumeration of all valid values is here:
+// https://github.com/grpc/grpc-proto/blob/9b13d199cc0d4703c7ea26c9c330ba695866eb23/grpc/channelz/v1/channelz.proto#L126.
+type Severity int
+
+const (
+	// CtUNKNOWN indicates unknown severity of a trace event.
+	CtUNKNOWN Severity = iota
+	// CtINFO indicates info level severity of a trace event.
+	CtINFO
+	// CtWarning indicates warning level severity of a trace event.
+	CtWarning
+	// CtError indicates error level severity of a trace event.
+	CtError
+)
+
+// RefChannelType is the type of the entity being referenced in a trace event.
+type RefChannelType int
+
+const (
+	// RefChannel indicates the referenced entity is a Channel.
+	RefChannel RefChannelType = iota
+	// RefSubChannel indicates the referenced entity is a SubChannel.
+	RefSubChannel
+)
+
+func (c *channelTrace) dumpData() *ChannelTrace {
+	c.mu.Lock()
+	ct := &ChannelTrace{EventNum: c.eventCount, CreationTime: c.createdTime}
+	ct.Events = c.events[:len(c.events)]
+	c.mu.Unlock()
+	return ct
+}