VOL-2292: Create application for scale testing of BAL
- Base framework created and is functional
- Able to provision ATT techprofile with scheduler, queue and eapol
flow creation.
- Extensible framework provided to add various operator workflows
- README has details about how to build, run, configure and extend
the framework.
Change-Id: I71774959281881278c14b48bee7f9adc0b81ec68
diff --git a/vendor/go.etcd.io/etcd/raft/node.go b/vendor/go.etcd.io/etcd/raft/node.go
new file mode 100644
index 0000000..ab6185b
--- /dev/null
+++ b/vendor/go.etcd.io/etcd/raft/node.go
@@ -0,0 +1,584 @@
+// Copyright 2015 The etcd Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package raft
+
+import (
+ "context"
+ "errors"
+
+ pb "go.etcd.io/etcd/raft/raftpb"
+)
+
+type SnapshotStatus int
+
+const (
+ SnapshotFinish SnapshotStatus = 1
+ SnapshotFailure SnapshotStatus = 2
+)
+
+var (
+ emptyState = pb.HardState{}
+
+ // ErrStopped is returned by methods on Nodes that have been stopped.
+ ErrStopped = errors.New("raft: stopped")
+)
+
+// SoftState provides state that is useful for logging and debugging.
+// The state is volatile and does not need to be persisted to the WAL.
+type SoftState struct {
+ Lead uint64 // must use atomic operations to access; keep 64-bit aligned.
+ RaftState StateType
+}
+
+func (a *SoftState) equal(b *SoftState) bool {
+ return a.Lead == b.Lead && a.RaftState == b.RaftState
+}
+
+// Ready encapsulates the entries and messages that are ready to read,
+// be saved to stable storage, committed or sent to other peers.
+// All fields in Ready are read-only.
+type Ready struct {
+ // The current volatile state of a Node.
+ // SoftState will be nil if there is no update.
+ // It is not required to consume or store SoftState.
+ *SoftState
+
+ // The current state of a Node to be saved to stable storage BEFORE
+ // Messages are sent.
+ // HardState will be equal to empty state if there is no update.
+ pb.HardState
+
+ // ReadStates can be used for node to serve linearizable read requests locally
+ // when its applied index is greater than the index in ReadState.
+ // Note that the readState will be returned when raft receives msgReadIndex.
+ // The returned is only valid for the request that requested to read.
+ ReadStates []ReadState
+
+ // Entries specifies entries to be saved to stable storage BEFORE
+ // Messages are sent.
+ Entries []pb.Entry
+
+ // Snapshot specifies the snapshot to be saved to stable storage.
+ Snapshot pb.Snapshot
+
+ // CommittedEntries specifies entries to be committed to a
+ // store/state-machine. These have previously been committed to stable
+ // store.
+ CommittedEntries []pb.Entry
+
+ // Messages specifies outbound messages to be sent AFTER Entries are
+ // committed to stable storage.
+ // If it contains a MsgSnap message, the application MUST report back to raft
+ // when the snapshot has been received or has failed by calling ReportSnapshot.
+ Messages []pb.Message
+
+ // MustSync indicates whether the HardState and Entries must be synchronously
+ // written to disk or if an asynchronous write is permissible.
+ MustSync bool
+}
+
+func isHardStateEqual(a, b pb.HardState) bool {
+ return a.Term == b.Term && a.Vote == b.Vote && a.Commit == b.Commit
+}
+
+// IsEmptyHardState returns true if the given HardState is empty.
+func IsEmptyHardState(st pb.HardState) bool {
+ return isHardStateEqual(st, emptyState)
+}
+
+// IsEmptySnap returns true if the given Snapshot is empty.
+func IsEmptySnap(sp pb.Snapshot) bool {
+ return sp.Metadata.Index == 0
+}
+
+func (rd Ready) containsUpdates() bool {
+ return rd.SoftState != nil || !IsEmptyHardState(rd.HardState) ||
+ !IsEmptySnap(rd.Snapshot) || len(rd.Entries) > 0 ||
+ len(rd.CommittedEntries) > 0 || len(rd.Messages) > 0 || len(rd.ReadStates) != 0
+}
+
+// appliedCursor extracts from the Ready the highest index the client has
+// applied (once the Ready is confirmed via Advance). If no information is
+// contained in the Ready, returns zero.
+func (rd Ready) appliedCursor() uint64 {
+ if n := len(rd.CommittedEntries); n > 0 {
+ return rd.CommittedEntries[n-1].Index
+ }
+ if index := rd.Snapshot.Metadata.Index; index > 0 {
+ return index
+ }
+ return 0
+}
+
+// Node represents a node in a raft cluster.
+type Node interface {
+ // Tick increments the internal logical clock for the Node by a single tick. Election
+ // timeouts and heartbeat timeouts are in units of ticks.
+ Tick()
+ // Campaign causes the Node to transition to candidate state and start campaigning to become leader.
+ Campaign(ctx context.Context) error
+ // Propose proposes that data be appended to the log. Note that proposals can be lost without
+ // notice, therefore it is user's job to ensure proposal retries.
+ Propose(ctx context.Context, data []byte) error
+ // ProposeConfChange proposes a configuration change. Like any proposal, the
+ // configuration change may be dropped with or without an error being
+ // returned. In particular, configuration changes are dropped unless the
+ // leader has certainty that there is no prior unapplied configuration
+ // change in its log.
+ //
+ // The method accepts either a pb.ConfChange (deprecated) or pb.ConfChangeV2
+ // message. The latter allows arbitrary configuration changes via joint
+ // consensus, notably including replacing a voter. Passing a ConfChangeV2
+ // message is only allowed if all Nodes participating in the cluster run a
+ // version of this library aware of the V2 API. See pb.ConfChangeV2 for
+ // usage details and semantics.
+ ProposeConfChange(ctx context.Context, cc pb.ConfChangeI) error
+
+ // Step advances the state machine using the given message. ctx.Err() will be returned, if any.
+ Step(ctx context.Context, msg pb.Message) error
+
+ // Ready returns a channel that returns the current point-in-time state.
+ // Users of the Node must call Advance after retrieving the state returned by Ready.
+ //
+ // NOTE: No committed entries from the next Ready may be applied until all committed entries
+ // and snapshots from the previous one have finished.
+ Ready() <-chan Ready
+
+ // Advance notifies the Node that the application has saved progress up to the last Ready.
+ // It prepares the node to return the next available Ready.
+ //
+ // The application should generally call Advance after it applies the entries in last Ready.
+ //
+ // However, as an optimization, the application may call Advance while it is applying the
+ // commands. For example. when the last Ready contains a snapshot, the application might take
+ // a long time to apply the snapshot data. To continue receiving Ready without blocking raft
+ // progress, it can call Advance before finishing applying the last ready.
+ Advance()
+ // ApplyConfChange applies a config change (previously passed to
+ // ProposeConfChange) to the node. This must be called whenever a config
+ // change is observed in Ready.CommittedEntries.
+ //
+ // Returns an opaque non-nil ConfState protobuf which must be recorded in
+ // snapshots.
+ ApplyConfChange(cc pb.ConfChangeI) *pb.ConfState
+
+ // TransferLeadership attempts to transfer leadership to the given transferee.
+ TransferLeadership(ctx context.Context, lead, transferee uint64)
+
+ // ReadIndex request a read state. The read state will be set in the ready.
+ // Read state has a read index. Once the application advances further than the read
+ // index, any linearizable read requests issued before the read request can be
+ // processed safely. The read state will have the same rctx attached.
+ ReadIndex(ctx context.Context, rctx []byte) error
+
+ // Status returns the current status of the raft state machine.
+ Status() Status
+ // ReportUnreachable reports the given node is not reachable for the last send.
+ ReportUnreachable(id uint64)
+ // ReportSnapshot reports the status of the sent snapshot. The id is the raft ID of the follower
+ // who is meant to receive the snapshot, and the status is SnapshotFinish or SnapshotFailure.
+ // Calling ReportSnapshot with SnapshotFinish is a no-op. But, any failure in applying a
+ // snapshot (for e.g., while streaming it from leader to follower), should be reported to the
+ // leader with SnapshotFailure. When leader sends a snapshot to a follower, it pauses any raft
+ // log probes until the follower can apply the snapshot and advance its state. If the follower
+ // can't do that, for e.g., due to a crash, it could end up in a limbo, never getting any
+ // updates from the leader. Therefore, it is crucial that the application ensures that any
+ // failure in snapshot sending is caught and reported back to the leader; so it can resume raft
+ // log probing in the follower.
+ ReportSnapshot(id uint64, status SnapshotStatus)
+ // Stop performs any necessary termination of the Node.
+ Stop()
+}
+
+type Peer struct {
+ ID uint64
+ Context []byte
+}
+
+// StartNode returns a new Node given configuration and a list of raft peers.
+// It appends a ConfChangeAddNode entry for each given peer to the initial log.
+//
+// Peers must not be zero length; call RestartNode in that case.
+func StartNode(c *Config, peers []Peer) Node {
+ if len(peers) == 0 {
+ panic("no peers given; use RestartNode instead")
+ }
+ rn, err := NewRawNode(c)
+ if err != nil {
+ panic(err)
+ }
+ rn.Bootstrap(peers)
+
+ n := newNode(rn)
+
+ go n.run()
+ return &n
+}
+
+// RestartNode is similar to StartNode but does not take a list of peers.
+// The current membership of the cluster will be restored from the Storage.
+// If the caller has an existing state machine, pass in the last log index that
+// has been applied to it; otherwise use zero.
+func RestartNode(c *Config) Node {
+ rn, err := NewRawNode(c)
+ if err != nil {
+ panic(err)
+ }
+ n := newNode(rn)
+ go n.run()
+ return &n
+}
+
+type msgWithResult struct {
+ m pb.Message
+ result chan error
+}
+
+// node is the canonical implementation of the Node interface
+type node struct {
+ propc chan msgWithResult
+ recvc chan pb.Message
+ confc chan pb.ConfChangeV2
+ confstatec chan pb.ConfState
+ readyc chan Ready
+ advancec chan struct{}
+ tickc chan struct{}
+ done chan struct{}
+ stop chan struct{}
+ status chan chan Status
+
+ rn *RawNode
+}
+
+func newNode(rn *RawNode) node {
+ return node{
+ propc: make(chan msgWithResult),
+ recvc: make(chan pb.Message),
+ confc: make(chan pb.ConfChangeV2),
+ confstatec: make(chan pb.ConfState),
+ readyc: make(chan Ready),
+ advancec: make(chan struct{}),
+ // make tickc a buffered chan, so raft node can buffer some ticks when the node
+ // is busy processing raft messages. Raft node will resume process buffered
+ // ticks when it becomes idle.
+ tickc: make(chan struct{}, 128),
+ done: make(chan struct{}),
+ stop: make(chan struct{}),
+ status: make(chan chan Status),
+ rn: rn,
+ }
+}
+
+func (n *node) Stop() {
+ select {
+ case n.stop <- struct{}{}:
+ // Not already stopped, so trigger it
+ case <-n.done:
+ // Node has already been stopped - no need to do anything
+ return
+ }
+ // Block until the stop has been acknowledged by run()
+ <-n.done
+}
+
+func (n *node) run() {
+ var propc chan msgWithResult
+ var readyc chan Ready
+ var advancec chan struct{}
+ var rd Ready
+
+ r := n.rn.raft
+
+ lead := None
+
+ for {
+ if advancec != nil {
+ readyc = nil
+ } else if n.rn.HasReady() {
+ // Populate a Ready. Note that this Ready is not guaranteed to
+ // actually be handled. We will arm readyc, but there's no guarantee
+ // that we will actually send on it. It's possible that we will
+ // service another channel instead, loop around, and then populate
+ // the Ready again. We could instead force the previous Ready to be
+ // handled first, but it's generally good to emit larger Readys plus
+ // it simplifies testing (by emitting less frequently and more
+ // predictably).
+ rd = n.rn.readyWithoutAccept()
+ readyc = n.readyc
+ }
+
+ if lead != r.lead {
+ if r.hasLeader() {
+ if lead == None {
+ r.logger.Infof("raft.node: %x elected leader %x at term %d", r.id, r.lead, r.Term)
+ } else {
+ r.logger.Infof("raft.node: %x changed leader from %x to %x at term %d", r.id, lead, r.lead, r.Term)
+ }
+ propc = n.propc
+ } else {
+ r.logger.Infof("raft.node: %x lost leader %x at term %d", r.id, lead, r.Term)
+ propc = nil
+ }
+ lead = r.lead
+ }
+
+ select {
+ // TODO: maybe buffer the config propose if there exists one (the way
+ // described in raft dissertation)
+ // Currently it is dropped in Step silently.
+ case pm := <-propc:
+ m := pm.m
+ m.From = r.id
+ err := r.Step(m)
+ if pm.result != nil {
+ pm.result <- err
+ close(pm.result)
+ }
+ case m := <-n.recvc:
+ // filter out response message from unknown From.
+ if pr := r.prs.Progress[m.From]; pr != nil || !IsResponseMsg(m.Type) {
+ r.Step(m)
+ }
+ case cc := <-n.confc:
+ _, okBefore := r.prs.Progress[r.id]
+ cs := r.applyConfChange(cc)
+ // If the node was removed, block incoming proposals. Note that we
+ // only do this if the node was in the config before. Nodes may be
+ // a member of the group without knowing this (when they're catching
+ // up on the log and don't have the latest config) and we don't want
+ // to block the proposal channel in that case.
+ //
+ // NB: propc is reset when the leader changes, which, if we learn
+ // about it, sort of implies that we got readded, maybe? This isn't
+ // very sound and likely has bugs.
+ if _, okAfter := r.prs.Progress[r.id]; okBefore && !okAfter {
+ var found bool
+ for _, sl := range [][]uint64{cs.Voters, cs.VotersOutgoing} {
+ for _, id := range sl {
+ if id == r.id {
+ found = true
+ }
+ }
+ }
+ if !found {
+ propc = nil
+ }
+ }
+ select {
+ case n.confstatec <- cs:
+ case <-n.done:
+ }
+ case <-n.tickc:
+ n.rn.Tick()
+ case readyc <- rd:
+ n.rn.acceptReady(rd)
+ advancec = n.advancec
+ case <-advancec:
+ n.rn.Advance(rd)
+ rd = Ready{}
+ advancec = nil
+ case c := <-n.status:
+ c <- getStatus(r)
+ case <-n.stop:
+ close(n.done)
+ return
+ }
+ }
+}
+
+// Tick increments the internal logical clock for this Node. Election timeouts
+// and heartbeat timeouts are in units of ticks.
+func (n *node) Tick() {
+ select {
+ case n.tickc <- struct{}{}:
+ case <-n.done:
+ default:
+ n.rn.raft.logger.Warningf("%x (leader %v) A tick missed to fire. Node blocks too long!", n.rn.raft.id, n.rn.raft.id == n.rn.raft.lead)
+ }
+}
+
+func (n *node) Campaign(ctx context.Context) error { return n.step(ctx, pb.Message{Type: pb.MsgHup}) }
+
+func (n *node) Propose(ctx context.Context, data []byte) error {
+ return n.stepWait(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}})
+}
+
+func (n *node) Step(ctx context.Context, m pb.Message) error {
+ // ignore unexpected local messages receiving over network
+ if IsLocalMsg(m.Type) {
+ // TODO: return an error?
+ return nil
+ }
+ return n.step(ctx, m)
+}
+
+func confChangeToMsg(c pb.ConfChangeI) (pb.Message, error) {
+ typ, data, err := pb.MarshalConfChange(c)
+ if err != nil {
+ return pb.Message{}, err
+ }
+ return pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Type: typ, Data: data}}}, nil
+}
+
+func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChangeI) error {
+ msg, err := confChangeToMsg(cc)
+ if err != nil {
+ return err
+ }
+ return n.Step(ctx, msg)
+}
+
+func (n *node) step(ctx context.Context, m pb.Message) error {
+ return n.stepWithWaitOption(ctx, m, false)
+}
+
+func (n *node) stepWait(ctx context.Context, m pb.Message) error {
+ return n.stepWithWaitOption(ctx, m, true)
+}
+
+// Step advances the state machine using msgs. The ctx.Err() will be returned,
+// if any.
+func (n *node) stepWithWaitOption(ctx context.Context, m pb.Message, wait bool) error {
+ if m.Type != pb.MsgProp {
+ select {
+ case n.recvc <- m:
+ return nil
+ case <-ctx.Done():
+ return ctx.Err()
+ case <-n.done:
+ return ErrStopped
+ }
+ }
+ ch := n.propc
+ pm := msgWithResult{m: m}
+ if wait {
+ pm.result = make(chan error, 1)
+ }
+ select {
+ case ch <- pm:
+ if !wait {
+ return nil
+ }
+ case <-ctx.Done():
+ return ctx.Err()
+ case <-n.done:
+ return ErrStopped
+ }
+ select {
+ case err := <-pm.result:
+ if err != nil {
+ return err
+ }
+ case <-ctx.Done():
+ return ctx.Err()
+ case <-n.done:
+ return ErrStopped
+ }
+ return nil
+}
+
+func (n *node) Ready() <-chan Ready { return n.readyc }
+
+func (n *node) Advance() {
+ select {
+ case n.advancec <- struct{}{}:
+ case <-n.done:
+ }
+}
+
+func (n *node) ApplyConfChange(cc pb.ConfChangeI) *pb.ConfState {
+ var cs pb.ConfState
+ select {
+ case n.confc <- cc.AsV2():
+ case <-n.done:
+ }
+ select {
+ case cs = <-n.confstatec:
+ case <-n.done:
+ }
+ return &cs
+}
+
+func (n *node) Status() Status {
+ c := make(chan Status)
+ select {
+ case n.status <- c:
+ return <-c
+ case <-n.done:
+ return Status{}
+ }
+}
+
+func (n *node) ReportUnreachable(id uint64) {
+ select {
+ case n.recvc <- pb.Message{Type: pb.MsgUnreachable, From: id}:
+ case <-n.done:
+ }
+}
+
+func (n *node) ReportSnapshot(id uint64, status SnapshotStatus) {
+ rej := status == SnapshotFailure
+
+ select {
+ case n.recvc <- pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej}:
+ case <-n.done:
+ }
+}
+
+func (n *node) TransferLeadership(ctx context.Context, lead, transferee uint64) {
+ select {
+ // manually set 'from' and 'to', so that leader can voluntarily transfers its leadership
+ case n.recvc <- pb.Message{Type: pb.MsgTransferLeader, From: transferee, To: lead}:
+ case <-n.done:
+ case <-ctx.Done():
+ }
+}
+
+func (n *node) ReadIndex(ctx context.Context, rctx []byte) error {
+ return n.step(ctx, pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}})
+}
+
+func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState) Ready {
+ rd := Ready{
+ Entries: r.raftLog.unstableEntries(),
+ CommittedEntries: r.raftLog.nextEnts(),
+ Messages: r.msgs,
+ }
+ if softSt := r.softState(); !softSt.equal(prevSoftSt) {
+ rd.SoftState = softSt
+ }
+ if hardSt := r.hardState(); !isHardStateEqual(hardSt, prevHardSt) {
+ rd.HardState = hardSt
+ }
+ if r.raftLog.unstable.snapshot != nil {
+ rd.Snapshot = *r.raftLog.unstable.snapshot
+ }
+ if len(r.readStates) != 0 {
+ rd.ReadStates = r.readStates
+ }
+ rd.MustSync = MustSync(r.hardState(), prevHardSt, len(rd.Entries))
+ return rd
+}
+
+// MustSync returns true if the hard state and count of Raft entries indicate
+// that a synchronous write to persistent storage is required.
+func MustSync(st, prevst pb.HardState, entsnum int) bool {
+ // Persistent state on all servers:
+ // (Updated on stable storage before responding to RPCs)
+ // currentTerm
+ // votedFor
+ // log entries[]
+ return entsnum != 0 || st.Vote != prevst.Vote || st.Term != prevst.Term
+}