VOL-4019: Initial commit with grpc nbi, sbi, etcd, kafka and hw management rpcs.

Change-Id: I78feaf7da284028fc61f42c5e0c5f56e72fe9e78
diff --git a/vendor/github.com/golang/snappy/.gitignore b/vendor/github.com/golang/snappy/.gitignore
new file mode 100644
index 0000000..042091d
--- /dev/null
+++ b/vendor/github.com/golang/snappy/.gitignore
@@ -0,0 +1,16 @@
+cmd/snappytool/snappytool
+testdata/bench
+
+# These explicitly listed benchmark data files are for an obsolete version of
+# snappy_test.go.
+testdata/alice29.txt
+testdata/asyoulik.txt
+testdata/fireworks.jpeg
+testdata/geo.protodata
+testdata/html
+testdata/html_x_4
+testdata/kppkn.gtb
+testdata/lcet10.txt
+testdata/paper-100k.pdf
+testdata/plrabn12.txt
+testdata/urls.10K
diff --git a/vendor/github.com/golang/snappy/AUTHORS b/vendor/github.com/golang/snappy/AUTHORS
new file mode 100644
index 0000000..bcfa195
--- /dev/null
+++ b/vendor/github.com/golang/snappy/AUTHORS
@@ -0,0 +1,15 @@
+# This is the official list of Snappy-Go authors for copyright purposes.
+# This file is distinct from the CONTRIBUTORS files.
+# See the latter for an explanation.
+
+# Names should be added to this file as
+#	Name or Organization <email address>
+# The email address is not required for organizations.
+
+# Please keep the list sorted.
+
+Damian Gryski <dgryski@gmail.com>
+Google Inc.
+Jan Mercl <0xjnml@gmail.com>
+Rodolfo Carvalho <rhcarvalho@gmail.com>
+Sebastien Binet <seb.binet@gmail.com>
diff --git a/vendor/github.com/golang/snappy/CONTRIBUTORS b/vendor/github.com/golang/snappy/CONTRIBUTORS
new file mode 100644
index 0000000..931ae31
--- /dev/null
+++ b/vendor/github.com/golang/snappy/CONTRIBUTORS
@@ -0,0 +1,37 @@
+# This is the official list of people who can contribute
+# (and typically have contributed) code to the Snappy-Go repository.
+# The AUTHORS file lists the copyright holders; this file
+# lists people.  For example, Google employees are listed here
+# but not in AUTHORS, because Google holds the copyright.
+#
+# The submission process automatically checks to make sure
+# that people submitting code are listed in this file (by email address).
+#
+# Names should be added to this file only after verifying that
+# the individual or the individual's organization has agreed to
+# the appropriate Contributor License Agreement, found here:
+#
+#     http://code.google.com/legal/individual-cla-v1.0.html
+#     http://code.google.com/legal/corporate-cla-v1.0.html
+#
+# The agreement for individuals can be filled out on the web.
+#
+# When adding J Random Contributor's name to this file,
+# either J's name or J's organization's name should be
+# added to the AUTHORS file, depending on whether the
+# individual or corporate CLA was used.
+
+# Names should be added to this file like so:
+#     Name <email address>
+
+# Please keep the list sorted.
+
+Damian Gryski <dgryski@gmail.com>
+Jan Mercl <0xjnml@gmail.com>
+Kai Backman <kaib@golang.org>
+Marc-Antoine Ruel <maruel@chromium.org>
+Nigel Tao <nigeltao@golang.org>
+Rob Pike <r@golang.org>
+Rodolfo Carvalho <rhcarvalho@gmail.com>
+Russ Cox <rsc@golang.org>
+Sebastien Binet <seb.binet@gmail.com>
diff --git a/vendor/github.com/golang/snappy/LICENSE b/vendor/github.com/golang/snappy/LICENSE
new file mode 100644
index 0000000..6050c10
--- /dev/null
+++ b/vendor/github.com/golang/snappy/LICENSE
@@ -0,0 +1,27 @@
+Copyright (c) 2011 The Snappy-Go Authors. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+   * Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+   * Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the following disclaimer
+in the documentation and/or other materials provided with the
+distribution.
+   * Neither the name of Google Inc. nor the names of its
+contributors may be used to endorse or promote products derived from
+this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/vendor/github.com/golang/snappy/README b/vendor/github.com/golang/snappy/README
new file mode 100644
index 0000000..cea1287
--- /dev/null
+++ b/vendor/github.com/golang/snappy/README
@@ -0,0 +1,107 @@
+The Snappy compression format in the Go programming language.
+
+To download and install from source:
+$ go get github.com/golang/snappy
+
+Unless otherwise noted, the Snappy-Go source files are distributed
+under the BSD-style license found in the LICENSE file.
+
+
+
+Benchmarks.
+
+The golang/snappy benchmarks include compressing (Z) and decompressing (U) ten
+or so files, the same set used by the C++ Snappy code (github.com/google/snappy
+and note the "google", not "golang"). On an "Intel(R) Core(TM) i7-3770 CPU @
+3.40GHz", Go's GOARCH=amd64 numbers as of 2016-05-29:
+
+"go test -test.bench=."
+
+_UFlat0-8         2.19GB/s ± 0%  html
+_UFlat1-8         1.41GB/s ± 0%  urls
+_UFlat2-8         23.5GB/s ± 2%  jpg
+_UFlat3-8         1.91GB/s ± 0%  jpg_200
+_UFlat4-8         14.0GB/s ± 1%  pdf
+_UFlat5-8         1.97GB/s ± 0%  html4
+_UFlat6-8          814MB/s ± 0%  txt1
+_UFlat7-8          785MB/s ± 0%  txt2
+_UFlat8-8          857MB/s ± 0%  txt3
+_UFlat9-8          719MB/s ± 1%  txt4
+_UFlat10-8        2.84GB/s ± 0%  pb
+_UFlat11-8        1.05GB/s ± 0%  gaviota
+
+_ZFlat0-8         1.04GB/s ± 0%  html
+_ZFlat1-8          534MB/s ± 0%  urls
+_ZFlat2-8         15.7GB/s ± 1%  jpg
+_ZFlat3-8          740MB/s ± 3%  jpg_200
+_ZFlat4-8         9.20GB/s ± 1%  pdf
+_ZFlat5-8          991MB/s ± 0%  html4
+_ZFlat6-8          379MB/s ± 0%  txt1
+_ZFlat7-8          352MB/s ± 0%  txt2
+_ZFlat8-8          396MB/s ± 1%  txt3
+_ZFlat9-8          327MB/s ± 1%  txt4
+_ZFlat10-8        1.33GB/s ± 1%  pb
+_ZFlat11-8         605MB/s ± 1%  gaviota
+
+
+
+"go test -test.bench=. -tags=noasm"
+
+_UFlat0-8          621MB/s ± 2%  html
+_UFlat1-8          494MB/s ± 1%  urls
+_UFlat2-8         23.2GB/s ± 1%  jpg
+_UFlat3-8         1.12GB/s ± 1%  jpg_200
+_UFlat4-8         4.35GB/s ± 1%  pdf
+_UFlat5-8          609MB/s ± 0%  html4
+_UFlat6-8          296MB/s ± 0%  txt1
+_UFlat7-8          288MB/s ± 0%  txt2
+_UFlat8-8          309MB/s ± 1%  txt3
+_UFlat9-8          280MB/s ± 1%  txt4
+_UFlat10-8         753MB/s ± 0%  pb
+_UFlat11-8         400MB/s ± 0%  gaviota
+
+_ZFlat0-8          409MB/s ± 1%  html
+_ZFlat1-8          250MB/s ± 1%  urls
+_ZFlat2-8         12.3GB/s ± 1%  jpg
+_ZFlat3-8          132MB/s ± 0%  jpg_200
+_ZFlat4-8         2.92GB/s ± 0%  pdf
+_ZFlat5-8          405MB/s ± 1%  html4
+_ZFlat6-8          179MB/s ± 1%  txt1
+_ZFlat7-8          170MB/s ± 1%  txt2
+_ZFlat8-8          189MB/s ± 1%  txt3
+_ZFlat9-8          164MB/s ± 1%  txt4
+_ZFlat10-8         479MB/s ± 1%  pb
+_ZFlat11-8         270MB/s ± 1%  gaviota
+
+
+
+For comparison (Go's encoded output is byte-for-byte identical to C++'s), here
+are the numbers from C++ Snappy's
+
+make CXXFLAGS="-O2 -DNDEBUG -g" clean snappy_unittest.log && cat snappy_unittest.log
+
+BM_UFlat/0     2.4GB/s  html
+BM_UFlat/1     1.4GB/s  urls
+BM_UFlat/2    21.8GB/s  jpg
+BM_UFlat/3     1.5GB/s  jpg_200
+BM_UFlat/4    13.3GB/s  pdf
+BM_UFlat/5     2.1GB/s  html4
+BM_UFlat/6     1.0GB/s  txt1
+BM_UFlat/7   959.4MB/s  txt2
+BM_UFlat/8     1.0GB/s  txt3
+BM_UFlat/9   864.5MB/s  txt4
+BM_UFlat/10    2.9GB/s  pb
+BM_UFlat/11    1.2GB/s  gaviota
+
+BM_ZFlat/0   944.3MB/s  html (22.31 %)
+BM_ZFlat/1   501.6MB/s  urls (47.78 %)
+BM_ZFlat/2    14.3GB/s  jpg (99.95 %)
+BM_ZFlat/3   538.3MB/s  jpg_200 (73.00 %)
+BM_ZFlat/4     8.3GB/s  pdf (83.30 %)
+BM_ZFlat/5   903.5MB/s  html4 (22.52 %)
+BM_ZFlat/6   336.0MB/s  txt1 (57.88 %)
+BM_ZFlat/7   312.3MB/s  txt2 (61.91 %)
+BM_ZFlat/8   353.1MB/s  txt3 (54.99 %)
+BM_ZFlat/9   289.9MB/s  txt4 (66.26 %)
+BM_ZFlat/10    1.2GB/s  pb (19.68 %)
+BM_ZFlat/11  527.4MB/s  gaviota (37.72 %)
diff --git a/vendor/github.com/golang/snappy/decode.go b/vendor/github.com/golang/snappy/decode.go
new file mode 100644
index 0000000..72efb03
--- /dev/null
+++ b/vendor/github.com/golang/snappy/decode.go
@@ -0,0 +1,237 @@
+// Copyright 2011 The Snappy-Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package snappy
+
+import (
+	"encoding/binary"
+	"errors"
+	"io"
+)
+
+var (
+	// ErrCorrupt reports that the input is invalid.
+	ErrCorrupt = errors.New("snappy: corrupt input")
+	// ErrTooLarge reports that the uncompressed length is too large.
+	ErrTooLarge = errors.New("snappy: decoded block is too large")
+	// ErrUnsupported reports that the input isn't supported.
+	ErrUnsupported = errors.New("snappy: unsupported input")
+
+	errUnsupportedLiteralLength = errors.New("snappy: unsupported literal length")
+)
+
+// DecodedLen returns the length of the decoded block.
+func DecodedLen(src []byte) (int, error) {
+	v, _, err := decodedLen(src)
+	return v, err
+}
+
+// decodedLen returns the length of the decoded block and the number of bytes
+// that the length header occupied.
+func decodedLen(src []byte) (blockLen, headerLen int, err error) {
+	v, n := binary.Uvarint(src)
+	if n <= 0 || v > 0xffffffff {
+		return 0, 0, ErrCorrupt
+	}
+
+	const wordSize = 32 << (^uint(0) >> 32 & 1)
+	if wordSize == 32 && v > 0x7fffffff {
+		return 0, 0, ErrTooLarge
+	}
+	return int(v), n, nil
+}
+
+const (
+	decodeErrCodeCorrupt                  = 1
+	decodeErrCodeUnsupportedLiteralLength = 2
+)
+
+// Decode returns the decoded form of src. The returned slice may be a sub-
+// slice of dst if dst was large enough to hold the entire decoded block.
+// Otherwise, a newly allocated slice will be returned.
+//
+// The dst and src must not overlap. It is valid to pass a nil dst.
+func Decode(dst, src []byte) ([]byte, error) {
+	dLen, s, err := decodedLen(src)
+	if err != nil {
+		return nil, err
+	}
+	if dLen <= len(dst) {
+		dst = dst[:dLen]
+	} else {
+		dst = make([]byte, dLen)
+	}
+	switch decode(dst, src[s:]) {
+	case 0:
+		return dst, nil
+	case decodeErrCodeUnsupportedLiteralLength:
+		return nil, errUnsupportedLiteralLength
+	}
+	return nil, ErrCorrupt
+}
+
+// NewReader returns a new Reader that decompresses from r, using the framing
+// format described at
+// https://github.com/google/snappy/blob/master/framing_format.txt
+func NewReader(r io.Reader) *Reader {
+	return &Reader{
+		r:       r,
+		decoded: make([]byte, maxBlockSize),
+		buf:     make([]byte, maxEncodedLenOfMaxBlockSize+checksumSize),
+	}
+}
+
+// Reader is an io.Reader that can read Snappy-compressed bytes.
+type Reader struct {
+	r       io.Reader
+	err     error
+	decoded []byte
+	buf     []byte
+	// decoded[i:j] contains decoded bytes that have not yet been passed on.
+	i, j       int
+	readHeader bool
+}
+
+// Reset discards any buffered data, resets all state, and switches the Snappy
+// reader to read from r. This permits reusing a Reader rather than allocating
+// a new one.
+func (r *Reader) Reset(reader io.Reader) {
+	r.r = reader
+	r.err = nil
+	r.i = 0
+	r.j = 0
+	r.readHeader = false
+}
+
+func (r *Reader) readFull(p []byte, allowEOF bool) (ok bool) {
+	if _, r.err = io.ReadFull(r.r, p); r.err != nil {
+		if r.err == io.ErrUnexpectedEOF || (r.err == io.EOF && !allowEOF) {
+			r.err = ErrCorrupt
+		}
+		return false
+	}
+	return true
+}
+
+// Read satisfies the io.Reader interface.
+func (r *Reader) Read(p []byte) (int, error) {
+	if r.err != nil {
+		return 0, r.err
+	}
+	for {
+		if r.i < r.j {
+			n := copy(p, r.decoded[r.i:r.j])
+			r.i += n
+			return n, nil
+		}
+		if !r.readFull(r.buf[:4], true) {
+			return 0, r.err
+		}
+		chunkType := r.buf[0]
+		if !r.readHeader {
+			if chunkType != chunkTypeStreamIdentifier {
+				r.err = ErrCorrupt
+				return 0, r.err
+			}
+			r.readHeader = true
+		}
+		chunkLen := int(r.buf[1]) | int(r.buf[2])<<8 | int(r.buf[3])<<16
+		if chunkLen > len(r.buf) {
+			r.err = ErrUnsupported
+			return 0, r.err
+		}
+
+		// The chunk types are specified at
+		// https://github.com/google/snappy/blob/master/framing_format.txt
+		switch chunkType {
+		case chunkTypeCompressedData:
+			// Section 4.2. Compressed data (chunk type 0x00).
+			if chunkLen < checksumSize {
+				r.err = ErrCorrupt
+				return 0, r.err
+			}
+			buf := r.buf[:chunkLen]
+			if !r.readFull(buf, false) {
+				return 0, r.err
+			}
+			checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24
+			buf = buf[checksumSize:]
+
+			n, err := DecodedLen(buf)
+			if err != nil {
+				r.err = err
+				return 0, r.err
+			}
+			if n > len(r.decoded) {
+				r.err = ErrCorrupt
+				return 0, r.err
+			}
+			if _, err := Decode(r.decoded, buf); err != nil {
+				r.err = err
+				return 0, r.err
+			}
+			if crc(r.decoded[:n]) != checksum {
+				r.err = ErrCorrupt
+				return 0, r.err
+			}
+			r.i, r.j = 0, n
+			continue
+
+		case chunkTypeUncompressedData:
+			// Section 4.3. Uncompressed data (chunk type 0x01).
+			if chunkLen < checksumSize {
+				r.err = ErrCorrupt
+				return 0, r.err
+			}
+			buf := r.buf[:checksumSize]
+			if !r.readFull(buf, false) {
+				return 0, r.err
+			}
+			checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24
+			// Read directly into r.decoded instead of via r.buf.
+			n := chunkLen - checksumSize
+			if n > len(r.decoded) {
+				r.err = ErrCorrupt
+				return 0, r.err
+			}
+			if !r.readFull(r.decoded[:n], false) {
+				return 0, r.err
+			}
+			if crc(r.decoded[:n]) != checksum {
+				r.err = ErrCorrupt
+				return 0, r.err
+			}
+			r.i, r.j = 0, n
+			continue
+
+		case chunkTypeStreamIdentifier:
+			// Section 4.1. Stream identifier (chunk type 0xff).
+			if chunkLen != len(magicBody) {
+				r.err = ErrCorrupt
+				return 0, r.err
+			}
+			if !r.readFull(r.buf[:len(magicBody)], false) {
+				return 0, r.err
+			}
+			for i := 0; i < len(magicBody); i++ {
+				if r.buf[i] != magicBody[i] {
+					r.err = ErrCorrupt
+					return 0, r.err
+				}
+			}
+			continue
+		}
+
+		if chunkType <= 0x7f {
+			// Section 4.5. Reserved unskippable chunks (chunk types 0x02-0x7f).
+			r.err = ErrUnsupported
+			return 0, r.err
+		}
+		// Section 4.4 Padding (chunk type 0xfe).
+		// Section 4.6. Reserved skippable chunks (chunk types 0x80-0xfd).
+		if !r.readFull(r.buf[:chunkLen], false) {
+			return 0, r.err
+		}
+	}
+}
diff --git a/vendor/github.com/golang/snappy/decode_amd64.go b/vendor/github.com/golang/snappy/decode_amd64.go
new file mode 100644
index 0000000..fcd192b
--- /dev/null
+++ b/vendor/github.com/golang/snappy/decode_amd64.go
@@ -0,0 +1,14 @@
+// Copyright 2016 The Snappy-Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build !appengine
+// +build gc
+// +build !noasm
+
+package snappy
+
+// decode has the same semantics as in decode_other.go.
+//
+//go:noescape
+func decode(dst, src []byte) int
diff --git a/vendor/github.com/golang/snappy/decode_amd64.s b/vendor/github.com/golang/snappy/decode_amd64.s
new file mode 100644
index 0000000..e6179f6
--- /dev/null
+++ b/vendor/github.com/golang/snappy/decode_amd64.s
@@ -0,0 +1,490 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build !appengine
+// +build gc
+// +build !noasm
+
+#include "textflag.h"
+
+// The asm code generally follows the pure Go code in decode_other.go, except
+// where marked with a "!!!".
+
+// func decode(dst, src []byte) int
+//
+// All local variables fit into registers. The non-zero stack size is only to
+// spill registers and push args when issuing a CALL. The register allocation:
+//	- AX	scratch
+//	- BX	scratch
+//	- CX	length or x
+//	- DX	offset
+//	- SI	&src[s]
+//	- DI	&dst[d]
+//	+ R8	dst_base
+//	+ R9	dst_len
+//	+ R10	dst_base + dst_len
+//	+ R11	src_base
+//	+ R12	src_len
+//	+ R13	src_base + src_len
+//	- R14	used by doCopy
+//	- R15	used by doCopy
+//
+// The registers R8-R13 (marked with a "+") are set at the start of the
+// function, and after a CALL returns, and are not otherwise modified.
+//
+// The d variable is implicitly DI - R8,  and len(dst)-d is R10 - DI.
+// The s variable is implicitly SI - R11, and len(src)-s is R13 - SI.
+TEXT ·decode(SB), NOSPLIT, $48-56
+	// Initialize SI, DI and R8-R13.
+	MOVQ dst_base+0(FP), R8
+	MOVQ dst_len+8(FP), R9
+	MOVQ R8, DI
+	MOVQ R8, R10
+	ADDQ R9, R10
+	MOVQ src_base+24(FP), R11
+	MOVQ src_len+32(FP), R12
+	MOVQ R11, SI
+	MOVQ R11, R13
+	ADDQ R12, R13
+
+loop:
+	// for s < len(src)
+	CMPQ SI, R13
+	JEQ  end
+
+	// CX = uint32(src[s])
+	//
+	// switch src[s] & 0x03
+	MOVBLZX (SI), CX
+	MOVL    CX, BX
+	ANDL    $3, BX
+	CMPL    BX, $1
+	JAE     tagCopy
+
+	// ----------------------------------------
+	// The code below handles literal tags.
+
+	// case tagLiteral:
+	// x := uint32(src[s] >> 2)
+	// switch
+	SHRL $2, CX
+	CMPL CX, $60
+	JAE  tagLit60Plus
+
+	// case x < 60:
+	// s++
+	INCQ SI
+
+doLit:
+	// This is the end of the inner "switch", when we have a literal tag.
+	//
+	// We assume that CX == x and x fits in a uint32, where x is the variable
+	// used in the pure Go decode_other.go code.
+
+	// length = int(x) + 1
+	//
+	// Unlike the pure Go code, we don't need to check if length <= 0 because
+	// CX can hold 64 bits, so the increment cannot overflow.
+	INCQ CX
+
+	// Prepare to check if copying length bytes will run past the end of dst or
+	// src.
+	//
+	// AX = len(dst) - d
+	// BX = len(src) - s
+	MOVQ R10, AX
+	SUBQ DI, AX
+	MOVQ R13, BX
+	SUBQ SI, BX
+
+	// !!! Try a faster technique for short (16 or fewer bytes) copies.
+	//
+	// if length > 16 || len(dst)-d < 16 || len(src)-s < 16 {
+	//   goto callMemmove // Fall back on calling runtime·memmove.
+	// }
+	//
+	// The C++ snappy code calls this TryFastAppend. It also checks len(src)-s
+	// against 21 instead of 16, because it cannot assume that all of its input
+	// is contiguous in memory and so it needs to leave enough source bytes to
+	// read the next tag without refilling buffers, but Go's Decode assumes
+	// contiguousness (the src argument is a []byte).
+	CMPQ CX, $16
+	JGT  callMemmove
+	CMPQ AX, $16
+	JLT  callMemmove
+	CMPQ BX, $16
+	JLT  callMemmove
+
+	// !!! Implement the copy from src to dst as a 16-byte load and store.
+	// (Decode's documentation says that dst and src must not overlap.)
+	//
+	// This always copies 16 bytes, instead of only length bytes, but that's
+	// OK. If the input is a valid Snappy encoding then subsequent iterations
+	// will fix up the overrun. Otherwise, Decode returns a nil []byte (and a
+	// non-nil error), so the overrun will be ignored.
+	//
+	// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
+	// 16-byte loads and stores. This technique probably wouldn't be as
+	// effective on architectures that are fussier about alignment.
+	MOVOU 0(SI), X0
+	MOVOU X0, 0(DI)
+
+	// d += length
+	// s += length
+	ADDQ CX, DI
+	ADDQ CX, SI
+	JMP  loop
+
+callMemmove:
+	// if length > len(dst)-d || length > len(src)-s { etc }
+	CMPQ CX, AX
+	JGT  errCorrupt
+	CMPQ CX, BX
+	JGT  errCorrupt
+
+	// copy(dst[d:], src[s:s+length])
+	//
+	// This means calling runtime·memmove(&dst[d], &src[s], length), so we push
+	// DI, SI and CX as arguments. Coincidentally, we also need to spill those
+	// three registers to the stack, to save local variables across the CALL.
+	MOVQ DI, 0(SP)
+	MOVQ SI, 8(SP)
+	MOVQ CX, 16(SP)
+	MOVQ DI, 24(SP)
+	MOVQ SI, 32(SP)
+	MOVQ CX, 40(SP)
+	CALL runtime·memmove(SB)
+
+	// Restore local variables: unspill registers from the stack and
+	// re-calculate R8-R13.
+	MOVQ 24(SP), DI
+	MOVQ 32(SP), SI
+	MOVQ 40(SP), CX
+	MOVQ dst_base+0(FP), R8
+	MOVQ dst_len+8(FP), R9
+	MOVQ R8, R10
+	ADDQ R9, R10
+	MOVQ src_base+24(FP), R11
+	MOVQ src_len+32(FP), R12
+	MOVQ R11, R13
+	ADDQ R12, R13
+
+	// d += length
+	// s += length
+	ADDQ CX, DI
+	ADDQ CX, SI
+	JMP  loop
+
+tagLit60Plus:
+	// !!! This fragment does the
+	//
+	// s += x - 58; if uint(s) > uint(len(src)) { etc }
+	//
+	// checks. In the asm version, we code it once instead of once per switch case.
+	ADDQ CX, SI
+	SUBQ $58, SI
+	MOVQ SI, BX
+	SUBQ R11, BX
+	CMPQ BX, R12
+	JA   errCorrupt
+
+	// case x == 60:
+	CMPL CX, $61
+	JEQ  tagLit61
+	JA   tagLit62Plus
+
+	// x = uint32(src[s-1])
+	MOVBLZX -1(SI), CX
+	JMP     doLit
+
+tagLit61:
+	// case x == 61:
+	// x = uint32(src[s-2]) | uint32(src[s-1])<<8
+	MOVWLZX -2(SI), CX
+	JMP     doLit
+
+tagLit62Plus:
+	CMPL CX, $62
+	JA   tagLit63
+
+	// case x == 62:
+	// x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
+	MOVWLZX -3(SI), CX
+	MOVBLZX -1(SI), BX
+	SHLL    $16, BX
+	ORL     BX, CX
+	JMP     doLit
+
+tagLit63:
+	// case x == 63:
+	// x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
+	MOVL -4(SI), CX
+	JMP  doLit
+
+// The code above handles literal tags.
+// ----------------------------------------
+// The code below handles copy tags.
+
+tagCopy4:
+	// case tagCopy4:
+	// s += 5
+	ADDQ $5, SI
+
+	// if uint(s) > uint(len(src)) { etc }
+	MOVQ SI, BX
+	SUBQ R11, BX
+	CMPQ BX, R12
+	JA   errCorrupt
+
+	// length = 1 + int(src[s-5])>>2
+	SHRQ $2, CX
+	INCQ CX
+
+	// offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
+	MOVLQZX -4(SI), DX
+	JMP     doCopy
+
+tagCopy2:
+	// case tagCopy2:
+	// s += 3
+	ADDQ $3, SI
+
+	// if uint(s) > uint(len(src)) { etc }
+	MOVQ SI, BX
+	SUBQ R11, BX
+	CMPQ BX, R12
+	JA   errCorrupt
+
+	// length = 1 + int(src[s-3])>>2
+	SHRQ $2, CX
+	INCQ CX
+
+	// offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
+	MOVWQZX -2(SI), DX
+	JMP     doCopy
+
+tagCopy:
+	// We have a copy tag. We assume that:
+	//	- BX == src[s] & 0x03
+	//	- CX == src[s]
+	CMPQ BX, $2
+	JEQ  tagCopy2
+	JA   tagCopy4
+
+	// case tagCopy1:
+	// s += 2
+	ADDQ $2, SI
+
+	// if uint(s) > uint(len(src)) { etc }
+	MOVQ SI, BX
+	SUBQ R11, BX
+	CMPQ BX, R12
+	JA   errCorrupt
+
+	// offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
+	MOVQ    CX, DX
+	ANDQ    $0xe0, DX
+	SHLQ    $3, DX
+	MOVBQZX -1(SI), BX
+	ORQ     BX, DX
+
+	// length = 4 + int(src[s-2])>>2&0x7
+	SHRQ $2, CX
+	ANDQ $7, CX
+	ADDQ $4, CX
+
+doCopy:
+	// This is the end of the outer "switch", when we have a copy tag.
+	//
+	// We assume that:
+	//	- CX == length && CX > 0
+	//	- DX == offset
+
+	// if offset <= 0 { etc }
+	CMPQ DX, $0
+	JLE  errCorrupt
+
+	// if d < offset { etc }
+	MOVQ DI, BX
+	SUBQ R8, BX
+	CMPQ BX, DX
+	JLT  errCorrupt
+
+	// if length > len(dst)-d { etc }
+	MOVQ R10, BX
+	SUBQ DI, BX
+	CMPQ CX, BX
+	JGT  errCorrupt
+
+	// forwardCopy(dst[d:d+length], dst[d-offset:]); d += length
+	//
+	// Set:
+	//	- R14 = len(dst)-d
+	//	- R15 = &dst[d-offset]
+	MOVQ R10, R14
+	SUBQ DI, R14
+	MOVQ DI, R15
+	SUBQ DX, R15
+
+	// !!! Try a faster technique for short (16 or fewer bytes) forward copies.
+	//
+	// First, try using two 8-byte load/stores, similar to the doLit technique
+	// above. Even if dst[d:d+length] and dst[d-offset:] can overlap, this is
+	// still OK if offset >= 8. Note that this has to be two 8-byte load/stores
+	// and not one 16-byte load/store, and the first store has to be before the
+	// second load, due to the overlap if offset is in the range [8, 16).
+	//
+	// if length > 16 || offset < 8 || len(dst)-d < 16 {
+	//   goto slowForwardCopy
+	// }
+	// copy 16 bytes
+	// d += length
+	CMPQ CX, $16
+	JGT  slowForwardCopy
+	CMPQ DX, $8
+	JLT  slowForwardCopy
+	CMPQ R14, $16
+	JLT  slowForwardCopy
+	MOVQ 0(R15), AX
+	MOVQ AX, 0(DI)
+	MOVQ 8(R15), BX
+	MOVQ BX, 8(DI)
+	ADDQ CX, DI
+	JMP  loop
+
+slowForwardCopy:
+	// !!! If the forward copy is longer than 16 bytes, or if offset < 8, we
+	// can still try 8-byte load stores, provided we can overrun up to 10 extra
+	// bytes. As above, the overrun will be fixed up by subsequent iterations
+	// of the outermost loop.
+	//
+	// The C++ snappy code calls this technique IncrementalCopyFastPath. Its
+	// commentary says:
+	//
+	// ----
+	//
+	// The main part of this loop is a simple copy of eight bytes at a time
+	// until we've copied (at least) the requested amount of bytes.  However,
+	// if d and d-offset are less than eight bytes apart (indicating a
+	// repeating pattern of length < 8), we first need to expand the pattern in
+	// order to get the correct results. For instance, if the buffer looks like
+	// this, with the eight-byte <d-offset> and <d> patterns marked as
+	// intervals:
+	//
+	//    abxxxxxxxxxxxx
+	//    [------]           d-offset
+	//      [------]         d
+	//
+	// a single eight-byte copy from <d-offset> to <d> will repeat the pattern
+	// once, after which we can move <d> two bytes without moving <d-offset>:
+	//
+	//    ababxxxxxxxxxx
+	//    [------]           d-offset
+	//        [------]       d
+	//
+	// and repeat the exercise until the two no longer overlap.
+	//
+	// This allows us to do very well in the special case of one single byte
+	// repeated many times, without taking a big hit for more general cases.
+	//
+	// The worst case of extra writing past the end of the match occurs when
+	// offset == 1 and length == 1; the last copy will read from byte positions
+	// [0..7] and write to [4..11], whereas it was only supposed to write to
+	// position 1. Thus, ten excess bytes.
+	//
+	// ----
+	//
+	// That "10 byte overrun" worst case is confirmed by Go's
+	// TestSlowForwardCopyOverrun, which also tests the fixUpSlowForwardCopy
+	// and finishSlowForwardCopy algorithm.
+	//
+	// if length > len(dst)-d-10 {
+	//   goto verySlowForwardCopy
+	// }
+	SUBQ $10, R14
+	CMPQ CX, R14
+	JGT  verySlowForwardCopy
+
+makeOffsetAtLeast8:
+	// !!! As above, expand the pattern so that offset >= 8 and we can use
+	// 8-byte load/stores.
+	//
+	// for offset < 8 {
+	//   copy 8 bytes from dst[d-offset:] to dst[d:]
+	//   length -= offset
+	//   d      += offset
+	//   offset += offset
+	//   // The two previous lines together means that d-offset, and therefore
+	//   // R15, is unchanged.
+	// }
+	CMPQ DX, $8
+	JGE  fixUpSlowForwardCopy
+	MOVQ (R15), BX
+	MOVQ BX, (DI)
+	SUBQ DX, CX
+	ADDQ DX, DI
+	ADDQ DX, DX
+	JMP  makeOffsetAtLeast8
+
+fixUpSlowForwardCopy:
+	// !!! Add length (which might be negative now) to d (implied by DI being
+	// &dst[d]) so that d ends up at the right place when we jump back to the
+	// top of the loop. Before we do that, though, we save DI to AX so that, if
+	// length is positive, copying the remaining length bytes will write to the
+	// right place.
+	MOVQ DI, AX
+	ADDQ CX, DI
+
+finishSlowForwardCopy:
+	// !!! Repeat 8-byte load/stores until length <= 0. Ending with a negative
+	// length means that we overrun, but as above, that will be fixed up by
+	// subsequent iterations of the outermost loop.
+	CMPQ CX, $0
+	JLE  loop
+	MOVQ (R15), BX
+	MOVQ BX, (AX)
+	ADDQ $8, R15
+	ADDQ $8, AX
+	SUBQ $8, CX
+	JMP  finishSlowForwardCopy
+
+verySlowForwardCopy:
+	// verySlowForwardCopy is a simple implementation of forward copy. In C
+	// parlance, this is a do/while loop instead of a while loop, since we know
+	// that length > 0. In Go syntax:
+	//
+	// for {
+	//   dst[d] = dst[d - offset]
+	//   d++
+	//   length--
+	//   if length == 0 {
+	//     break
+	//   }
+	// }
+	MOVB (R15), BX
+	MOVB BX, (DI)
+	INCQ R15
+	INCQ DI
+	DECQ CX
+	JNZ  verySlowForwardCopy
+	JMP  loop
+
+// The code above handles copy tags.
+// ----------------------------------------
+
+end:
+	// This is the end of the "for s < len(src)".
+	//
+	// if d != len(dst) { etc }
+	CMPQ DI, R10
+	JNE  errCorrupt
+
+	// return 0
+	MOVQ $0, ret+48(FP)
+	RET
+
+errCorrupt:
+	// return decodeErrCodeCorrupt
+	MOVQ $1, ret+48(FP)
+	RET
diff --git a/vendor/github.com/golang/snappy/decode_other.go b/vendor/github.com/golang/snappy/decode_other.go
new file mode 100644
index 0000000..8c9f204
--- /dev/null
+++ b/vendor/github.com/golang/snappy/decode_other.go
@@ -0,0 +1,101 @@
+// Copyright 2016 The Snappy-Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build !amd64 appengine !gc noasm
+
+package snappy
+
+// decode writes the decoding of src to dst. It assumes that the varint-encoded
+// length of the decompressed bytes has already been read, and that len(dst)
+// equals that length.
+//
+// It returns 0 on success or a decodeErrCodeXxx error code on failure.
+func decode(dst, src []byte) int {
+	var d, s, offset, length int
+	for s < len(src) {
+		switch src[s] & 0x03 {
+		case tagLiteral:
+			x := uint32(src[s] >> 2)
+			switch {
+			case x < 60:
+				s++
+			case x == 60:
+				s += 2
+				if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
+					return decodeErrCodeCorrupt
+				}
+				x = uint32(src[s-1])
+			case x == 61:
+				s += 3
+				if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
+					return decodeErrCodeCorrupt
+				}
+				x = uint32(src[s-2]) | uint32(src[s-1])<<8
+			case x == 62:
+				s += 4
+				if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
+					return decodeErrCodeCorrupt
+				}
+				x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
+			case x == 63:
+				s += 5
+				if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
+					return decodeErrCodeCorrupt
+				}
+				x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
+			}
+			length = int(x) + 1
+			if length <= 0 {
+				return decodeErrCodeUnsupportedLiteralLength
+			}
+			if length > len(dst)-d || length > len(src)-s {
+				return decodeErrCodeCorrupt
+			}
+			copy(dst[d:], src[s:s+length])
+			d += length
+			s += length
+			continue
+
+		case tagCopy1:
+			s += 2
+			if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
+				return decodeErrCodeCorrupt
+			}
+			length = 4 + int(src[s-2])>>2&0x7
+			offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
+
+		case tagCopy2:
+			s += 3
+			if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
+				return decodeErrCodeCorrupt
+			}
+			length = 1 + int(src[s-3])>>2
+			offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
+
+		case tagCopy4:
+			s += 5
+			if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
+				return decodeErrCodeCorrupt
+			}
+			length = 1 + int(src[s-5])>>2
+			offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
+		}
+
+		if offset <= 0 || d < offset || length > len(dst)-d {
+			return decodeErrCodeCorrupt
+		}
+		// Copy from an earlier sub-slice of dst to a later sub-slice. Unlike
+		// the built-in copy function, this byte-by-byte copy always runs
+		// forwards, even if the slices overlap. Conceptually, this is:
+		//
+		// d += forwardCopy(dst[d:d+length], dst[d-offset:])
+		for end := d + length; d != end; d++ {
+			dst[d] = dst[d-offset]
+		}
+	}
+	if d != len(dst) {
+		return decodeErrCodeCorrupt
+	}
+	return 0
+}
diff --git a/vendor/github.com/golang/snappy/encode.go b/vendor/github.com/golang/snappy/encode.go
new file mode 100644
index 0000000..8d393e9
--- /dev/null
+++ b/vendor/github.com/golang/snappy/encode.go
@@ -0,0 +1,285 @@
+// Copyright 2011 The Snappy-Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package snappy
+
+import (
+	"encoding/binary"
+	"errors"
+	"io"
+)
+
+// Encode returns the encoded form of src. The returned slice may be a sub-
+// slice of dst if dst was large enough to hold the entire encoded block.
+// Otherwise, a newly allocated slice will be returned.
+//
+// The dst and src must not overlap. It is valid to pass a nil dst.
+func Encode(dst, src []byte) []byte {
+	if n := MaxEncodedLen(len(src)); n < 0 {
+		panic(ErrTooLarge)
+	} else if len(dst) < n {
+		dst = make([]byte, n)
+	}
+
+	// The block starts with the varint-encoded length of the decompressed bytes.
+	d := binary.PutUvarint(dst, uint64(len(src)))
+
+	for len(src) > 0 {
+		p := src
+		src = nil
+		if len(p) > maxBlockSize {
+			p, src = p[:maxBlockSize], p[maxBlockSize:]
+		}
+		if len(p) < minNonLiteralBlockSize {
+			d += emitLiteral(dst[d:], p)
+		} else {
+			d += encodeBlock(dst[d:], p)
+		}
+	}
+	return dst[:d]
+}
+
+// inputMargin is the minimum number of extra input bytes to keep, inside
+// encodeBlock's inner loop. On some architectures, this margin lets us
+// implement a fast path for emitLiteral, where the copy of short (<= 16 byte)
+// literals can be implemented as a single load to and store from a 16-byte
+// register. That literal's actual length can be as short as 1 byte, so this
+// can copy up to 15 bytes too much, but that's OK as subsequent iterations of
+// the encoding loop will fix up the copy overrun, and this inputMargin ensures
+// that we don't overrun the dst and src buffers.
+const inputMargin = 16 - 1
+
+// minNonLiteralBlockSize is the minimum size of the input to encodeBlock that
+// could be encoded with a copy tag. This is the minimum with respect to the
+// algorithm used by encodeBlock, not a minimum enforced by the file format.
+//
+// The encoded output must start with at least a 1 byte literal, as there are
+// no previous bytes to copy. A minimal (1 byte) copy after that, generated
+// from an emitCopy call in encodeBlock's main loop, would require at least
+// another inputMargin bytes, for the reason above: we want any emitLiteral
+// calls inside encodeBlock's main loop to use the fast path if possible, which
+// requires being able to overrun by inputMargin bytes. Thus,
+// minNonLiteralBlockSize equals 1 + 1 + inputMargin.
+//
+// The C++ code doesn't use this exact threshold, but it could, as discussed at
+// https://groups.google.com/d/topic/snappy-compression/oGbhsdIJSJ8/discussion
+// The difference between Go (2+inputMargin) and C++ (inputMargin) is purely an
+// optimization. It should not affect the encoded form. This is tested by
+// TestSameEncodingAsCppShortCopies.
+const minNonLiteralBlockSize = 1 + 1 + inputMargin
+
+// MaxEncodedLen returns the maximum length of a snappy block, given its
+// uncompressed length.
+//
+// It will return a negative value if srcLen is too large to encode.
+func MaxEncodedLen(srcLen int) int {
+	n := uint64(srcLen)
+	if n > 0xffffffff {
+		return -1
+	}
+	// Compressed data can be defined as:
+	//    compressed := item* literal*
+	//    item       := literal* copy
+	//
+	// The trailing literal sequence has a space blowup of at most 62/60
+	// since a literal of length 60 needs one tag byte + one extra byte
+	// for length information.
+	//
+	// Item blowup is trickier to measure. Suppose the "copy" op copies
+	// 4 bytes of data. Because of a special check in the encoding code,
+	// we produce a 4-byte copy only if the offset is < 65536. Therefore
+	// the copy op takes 3 bytes to encode, and this type of item leads
+	// to at most the 62/60 blowup for representing literals.
+	//
+	// Suppose the "copy" op copies 5 bytes of data. If the offset is big
+	// enough, it will take 5 bytes to encode the copy op. Therefore the
+	// worst case here is a one-byte literal followed by a five-byte copy.
+	// That is, 6 bytes of input turn into 7 bytes of "compressed" data.
+	//
+	// This last factor dominates the blowup, so the final estimate is:
+	n = 32 + n + n/6
+	if n > 0xffffffff {
+		return -1
+	}
+	return int(n)
+}
+
+var errClosed = errors.New("snappy: Writer is closed")
+
+// NewWriter returns a new Writer that compresses to w.
+//
+// The Writer returned does not buffer writes. There is no need to Flush or
+// Close such a Writer.
+//
+// Deprecated: the Writer returned is not suitable for many small writes, only
+// for few large writes. Use NewBufferedWriter instead, which is efficient
+// regardless of the frequency and shape of the writes, and remember to Close
+// that Writer when done.
+func NewWriter(w io.Writer) *Writer {
+	return &Writer{
+		w:    w,
+		obuf: make([]byte, obufLen),
+	}
+}
+
+// NewBufferedWriter returns a new Writer that compresses to w, using the
+// framing format described at
+// https://github.com/google/snappy/blob/master/framing_format.txt
+//
+// The Writer returned buffers writes. Users must call Close to guarantee all
+// data has been forwarded to the underlying io.Writer. They may also call
+// Flush zero or more times before calling Close.
+func NewBufferedWriter(w io.Writer) *Writer {
+	return &Writer{
+		w:    w,
+		ibuf: make([]byte, 0, maxBlockSize),
+		obuf: make([]byte, obufLen),
+	}
+}
+
+// Writer is an io.Writer that can write Snappy-compressed bytes.
+type Writer struct {
+	w   io.Writer
+	err error
+
+	// ibuf is a buffer for the incoming (uncompressed) bytes.
+	//
+	// Its use is optional. For backwards compatibility, Writers created by the
+	// NewWriter function have ibuf == nil, do not buffer incoming bytes, and
+	// therefore do not need to be Flush'ed or Close'd.
+	ibuf []byte
+
+	// obuf is a buffer for the outgoing (compressed) bytes.
+	obuf []byte
+
+	// wroteStreamHeader is whether we have written the stream header.
+	wroteStreamHeader bool
+}
+
+// Reset discards the writer's state and switches the Snappy writer to write to
+// w. This permits reusing a Writer rather than allocating a new one.
+func (w *Writer) Reset(writer io.Writer) {
+	w.w = writer
+	w.err = nil
+	if w.ibuf != nil {
+		w.ibuf = w.ibuf[:0]
+	}
+	w.wroteStreamHeader = false
+}
+
+// Write satisfies the io.Writer interface.
+func (w *Writer) Write(p []byte) (nRet int, errRet error) {
+	if w.ibuf == nil {
+		// Do not buffer incoming bytes. This does not perform or compress well
+		// if the caller of Writer.Write writes many small slices. This
+		// behavior is therefore deprecated, but still supported for backwards
+		// compatibility with code that doesn't explicitly Flush or Close.
+		return w.write(p)
+	}
+
+	// The remainder of this method is based on bufio.Writer.Write from the
+	// standard library.
+
+	for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
+		var n int
+		if len(w.ibuf) == 0 {
+			// Large write, empty buffer.
+			// Write directly from p to avoid copy.
+			n, _ = w.write(p)
+		} else {
+			n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
+			w.ibuf = w.ibuf[:len(w.ibuf)+n]
+			w.Flush()
+		}
+		nRet += n
+		p = p[n:]
+	}
+	if w.err != nil {
+		return nRet, w.err
+	}
+	n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
+	w.ibuf = w.ibuf[:len(w.ibuf)+n]
+	nRet += n
+	return nRet, nil
+}
+
+func (w *Writer) write(p []byte) (nRet int, errRet error) {
+	if w.err != nil {
+		return 0, w.err
+	}
+	for len(p) > 0 {
+		obufStart := len(magicChunk)
+		if !w.wroteStreamHeader {
+			w.wroteStreamHeader = true
+			copy(w.obuf, magicChunk)
+			obufStart = 0
+		}
+
+		var uncompressed []byte
+		if len(p) > maxBlockSize {
+			uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
+		} else {
+			uncompressed, p = p, nil
+		}
+		checksum := crc(uncompressed)
+
+		// Compress the buffer, discarding the result if the improvement
+		// isn't at least 12.5%.
+		compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
+		chunkType := uint8(chunkTypeCompressedData)
+		chunkLen := 4 + len(compressed)
+		obufEnd := obufHeaderLen + len(compressed)
+		if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
+			chunkType = chunkTypeUncompressedData
+			chunkLen = 4 + len(uncompressed)
+			obufEnd = obufHeaderLen
+		}
+
+		// Fill in the per-chunk header that comes before the body.
+		w.obuf[len(magicChunk)+0] = chunkType
+		w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
+		w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
+		w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
+		w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
+		w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
+		w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
+		w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
+
+		if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
+			w.err = err
+			return nRet, err
+		}
+		if chunkType == chunkTypeUncompressedData {
+			if _, err := w.w.Write(uncompressed); err != nil {
+				w.err = err
+				return nRet, err
+			}
+		}
+		nRet += len(uncompressed)
+	}
+	return nRet, nil
+}
+
+// Flush flushes the Writer to its underlying io.Writer.
+func (w *Writer) Flush() error {
+	if w.err != nil {
+		return w.err
+	}
+	if len(w.ibuf) == 0 {
+		return nil
+	}
+	w.write(w.ibuf)
+	w.ibuf = w.ibuf[:0]
+	return w.err
+}
+
+// Close calls Flush and then closes the Writer.
+func (w *Writer) Close() error {
+	w.Flush()
+	ret := w.err
+	if w.err == nil {
+		w.err = errClosed
+	}
+	return ret
+}
diff --git a/vendor/github.com/golang/snappy/encode_amd64.go b/vendor/github.com/golang/snappy/encode_amd64.go
new file mode 100644
index 0000000..150d91b
--- /dev/null
+++ b/vendor/github.com/golang/snappy/encode_amd64.go
@@ -0,0 +1,29 @@
+// Copyright 2016 The Snappy-Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build !appengine
+// +build gc
+// +build !noasm
+
+package snappy
+
+// emitLiteral has the same semantics as in encode_other.go.
+//
+//go:noescape
+func emitLiteral(dst, lit []byte) int
+
+// emitCopy has the same semantics as in encode_other.go.
+//
+//go:noescape
+func emitCopy(dst []byte, offset, length int) int
+
+// extendMatch has the same semantics as in encode_other.go.
+//
+//go:noescape
+func extendMatch(src []byte, i, j int) int
+
+// encodeBlock has the same semantics as in encode_other.go.
+//
+//go:noescape
+func encodeBlock(dst, src []byte) (d int)
diff --git a/vendor/github.com/golang/snappy/encode_amd64.s b/vendor/github.com/golang/snappy/encode_amd64.s
new file mode 100644
index 0000000..adfd979
--- /dev/null
+++ b/vendor/github.com/golang/snappy/encode_amd64.s
@@ -0,0 +1,730 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build !appengine
+// +build gc
+// +build !noasm
+
+#include "textflag.h"
+
+// The XXX lines assemble on Go 1.4, 1.5 and 1.7, but not 1.6, due to a
+// Go toolchain regression. See https://github.com/golang/go/issues/15426 and
+// https://github.com/golang/snappy/issues/29
+//
+// As a workaround, the package was built with a known good assembler, and
+// those instructions were disassembled by "objdump -d" to yield the
+//	4e 0f b7 7c 5c 78       movzwq 0x78(%rsp,%r11,2),%r15
+// style comments, in AT&T asm syntax. Note that rsp here is a physical
+// register, not Go/asm's SP pseudo-register (see https://golang.org/doc/asm).
+// The instructions were then encoded as "BYTE $0x.." sequences, which assemble
+// fine on Go 1.6.
+
+// The asm code generally follows the pure Go code in encode_other.go, except
+// where marked with a "!!!".
+
+// ----------------------------------------------------------------------------
+
+// func emitLiteral(dst, lit []byte) int
+//
+// All local variables fit into registers. The register allocation:
+//	- AX	len(lit)
+//	- BX	n
+//	- DX	return value
+//	- DI	&dst[i]
+//	- R10	&lit[0]
+//
+// The 24 bytes of stack space is to call runtime·memmove.
+//
+// The unusual register allocation of local variables, such as R10 for the
+// source pointer, matches the allocation used at the call site in encodeBlock,
+// which makes it easier to manually inline this function.
+TEXT ·emitLiteral(SB), NOSPLIT, $24-56
+	MOVQ dst_base+0(FP), DI
+	MOVQ lit_base+24(FP), R10
+	MOVQ lit_len+32(FP), AX
+	MOVQ AX, DX
+	MOVL AX, BX
+	SUBL $1, BX
+
+	CMPL BX, $60
+	JLT  oneByte
+	CMPL BX, $256
+	JLT  twoBytes
+
+threeBytes:
+	MOVB $0xf4, 0(DI)
+	MOVW BX, 1(DI)
+	ADDQ $3, DI
+	ADDQ $3, DX
+	JMP  memmove
+
+twoBytes:
+	MOVB $0xf0, 0(DI)
+	MOVB BX, 1(DI)
+	ADDQ $2, DI
+	ADDQ $2, DX
+	JMP  memmove
+
+oneByte:
+	SHLB $2, BX
+	MOVB BX, 0(DI)
+	ADDQ $1, DI
+	ADDQ $1, DX
+
+memmove:
+	MOVQ DX, ret+48(FP)
+
+	// copy(dst[i:], lit)
+	//
+	// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
+	// DI, R10 and AX as arguments.
+	MOVQ DI, 0(SP)
+	MOVQ R10, 8(SP)
+	MOVQ AX, 16(SP)
+	CALL runtime·memmove(SB)
+	RET
+
+// ----------------------------------------------------------------------------
+
+// func emitCopy(dst []byte, offset, length int) int
+//
+// All local variables fit into registers. The register allocation:
+//	- AX	length
+//	- SI	&dst[0]
+//	- DI	&dst[i]
+//	- R11	offset
+//
+// The unusual register allocation of local variables, such as R11 for the
+// offset, matches the allocation used at the call site in encodeBlock, which
+// makes it easier to manually inline this function.
+TEXT ·emitCopy(SB), NOSPLIT, $0-48
+	MOVQ dst_base+0(FP), DI
+	MOVQ DI, SI
+	MOVQ offset+24(FP), R11
+	MOVQ length+32(FP), AX
+
+loop0:
+	// for length >= 68 { etc }
+	CMPL AX, $68
+	JLT  step1
+
+	// Emit a length 64 copy, encoded as 3 bytes.
+	MOVB $0xfe, 0(DI)
+	MOVW R11, 1(DI)
+	ADDQ $3, DI
+	SUBL $64, AX
+	JMP  loop0
+
+step1:
+	// if length > 64 { etc }
+	CMPL AX, $64
+	JLE  step2
+
+	// Emit a length 60 copy, encoded as 3 bytes.
+	MOVB $0xee, 0(DI)
+	MOVW R11, 1(DI)
+	ADDQ $3, DI
+	SUBL $60, AX
+
+step2:
+	// if length >= 12 || offset >= 2048 { goto step3 }
+	CMPL AX, $12
+	JGE  step3
+	CMPL R11, $2048
+	JGE  step3
+
+	// Emit the remaining copy, encoded as 2 bytes.
+	MOVB R11, 1(DI)
+	SHRL $8, R11
+	SHLB $5, R11
+	SUBB $4, AX
+	SHLB $2, AX
+	ORB  AX, R11
+	ORB  $1, R11
+	MOVB R11, 0(DI)
+	ADDQ $2, DI
+
+	// Return the number of bytes written.
+	SUBQ SI, DI
+	MOVQ DI, ret+40(FP)
+	RET
+
+step3:
+	// Emit the remaining copy, encoded as 3 bytes.
+	SUBL $1, AX
+	SHLB $2, AX
+	ORB  $2, AX
+	MOVB AX, 0(DI)
+	MOVW R11, 1(DI)
+	ADDQ $3, DI
+
+	// Return the number of bytes written.
+	SUBQ SI, DI
+	MOVQ DI, ret+40(FP)
+	RET
+
+// ----------------------------------------------------------------------------
+
+// func extendMatch(src []byte, i, j int) int
+//
+// All local variables fit into registers. The register allocation:
+//	- DX	&src[0]
+//	- SI	&src[j]
+//	- R13	&src[len(src) - 8]
+//	- R14	&src[len(src)]
+//	- R15	&src[i]
+//
+// The unusual register allocation of local variables, such as R15 for a source
+// pointer, matches the allocation used at the call site in encodeBlock, which
+// makes it easier to manually inline this function.
+TEXT ·extendMatch(SB), NOSPLIT, $0-48
+	MOVQ src_base+0(FP), DX
+	MOVQ src_len+8(FP), R14
+	MOVQ i+24(FP), R15
+	MOVQ j+32(FP), SI
+	ADDQ DX, R14
+	ADDQ DX, R15
+	ADDQ DX, SI
+	MOVQ R14, R13
+	SUBQ $8, R13
+
+cmp8:
+	// As long as we are 8 or more bytes before the end of src, we can load and
+	// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
+	CMPQ SI, R13
+	JA   cmp1
+	MOVQ (R15), AX
+	MOVQ (SI), BX
+	CMPQ AX, BX
+	JNE  bsf
+	ADDQ $8, R15
+	ADDQ $8, SI
+	JMP  cmp8
+
+bsf:
+	// If those 8 bytes were not equal, XOR the two 8 byte values, and return
+	// the index of the first byte that differs. The BSF instruction finds the
+	// least significant 1 bit, the amd64 architecture is little-endian, and
+	// the shift by 3 converts a bit index to a byte index.
+	XORQ AX, BX
+	BSFQ BX, BX
+	SHRQ $3, BX
+	ADDQ BX, SI
+
+	// Convert from &src[ret] to ret.
+	SUBQ DX, SI
+	MOVQ SI, ret+40(FP)
+	RET
+
+cmp1:
+	// In src's tail, compare 1 byte at a time.
+	CMPQ SI, R14
+	JAE  extendMatchEnd
+	MOVB (R15), AX
+	MOVB (SI), BX
+	CMPB AX, BX
+	JNE  extendMatchEnd
+	ADDQ $1, R15
+	ADDQ $1, SI
+	JMP  cmp1
+
+extendMatchEnd:
+	// Convert from &src[ret] to ret.
+	SUBQ DX, SI
+	MOVQ SI, ret+40(FP)
+	RET
+
+// ----------------------------------------------------------------------------
+
+// func encodeBlock(dst, src []byte) (d int)
+//
+// All local variables fit into registers, other than "var table". The register
+// allocation:
+//	- AX	.	.
+//	- BX	.	.
+//	- CX	56	shift (note that amd64 shifts by non-immediates must use CX).
+//	- DX	64	&src[0], tableSize
+//	- SI	72	&src[s]
+//	- DI	80	&dst[d]
+//	- R9	88	sLimit
+//	- R10	.	&src[nextEmit]
+//	- R11	96	prevHash, currHash, nextHash, offset
+//	- R12	104	&src[base], skip
+//	- R13	.	&src[nextS], &src[len(src) - 8]
+//	- R14	.	len(src), bytesBetweenHashLookups, &src[len(src)], x
+//	- R15	112	candidate
+//
+// The second column (56, 64, etc) is the stack offset to spill the registers
+// when calling other functions. We could pack this slightly tighter, but it's
+// simpler to have a dedicated spill map independent of the function called.
+//
+// "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An
+// extra 56 bytes, to call other functions, and an extra 64 bytes, to spill
+// local variables (registers) during calls gives 32768 + 56 + 64 = 32888.
+TEXT ·encodeBlock(SB), 0, $32888-56
+	MOVQ dst_base+0(FP), DI
+	MOVQ src_base+24(FP), SI
+	MOVQ src_len+32(FP), R14
+
+	// shift, tableSize := uint32(32-8), 1<<8
+	MOVQ $24, CX
+	MOVQ $256, DX
+
+calcShift:
+	// for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
+	//	shift--
+	// }
+	CMPQ DX, $16384
+	JGE  varTable
+	CMPQ DX, R14
+	JGE  varTable
+	SUBQ $1, CX
+	SHLQ $1, DX
+	JMP  calcShift
+
+varTable:
+	// var table [maxTableSize]uint16
+	//
+	// In the asm code, unlike the Go code, we can zero-initialize only the
+	// first tableSize elements. Each uint16 element is 2 bytes and each MOVOU
+	// writes 16 bytes, so we can do only tableSize/8 writes instead of the
+	// 2048 writes that would zero-initialize all of table's 32768 bytes.
+	SHRQ $3, DX
+	LEAQ table-32768(SP), BX
+	PXOR X0, X0
+
+memclr:
+	MOVOU X0, 0(BX)
+	ADDQ  $16, BX
+	SUBQ  $1, DX
+	JNZ   memclr
+
+	// !!! DX = &src[0]
+	MOVQ SI, DX
+
+	// sLimit := len(src) - inputMargin
+	MOVQ R14, R9
+	SUBQ $15, R9
+
+	// !!! Pre-emptively spill CX, DX and R9 to the stack. Their values don't
+	// change for the rest of the function.
+	MOVQ CX, 56(SP)
+	MOVQ DX, 64(SP)
+	MOVQ R9, 88(SP)
+
+	// nextEmit := 0
+	MOVQ DX, R10
+
+	// s := 1
+	ADDQ $1, SI
+
+	// nextHash := hash(load32(src, s), shift)
+	MOVL  0(SI), R11
+	IMULL $0x1e35a7bd, R11
+	SHRL  CX, R11
+
+outer:
+	// for { etc }
+
+	// skip := 32
+	MOVQ $32, R12
+
+	// nextS := s
+	MOVQ SI, R13
+
+	// candidate := 0
+	MOVQ $0, R15
+
+inner0:
+	// for { etc }
+
+	// s := nextS
+	MOVQ R13, SI
+
+	// bytesBetweenHashLookups := skip >> 5
+	MOVQ R12, R14
+	SHRQ $5, R14
+
+	// nextS = s + bytesBetweenHashLookups
+	ADDQ R14, R13
+
+	// skip += bytesBetweenHashLookups
+	ADDQ R14, R12
+
+	// if nextS > sLimit { goto emitRemainder }
+	MOVQ R13, AX
+	SUBQ DX, AX
+	CMPQ AX, R9
+	JA   emitRemainder
+
+	// candidate = int(table[nextHash])
+	// XXX: MOVWQZX table-32768(SP)(R11*2), R15
+	// XXX: 4e 0f b7 7c 5c 78       movzwq 0x78(%rsp,%r11,2),%r15
+	BYTE $0x4e
+	BYTE $0x0f
+	BYTE $0xb7
+	BYTE $0x7c
+	BYTE $0x5c
+	BYTE $0x78
+
+	// table[nextHash] = uint16(s)
+	MOVQ SI, AX
+	SUBQ DX, AX
+
+	// XXX: MOVW AX, table-32768(SP)(R11*2)
+	// XXX: 66 42 89 44 5c 78       mov    %ax,0x78(%rsp,%r11,2)
+	BYTE $0x66
+	BYTE $0x42
+	BYTE $0x89
+	BYTE $0x44
+	BYTE $0x5c
+	BYTE $0x78
+
+	// nextHash = hash(load32(src, nextS), shift)
+	MOVL  0(R13), R11
+	IMULL $0x1e35a7bd, R11
+	SHRL  CX, R11
+
+	// if load32(src, s) != load32(src, candidate) { continue } break
+	MOVL 0(SI), AX
+	MOVL (DX)(R15*1), BX
+	CMPL AX, BX
+	JNE  inner0
+
+fourByteMatch:
+	// As per the encode_other.go code:
+	//
+	// A 4-byte match has been found. We'll later see etc.
+
+	// !!! Jump to a fast path for short (<= 16 byte) literals. See the comment
+	// on inputMargin in encode.go.
+	MOVQ SI, AX
+	SUBQ R10, AX
+	CMPQ AX, $16
+	JLE  emitLiteralFastPath
+
+	// ----------------------------------------
+	// Begin inline of the emitLiteral call.
+	//
+	// d += emitLiteral(dst[d:], src[nextEmit:s])
+
+	MOVL AX, BX
+	SUBL $1, BX
+
+	CMPL BX, $60
+	JLT  inlineEmitLiteralOneByte
+	CMPL BX, $256
+	JLT  inlineEmitLiteralTwoBytes
+
+inlineEmitLiteralThreeBytes:
+	MOVB $0xf4, 0(DI)
+	MOVW BX, 1(DI)
+	ADDQ $3, DI
+	JMP  inlineEmitLiteralMemmove
+
+inlineEmitLiteralTwoBytes:
+	MOVB $0xf0, 0(DI)
+	MOVB BX, 1(DI)
+	ADDQ $2, DI
+	JMP  inlineEmitLiteralMemmove
+
+inlineEmitLiteralOneByte:
+	SHLB $2, BX
+	MOVB BX, 0(DI)
+	ADDQ $1, DI
+
+inlineEmitLiteralMemmove:
+	// Spill local variables (registers) onto the stack; call; unspill.
+	//
+	// copy(dst[i:], lit)
+	//
+	// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
+	// DI, R10 and AX as arguments.
+	MOVQ DI, 0(SP)
+	MOVQ R10, 8(SP)
+	MOVQ AX, 16(SP)
+	ADDQ AX, DI              // Finish the "d +=" part of "d += emitLiteral(etc)".
+	MOVQ SI, 72(SP)
+	MOVQ DI, 80(SP)
+	MOVQ R15, 112(SP)
+	CALL runtime·memmove(SB)
+	MOVQ 56(SP), CX
+	MOVQ 64(SP), DX
+	MOVQ 72(SP), SI
+	MOVQ 80(SP), DI
+	MOVQ 88(SP), R9
+	MOVQ 112(SP), R15
+	JMP  inner1
+
+inlineEmitLiteralEnd:
+	// End inline of the emitLiteral call.
+	// ----------------------------------------
+
+emitLiteralFastPath:
+	// !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2".
+	MOVB AX, BX
+	SUBB $1, BX
+	SHLB $2, BX
+	MOVB BX, (DI)
+	ADDQ $1, DI
+
+	// !!! Implement the copy from lit to dst as a 16-byte load and store.
+	// (Encode's documentation says that dst and src must not overlap.)
+	//
+	// This always copies 16 bytes, instead of only len(lit) bytes, but that's
+	// OK. Subsequent iterations will fix up the overrun.
+	//
+	// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
+	// 16-byte loads and stores. This technique probably wouldn't be as
+	// effective on architectures that are fussier about alignment.
+	MOVOU 0(R10), X0
+	MOVOU X0, 0(DI)
+	ADDQ  AX, DI
+
+inner1:
+	// for { etc }
+
+	// base := s
+	MOVQ SI, R12
+
+	// !!! offset := base - candidate
+	MOVQ R12, R11
+	SUBQ R15, R11
+	SUBQ DX, R11
+
+	// ----------------------------------------
+	// Begin inline of the extendMatch call.
+	//
+	// s = extendMatch(src, candidate+4, s+4)
+
+	// !!! R14 = &src[len(src)]
+	MOVQ src_len+32(FP), R14
+	ADDQ DX, R14
+
+	// !!! R13 = &src[len(src) - 8]
+	MOVQ R14, R13
+	SUBQ $8, R13
+
+	// !!! R15 = &src[candidate + 4]
+	ADDQ $4, R15
+	ADDQ DX, R15
+
+	// !!! s += 4
+	ADDQ $4, SI
+
+inlineExtendMatchCmp8:
+	// As long as we are 8 or more bytes before the end of src, we can load and
+	// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
+	CMPQ SI, R13
+	JA   inlineExtendMatchCmp1
+	MOVQ (R15), AX
+	MOVQ (SI), BX
+	CMPQ AX, BX
+	JNE  inlineExtendMatchBSF
+	ADDQ $8, R15
+	ADDQ $8, SI
+	JMP  inlineExtendMatchCmp8
+
+inlineExtendMatchBSF:
+	// If those 8 bytes were not equal, XOR the two 8 byte values, and return
+	// the index of the first byte that differs. The BSF instruction finds the
+	// least significant 1 bit, the amd64 architecture is little-endian, and
+	// the shift by 3 converts a bit index to a byte index.
+	XORQ AX, BX
+	BSFQ BX, BX
+	SHRQ $3, BX
+	ADDQ BX, SI
+	JMP  inlineExtendMatchEnd
+
+inlineExtendMatchCmp1:
+	// In src's tail, compare 1 byte at a time.
+	CMPQ SI, R14
+	JAE  inlineExtendMatchEnd
+	MOVB (R15), AX
+	MOVB (SI), BX
+	CMPB AX, BX
+	JNE  inlineExtendMatchEnd
+	ADDQ $1, R15
+	ADDQ $1, SI
+	JMP  inlineExtendMatchCmp1
+
+inlineExtendMatchEnd:
+	// End inline of the extendMatch call.
+	// ----------------------------------------
+
+	// ----------------------------------------
+	// Begin inline of the emitCopy call.
+	//
+	// d += emitCopy(dst[d:], base-candidate, s-base)
+
+	// !!! length := s - base
+	MOVQ SI, AX
+	SUBQ R12, AX
+
+inlineEmitCopyLoop0:
+	// for length >= 68 { etc }
+	CMPL AX, $68
+	JLT  inlineEmitCopyStep1
+
+	// Emit a length 64 copy, encoded as 3 bytes.
+	MOVB $0xfe, 0(DI)
+	MOVW R11, 1(DI)
+	ADDQ $3, DI
+	SUBL $64, AX
+	JMP  inlineEmitCopyLoop0
+
+inlineEmitCopyStep1:
+	// if length > 64 { etc }
+	CMPL AX, $64
+	JLE  inlineEmitCopyStep2
+
+	// Emit a length 60 copy, encoded as 3 bytes.
+	MOVB $0xee, 0(DI)
+	MOVW R11, 1(DI)
+	ADDQ $3, DI
+	SUBL $60, AX
+
+inlineEmitCopyStep2:
+	// if length >= 12 || offset >= 2048 { goto inlineEmitCopyStep3 }
+	CMPL AX, $12
+	JGE  inlineEmitCopyStep3
+	CMPL R11, $2048
+	JGE  inlineEmitCopyStep3
+
+	// Emit the remaining copy, encoded as 2 bytes.
+	MOVB R11, 1(DI)
+	SHRL $8, R11
+	SHLB $5, R11
+	SUBB $4, AX
+	SHLB $2, AX
+	ORB  AX, R11
+	ORB  $1, R11
+	MOVB R11, 0(DI)
+	ADDQ $2, DI
+	JMP  inlineEmitCopyEnd
+
+inlineEmitCopyStep3:
+	// Emit the remaining copy, encoded as 3 bytes.
+	SUBL $1, AX
+	SHLB $2, AX
+	ORB  $2, AX
+	MOVB AX, 0(DI)
+	MOVW R11, 1(DI)
+	ADDQ $3, DI
+
+inlineEmitCopyEnd:
+	// End inline of the emitCopy call.
+	// ----------------------------------------
+
+	// nextEmit = s
+	MOVQ SI, R10
+
+	// if s >= sLimit { goto emitRemainder }
+	MOVQ SI, AX
+	SUBQ DX, AX
+	CMPQ AX, R9
+	JAE  emitRemainder
+
+	// As per the encode_other.go code:
+	//
+	// We could immediately etc.
+
+	// x := load64(src, s-1)
+	MOVQ -1(SI), R14
+
+	// prevHash := hash(uint32(x>>0), shift)
+	MOVL  R14, R11
+	IMULL $0x1e35a7bd, R11
+	SHRL  CX, R11
+
+	// table[prevHash] = uint16(s-1)
+	MOVQ SI, AX
+	SUBQ DX, AX
+	SUBQ $1, AX
+
+	// XXX: MOVW AX, table-32768(SP)(R11*2)
+	// XXX: 66 42 89 44 5c 78       mov    %ax,0x78(%rsp,%r11,2)
+	BYTE $0x66
+	BYTE $0x42
+	BYTE $0x89
+	BYTE $0x44
+	BYTE $0x5c
+	BYTE $0x78
+
+	// currHash := hash(uint32(x>>8), shift)
+	SHRQ  $8, R14
+	MOVL  R14, R11
+	IMULL $0x1e35a7bd, R11
+	SHRL  CX, R11
+
+	// candidate = int(table[currHash])
+	// XXX: MOVWQZX table-32768(SP)(R11*2), R15
+	// XXX: 4e 0f b7 7c 5c 78       movzwq 0x78(%rsp,%r11,2),%r15
+	BYTE $0x4e
+	BYTE $0x0f
+	BYTE $0xb7
+	BYTE $0x7c
+	BYTE $0x5c
+	BYTE $0x78
+
+	// table[currHash] = uint16(s)
+	ADDQ $1, AX
+
+	// XXX: MOVW AX, table-32768(SP)(R11*2)
+	// XXX: 66 42 89 44 5c 78       mov    %ax,0x78(%rsp,%r11,2)
+	BYTE $0x66
+	BYTE $0x42
+	BYTE $0x89
+	BYTE $0x44
+	BYTE $0x5c
+	BYTE $0x78
+
+	// if uint32(x>>8) == load32(src, candidate) { continue }
+	MOVL (DX)(R15*1), BX
+	CMPL R14, BX
+	JEQ  inner1
+
+	// nextHash = hash(uint32(x>>16), shift)
+	SHRQ  $8, R14
+	MOVL  R14, R11
+	IMULL $0x1e35a7bd, R11
+	SHRL  CX, R11
+
+	// s++
+	ADDQ $1, SI
+
+	// break out of the inner1 for loop, i.e. continue the outer loop.
+	JMP outer
+
+emitRemainder:
+	// if nextEmit < len(src) { etc }
+	MOVQ src_len+32(FP), AX
+	ADDQ DX, AX
+	CMPQ R10, AX
+	JEQ  encodeBlockEnd
+
+	// d += emitLiteral(dst[d:], src[nextEmit:])
+	//
+	// Push args.
+	MOVQ DI, 0(SP)
+	MOVQ $0, 8(SP)   // Unnecessary, as the callee ignores it, but conservative.
+	MOVQ $0, 16(SP)  // Unnecessary, as the callee ignores it, but conservative.
+	MOVQ R10, 24(SP)
+	SUBQ R10, AX
+	MOVQ AX, 32(SP)
+	MOVQ AX, 40(SP)  // Unnecessary, as the callee ignores it, but conservative.
+
+	// Spill local variables (registers) onto the stack; call; unspill.
+	MOVQ DI, 80(SP)
+	CALL ·emitLiteral(SB)
+	MOVQ 80(SP), DI
+
+	// Finish the "d +=" part of "d += emitLiteral(etc)".
+	ADDQ 48(SP), DI
+
+encodeBlockEnd:
+	MOVQ dst_base+0(FP), AX
+	SUBQ AX, DI
+	MOVQ DI, d+48(FP)
+	RET
diff --git a/vendor/github.com/golang/snappy/encode_other.go b/vendor/github.com/golang/snappy/encode_other.go
new file mode 100644
index 0000000..dbcae90
--- /dev/null
+++ b/vendor/github.com/golang/snappy/encode_other.go
@@ -0,0 +1,238 @@
+// Copyright 2016 The Snappy-Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build !amd64 appengine !gc noasm
+
+package snappy
+
+func load32(b []byte, i int) uint32 {
+	b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
+	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
+}
+
+func load64(b []byte, i int) uint64 {
+	b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
+	return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
+		uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
+}
+
+// emitLiteral writes a literal chunk and returns the number of bytes written.
+//
+// It assumes that:
+//	dst is long enough to hold the encoded bytes
+//	1 <= len(lit) && len(lit) <= 65536
+func emitLiteral(dst, lit []byte) int {
+	i, n := 0, uint(len(lit)-1)
+	switch {
+	case n < 60:
+		dst[0] = uint8(n)<<2 | tagLiteral
+		i = 1
+	case n < 1<<8:
+		dst[0] = 60<<2 | tagLiteral
+		dst[1] = uint8(n)
+		i = 2
+	default:
+		dst[0] = 61<<2 | tagLiteral
+		dst[1] = uint8(n)
+		dst[2] = uint8(n >> 8)
+		i = 3
+	}
+	return i + copy(dst[i:], lit)
+}
+
+// emitCopy writes a copy chunk and returns the number of bytes written.
+//
+// It assumes that:
+//	dst is long enough to hold the encoded bytes
+//	1 <= offset && offset <= 65535
+//	4 <= length && length <= 65535
+func emitCopy(dst []byte, offset, length int) int {
+	i := 0
+	// The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The
+	// threshold for this loop is a little higher (at 68 = 64 + 4), and the
+	// length emitted down below is is a little lower (at 60 = 64 - 4), because
+	// it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed
+	// by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as
+	// a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as
+	// 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a
+	// tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an
+	// encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1.
+	for length >= 68 {
+		// Emit a length 64 copy, encoded as 3 bytes.
+		dst[i+0] = 63<<2 | tagCopy2
+		dst[i+1] = uint8(offset)
+		dst[i+2] = uint8(offset >> 8)
+		i += 3
+		length -= 64
+	}
+	if length > 64 {
+		// Emit a length 60 copy, encoded as 3 bytes.
+		dst[i+0] = 59<<2 | tagCopy2
+		dst[i+1] = uint8(offset)
+		dst[i+2] = uint8(offset >> 8)
+		i += 3
+		length -= 60
+	}
+	if length >= 12 || offset >= 2048 {
+		// Emit the remaining copy, encoded as 3 bytes.
+		dst[i+0] = uint8(length-1)<<2 | tagCopy2
+		dst[i+1] = uint8(offset)
+		dst[i+2] = uint8(offset >> 8)
+		return i + 3
+	}
+	// Emit the remaining copy, encoded as 2 bytes.
+	dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
+	dst[i+1] = uint8(offset)
+	return i + 2
+}
+
+// extendMatch returns the largest k such that k <= len(src) and that
+// src[i:i+k-j] and src[j:k] have the same contents.
+//
+// It assumes that:
+//	0 <= i && i < j && j <= len(src)
+func extendMatch(src []byte, i, j int) int {
+	for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 {
+	}
+	return j
+}
+
+func hash(u, shift uint32) uint32 {
+	return (u * 0x1e35a7bd) >> shift
+}
+
+// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
+// assumes that the varint-encoded length of the decompressed bytes has already
+// been written.
+//
+// It also assumes that:
+//	len(dst) >= MaxEncodedLen(len(src)) &&
+// 	minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
+func encodeBlock(dst, src []byte) (d int) {
+	// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
+	// The table element type is uint16, as s < sLimit and sLimit < len(src)
+	// and len(src) <= maxBlockSize and maxBlockSize == 65536.
+	const (
+		maxTableSize = 1 << 14
+		// tableMask is redundant, but helps the compiler eliminate bounds
+		// checks.
+		tableMask = maxTableSize - 1
+	)
+	shift := uint32(32 - 8)
+	for tableSize := 1 << 8; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
+		shift--
+	}
+	// In Go, all array elements are zero-initialized, so there is no advantage
+	// to a smaller tableSize per se. However, it matches the C++ algorithm,
+	// and in the asm versions of this code, we can get away with zeroing only
+	// the first tableSize elements.
+	var table [maxTableSize]uint16
+
+	// sLimit is when to stop looking for offset/length copies. The inputMargin
+	// lets us use a fast path for emitLiteral in the main loop, while we are
+	// looking for copies.
+	sLimit := len(src) - inputMargin
+
+	// nextEmit is where in src the next emitLiteral should start from.
+	nextEmit := 0
+
+	// The encoded form must start with a literal, as there are no previous
+	// bytes to copy, so we start looking for hash matches at s == 1.
+	s := 1
+	nextHash := hash(load32(src, s), shift)
+
+	for {
+		// Copied from the C++ snappy implementation:
+		//
+		// Heuristic match skipping: If 32 bytes are scanned with no matches
+		// found, start looking only at every other byte. If 32 more bytes are
+		// scanned (or skipped), look at every third byte, etc.. When a match
+		// is found, immediately go back to looking at every byte. This is a
+		// small loss (~5% performance, ~0.1% density) for compressible data
+		// due to more bookkeeping, but for non-compressible data (such as
+		// JPEG) it's a huge win since the compressor quickly "realizes" the
+		// data is incompressible and doesn't bother looking for matches
+		// everywhere.
+		//
+		// The "skip" variable keeps track of how many bytes there are since
+		// the last match; dividing it by 32 (ie. right-shifting by five) gives
+		// the number of bytes to move ahead for each iteration.
+		skip := 32
+
+		nextS := s
+		candidate := 0
+		for {
+			s = nextS
+			bytesBetweenHashLookups := skip >> 5
+			nextS = s + bytesBetweenHashLookups
+			skip += bytesBetweenHashLookups
+			if nextS > sLimit {
+				goto emitRemainder
+			}
+			candidate = int(table[nextHash&tableMask])
+			table[nextHash&tableMask] = uint16(s)
+			nextHash = hash(load32(src, nextS), shift)
+			if load32(src, s) == load32(src, candidate) {
+				break
+			}
+		}
+
+		// A 4-byte match has been found. We'll later see if more than 4 bytes
+		// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+		// them as literal bytes.
+		d += emitLiteral(dst[d:], src[nextEmit:s])
+
+		// Call emitCopy, and then see if another emitCopy could be our next
+		// move. Repeat until we find no match for the input immediately after
+		// what was consumed by the last emitCopy call.
+		//
+		// If we exit this loop normally then we need to call emitLiteral next,
+		// though we don't yet know how big the literal will be. We handle that
+		// by proceeding to the next iteration of the main loop. We also can
+		// exit this loop via goto if we get close to exhausting the input.
+		for {
+			// Invariant: we have a 4-byte match at s, and no need to emit any
+			// literal bytes prior to s.
+			base := s
+
+			// Extend the 4-byte match as long as possible.
+			//
+			// This is an inlined version of:
+			//	s = extendMatch(src, candidate+4, s+4)
+			s += 4
+			for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 {
+			}
+
+			d += emitCopy(dst[d:], base-candidate, s-base)
+			nextEmit = s
+			if s >= sLimit {
+				goto emitRemainder
+			}
+
+			// We could immediately start working at s now, but to improve
+			// compression we first update the hash table at s-1 and at s. If
+			// another emitCopy is not our next move, also calculate nextHash
+			// at s+1. At least on GOARCH=amd64, these three hash calculations
+			// are faster as one load64 call (with some shifts) instead of
+			// three load32 calls.
+			x := load64(src, s-1)
+			prevHash := hash(uint32(x>>0), shift)
+			table[prevHash&tableMask] = uint16(s - 1)
+			currHash := hash(uint32(x>>8), shift)
+			candidate = int(table[currHash&tableMask])
+			table[currHash&tableMask] = uint16(s)
+			if uint32(x>>8) != load32(src, candidate) {
+				nextHash = hash(uint32(x>>16), shift)
+				s++
+				break
+			}
+		}
+	}
+
+emitRemainder:
+	if nextEmit < len(src) {
+		d += emitLiteral(dst[d:], src[nextEmit:])
+	}
+	return d
+}
diff --git a/vendor/github.com/golang/snappy/go.mod b/vendor/github.com/golang/snappy/go.mod
new file mode 100644
index 0000000..f6406bb
--- /dev/null
+++ b/vendor/github.com/golang/snappy/go.mod
@@ -0,0 +1 @@
+module github.com/golang/snappy
diff --git a/vendor/github.com/golang/snappy/snappy.go b/vendor/github.com/golang/snappy/snappy.go
new file mode 100644
index 0000000..ece692e
--- /dev/null
+++ b/vendor/github.com/golang/snappy/snappy.go
@@ -0,0 +1,98 @@
+// Copyright 2011 The Snappy-Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package snappy implements the Snappy compression format. It aims for very
+// high speeds and reasonable compression.
+//
+// There are actually two Snappy formats: block and stream. They are related,
+// but different: trying to decompress block-compressed data as a Snappy stream
+// will fail, and vice versa. The block format is the Decode and Encode
+// functions and the stream format is the Reader and Writer types.
+//
+// The block format, the more common case, is used when the complete size (the
+// number of bytes) of the original data is known upfront, at the time
+// compression starts. The stream format, also known as the framing format, is
+// for when that isn't always true.
+//
+// The canonical, C++ implementation is at https://github.com/google/snappy and
+// it only implements the block format.
+package snappy // import "github.com/golang/snappy"
+
+import (
+	"hash/crc32"
+)
+
+/*
+Each encoded block begins with the varint-encoded length of the decoded data,
+followed by a sequence of chunks. Chunks begin and end on byte boundaries. The
+first byte of each chunk is broken into its 2 least and 6 most significant bits
+called l and m: l ranges in [0, 4) and m ranges in [0, 64). l is the chunk tag.
+Zero means a literal tag. All other values mean a copy tag.
+
+For literal tags:
+  - If m < 60, the next 1 + m bytes are literal bytes.
+  - Otherwise, let n be the little-endian unsigned integer denoted by the next
+    m - 59 bytes. The next 1 + n bytes after that are literal bytes.
+
+For copy tags, length bytes are copied from offset bytes ago, in the style of
+Lempel-Ziv compression algorithms. In particular:
+  - For l == 1, the offset ranges in [0, 1<<11) and the length in [4, 12).
+    The length is 4 + the low 3 bits of m. The high 3 bits of m form bits 8-10
+    of the offset. The next byte is bits 0-7 of the offset.
+  - For l == 2, the offset ranges in [0, 1<<16) and the length in [1, 65).
+    The length is 1 + m. The offset is the little-endian unsigned integer
+    denoted by the next 2 bytes.
+  - For l == 3, this tag is a legacy format that is no longer issued by most
+    encoders. Nonetheless, the offset ranges in [0, 1<<32) and the length in
+    [1, 65). The length is 1 + m. The offset is the little-endian unsigned
+    integer denoted by the next 4 bytes.
+*/
+const (
+	tagLiteral = 0x00
+	tagCopy1   = 0x01
+	tagCopy2   = 0x02
+	tagCopy4   = 0x03
+)
+
+const (
+	checksumSize    = 4
+	chunkHeaderSize = 4
+	magicChunk      = "\xff\x06\x00\x00" + magicBody
+	magicBody       = "sNaPpY"
+
+	// maxBlockSize is the maximum size of the input to encodeBlock. It is not
+	// part of the wire format per se, but some parts of the encoder assume
+	// that an offset fits into a uint16.
+	//
+	// Also, for the framing format (Writer type instead of Encode function),
+	// https://github.com/google/snappy/blob/master/framing_format.txt says
+	// that "the uncompressed data in a chunk must be no longer than 65536
+	// bytes".
+	maxBlockSize = 65536
+
+	// maxEncodedLenOfMaxBlockSize equals MaxEncodedLen(maxBlockSize), but is
+	// hard coded to be a const instead of a variable, so that obufLen can also
+	// be a const. Their equivalence is confirmed by
+	// TestMaxEncodedLenOfMaxBlockSize.
+	maxEncodedLenOfMaxBlockSize = 76490
+
+	obufHeaderLen = len(magicChunk) + checksumSize + chunkHeaderSize
+	obufLen       = obufHeaderLen + maxEncodedLenOfMaxBlockSize
+)
+
+const (
+	chunkTypeCompressedData   = 0x00
+	chunkTypeUncompressedData = 0x01
+	chunkTypePadding          = 0xfe
+	chunkTypeStreamIdentifier = 0xff
+)
+
+var crcTable = crc32.MakeTable(crc32.Castagnoli)
+
+// crc implements the checksum specified in section 3 of
+// https://github.com/google/snappy/blob/master/framing_format.txt
+func crc(b []byte) uint32 {
+	c := crc32.Update(0, crcTable, b)
+	return uint32(c>>15|c<<17) + 0xa282ead8
+}