blob: 8be2b9f69cc4cd9137f0a408d776bdde6a098fd8 [file] [log] [blame]
Shad Ansari47432b62021-09-27 22:46:25 +00001<?xml version="1.0" ?>
2<net name="ResMobNet_v4 (LReLU) with single SSD head" version="10">
3 <layers>
4 <layer id="0" name="data" type="Parameter" version="opset1">
5 <data element_type="f32" shape="1, 3, 320, 544"/>
6 <output>
7 <port id="0" names="data" precision="FP32">
8 <dim>1</dim>
9 <dim>3</dim>
10 <dim>320</dim>
11 <dim>544</dim>
12 </port>
13 </output>
14 </layer>
15 <layer id="1" name="data_mul_23644" type="Const" version="opset1">
16 <data element_type="f32" offset="0" shape="1, 3, 1, 1" size="12"/>
17 <output>
18 <port id="0" precision="FP32">
19 <dim>1</dim>
20 <dim>3</dim>
21 <dim>1</dim>
22 <dim>1</dim>
23 </port>
24 </output>
25 </layer>
26 <layer id="2" name="data/norm/bn/mean/Fused_Mul_" type="Multiply" version="opset1">
27 <data auto_broadcast="numpy"/>
28 <input>
29 <port id="0" precision="FP32">
30 <dim>1</dim>
31 <dim>3</dim>
32 <dim>320</dim>
33 <dim>544</dim>
34 </port>
35 <port id="1" precision="FP32">
36 <dim>1</dim>
37 <dim>3</dim>
38 <dim>1</dim>
39 <dim>1</dim>
40 </port>
41 </input>
42 <output>
43 <port id="2" precision="FP32">
44 <dim>1</dim>
45 <dim>3</dim>
46 <dim>320</dim>
47 <dim>544</dim>
48 </port>
49 </output>
50 </layer>
51 <layer id="3" name="data_add_23646" type="Const" version="opset1">
52 <data element_type="f32" offset="12" shape="1, 3, 1, 1" size="12"/>
53 <output>
54 <port id="0" precision="FP32">
55 <dim>1</dim>
56 <dim>3</dim>
57 <dim>1</dim>
58 <dim>1</dim>
59 </port>
60 </output>
61 </layer>
62 <layer id="4" name="data/norm/bn/variance/Fused_Add_" type="Add" version="opset1">
63 <data auto_broadcast="numpy"/>
64 <input>
65 <port id="0" precision="FP32">
66 <dim>1</dim>
67 <dim>3</dim>
68 <dim>320</dim>
69 <dim>544</dim>
70 </port>
71 <port id="1" precision="FP32">
72 <dim>1</dim>
73 <dim>3</dim>
74 <dim>1</dim>
75 <dim>1</dim>
76 </port>
77 </input>
78 <output>
79 <port id="2" names="data/norm/bn" precision="FP32">
80 <dim>1</dim>
81 <dim>3</dim>
82 <dim>320</dim>
83 <dim>544</dim>
84 </port>
85 </output>
86 </layer>
87 <layer id="5" name="init_block1/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
88 <data element_type="f32" offset="24" shape="32, 3, 3, 3" size="3456"/>
89 <output>
90 <port id="0" precision="FP32">
91 <dim>32</dim>
92 <dim>3</dim>
93 <dim>3</dim>
94 <dim>3</dim>
95 </port>
96 </output>
97 </layer>
98 <layer id="6" name="init_block1/dim_inc/conv" type="Convolution" version="opset1">
99 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="2, 2"/>
100 <input>
101 <port id="0" precision="FP32">
102 <dim>1</dim>
103 <dim>3</dim>
104 <dim>320</dim>
105 <dim>544</dim>
106 </port>
107 <port id="1" precision="FP32">
108 <dim>32</dim>
109 <dim>3</dim>
110 <dim>3</dim>
111 <dim>3</dim>
112 </port>
113 </input>
114 <output>
115 <port id="2" precision="FP32">
116 <dim>1</dim>
117 <dim>32</dim>
118 <dim>160</dim>
119 <dim>272</dim>
120 </port>
121 </output>
122 </layer>
123 <layer id="7" name="data_add_2364923654" type="Const" version="opset1">
124 <data element_type="f32" offset="3480" shape="1, 32, 1, 1" size="128"/>
125 <output>
126 <port id="0" precision="FP32">
127 <dim>1</dim>
128 <dim>32</dim>
129 <dim>1</dim>
130 <dim>1</dim>
131 </port>
132 </output>
133 </layer>
134 <layer id="8" name="init_block1/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
135 <data auto_broadcast="numpy"/>
136 <input>
137 <port id="0" precision="FP32">
138 <dim>1</dim>
139 <dim>32</dim>
140 <dim>160</dim>
141 <dim>272</dim>
142 </port>
143 <port id="1" precision="FP32">
144 <dim>1</dim>
145 <dim>32</dim>
146 <dim>1</dim>
147 <dim>1</dim>
148 </port>
149 </input>
150 <output>
151 <port id="2" names="init_block1/dim_inc/conv" precision="FP32">
152 <dim>1</dim>
153 <dim>32</dim>
154 <dim>160</dim>
155 <dim>272</dim>
156 </port>
157 </output>
158 </layer>
159 <layer id="9" name="init_block1/dim_inc/fn" type="ReLU" version="opset1">
160 <input>
161 <port id="0" precision="FP32">
162 <dim>1</dim>
163 <dim>32</dim>
164 <dim>160</dim>
165 <dim>272</dim>
166 </port>
167 </input>
168 <output>
169 <port id="1" names="init_block1/dim_inc/conv" precision="FP32">
170 <dim>1</dim>
171 <dim>32</dim>
172 <dim>160</dim>
173 <dim>272</dim>
174 </port>
175 </output>
176 </layer>
177 <layer id="10" name="bottleneck1_1/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
178 <data element_type="f32" offset="3608" shape="8, 32, 1, 1" size="1024"/>
179 <output>
180 <port id="0" precision="FP32">
181 <dim>8</dim>
182 <dim>32</dim>
183 <dim>1</dim>
184 <dim>1</dim>
185 </port>
186 </output>
187 </layer>
188 <layer id="11" name="bottleneck1_1/dim_red/conv" type="Convolution" version="opset1">
189 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
190 <input>
191 <port id="0" precision="FP32">
192 <dim>1</dim>
193 <dim>32</dim>
194 <dim>160</dim>
195 <dim>272</dim>
196 </port>
197 <port id="1" precision="FP32">
198 <dim>8</dim>
199 <dim>32</dim>
200 <dim>1</dim>
201 <dim>1</dim>
202 </port>
203 </input>
204 <output>
205 <port id="2" precision="FP32">
206 <dim>1</dim>
207 <dim>8</dim>
208 <dim>160</dim>
209 <dim>272</dim>
210 </port>
211 </output>
212 </layer>
213 <layer id="12" name="data_add_2365723662" type="Const" version="opset1">
214 <data element_type="f32" offset="4632" shape="1, 8, 1, 1" size="32"/>
215 <output>
216 <port id="0" precision="FP32">
217 <dim>1</dim>
218 <dim>8</dim>
219 <dim>1</dim>
220 <dim>1</dim>
221 </port>
222 </output>
223 </layer>
224 <layer id="13" name="bottleneck1_1/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
225 <data auto_broadcast="numpy"/>
226 <input>
227 <port id="0" precision="FP32">
228 <dim>1</dim>
229 <dim>8</dim>
230 <dim>160</dim>
231 <dim>272</dim>
232 </port>
233 <port id="1" precision="FP32">
234 <dim>1</dim>
235 <dim>8</dim>
236 <dim>1</dim>
237 <dim>1</dim>
238 </port>
239 </input>
240 <output>
241 <port id="2" names="bottleneck1_1/dim_red/conv" precision="FP32">
242 <dim>1</dim>
243 <dim>8</dim>
244 <dim>160</dim>
245 <dim>272</dim>
246 </port>
247 </output>
248 </layer>
249 <layer id="14" name="bottleneck1_1/dim_red/fn/weights3096039785" type="Const" version="opset1">
250 <data element_type="f32" offset="4664" shape="1" size="4"/>
251 <output>
252 <port id="0" precision="FP32">
253 <dim>1</dim>
254 </port>
255 </output>
256 </layer>
257 <layer id="15" name="bottleneck1_1/dim_red/fn" type="PReLU" version="opset1">
258 <input>
259 <port id="0" precision="FP32">
260 <dim>1</dim>
261 <dim>8</dim>
262 <dim>160</dim>
263 <dim>272</dim>
264 </port>
265 <port id="1" precision="FP32">
266 <dim>1</dim>
267 </port>
268 </input>
269 <output>
270 <port id="2" names="bottleneck1_1/dim_red/conv" precision="FP32">
271 <dim>1</dim>
272 <dim>8</dim>
273 <dim>160</dim>
274 <dim>272</dim>
275 </port>
276 </output>
277 </layer>
278 <layer id="16" name="bottleneck1_1/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
279 <data element_type="f32" offset="4668" shape="8, 1, 1, 3, 3" size="288"/>
280 <output>
281 <port id="0" precision="FP32">
282 <dim>8</dim>
283 <dim>1</dim>
284 <dim>1</dim>
285 <dim>3</dim>
286 <dim>3</dim>
287 </port>
288 </output>
289 </layer>
290 <layer id="17" name="bottleneck1_1/inner/dw1/conv" type="GroupConvolution" version="opset1">
291 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
292 <input>
293 <port id="0" precision="FP32">
294 <dim>1</dim>
295 <dim>8</dim>
296 <dim>160</dim>
297 <dim>272</dim>
298 </port>
299 <port id="1" precision="FP32">
300 <dim>8</dim>
301 <dim>1</dim>
302 <dim>1</dim>
303 <dim>3</dim>
304 <dim>3</dim>
305 </port>
306 </input>
307 <output>
308 <port id="2" precision="FP32">
309 <dim>1</dim>
310 <dim>8</dim>
311 <dim>160</dim>
312 <dim>272</dim>
313 </port>
314 </output>
315 </layer>
316 <layer id="18" name="data_add_2366523670" type="Const" version="opset1">
317 <data element_type="f32" offset="4956" shape="1, 8, 1, 1" size="32"/>
318 <output>
319 <port id="0" precision="FP32">
320 <dim>1</dim>
321 <dim>8</dim>
322 <dim>1</dim>
323 <dim>1</dim>
324 </port>
325 </output>
326 </layer>
327 <layer id="19" name="bottleneck1_1/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
328 <data auto_broadcast="numpy"/>
329 <input>
330 <port id="0" precision="FP32">
331 <dim>1</dim>
332 <dim>8</dim>
333 <dim>160</dim>
334 <dim>272</dim>
335 </port>
336 <port id="1" precision="FP32">
337 <dim>1</dim>
338 <dim>8</dim>
339 <dim>1</dim>
340 <dim>1</dim>
341 </port>
342 </input>
343 <output>
344 <port id="2" names="bottleneck1_1/inner/dw1/conv" precision="FP32">
345 <dim>1</dim>
346 <dim>8</dim>
347 <dim>160</dim>
348 <dim>272</dim>
349 </port>
350 </output>
351 </layer>
352 <layer id="20" name="bottleneck1_1/inner/dw1/fn/weights3102439659" type="Const" version="opset1">
353 <data element_type="f32" offset="4664" shape="1" size="4"/>
354 <output>
355 <port id="0" precision="FP32">
356 <dim>1</dim>
357 </port>
358 </output>
359 </layer>
360 <layer id="21" name="bottleneck1_1/inner/dw1/fn" type="PReLU" version="opset1">
361 <input>
362 <port id="0" precision="FP32">
363 <dim>1</dim>
364 <dim>8</dim>
365 <dim>160</dim>
366 <dim>272</dim>
367 </port>
368 <port id="1" precision="FP32">
369 <dim>1</dim>
370 </port>
371 </input>
372 <output>
373 <port id="2" names="bottleneck1_1/inner/dw1/conv" precision="FP32">
374 <dim>1</dim>
375 <dim>8</dim>
376 <dim>160</dim>
377 <dim>272</dim>
378 </port>
379 </output>
380 </layer>
381 <layer id="22" name="bottleneck1_1/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
382 <data element_type="f32" offset="4988" shape="32, 8, 1, 1" size="1024"/>
383 <output>
384 <port id="0" precision="FP32">
385 <dim>32</dim>
386 <dim>8</dim>
387 <dim>1</dim>
388 <dim>1</dim>
389 </port>
390 </output>
391 </layer>
392 <layer id="23" name="bottleneck1_1/dim_inc/conv" type="Convolution" version="opset1">
393 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
394 <input>
395 <port id="0" precision="FP32">
396 <dim>1</dim>
397 <dim>8</dim>
398 <dim>160</dim>
399 <dim>272</dim>
400 </port>
401 <port id="1" precision="FP32">
402 <dim>32</dim>
403 <dim>8</dim>
404 <dim>1</dim>
405 <dim>1</dim>
406 </port>
407 </input>
408 <output>
409 <port id="2" precision="FP32">
410 <dim>1</dim>
411 <dim>32</dim>
412 <dim>160</dim>
413 <dim>272</dim>
414 </port>
415 </output>
416 </layer>
417 <layer id="24" name="data_add_2367323678" type="Const" version="opset1">
418 <data element_type="f32" offset="6012" shape="1, 32, 1, 1" size="128"/>
419 <output>
420 <port id="0" precision="FP32">
421 <dim>1</dim>
422 <dim>32</dim>
423 <dim>1</dim>
424 <dim>1</dim>
425 </port>
426 </output>
427 </layer>
428 <layer id="25" name="bottleneck1_1/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
429 <data auto_broadcast="numpy"/>
430 <input>
431 <port id="0" precision="FP32">
432 <dim>1</dim>
433 <dim>32</dim>
434 <dim>160</dim>
435 <dim>272</dim>
436 </port>
437 <port id="1" precision="FP32">
438 <dim>1</dim>
439 <dim>32</dim>
440 <dim>1</dim>
441 <dim>1</dim>
442 </port>
443 </input>
444 <output>
445 <port id="2" names="bottleneck1_1/dim_inc/conv" precision="FP32">
446 <dim>1</dim>
447 <dim>32</dim>
448 <dim>160</dim>
449 <dim>272</dim>
450 </port>
451 </output>
452 </layer>
453 <layer id="26" name="bottleneck1_1/add" type="Add" version="opset1">
454 <data auto_broadcast="numpy"/>
455 <input>
456 <port id="0" precision="FP32">
457 <dim>1</dim>
458 <dim>32</dim>
459 <dim>160</dim>
460 <dim>272</dim>
461 </port>
462 <port id="1" precision="FP32">
463 <dim>1</dim>
464 <dim>32</dim>
465 <dim>160</dim>
466 <dim>272</dim>
467 </port>
468 </input>
469 <output>
470 <port id="2" names="bottleneck1_1/add" precision="FP32">
471 <dim>1</dim>
472 <dim>32</dim>
473 <dim>160</dim>
474 <dim>272</dim>
475 </port>
476 </output>
477 </layer>
478 <layer id="27" name="bottleneck1_1/fn/weights3115239677" type="Const" version="opset1">
479 <data element_type="f32" offset="4664" shape="1" size="4"/>
480 <output>
481 <port id="0" precision="FP32">
482 <dim>1</dim>
483 </port>
484 </output>
485 </layer>
486 <layer id="28" name="bottleneck1_1/fn" type="PReLU" version="opset1">
487 <input>
488 <port id="0" precision="FP32">
489 <dim>1</dim>
490 <dim>32</dim>
491 <dim>160</dim>
492 <dim>272</dim>
493 </port>
494 <port id="1" precision="FP32">
495 <dim>1</dim>
496 </port>
497 </input>
498 <output>
499 <port id="2" names="bottleneck1_1/add" precision="FP32">
500 <dim>1</dim>
501 <dim>32</dim>
502 <dim>160</dim>
503 <dim>272</dim>
504 </port>
505 </output>
506 </layer>
507 <layer id="29" name="bottleneck1_2/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
508 <data element_type="f32" offset="6140" shape="8, 32, 1, 1" size="1024"/>
509 <output>
510 <port id="0" precision="FP32">
511 <dim>8</dim>
512 <dim>32</dim>
513 <dim>1</dim>
514 <dim>1</dim>
515 </port>
516 </output>
517 </layer>
518 <layer id="30" name="bottleneck1_2/dim_red/conv" type="Convolution" version="opset1">
519 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
520 <input>
521 <port id="0" precision="FP32">
522 <dim>1</dim>
523 <dim>32</dim>
524 <dim>160</dim>
525 <dim>272</dim>
526 </port>
527 <port id="1" precision="FP32">
528 <dim>8</dim>
529 <dim>32</dim>
530 <dim>1</dim>
531 <dim>1</dim>
532 </port>
533 </input>
534 <output>
535 <port id="2" precision="FP32">
536 <dim>1</dim>
537 <dim>8</dim>
538 <dim>160</dim>
539 <dim>272</dim>
540 </port>
541 </output>
542 </layer>
543 <layer id="31" name="data_add_2368123686" type="Const" version="opset1">
544 <data element_type="f32" offset="7164" shape="1, 8, 1, 1" size="32"/>
545 <output>
546 <port id="0" precision="FP32">
547 <dim>1</dim>
548 <dim>8</dim>
549 <dim>1</dim>
550 <dim>1</dim>
551 </port>
552 </output>
553 </layer>
554 <layer id="32" name="bottleneck1_2/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
555 <data auto_broadcast="numpy"/>
556 <input>
557 <port id="0" precision="FP32">
558 <dim>1</dim>
559 <dim>8</dim>
560 <dim>160</dim>
561 <dim>272</dim>
562 </port>
563 <port id="1" precision="FP32">
564 <dim>1</dim>
565 <dim>8</dim>
566 <dim>1</dim>
567 <dim>1</dim>
568 </port>
569 </input>
570 <output>
571 <port id="2" names="bottleneck1_2/dim_red/conv" precision="FP32">
572 <dim>1</dim>
573 <dim>8</dim>
574 <dim>160</dim>
575 <dim>272</dim>
576 </port>
577 </output>
578 </layer>
579 <layer id="33" name="bottleneck1_2/dim_red/fn/weights3077639878" type="Const" version="opset1">
580 <data element_type="f32" offset="4664" shape="1" size="4"/>
581 <output>
582 <port id="0" precision="FP32">
583 <dim>1</dim>
584 </port>
585 </output>
586 </layer>
587 <layer id="34" name="bottleneck1_2/dim_red/fn" type="PReLU" version="opset1">
588 <input>
589 <port id="0" precision="FP32">
590 <dim>1</dim>
591 <dim>8</dim>
592 <dim>160</dim>
593 <dim>272</dim>
594 </port>
595 <port id="1" precision="FP32">
596 <dim>1</dim>
597 </port>
598 </input>
599 <output>
600 <port id="2" names="bottleneck1_2/dim_red/conv" precision="FP32">
601 <dim>1</dim>
602 <dim>8</dim>
603 <dim>160</dim>
604 <dim>272</dim>
605 </port>
606 </output>
607 </layer>
608 <layer id="35" name="bottleneck1_2/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
609 <data element_type="f32" offset="7196" shape="8, 1, 1, 3, 3" size="288"/>
610 <output>
611 <port id="0" precision="FP32">
612 <dim>8</dim>
613 <dim>1</dim>
614 <dim>1</dim>
615 <dim>3</dim>
616 <dim>3</dim>
617 </port>
618 </output>
619 </layer>
620 <layer id="36" name="bottleneck1_2/inner/dw1/conv" type="GroupConvolution" version="opset1">
621 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
622 <input>
623 <port id="0" precision="FP32">
624 <dim>1</dim>
625 <dim>8</dim>
626 <dim>160</dim>
627 <dim>272</dim>
628 </port>
629 <port id="1" precision="FP32">
630 <dim>8</dim>
631 <dim>1</dim>
632 <dim>1</dim>
633 <dim>3</dim>
634 <dim>3</dim>
635 </port>
636 </input>
637 <output>
638 <port id="2" precision="FP32">
639 <dim>1</dim>
640 <dim>8</dim>
641 <dim>160</dim>
642 <dim>272</dim>
643 </port>
644 </output>
645 </layer>
646 <layer id="37" name="data_add_2368923694" type="Const" version="opset1">
647 <data element_type="f32" offset="7484" shape="1, 8, 1, 1" size="32"/>
648 <output>
649 <port id="0" precision="FP32">
650 <dim>1</dim>
651 <dim>8</dim>
652 <dim>1</dim>
653 <dim>1</dim>
654 </port>
655 </output>
656 </layer>
657 <layer id="38" name="bottleneck1_2/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
658 <data auto_broadcast="numpy"/>
659 <input>
660 <port id="0" precision="FP32">
661 <dim>1</dim>
662 <dim>8</dim>
663 <dim>160</dim>
664 <dim>272</dim>
665 </port>
666 <port id="1" precision="FP32">
667 <dim>1</dim>
668 <dim>8</dim>
669 <dim>1</dim>
670 <dim>1</dim>
671 </port>
672 </input>
673 <output>
674 <port id="2" names="bottleneck1_2/inner/dw1/conv" precision="FP32">
675 <dim>1</dim>
676 <dim>8</dim>
677 <dim>160</dim>
678 <dim>272</dim>
679 </port>
680 </output>
681 </layer>
682 <layer id="39" name="bottleneck1_2/inner/dw1/fn/weights3087240085" type="Const" version="opset1">
683 <data element_type="f32" offset="4664" shape="1" size="4"/>
684 <output>
685 <port id="0" precision="FP32">
686 <dim>1</dim>
687 </port>
688 </output>
689 </layer>
690 <layer id="40" name="bottleneck1_2/inner/dw1/fn" type="PReLU" version="opset1">
691 <input>
692 <port id="0" precision="FP32">
693 <dim>1</dim>
694 <dim>8</dim>
695 <dim>160</dim>
696 <dim>272</dim>
697 </port>
698 <port id="1" precision="FP32">
699 <dim>1</dim>
700 </port>
701 </input>
702 <output>
703 <port id="2" names="bottleneck1_2/inner/dw1/conv" precision="FP32">
704 <dim>1</dim>
705 <dim>8</dim>
706 <dim>160</dim>
707 <dim>272</dim>
708 </port>
709 </output>
710 </layer>
711 <layer id="41" name="bottleneck1_2/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
712 <data element_type="f32" offset="7516" shape="32, 8, 1, 1" size="1024"/>
713 <output>
714 <port id="0" precision="FP32">
715 <dim>32</dim>
716 <dim>8</dim>
717 <dim>1</dim>
718 <dim>1</dim>
719 </port>
720 </output>
721 </layer>
722 <layer id="42" name="bottleneck1_2/dim_inc/conv" type="Convolution" version="opset1">
723 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
724 <input>
725 <port id="0" precision="FP32">
726 <dim>1</dim>
727 <dim>8</dim>
728 <dim>160</dim>
729 <dim>272</dim>
730 </port>
731 <port id="1" precision="FP32">
732 <dim>32</dim>
733 <dim>8</dim>
734 <dim>1</dim>
735 <dim>1</dim>
736 </port>
737 </input>
738 <output>
739 <port id="2" precision="FP32">
740 <dim>1</dim>
741 <dim>32</dim>
742 <dim>160</dim>
743 <dim>272</dim>
744 </port>
745 </output>
746 </layer>
747 <layer id="43" name="data_add_2369723702" type="Const" version="opset1">
748 <data element_type="f32" offset="8540" shape="1, 32, 1, 1" size="128"/>
749 <output>
750 <port id="0" precision="FP32">
751 <dim>1</dim>
752 <dim>32</dim>
753 <dim>1</dim>
754 <dim>1</dim>
755 </port>
756 </output>
757 </layer>
758 <layer id="44" name="bottleneck1_2/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
759 <data auto_broadcast="numpy"/>
760 <input>
761 <port id="0" precision="FP32">
762 <dim>1</dim>
763 <dim>32</dim>
764 <dim>160</dim>
765 <dim>272</dim>
766 </port>
767 <port id="1" precision="FP32">
768 <dim>1</dim>
769 <dim>32</dim>
770 <dim>1</dim>
771 <dim>1</dim>
772 </port>
773 </input>
774 <output>
775 <port id="2" names="bottleneck1_2/dim_inc/conv" precision="FP32">
776 <dim>1</dim>
777 <dim>32</dim>
778 <dim>160</dim>
779 <dim>272</dim>
780 </port>
781 </output>
782 </layer>
783 <layer id="45" name="bottleneck1_2/add" type="Add" version="opset1">
784 <data auto_broadcast="numpy"/>
785 <input>
786 <port id="0" precision="FP32">
787 <dim>1</dim>
788 <dim>32</dim>
789 <dim>160</dim>
790 <dim>272</dim>
791 </port>
792 <port id="1" precision="FP32">
793 <dim>1</dim>
794 <dim>32</dim>
795 <dim>160</dim>
796 <dim>272</dim>
797 </port>
798 </input>
799 <output>
800 <port id="2" names="bottleneck1_2/add" precision="FP32">
801 <dim>1</dim>
802 <dim>32</dim>
803 <dim>160</dim>
804 <dim>272</dim>
805 </port>
806 </output>
807 </layer>
808 <layer id="46" name="bottleneck1_2/fn/weights3090439737" type="Const" version="opset1">
809 <data element_type="f32" offset="4664" shape="1" size="4"/>
810 <output>
811 <port id="0" precision="FP32">
812 <dim>1</dim>
813 </port>
814 </output>
815 </layer>
816 <layer id="47" name="bottleneck1_2/fn" type="PReLU" version="opset1">
817 <input>
818 <port id="0" precision="FP32">
819 <dim>1</dim>
820 <dim>32</dim>
821 <dim>160</dim>
822 <dim>272</dim>
823 </port>
824 <port id="1" precision="FP32">
825 <dim>1</dim>
826 </port>
827 </input>
828 <output>
829 <port id="2" names="bottleneck1_2/add" precision="FP32">
830 <dim>1</dim>
831 <dim>32</dim>
832 <dim>160</dim>
833 <dim>272</dim>
834 </port>
835 </output>
836 </layer>
837 <layer id="48" name="bottleneck1_3/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
838 <data element_type="f32" offset="8668" shape="8, 32, 1, 1" size="1024"/>
839 <output>
840 <port id="0" precision="FP32">
841 <dim>8</dim>
842 <dim>32</dim>
843 <dim>1</dim>
844 <dim>1</dim>
845 </port>
846 </output>
847 </layer>
848 <layer id="49" name="bottleneck1_3/dim_red/conv" type="Convolution" version="opset1">
849 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
850 <input>
851 <port id="0" precision="FP32">
852 <dim>1</dim>
853 <dim>32</dim>
854 <dim>160</dim>
855 <dim>272</dim>
856 </port>
857 <port id="1" precision="FP32">
858 <dim>8</dim>
859 <dim>32</dim>
860 <dim>1</dim>
861 <dim>1</dim>
862 </port>
863 </input>
864 <output>
865 <port id="2" precision="FP32">
866 <dim>1</dim>
867 <dim>8</dim>
868 <dim>160</dim>
869 <dim>272</dim>
870 </port>
871 </output>
872 </layer>
873 <layer id="50" name="data_add_2370523710" type="Const" version="opset1">
874 <data element_type="f32" offset="9692" shape="1, 8, 1, 1" size="32"/>
875 <output>
876 <port id="0" precision="FP32">
877 <dim>1</dim>
878 <dim>8</dim>
879 <dim>1</dim>
880 <dim>1</dim>
881 </port>
882 </output>
883 </layer>
884 <layer id="51" name="bottleneck1_3/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
885 <data auto_broadcast="numpy"/>
886 <input>
887 <port id="0" precision="FP32">
888 <dim>1</dim>
889 <dim>8</dim>
890 <dim>160</dim>
891 <dim>272</dim>
892 </port>
893 <port id="1" precision="FP32">
894 <dim>1</dim>
895 <dim>8</dim>
896 <dim>1</dim>
897 <dim>1</dim>
898 </port>
899 </input>
900 <output>
901 <port id="2" names="bottleneck1_3/dim_red/conv" precision="FP32">
902 <dim>1</dim>
903 <dim>8</dim>
904 <dim>160</dim>
905 <dim>272</dim>
906 </port>
907 </output>
908 </layer>
909 <layer id="52" name="bottleneck1_3/dim_red/fn/weights3092840502" type="Const" version="opset1">
910 <data element_type="f32" offset="4664" shape="1" size="4"/>
911 <output>
912 <port id="0" precision="FP32">
913 <dim>1</dim>
914 </port>
915 </output>
916 </layer>
917 <layer id="53" name="bottleneck1_3/dim_red/fn" type="PReLU" version="opset1">
918 <input>
919 <port id="0" precision="FP32">
920 <dim>1</dim>
921 <dim>8</dim>
922 <dim>160</dim>
923 <dim>272</dim>
924 </port>
925 <port id="1" precision="FP32">
926 <dim>1</dim>
927 </port>
928 </input>
929 <output>
930 <port id="2" names="bottleneck1_3/dim_red/conv" precision="FP32">
931 <dim>1</dim>
932 <dim>8</dim>
933 <dim>160</dim>
934 <dim>272</dim>
935 </port>
936 </output>
937 </layer>
938 <layer id="54" name="bottleneck1_3/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
939 <data element_type="f32" offset="9724" shape="8, 1, 1, 3, 3" size="288"/>
940 <output>
941 <port id="0" precision="FP32">
942 <dim>8</dim>
943 <dim>1</dim>
944 <dim>1</dim>
945 <dim>3</dim>
946 <dim>3</dim>
947 </port>
948 </output>
949 </layer>
950 <layer id="55" name="bottleneck1_3/inner/dw1/conv" type="GroupConvolution" version="opset1">
951 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
952 <input>
953 <port id="0" precision="FP32">
954 <dim>1</dim>
955 <dim>8</dim>
956 <dim>160</dim>
957 <dim>272</dim>
958 </port>
959 <port id="1" precision="FP32">
960 <dim>8</dim>
961 <dim>1</dim>
962 <dim>1</dim>
963 <dim>3</dim>
964 <dim>3</dim>
965 </port>
966 </input>
967 <output>
968 <port id="2" precision="FP32">
969 <dim>1</dim>
970 <dim>8</dim>
971 <dim>160</dim>
972 <dim>272</dim>
973 </port>
974 </output>
975 </layer>
976 <layer id="56" name="data_add_2371323718" type="Const" version="opset1">
977 <data element_type="f32" offset="10012" shape="1, 8, 1, 1" size="32"/>
978 <output>
979 <port id="0" precision="FP32">
980 <dim>1</dim>
981 <dim>8</dim>
982 <dim>1</dim>
983 <dim>1</dim>
984 </port>
985 </output>
986 </layer>
987 <layer id="57" name="bottleneck1_3/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
988 <data auto_broadcast="numpy"/>
989 <input>
990 <port id="0" precision="FP32">
991 <dim>1</dim>
992 <dim>8</dim>
993 <dim>160</dim>
994 <dim>272</dim>
995 </port>
996 <port id="1" precision="FP32">
997 <dim>1</dim>
998 <dim>8</dim>
999 <dim>1</dim>
1000 <dim>1</dim>
1001 </port>
1002 </input>
1003 <output>
1004 <port id="2" names="bottleneck1_3/inner/dw1/conv" precision="FP32">
1005 <dim>1</dim>
1006 <dim>8</dim>
1007 <dim>160</dim>
1008 <dim>272</dim>
1009 </port>
1010 </output>
1011 </layer>
1012 <layer id="58" name="bottleneck1_3/inner/dw1/fn/weights3115640004" type="Const" version="opset1">
1013 <data element_type="f32" offset="4664" shape="1" size="4"/>
1014 <output>
1015 <port id="0" precision="FP32">
1016 <dim>1</dim>
1017 </port>
1018 </output>
1019 </layer>
1020 <layer id="59" name="bottleneck1_3/inner/dw1/fn" type="PReLU" version="opset1">
1021 <input>
1022 <port id="0" precision="FP32">
1023 <dim>1</dim>
1024 <dim>8</dim>
1025 <dim>160</dim>
1026 <dim>272</dim>
1027 </port>
1028 <port id="1" precision="FP32">
1029 <dim>1</dim>
1030 </port>
1031 </input>
1032 <output>
1033 <port id="2" names="bottleneck1_3/inner/dw1/conv" precision="FP32">
1034 <dim>1</dim>
1035 <dim>8</dim>
1036 <dim>160</dim>
1037 <dim>272</dim>
1038 </port>
1039 </output>
1040 </layer>
1041 <layer id="60" name="bottleneck1_3/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
1042 <data element_type="f32" offset="10044" shape="32, 8, 1, 1" size="1024"/>
1043 <output>
1044 <port id="0" precision="FP32">
1045 <dim>32</dim>
1046 <dim>8</dim>
1047 <dim>1</dim>
1048 <dim>1</dim>
1049 </port>
1050 </output>
1051 </layer>
1052 <layer id="61" name="bottleneck1_3/dim_inc/conv" type="Convolution" version="opset1">
1053 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
1054 <input>
1055 <port id="0" precision="FP32">
1056 <dim>1</dim>
1057 <dim>8</dim>
1058 <dim>160</dim>
1059 <dim>272</dim>
1060 </port>
1061 <port id="1" precision="FP32">
1062 <dim>32</dim>
1063 <dim>8</dim>
1064 <dim>1</dim>
1065 <dim>1</dim>
1066 </port>
1067 </input>
1068 <output>
1069 <port id="2" precision="FP32">
1070 <dim>1</dim>
1071 <dim>32</dim>
1072 <dim>160</dim>
1073 <dim>272</dim>
1074 </port>
1075 </output>
1076 </layer>
1077 <layer id="62" name="data_add_2372123726" type="Const" version="opset1">
1078 <data element_type="f32" offset="11068" shape="1, 32, 1, 1" size="128"/>
1079 <output>
1080 <port id="0" precision="FP32">
1081 <dim>1</dim>
1082 <dim>32</dim>
1083 <dim>1</dim>
1084 <dim>1</dim>
1085 </port>
1086 </output>
1087 </layer>
1088 <layer id="63" name="bottleneck1_3/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
1089 <data auto_broadcast="numpy"/>
1090 <input>
1091 <port id="0" precision="FP32">
1092 <dim>1</dim>
1093 <dim>32</dim>
1094 <dim>160</dim>
1095 <dim>272</dim>
1096 </port>
1097 <port id="1" precision="FP32">
1098 <dim>1</dim>
1099 <dim>32</dim>
1100 <dim>1</dim>
1101 <dim>1</dim>
1102 </port>
1103 </input>
1104 <output>
1105 <port id="2" names="bottleneck1_3/dim_inc/conv" precision="FP32">
1106 <dim>1</dim>
1107 <dim>32</dim>
1108 <dim>160</dim>
1109 <dim>272</dim>
1110 </port>
1111 </output>
1112 </layer>
1113 <layer id="64" name="bottleneck1_3/add" type="Add" version="opset1">
1114 <data auto_broadcast="numpy"/>
1115 <input>
1116 <port id="0" precision="FP32">
1117 <dim>1</dim>
1118 <dim>32</dim>
1119 <dim>160</dim>
1120 <dim>272</dim>
1121 </port>
1122 <port id="1" precision="FP32">
1123 <dim>1</dim>
1124 <dim>32</dim>
1125 <dim>160</dim>
1126 <dim>272</dim>
1127 </port>
1128 </input>
1129 <output>
1130 <port id="2" names="bottleneck1_3/add" precision="FP32">
1131 <dim>1</dim>
1132 <dim>32</dim>
1133 <dim>160</dim>
1134 <dim>272</dim>
1135 </port>
1136 </output>
1137 </layer>
1138 <layer id="65" name="bottleneck1_3/fn/weights3092439836" type="Const" version="opset1">
1139 <data element_type="f32" offset="4664" shape="1" size="4"/>
1140 <output>
1141 <port id="0" precision="FP32">
1142 <dim>1</dim>
1143 </port>
1144 </output>
1145 </layer>
1146 <layer id="66" name="bottleneck1_3/fn" type="PReLU" version="opset1">
1147 <input>
1148 <port id="0" precision="FP32">
1149 <dim>1</dim>
1150 <dim>32</dim>
1151 <dim>160</dim>
1152 <dim>272</dim>
1153 </port>
1154 <port id="1" precision="FP32">
1155 <dim>1</dim>
1156 </port>
1157 </input>
1158 <output>
1159 <port id="2" names="bottleneck1_3/add" precision="FP32">
1160 <dim>1</dim>
1161 <dim>32</dim>
1162 <dim>160</dim>
1163 <dim>272</dim>
1164 </port>
1165 </output>
1166 </layer>
1167 <layer id="67" name="bottleneck1_4/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
1168 <data element_type="f32" offset="11196" shape="8, 32, 1, 1" size="1024"/>
1169 <output>
1170 <port id="0" precision="FP32">
1171 <dim>8</dim>
1172 <dim>32</dim>
1173 <dim>1</dim>
1174 <dim>1</dim>
1175 </port>
1176 </output>
1177 </layer>
1178 <layer id="68" name="bottleneck1_4/dim_red/conv" type="Convolution" version="opset1">
1179 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
1180 <input>
1181 <port id="0" precision="FP32">
1182 <dim>1</dim>
1183 <dim>32</dim>
1184 <dim>160</dim>
1185 <dim>272</dim>
1186 </port>
1187 <port id="1" precision="FP32">
1188 <dim>8</dim>
1189 <dim>32</dim>
1190 <dim>1</dim>
1191 <dim>1</dim>
1192 </port>
1193 </input>
1194 <output>
1195 <port id="2" precision="FP32">
1196 <dim>1</dim>
1197 <dim>8</dim>
1198 <dim>160</dim>
1199 <dim>272</dim>
1200 </port>
1201 </output>
1202 </layer>
1203 <layer id="69" name="data_add_2372923734" type="Const" version="opset1">
1204 <data element_type="f32" offset="12220" shape="1, 8, 1, 1" size="32"/>
1205 <output>
1206 <port id="0" precision="FP32">
1207 <dim>1</dim>
1208 <dim>8</dim>
1209 <dim>1</dim>
1210 <dim>1</dim>
1211 </port>
1212 </output>
1213 </layer>
1214 <layer id="70" name="bottleneck1_4/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
1215 <data auto_broadcast="numpy"/>
1216 <input>
1217 <port id="0" precision="FP32">
1218 <dim>1</dim>
1219 <dim>8</dim>
1220 <dim>160</dim>
1221 <dim>272</dim>
1222 </port>
1223 <port id="1" precision="FP32">
1224 <dim>1</dim>
1225 <dim>8</dim>
1226 <dim>1</dim>
1227 <dim>1</dim>
1228 </port>
1229 </input>
1230 <output>
1231 <port id="2" names="bottleneck1_4/dim_red/conv" precision="FP32">
1232 <dim>1</dim>
1233 <dim>8</dim>
1234 <dim>160</dim>
1235 <dim>272</dim>
1236 </port>
1237 </output>
1238 </layer>
1239 <layer id="71" name="bottleneck1_4/dim_red/fn/weights3114840622" type="Const" version="opset1">
1240 <data element_type="f32" offset="4664" shape="1" size="4"/>
1241 <output>
1242 <port id="0" precision="FP32">
1243 <dim>1</dim>
1244 </port>
1245 </output>
1246 </layer>
1247 <layer id="72" name="bottleneck1_4/dim_red/fn" type="PReLU" version="opset1">
1248 <input>
1249 <port id="0" precision="FP32">
1250 <dim>1</dim>
1251 <dim>8</dim>
1252 <dim>160</dim>
1253 <dim>272</dim>
1254 </port>
1255 <port id="1" precision="FP32">
1256 <dim>1</dim>
1257 </port>
1258 </input>
1259 <output>
1260 <port id="2" names="bottleneck1_4/dim_red/conv" precision="FP32">
1261 <dim>1</dim>
1262 <dim>8</dim>
1263 <dim>160</dim>
1264 <dim>272</dim>
1265 </port>
1266 </output>
1267 </layer>
1268 <layer id="73" name="bottleneck1_4/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
1269 <data element_type="f32" offset="12252" shape="8, 1, 1, 3, 3" size="288"/>
1270 <output>
1271 <port id="0" precision="FP32">
1272 <dim>8</dim>
1273 <dim>1</dim>
1274 <dim>1</dim>
1275 <dim>3</dim>
1276 <dim>3</dim>
1277 </port>
1278 </output>
1279 </layer>
1280 <layer id="74" name="bottleneck1_4/inner/dw1/conv" type="GroupConvolution" version="opset1">
1281 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
1282 <input>
1283 <port id="0" precision="FP32">
1284 <dim>1</dim>
1285 <dim>8</dim>
1286 <dim>160</dim>
1287 <dim>272</dim>
1288 </port>
1289 <port id="1" precision="FP32">
1290 <dim>8</dim>
1291 <dim>1</dim>
1292 <dim>1</dim>
1293 <dim>3</dim>
1294 <dim>3</dim>
1295 </port>
1296 </input>
1297 <output>
1298 <port id="2" precision="FP32">
1299 <dim>1</dim>
1300 <dim>8</dim>
1301 <dim>160</dim>
1302 <dim>272</dim>
1303 </port>
1304 </output>
1305 </layer>
1306 <layer id="75" name="data_add_2373723742" type="Const" version="opset1">
1307 <data element_type="f32" offset="12540" shape="1, 8, 1, 1" size="32"/>
1308 <output>
1309 <port id="0" precision="FP32">
1310 <dim>1</dim>
1311 <dim>8</dim>
1312 <dim>1</dim>
1313 <dim>1</dim>
1314 </port>
1315 </output>
1316 </layer>
1317 <layer id="76" name="bottleneck1_4/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
1318 <data auto_broadcast="numpy"/>
1319 <input>
1320 <port id="0" precision="FP32">
1321 <dim>1</dim>
1322 <dim>8</dim>
1323 <dim>160</dim>
1324 <dim>272</dim>
1325 </port>
1326 <port id="1" precision="FP32">
1327 <dim>1</dim>
1328 <dim>8</dim>
1329 <dim>1</dim>
1330 <dim>1</dim>
1331 </port>
1332 </input>
1333 <output>
1334 <port id="2" names="bottleneck1_4/inner/dw1/conv" precision="FP32">
1335 <dim>1</dim>
1336 <dim>8</dim>
1337 <dim>160</dim>
1338 <dim>272</dim>
1339 </port>
1340 </output>
1341 </layer>
1342 <layer id="77" name="bottleneck1_4/inner/dw1/fn/weights3095640181" type="Const" version="opset1">
1343 <data element_type="f32" offset="4664" shape="1" size="4"/>
1344 <output>
1345 <port id="0" precision="FP32">
1346 <dim>1</dim>
1347 </port>
1348 </output>
1349 </layer>
1350 <layer id="78" name="bottleneck1_4/inner/dw1/fn" type="PReLU" version="opset1">
1351 <input>
1352 <port id="0" precision="FP32">
1353 <dim>1</dim>
1354 <dim>8</dim>
1355 <dim>160</dim>
1356 <dim>272</dim>
1357 </port>
1358 <port id="1" precision="FP32">
1359 <dim>1</dim>
1360 </port>
1361 </input>
1362 <output>
1363 <port id="2" names="bottleneck1_4/inner/dw1/conv" precision="FP32">
1364 <dim>1</dim>
1365 <dim>8</dim>
1366 <dim>160</dim>
1367 <dim>272</dim>
1368 </port>
1369 </output>
1370 </layer>
1371 <layer id="79" name="bottleneck1_4/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
1372 <data element_type="f32" offset="12572" shape="32, 8, 1, 1" size="1024"/>
1373 <output>
1374 <port id="0" precision="FP32">
1375 <dim>32</dim>
1376 <dim>8</dim>
1377 <dim>1</dim>
1378 <dim>1</dim>
1379 </port>
1380 </output>
1381 </layer>
1382 <layer id="80" name="bottleneck1_4/dim_inc/conv" type="Convolution" version="opset1">
1383 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
1384 <input>
1385 <port id="0" precision="FP32">
1386 <dim>1</dim>
1387 <dim>8</dim>
1388 <dim>160</dim>
1389 <dim>272</dim>
1390 </port>
1391 <port id="1" precision="FP32">
1392 <dim>32</dim>
1393 <dim>8</dim>
1394 <dim>1</dim>
1395 <dim>1</dim>
1396 </port>
1397 </input>
1398 <output>
1399 <port id="2" precision="FP32">
1400 <dim>1</dim>
1401 <dim>32</dim>
1402 <dim>160</dim>
1403 <dim>272</dim>
1404 </port>
1405 </output>
1406 </layer>
1407 <layer id="81" name="data_add_2374523750" type="Const" version="opset1">
1408 <data element_type="f32" offset="13596" shape="1, 32, 1, 1" size="128"/>
1409 <output>
1410 <port id="0" precision="FP32">
1411 <dim>1</dim>
1412 <dim>32</dim>
1413 <dim>1</dim>
1414 <dim>1</dim>
1415 </port>
1416 </output>
1417 </layer>
1418 <layer id="82" name="bottleneck1_4/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
1419 <data auto_broadcast="numpy"/>
1420 <input>
1421 <port id="0" precision="FP32">
1422 <dim>1</dim>
1423 <dim>32</dim>
1424 <dim>160</dim>
1425 <dim>272</dim>
1426 </port>
1427 <port id="1" precision="FP32">
1428 <dim>1</dim>
1429 <dim>32</dim>
1430 <dim>1</dim>
1431 <dim>1</dim>
1432 </port>
1433 </input>
1434 <output>
1435 <port id="2" names="bottleneck1_4/dim_inc/conv" precision="FP32">
1436 <dim>1</dim>
1437 <dim>32</dim>
1438 <dim>160</dim>
1439 <dim>272</dim>
1440 </port>
1441 </output>
1442 </layer>
1443 <layer id="83" name="bottleneck1_4/add" type="Add" version="opset1">
1444 <data auto_broadcast="numpy"/>
1445 <input>
1446 <port id="0" precision="FP32">
1447 <dim>1</dim>
1448 <dim>32</dim>
1449 <dim>160</dim>
1450 <dim>272</dim>
1451 </port>
1452 <port id="1" precision="FP32">
1453 <dim>1</dim>
1454 <dim>32</dim>
1455 <dim>160</dim>
1456 <dim>272</dim>
1457 </port>
1458 </input>
1459 <output>
1460 <port id="2" names="bottleneck1_4/add" precision="FP32">
1461 <dim>1</dim>
1462 <dim>32</dim>
1463 <dim>160</dim>
1464 <dim>272</dim>
1465 </port>
1466 </output>
1467 </layer>
1468 <layer id="84" name="bottleneck1_4/fn/weights3087639962" type="Const" version="opset1">
1469 <data element_type="f32" offset="4664" shape="1" size="4"/>
1470 <output>
1471 <port id="0" precision="FP32">
1472 <dim>1</dim>
1473 </port>
1474 </output>
1475 </layer>
1476 <layer id="85" name="bottleneck1_4/fn" type="PReLU" version="opset1">
1477 <input>
1478 <port id="0" precision="FP32">
1479 <dim>1</dim>
1480 <dim>32</dim>
1481 <dim>160</dim>
1482 <dim>272</dim>
1483 </port>
1484 <port id="1" precision="FP32">
1485 <dim>1</dim>
1486 </port>
1487 </input>
1488 <output>
1489 <port id="2" names="bottleneck1_4/add" precision="FP32">
1490 <dim>1</dim>
1491 <dim>32</dim>
1492 <dim>160</dim>
1493 <dim>272</dim>
1494 </port>
1495 </output>
1496 </layer>
1497 <layer id="86" name="bottleneck2_0/skip/pooling" type="MaxPool" version="opset1">
1498 <data auto_pad="explicit" kernel="2, 2" pads_begin="0, 0" pads_end="0, 0" rounding_type="ceil" strides="2, 2"/>
1499 <input>
1500 <port id="0" precision="FP32">
1501 <dim>1</dim>
1502 <dim>32</dim>
1503 <dim>160</dim>
1504 <dim>272</dim>
1505 </port>
1506 </input>
1507 <output>
1508 <port id="1" names="bottleneck2_0/skip/pooling" precision="FP32">
1509 <dim>1</dim>
1510 <dim>32</dim>
1511 <dim>80</dim>
1512 <dim>136</dim>
1513 </port>
1514 </output>
1515 </layer>
1516 <layer id="87" name="bottleneck2_0/skip/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
1517 <data element_type="f32" offset="13724" shape="64, 32, 1, 1" size="8192"/>
1518 <output>
1519 <port id="0" precision="FP32">
1520 <dim>64</dim>
1521 <dim>32</dim>
1522 <dim>1</dim>
1523 <dim>1</dim>
1524 </port>
1525 </output>
1526 </layer>
1527 <layer id="88" name="bottleneck2_0/skip/conv" type="Convolution" version="opset1">
1528 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
1529 <input>
1530 <port id="0" precision="FP32">
1531 <dim>1</dim>
1532 <dim>32</dim>
1533 <dim>80</dim>
1534 <dim>136</dim>
1535 </port>
1536 <port id="1" precision="FP32">
1537 <dim>64</dim>
1538 <dim>32</dim>
1539 <dim>1</dim>
1540 <dim>1</dim>
1541 </port>
1542 </input>
1543 <output>
1544 <port id="2" precision="FP32">
1545 <dim>1</dim>
1546 <dim>64</dim>
1547 <dim>80</dim>
1548 <dim>136</dim>
1549 </port>
1550 </output>
1551 </layer>
1552 <layer id="89" name="data_add_2375323758" type="Const" version="opset1">
1553 <data element_type="f32" offset="21916" shape="1, 64, 1, 1" size="256"/>
1554 <output>
1555 <port id="0" precision="FP32">
1556 <dim>1</dim>
1557 <dim>64</dim>
1558 <dim>1</dim>
1559 <dim>1</dim>
1560 </port>
1561 </output>
1562 </layer>
1563 <layer id="90" name="bottleneck2_0/skip/bn/variance/Fused_Add_" type="Add" version="opset1">
1564 <data auto_broadcast="numpy"/>
1565 <input>
1566 <port id="0" precision="FP32">
1567 <dim>1</dim>
1568 <dim>64</dim>
1569 <dim>80</dim>
1570 <dim>136</dim>
1571 </port>
1572 <port id="1" precision="FP32">
1573 <dim>1</dim>
1574 <dim>64</dim>
1575 <dim>1</dim>
1576 <dim>1</dim>
1577 </port>
1578 </input>
1579 <output>
1580 <port id="2" names="bottleneck2_0/skip/conv" precision="FP32">
1581 <dim>1</dim>
1582 <dim>64</dim>
1583 <dim>80</dim>
1584 <dim>136</dim>
1585 </port>
1586 </output>
1587 </layer>
1588 <layer id="91" name="bottleneck2_0/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
1589 <data element_type="f32" offset="22172" shape="16, 32, 1, 1" size="2048"/>
1590 <output>
1591 <port id="0" precision="FP32">
1592 <dim>16</dim>
1593 <dim>32</dim>
1594 <dim>1</dim>
1595 <dim>1</dim>
1596 </port>
1597 </output>
1598 </layer>
1599 <layer id="92" name="bottleneck2_0/dim_red/conv" type="Convolution" version="opset1">
1600 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
1601 <input>
1602 <port id="0" precision="FP32">
1603 <dim>1</dim>
1604 <dim>32</dim>
1605 <dim>160</dim>
1606 <dim>272</dim>
1607 </port>
1608 <port id="1" precision="FP32">
1609 <dim>16</dim>
1610 <dim>32</dim>
1611 <dim>1</dim>
1612 <dim>1</dim>
1613 </port>
1614 </input>
1615 <output>
1616 <port id="2" precision="FP32">
1617 <dim>1</dim>
1618 <dim>16</dim>
1619 <dim>160</dim>
1620 <dim>272</dim>
1621 </port>
1622 </output>
1623 </layer>
1624 <layer id="93" name="data_add_2376123766" type="Const" version="opset1">
1625 <data element_type="f32" offset="24220" shape="1, 16, 1, 1" size="64"/>
1626 <output>
1627 <port id="0" precision="FP32">
1628 <dim>1</dim>
1629 <dim>16</dim>
1630 <dim>1</dim>
1631 <dim>1</dim>
1632 </port>
1633 </output>
1634 </layer>
1635 <layer id="94" name="bottleneck2_0/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
1636 <data auto_broadcast="numpy"/>
1637 <input>
1638 <port id="0" precision="FP32">
1639 <dim>1</dim>
1640 <dim>16</dim>
1641 <dim>160</dim>
1642 <dim>272</dim>
1643 </port>
1644 <port id="1" precision="FP32">
1645 <dim>1</dim>
1646 <dim>16</dim>
1647 <dim>1</dim>
1648 <dim>1</dim>
1649 </port>
1650 </input>
1651 <output>
1652 <port id="2" names="bottleneck2_0/dim_red/conv" precision="FP32">
1653 <dim>1</dim>
1654 <dim>16</dim>
1655 <dim>160</dim>
1656 <dim>272</dim>
1657 </port>
1658 </output>
1659 </layer>
1660 <layer id="95" name="bottleneck2_0/dim_red/fn/weights3103239749" type="Const" version="opset1">
1661 <data element_type="f32" offset="4664" shape="1" size="4"/>
1662 <output>
1663 <port id="0" precision="FP32">
1664 <dim>1</dim>
1665 </port>
1666 </output>
1667 </layer>
1668 <layer id="96" name="bottleneck2_0/dim_red/fn" type="PReLU" version="opset1">
1669 <input>
1670 <port id="0" precision="FP32">
1671 <dim>1</dim>
1672 <dim>16</dim>
1673 <dim>160</dim>
1674 <dim>272</dim>
1675 </port>
1676 <port id="1" precision="FP32">
1677 <dim>1</dim>
1678 </port>
1679 </input>
1680 <output>
1681 <port id="2" names="bottleneck2_0/dim_red/conv" precision="FP32">
1682 <dim>1</dim>
1683 <dim>16</dim>
1684 <dim>160</dim>
1685 <dim>272</dim>
1686 </port>
1687 </output>
1688 </layer>
1689 <layer id="97" name="bottleneck2_0/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
1690 <data element_type="f32" offset="24284" shape="16, 1, 1, 3, 3" size="576"/>
1691 <output>
1692 <port id="0" precision="FP32">
1693 <dim>16</dim>
1694 <dim>1</dim>
1695 <dim>1</dim>
1696 <dim>3</dim>
1697 <dim>3</dim>
1698 </port>
1699 </output>
1700 </layer>
1701 <layer id="98" name="bottleneck2_0/inner/dw1/conv" type="GroupConvolution" version="opset1">
1702 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="2, 2"/>
1703 <input>
1704 <port id="0" precision="FP32">
1705 <dim>1</dim>
1706 <dim>16</dim>
1707 <dim>160</dim>
1708 <dim>272</dim>
1709 </port>
1710 <port id="1" precision="FP32">
1711 <dim>16</dim>
1712 <dim>1</dim>
1713 <dim>1</dim>
1714 <dim>3</dim>
1715 <dim>3</dim>
1716 </port>
1717 </input>
1718 <output>
1719 <port id="2" precision="FP32">
1720 <dim>1</dim>
1721 <dim>16</dim>
1722 <dim>80</dim>
1723 <dim>136</dim>
1724 </port>
1725 </output>
1726 </layer>
1727 <layer id="99" name="data_add_2376923774" type="Const" version="opset1">
1728 <data element_type="f32" offset="24860" shape="1, 16, 1, 1" size="64"/>
1729 <output>
1730 <port id="0" precision="FP32">
1731 <dim>1</dim>
1732 <dim>16</dim>
1733 <dim>1</dim>
1734 <dim>1</dim>
1735 </port>
1736 </output>
1737 </layer>
1738 <layer id="100" name="bottleneck2_0/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
1739 <data auto_broadcast="numpy"/>
1740 <input>
1741 <port id="0" precision="FP32">
1742 <dim>1</dim>
1743 <dim>16</dim>
1744 <dim>80</dim>
1745 <dim>136</dim>
1746 </port>
1747 <port id="1" precision="FP32">
1748 <dim>1</dim>
1749 <dim>16</dim>
1750 <dim>1</dim>
1751 <dim>1</dim>
1752 </port>
1753 </input>
1754 <output>
1755 <port id="2" names="bottleneck2_0/inner/dw1/conv" precision="FP32">
1756 <dim>1</dim>
1757 <dim>16</dim>
1758 <dim>80</dim>
1759 <dim>136</dim>
1760 </port>
1761 </output>
1762 </layer>
1763 <layer id="101" name="bottleneck2_0/inner/dw1/fn/weights3088840568" type="Const" version="opset1">
1764 <data element_type="f32" offset="4664" shape="1" size="4"/>
1765 <output>
1766 <port id="0" precision="FP32">
1767 <dim>1</dim>
1768 </port>
1769 </output>
1770 </layer>
1771 <layer id="102" name="bottleneck2_0/inner/dw1/fn" type="PReLU" version="opset1">
1772 <input>
1773 <port id="0" precision="FP32">
1774 <dim>1</dim>
1775 <dim>16</dim>
1776 <dim>80</dim>
1777 <dim>136</dim>
1778 </port>
1779 <port id="1" precision="FP32">
1780 <dim>1</dim>
1781 </port>
1782 </input>
1783 <output>
1784 <port id="2" names="bottleneck2_0/inner/dw1/conv" precision="FP32">
1785 <dim>1</dim>
1786 <dim>16</dim>
1787 <dim>80</dim>
1788 <dim>136</dim>
1789 </port>
1790 </output>
1791 </layer>
1792 <layer id="103" name="bottleneck2_0/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
1793 <data element_type="f32" offset="24924" shape="64, 16, 1, 1" size="4096"/>
1794 <output>
1795 <port id="0" precision="FP32">
1796 <dim>64</dim>
1797 <dim>16</dim>
1798 <dim>1</dim>
1799 <dim>1</dim>
1800 </port>
1801 </output>
1802 </layer>
1803 <layer id="104" name="bottleneck2_0/dim_inc/conv" type="Convolution" version="opset1">
1804 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
1805 <input>
1806 <port id="0" precision="FP32">
1807 <dim>1</dim>
1808 <dim>16</dim>
1809 <dim>80</dim>
1810 <dim>136</dim>
1811 </port>
1812 <port id="1" precision="FP32">
1813 <dim>64</dim>
1814 <dim>16</dim>
1815 <dim>1</dim>
1816 <dim>1</dim>
1817 </port>
1818 </input>
1819 <output>
1820 <port id="2" precision="FP32">
1821 <dim>1</dim>
1822 <dim>64</dim>
1823 <dim>80</dim>
1824 <dim>136</dim>
1825 </port>
1826 </output>
1827 </layer>
1828 <layer id="105" name="data_add_2377723782" type="Const" version="opset1">
1829 <data element_type="f32" offset="29020" shape="1, 64, 1, 1" size="256"/>
1830 <output>
1831 <port id="0" precision="FP32">
1832 <dim>1</dim>
1833 <dim>64</dim>
1834 <dim>1</dim>
1835 <dim>1</dim>
1836 </port>
1837 </output>
1838 </layer>
1839 <layer id="106" name="bottleneck2_0/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
1840 <data auto_broadcast="numpy"/>
1841 <input>
1842 <port id="0" precision="FP32">
1843 <dim>1</dim>
1844 <dim>64</dim>
1845 <dim>80</dim>
1846 <dim>136</dim>
1847 </port>
1848 <port id="1" precision="FP32">
1849 <dim>1</dim>
1850 <dim>64</dim>
1851 <dim>1</dim>
1852 <dim>1</dim>
1853 </port>
1854 </input>
1855 <output>
1856 <port id="2" names="bottleneck2_0/dim_inc/conv" precision="FP32">
1857 <dim>1</dim>
1858 <dim>64</dim>
1859 <dim>80</dim>
1860 <dim>136</dim>
1861 </port>
1862 </output>
1863 </layer>
1864 <layer id="107" name="bottleneck2_0/add" type="Add" version="opset1">
1865 <data auto_broadcast="numpy"/>
1866 <input>
1867 <port id="0" precision="FP32">
1868 <dim>1</dim>
1869 <dim>64</dim>
1870 <dim>80</dim>
1871 <dim>136</dim>
1872 </port>
1873 <port id="1" precision="FP32">
1874 <dim>1</dim>
1875 <dim>64</dim>
1876 <dim>80</dim>
1877 <dim>136</dim>
1878 </port>
1879 </input>
1880 <output>
1881 <port id="2" names="bottleneck2_0/add" precision="FP32">
1882 <dim>1</dim>
1883 <dim>64</dim>
1884 <dim>80</dim>
1885 <dim>136</dim>
1886 </port>
1887 </output>
1888 </layer>
1889 <layer id="108" name="bottleneck2_0/fn/weights3086440226" type="Const" version="opset1">
1890 <data element_type="f32" offset="4664" shape="1" size="4"/>
1891 <output>
1892 <port id="0" precision="FP32">
1893 <dim>1</dim>
1894 </port>
1895 </output>
1896 </layer>
1897 <layer id="109" name="bottleneck2_0/fn" type="PReLU" version="opset1">
1898 <input>
1899 <port id="0" precision="FP32">
1900 <dim>1</dim>
1901 <dim>64</dim>
1902 <dim>80</dim>
1903 <dim>136</dim>
1904 </port>
1905 <port id="1" precision="FP32">
1906 <dim>1</dim>
1907 </port>
1908 </input>
1909 <output>
1910 <port id="2" names="bottleneck2_0/add" precision="FP32">
1911 <dim>1</dim>
1912 <dim>64</dim>
1913 <dim>80</dim>
1914 <dim>136</dim>
1915 </port>
1916 </output>
1917 </layer>
1918 <layer id="110" name="bottleneck2_1/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
1919 <data element_type="f32" offset="29276" shape="16, 64, 1, 1" size="4096"/>
1920 <output>
1921 <port id="0" precision="FP32">
1922 <dim>16</dim>
1923 <dim>64</dim>
1924 <dim>1</dim>
1925 <dim>1</dim>
1926 </port>
1927 </output>
1928 </layer>
1929 <layer id="111" name="bottleneck2_1/dim_red/conv" type="Convolution" version="opset1">
1930 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
1931 <input>
1932 <port id="0" precision="FP32">
1933 <dim>1</dim>
1934 <dim>64</dim>
1935 <dim>80</dim>
1936 <dim>136</dim>
1937 </port>
1938 <port id="1" precision="FP32">
1939 <dim>16</dim>
1940 <dim>64</dim>
1941 <dim>1</dim>
1942 <dim>1</dim>
1943 </port>
1944 </input>
1945 <output>
1946 <port id="2" precision="FP32">
1947 <dim>1</dim>
1948 <dim>16</dim>
1949 <dim>80</dim>
1950 <dim>136</dim>
1951 </port>
1952 </output>
1953 </layer>
1954 <layer id="112" name="data_add_2378523790" type="Const" version="opset1">
1955 <data element_type="f32" offset="33372" shape="1, 16, 1, 1" size="64"/>
1956 <output>
1957 <port id="0" precision="FP32">
1958 <dim>1</dim>
1959 <dim>16</dim>
1960 <dim>1</dim>
1961 <dim>1</dim>
1962 </port>
1963 </output>
1964 </layer>
1965 <layer id="113" name="bottleneck2_1/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
1966 <data auto_broadcast="numpy"/>
1967 <input>
1968 <port id="0" precision="FP32">
1969 <dim>1</dim>
1970 <dim>16</dim>
1971 <dim>80</dim>
1972 <dim>136</dim>
1973 </port>
1974 <port id="1" precision="FP32">
1975 <dim>1</dim>
1976 <dim>16</dim>
1977 <dim>1</dim>
1978 <dim>1</dim>
1979 </port>
1980 </input>
1981 <output>
1982 <port id="2" names="bottleneck2_1/dim_red/conv" precision="FP32">
1983 <dim>1</dim>
1984 <dim>16</dim>
1985 <dim>80</dim>
1986 <dim>136</dim>
1987 </port>
1988 </output>
1989 </layer>
1990 <layer id="114" name="bottleneck2_1/dim_red/fn/weights3091240172" type="Const" version="opset1">
1991 <data element_type="f32" offset="4664" shape="1" size="4"/>
1992 <output>
1993 <port id="0" precision="FP32">
1994 <dim>1</dim>
1995 </port>
1996 </output>
1997 </layer>
1998 <layer id="115" name="bottleneck2_1/dim_red/fn" type="PReLU" version="opset1">
1999 <input>
2000 <port id="0" precision="FP32">
2001 <dim>1</dim>
2002 <dim>16</dim>
2003 <dim>80</dim>
2004 <dim>136</dim>
2005 </port>
2006 <port id="1" precision="FP32">
2007 <dim>1</dim>
2008 </port>
2009 </input>
2010 <output>
2011 <port id="2" names="bottleneck2_1/dim_red/conv" precision="FP32">
2012 <dim>1</dim>
2013 <dim>16</dim>
2014 <dim>80</dim>
2015 <dim>136</dim>
2016 </port>
2017 </output>
2018 </layer>
2019 <layer id="116" name="bottleneck2_1/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
2020 <data element_type="f32" offset="33436" shape="16, 1, 1, 3, 3" size="576"/>
2021 <output>
2022 <port id="0" precision="FP32">
2023 <dim>16</dim>
2024 <dim>1</dim>
2025 <dim>1</dim>
2026 <dim>3</dim>
2027 <dim>3</dim>
2028 </port>
2029 </output>
2030 </layer>
2031 <layer id="117" name="bottleneck2_1/inner/dw1/conv" type="GroupConvolution" version="opset1">
2032 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
2033 <input>
2034 <port id="0" precision="FP32">
2035 <dim>1</dim>
2036 <dim>16</dim>
2037 <dim>80</dim>
2038 <dim>136</dim>
2039 </port>
2040 <port id="1" precision="FP32">
2041 <dim>16</dim>
2042 <dim>1</dim>
2043 <dim>1</dim>
2044 <dim>3</dim>
2045 <dim>3</dim>
2046 </port>
2047 </input>
2048 <output>
2049 <port id="2" precision="FP32">
2050 <dim>1</dim>
2051 <dim>16</dim>
2052 <dim>80</dim>
2053 <dim>136</dim>
2054 </port>
2055 </output>
2056 </layer>
2057 <layer id="118" name="data_add_2379323798" type="Const" version="opset1">
2058 <data element_type="f32" offset="34012" shape="1, 16, 1, 1" size="64"/>
2059 <output>
2060 <port id="0" precision="FP32">
2061 <dim>1</dim>
2062 <dim>16</dim>
2063 <dim>1</dim>
2064 <dim>1</dim>
2065 </port>
2066 </output>
2067 </layer>
2068 <layer id="119" name="bottleneck2_1/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
2069 <data auto_broadcast="numpy"/>
2070 <input>
2071 <port id="0" precision="FP32">
2072 <dim>1</dim>
2073 <dim>16</dim>
2074 <dim>80</dim>
2075 <dim>136</dim>
2076 </port>
2077 <port id="1" precision="FP32">
2078 <dim>1</dim>
2079 <dim>16</dim>
2080 <dim>1</dim>
2081 <dim>1</dim>
2082 </port>
2083 </input>
2084 <output>
2085 <port id="2" names="bottleneck2_1/inner/dw1/conv" precision="FP32">
2086 <dim>1</dim>
2087 <dim>16</dim>
2088 <dim>80</dim>
2089 <dim>136</dim>
2090 </port>
2091 </output>
2092 </layer>
2093 <layer id="120" name="bottleneck2_1/inner/dw1/fn/weights3110039803" type="Const" version="opset1">
2094 <data element_type="f32" offset="4664" shape="1" size="4"/>
2095 <output>
2096 <port id="0" precision="FP32">
2097 <dim>1</dim>
2098 </port>
2099 </output>
2100 </layer>
2101 <layer id="121" name="bottleneck2_1/inner/dw1/fn" type="PReLU" version="opset1">
2102 <input>
2103 <port id="0" precision="FP32">
2104 <dim>1</dim>
2105 <dim>16</dim>
2106 <dim>80</dim>
2107 <dim>136</dim>
2108 </port>
2109 <port id="1" precision="FP32">
2110 <dim>1</dim>
2111 </port>
2112 </input>
2113 <output>
2114 <port id="2" names="bottleneck2_1/inner/dw1/conv" precision="FP32">
2115 <dim>1</dim>
2116 <dim>16</dim>
2117 <dim>80</dim>
2118 <dim>136</dim>
2119 </port>
2120 </output>
2121 </layer>
2122 <layer id="122" name="bottleneck2_1/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
2123 <data element_type="f32" offset="34076" shape="64, 16, 1, 1" size="4096"/>
2124 <output>
2125 <port id="0" precision="FP32">
2126 <dim>64</dim>
2127 <dim>16</dim>
2128 <dim>1</dim>
2129 <dim>1</dim>
2130 </port>
2131 </output>
2132 </layer>
2133 <layer id="123" name="bottleneck2_1/dim_inc/conv" type="Convolution" version="opset1">
2134 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
2135 <input>
2136 <port id="0" precision="FP32">
2137 <dim>1</dim>
2138 <dim>16</dim>
2139 <dim>80</dim>
2140 <dim>136</dim>
2141 </port>
2142 <port id="1" precision="FP32">
2143 <dim>64</dim>
2144 <dim>16</dim>
2145 <dim>1</dim>
2146 <dim>1</dim>
2147 </port>
2148 </input>
2149 <output>
2150 <port id="2" precision="FP32">
2151 <dim>1</dim>
2152 <dim>64</dim>
2153 <dim>80</dim>
2154 <dim>136</dim>
2155 </port>
2156 </output>
2157 </layer>
2158 <layer id="124" name="data_add_2380123806" type="Const" version="opset1">
2159 <data element_type="f32" offset="38172" shape="1, 64, 1, 1" size="256"/>
2160 <output>
2161 <port id="0" precision="FP32">
2162 <dim>1</dim>
2163 <dim>64</dim>
2164 <dim>1</dim>
2165 <dim>1</dim>
2166 </port>
2167 </output>
2168 </layer>
2169 <layer id="125" name="bottleneck2_1/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
2170 <data auto_broadcast="numpy"/>
2171 <input>
2172 <port id="0" precision="FP32">
2173 <dim>1</dim>
2174 <dim>64</dim>
2175 <dim>80</dim>
2176 <dim>136</dim>
2177 </port>
2178 <port id="1" precision="FP32">
2179 <dim>1</dim>
2180 <dim>64</dim>
2181 <dim>1</dim>
2182 <dim>1</dim>
2183 </port>
2184 </input>
2185 <output>
2186 <port id="2" names="bottleneck2_1/dim_inc/conv" precision="FP32">
2187 <dim>1</dim>
2188 <dim>64</dim>
2189 <dim>80</dim>
2190 <dim>136</dim>
2191 </port>
2192 </output>
2193 </layer>
2194 <layer id="126" name="bottleneck2_1/add" type="Add" version="opset1">
2195 <data auto_broadcast="numpy"/>
2196 <input>
2197 <port id="0" precision="FP32">
2198 <dim>1</dim>
2199 <dim>64</dim>
2200 <dim>80</dim>
2201 <dim>136</dim>
2202 </port>
2203 <port id="1" precision="FP32">
2204 <dim>1</dim>
2205 <dim>64</dim>
2206 <dim>80</dim>
2207 <dim>136</dim>
2208 </port>
2209 </input>
2210 <output>
2211 <port id="2" names="bottleneck2_1/add" precision="FP32">
2212 <dim>1</dim>
2213 <dim>64</dim>
2214 <dim>80</dim>
2215 <dim>136</dim>
2216 </port>
2217 </output>
2218 </layer>
2219 <layer id="127" name="bottleneck2_1/fn/weights3081640076" type="Const" version="opset1">
2220 <data element_type="f32" offset="4664" shape="1" size="4"/>
2221 <output>
2222 <port id="0" precision="FP32">
2223 <dim>1</dim>
2224 </port>
2225 </output>
2226 </layer>
2227 <layer id="128" name="bottleneck2_1/fn" type="PReLU" version="opset1">
2228 <input>
2229 <port id="0" precision="FP32">
2230 <dim>1</dim>
2231 <dim>64</dim>
2232 <dim>80</dim>
2233 <dim>136</dim>
2234 </port>
2235 <port id="1" precision="FP32">
2236 <dim>1</dim>
2237 </port>
2238 </input>
2239 <output>
2240 <port id="2" names="bottleneck2_1/add" precision="FP32">
2241 <dim>1</dim>
2242 <dim>64</dim>
2243 <dim>80</dim>
2244 <dim>136</dim>
2245 </port>
2246 </output>
2247 </layer>
2248 <layer id="129" name="bottleneck2_2/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
2249 <data element_type="f32" offset="38428" shape="16, 64, 1, 1" size="4096"/>
2250 <output>
2251 <port id="0" precision="FP32">
2252 <dim>16</dim>
2253 <dim>64</dim>
2254 <dim>1</dim>
2255 <dim>1</dim>
2256 </port>
2257 </output>
2258 </layer>
2259 <layer id="130" name="bottleneck2_2/dim_red/conv" type="Convolution" version="opset1">
2260 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
2261 <input>
2262 <port id="0" precision="FP32">
2263 <dim>1</dim>
2264 <dim>64</dim>
2265 <dim>80</dim>
2266 <dim>136</dim>
2267 </port>
2268 <port id="1" precision="FP32">
2269 <dim>16</dim>
2270 <dim>64</dim>
2271 <dim>1</dim>
2272 <dim>1</dim>
2273 </port>
2274 </input>
2275 <output>
2276 <port id="2" precision="FP32">
2277 <dim>1</dim>
2278 <dim>16</dim>
2279 <dim>80</dim>
2280 <dim>136</dim>
2281 </port>
2282 </output>
2283 </layer>
2284 <layer id="131" name="data_add_2380923814" type="Const" version="opset1">
2285 <data element_type="f32" offset="42524" shape="1, 16, 1, 1" size="64"/>
2286 <output>
2287 <port id="0" precision="FP32">
2288 <dim>1</dim>
2289 <dim>16</dim>
2290 <dim>1</dim>
2291 <dim>1</dim>
2292 </port>
2293 </output>
2294 </layer>
2295 <layer id="132" name="bottleneck2_2/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
2296 <data auto_broadcast="numpy"/>
2297 <input>
2298 <port id="0" precision="FP32">
2299 <dim>1</dim>
2300 <dim>16</dim>
2301 <dim>80</dim>
2302 <dim>136</dim>
2303 </port>
2304 <port id="1" precision="FP32">
2305 <dim>1</dim>
2306 <dim>16</dim>
2307 <dim>1</dim>
2308 <dim>1</dim>
2309 </port>
2310 </input>
2311 <output>
2312 <port id="2" names="bottleneck2_2/dim_red/conv" precision="FP32">
2313 <dim>1</dim>
2314 <dim>16</dim>
2315 <dim>80</dim>
2316 <dim>136</dim>
2317 </port>
2318 </output>
2319 </layer>
2320 <layer id="133" name="bottleneck2_2/dim_red/fn/weights3079239824" type="Const" version="opset1">
2321 <data element_type="f32" offset="4664" shape="1" size="4"/>
2322 <output>
2323 <port id="0" precision="FP32">
2324 <dim>1</dim>
2325 </port>
2326 </output>
2327 </layer>
2328 <layer id="134" name="bottleneck2_2/dim_red/fn" type="PReLU" version="opset1">
2329 <input>
2330 <port id="0" precision="FP32">
2331 <dim>1</dim>
2332 <dim>16</dim>
2333 <dim>80</dim>
2334 <dim>136</dim>
2335 </port>
2336 <port id="1" precision="FP32">
2337 <dim>1</dim>
2338 </port>
2339 </input>
2340 <output>
2341 <port id="2" names="bottleneck2_2/dim_red/conv" precision="FP32">
2342 <dim>1</dim>
2343 <dim>16</dim>
2344 <dim>80</dim>
2345 <dim>136</dim>
2346 </port>
2347 </output>
2348 </layer>
2349 <layer id="135" name="bottleneck2_2/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
2350 <data element_type="f32" offset="42588" shape="16, 1, 1, 3, 3" size="576"/>
2351 <output>
2352 <port id="0" precision="FP32">
2353 <dim>16</dim>
2354 <dim>1</dim>
2355 <dim>1</dim>
2356 <dim>3</dim>
2357 <dim>3</dim>
2358 </port>
2359 </output>
2360 </layer>
2361 <layer id="136" name="bottleneck2_2/inner/dw1/conv" type="GroupConvolution" version="opset1">
2362 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
2363 <input>
2364 <port id="0" precision="FP32">
2365 <dim>1</dim>
2366 <dim>16</dim>
2367 <dim>80</dim>
2368 <dim>136</dim>
2369 </port>
2370 <port id="1" precision="FP32">
2371 <dim>16</dim>
2372 <dim>1</dim>
2373 <dim>1</dim>
2374 <dim>3</dim>
2375 <dim>3</dim>
2376 </port>
2377 </input>
2378 <output>
2379 <port id="2" precision="FP32">
2380 <dim>1</dim>
2381 <dim>16</dim>
2382 <dim>80</dim>
2383 <dim>136</dim>
2384 </port>
2385 </output>
2386 </layer>
2387 <layer id="137" name="data_add_2381723822" type="Const" version="opset1">
2388 <data element_type="f32" offset="43164" shape="1, 16, 1, 1" size="64"/>
2389 <output>
2390 <port id="0" precision="FP32">
2391 <dim>1</dim>
2392 <dim>16</dim>
2393 <dim>1</dim>
2394 <dim>1</dim>
2395 </port>
2396 </output>
2397 </layer>
2398 <layer id="138" name="bottleneck2_2/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
2399 <data auto_broadcast="numpy"/>
2400 <input>
2401 <port id="0" precision="FP32">
2402 <dim>1</dim>
2403 <dim>16</dim>
2404 <dim>80</dim>
2405 <dim>136</dim>
2406 </port>
2407 <port id="1" precision="FP32">
2408 <dim>1</dim>
2409 <dim>16</dim>
2410 <dim>1</dim>
2411 <dim>1</dim>
2412 </port>
2413 </input>
2414 <output>
2415 <port id="2" names="bottleneck2_2/inner/dw1/conv" precision="FP32">
2416 <dim>1</dim>
2417 <dim>16</dim>
2418 <dim>80</dim>
2419 <dim>136</dim>
2420 </port>
2421 </output>
2422 </layer>
2423 <layer id="139" name="bottleneck2_2/inner/dw1/fn/weights3110439791" type="Const" version="opset1">
2424 <data element_type="f32" offset="4664" shape="1" size="4"/>
2425 <output>
2426 <port id="0" precision="FP32">
2427 <dim>1</dim>
2428 </port>
2429 </output>
2430 </layer>
2431 <layer id="140" name="bottleneck2_2/inner/dw1/fn" type="PReLU" version="opset1">
2432 <input>
2433 <port id="0" precision="FP32">
2434 <dim>1</dim>
2435 <dim>16</dim>
2436 <dim>80</dim>
2437 <dim>136</dim>
2438 </port>
2439 <port id="1" precision="FP32">
2440 <dim>1</dim>
2441 </port>
2442 </input>
2443 <output>
2444 <port id="2" names="bottleneck2_2/inner/dw1/conv" precision="FP32">
2445 <dim>1</dim>
2446 <dim>16</dim>
2447 <dim>80</dim>
2448 <dim>136</dim>
2449 </port>
2450 </output>
2451 </layer>
2452 <layer id="141" name="bottleneck2_2/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
2453 <data element_type="f32" offset="43228" shape="64, 16, 1, 1" size="4096"/>
2454 <output>
2455 <port id="0" precision="FP32">
2456 <dim>64</dim>
2457 <dim>16</dim>
2458 <dim>1</dim>
2459 <dim>1</dim>
2460 </port>
2461 </output>
2462 </layer>
2463 <layer id="142" name="bottleneck2_2/dim_inc/conv" type="Convolution" version="opset1">
2464 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
2465 <input>
2466 <port id="0" precision="FP32">
2467 <dim>1</dim>
2468 <dim>16</dim>
2469 <dim>80</dim>
2470 <dim>136</dim>
2471 </port>
2472 <port id="1" precision="FP32">
2473 <dim>64</dim>
2474 <dim>16</dim>
2475 <dim>1</dim>
2476 <dim>1</dim>
2477 </port>
2478 </input>
2479 <output>
2480 <port id="2" precision="FP32">
2481 <dim>1</dim>
2482 <dim>64</dim>
2483 <dim>80</dim>
2484 <dim>136</dim>
2485 </port>
2486 </output>
2487 </layer>
2488 <layer id="143" name="data_add_2382523830" type="Const" version="opset1">
2489 <data element_type="f32" offset="47324" shape="1, 64, 1, 1" size="256"/>
2490 <output>
2491 <port id="0" precision="FP32">
2492 <dim>1</dim>
2493 <dim>64</dim>
2494 <dim>1</dim>
2495 <dim>1</dim>
2496 </port>
2497 </output>
2498 </layer>
2499 <layer id="144" name="bottleneck2_2/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
2500 <data auto_broadcast="numpy"/>
2501 <input>
2502 <port id="0" precision="FP32">
2503 <dim>1</dim>
2504 <dim>64</dim>
2505 <dim>80</dim>
2506 <dim>136</dim>
2507 </port>
2508 <port id="1" precision="FP32">
2509 <dim>1</dim>
2510 <dim>64</dim>
2511 <dim>1</dim>
2512 <dim>1</dim>
2513 </port>
2514 </input>
2515 <output>
2516 <port id="2" names="bottleneck2_2/dim_inc/conv" precision="FP32">
2517 <dim>1</dim>
2518 <dim>64</dim>
2519 <dim>80</dim>
2520 <dim>136</dim>
2521 </port>
2522 </output>
2523 </layer>
2524 <layer id="145" name="bottleneck2_2/add" type="Add" version="opset1">
2525 <data auto_broadcast="numpy"/>
2526 <input>
2527 <port id="0" precision="FP32">
2528 <dim>1</dim>
2529 <dim>64</dim>
2530 <dim>80</dim>
2531 <dim>136</dim>
2532 </port>
2533 <port id="1" precision="FP32">
2534 <dim>1</dim>
2535 <dim>64</dim>
2536 <dim>80</dim>
2537 <dim>136</dim>
2538 </port>
2539 </input>
2540 <output>
2541 <port id="2" names="bottleneck2_2/add" precision="FP32">
2542 <dim>1</dim>
2543 <dim>64</dim>
2544 <dim>80</dim>
2545 <dim>136</dim>
2546 </port>
2547 </output>
2548 </layer>
2549 <layer id="146" name="bottleneck2_2/fn/weights3100439671" type="Const" version="opset1">
2550 <data element_type="f32" offset="4664" shape="1" size="4"/>
2551 <output>
2552 <port id="0" precision="FP32">
2553 <dim>1</dim>
2554 </port>
2555 </output>
2556 </layer>
2557 <layer id="147" name="bottleneck2_2/fn" type="PReLU" version="opset1">
2558 <input>
2559 <port id="0" precision="FP32">
2560 <dim>1</dim>
2561 <dim>64</dim>
2562 <dim>80</dim>
2563 <dim>136</dim>
2564 </port>
2565 <port id="1" precision="FP32">
2566 <dim>1</dim>
2567 </port>
2568 </input>
2569 <output>
2570 <port id="2" names="bottleneck2_2/add" precision="FP32">
2571 <dim>1</dim>
2572 <dim>64</dim>
2573 <dim>80</dim>
2574 <dim>136</dim>
2575 </port>
2576 </output>
2577 </layer>
2578 <layer id="148" name="bottleneck2_3/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
2579 <data element_type="f32" offset="47580" shape="16, 64, 1, 1" size="4096"/>
2580 <output>
2581 <port id="0" precision="FP32">
2582 <dim>16</dim>
2583 <dim>64</dim>
2584 <dim>1</dim>
2585 <dim>1</dim>
2586 </port>
2587 </output>
2588 </layer>
2589 <layer id="149" name="bottleneck2_3/dim_red/conv" type="Convolution" version="opset1">
2590 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
2591 <input>
2592 <port id="0" precision="FP32">
2593 <dim>1</dim>
2594 <dim>64</dim>
2595 <dim>80</dim>
2596 <dim>136</dim>
2597 </port>
2598 <port id="1" precision="FP32">
2599 <dim>16</dim>
2600 <dim>64</dim>
2601 <dim>1</dim>
2602 <dim>1</dim>
2603 </port>
2604 </input>
2605 <output>
2606 <port id="2" precision="FP32">
2607 <dim>1</dim>
2608 <dim>16</dim>
2609 <dim>80</dim>
2610 <dim>136</dim>
2611 </port>
2612 </output>
2613 </layer>
2614 <layer id="150" name="data_add_2383323838" type="Const" version="opset1">
2615 <data element_type="f32" offset="51676" shape="1, 16, 1, 1" size="64"/>
2616 <output>
2617 <port id="0" precision="FP32">
2618 <dim>1</dim>
2619 <dim>16</dim>
2620 <dim>1</dim>
2621 <dim>1</dim>
2622 </port>
2623 </output>
2624 </layer>
2625 <layer id="151" name="bottleneck2_3/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
2626 <data auto_broadcast="numpy"/>
2627 <input>
2628 <port id="0" precision="FP32">
2629 <dim>1</dim>
2630 <dim>16</dim>
2631 <dim>80</dim>
2632 <dim>136</dim>
2633 </port>
2634 <port id="1" precision="FP32">
2635 <dim>1</dim>
2636 <dim>16</dim>
2637 <dim>1</dim>
2638 <dim>1</dim>
2639 </port>
2640 </input>
2641 <output>
2642 <port id="2" names="bottleneck2_3/dim_red/conv" precision="FP32">
2643 <dim>1</dim>
2644 <dim>16</dim>
2645 <dim>80</dim>
2646 <dim>136</dim>
2647 </port>
2648 </output>
2649 </layer>
2650 <layer id="152" name="bottleneck2_3/dim_red/fn/weights3096440040" type="Const" version="opset1">
2651 <data element_type="f32" offset="4664" shape="1" size="4"/>
2652 <output>
2653 <port id="0" precision="FP32">
2654 <dim>1</dim>
2655 </port>
2656 </output>
2657 </layer>
2658 <layer id="153" name="bottleneck2_3/dim_red/fn" type="PReLU" version="opset1">
2659 <input>
2660 <port id="0" precision="FP32">
2661 <dim>1</dim>
2662 <dim>16</dim>
2663 <dim>80</dim>
2664 <dim>136</dim>
2665 </port>
2666 <port id="1" precision="FP32">
2667 <dim>1</dim>
2668 </port>
2669 </input>
2670 <output>
2671 <port id="2" names="bottleneck2_3/dim_red/conv" precision="FP32">
2672 <dim>1</dim>
2673 <dim>16</dim>
2674 <dim>80</dim>
2675 <dim>136</dim>
2676 </port>
2677 </output>
2678 </layer>
2679 <layer id="154" name="bottleneck2_3/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
2680 <data element_type="f32" offset="51740" shape="16, 1, 1, 3, 3" size="576"/>
2681 <output>
2682 <port id="0" precision="FP32">
2683 <dim>16</dim>
2684 <dim>1</dim>
2685 <dim>1</dim>
2686 <dim>3</dim>
2687 <dim>3</dim>
2688 </port>
2689 </output>
2690 </layer>
2691 <layer id="155" name="bottleneck2_3/inner/dw1/conv" type="GroupConvolution" version="opset1">
2692 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
2693 <input>
2694 <port id="0" precision="FP32">
2695 <dim>1</dim>
2696 <dim>16</dim>
2697 <dim>80</dim>
2698 <dim>136</dim>
2699 </port>
2700 <port id="1" precision="FP32">
2701 <dim>16</dim>
2702 <dim>1</dim>
2703 <dim>1</dim>
2704 <dim>3</dim>
2705 <dim>3</dim>
2706 </port>
2707 </input>
2708 <output>
2709 <port id="2" precision="FP32">
2710 <dim>1</dim>
2711 <dim>16</dim>
2712 <dim>80</dim>
2713 <dim>136</dim>
2714 </port>
2715 </output>
2716 </layer>
2717 <layer id="156" name="data_add_2384123846" type="Const" version="opset1">
2718 <data element_type="f32" offset="52316" shape="1, 16, 1, 1" size="64"/>
2719 <output>
2720 <port id="0" precision="FP32">
2721 <dim>1</dim>
2722 <dim>16</dim>
2723 <dim>1</dim>
2724 <dim>1</dim>
2725 </port>
2726 </output>
2727 </layer>
2728 <layer id="157" name="bottleneck2_3/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
2729 <data auto_broadcast="numpy"/>
2730 <input>
2731 <port id="0" precision="FP32">
2732 <dim>1</dim>
2733 <dim>16</dim>
2734 <dim>80</dim>
2735 <dim>136</dim>
2736 </port>
2737 <port id="1" precision="FP32">
2738 <dim>1</dim>
2739 <dim>16</dim>
2740 <dim>1</dim>
2741 <dim>1</dim>
2742 </port>
2743 </input>
2744 <output>
2745 <port id="2" names="bottleneck2_3/inner/dw1/conv" precision="FP32">
2746 <dim>1</dim>
2747 <dim>16</dim>
2748 <dim>80</dim>
2749 <dim>136</dim>
2750 </port>
2751 </output>
2752 </layer>
2753 <layer id="158" name="bottleneck2_3/inner/dw1/fn/weights3080039752" type="Const" version="opset1">
2754 <data element_type="f32" offset="4664" shape="1" size="4"/>
2755 <output>
2756 <port id="0" precision="FP32">
2757 <dim>1</dim>
2758 </port>
2759 </output>
2760 </layer>
2761 <layer id="159" name="bottleneck2_3/inner/dw1/fn" type="PReLU" version="opset1">
2762 <input>
2763 <port id="0" precision="FP32">
2764 <dim>1</dim>
2765 <dim>16</dim>
2766 <dim>80</dim>
2767 <dim>136</dim>
2768 </port>
2769 <port id="1" precision="FP32">
2770 <dim>1</dim>
2771 </port>
2772 </input>
2773 <output>
2774 <port id="2" names="bottleneck2_3/inner/dw1/conv" precision="FP32">
2775 <dim>1</dim>
2776 <dim>16</dim>
2777 <dim>80</dim>
2778 <dim>136</dim>
2779 </port>
2780 </output>
2781 </layer>
2782 <layer id="160" name="bottleneck2_3/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
2783 <data element_type="f32" offset="52380" shape="64, 16, 1, 1" size="4096"/>
2784 <output>
2785 <port id="0" precision="FP32">
2786 <dim>64</dim>
2787 <dim>16</dim>
2788 <dim>1</dim>
2789 <dim>1</dim>
2790 </port>
2791 </output>
2792 </layer>
2793 <layer id="161" name="bottleneck2_3/dim_inc/conv" type="Convolution" version="opset1">
2794 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
2795 <input>
2796 <port id="0" precision="FP32">
2797 <dim>1</dim>
2798 <dim>16</dim>
2799 <dim>80</dim>
2800 <dim>136</dim>
2801 </port>
2802 <port id="1" precision="FP32">
2803 <dim>64</dim>
2804 <dim>16</dim>
2805 <dim>1</dim>
2806 <dim>1</dim>
2807 </port>
2808 </input>
2809 <output>
2810 <port id="2" precision="FP32">
2811 <dim>1</dim>
2812 <dim>64</dim>
2813 <dim>80</dim>
2814 <dim>136</dim>
2815 </port>
2816 </output>
2817 </layer>
2818 <layer id="162" name="data_add_2384923854" type="Const" version="opset1">
2819 <data element_type="f32" offset="56476" shape="1, 64, 1, 1" size="256"/>
2820 <output>
2821 <port id="0" precision="FP32">
2822 <dim>1</dim>
2823 <dim>64</dim>
2824 <dim>1</dim>
2825 <dim>1</dim>
2826 </port>
2827 </output>
2828 </layer>
2829 <layer id="163" name="bottleneck2_3/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
2830 <data auto_broadcast="numpy"/>
2831 <input>
2832 <port id="0" precision="FP32">
2833 <dim>1</dim>
2834 <dim>64</dim>
2835 <dim>80</dim>
2836 <dim>136</dim>
2837 </port>
2838 <port id="1" precision="FP32">
2839 <dim>1</dim>
2840 <dim>64</dim>
2841 <dim>1</dim>
2842 <dim>1</dim>
2843 </port>
2844 </input>
2845 <output>
2846 <port id="2" names="bottleneck2_3/dim_inc/conv" precision="FP32">
2847 <dim>1</dim>
2848 <dim>64</dim>
2849 <dim>80</dim>
2850 <dim>136</dim>
2851 </port>
2852 </output>
2853 </layer>
2854 <layer id="164" name="bottleneck2_3/add" type="Add" version="opset1">
2855 <data auto_broadcast="numpy"/>
2856 <input>
2857 <port id="0" precision="FP32">
2858 <dim>1</dim>
2859 <dim>64</dim>
2860 <dim>80</dim>
2861 <dim>136</dim>
2862 </port>
2863 <port id="1" precision="FP32">
2864 <dim>1</dim>
2865 <dim>64</dim>
2866 <dim>80</dim>
2867 <dim>136</dim>
2868 </port>
2869 </input>
2870 <output>
2871 <port id="2" names="bottleneck2_3/add" precision="FP32">
2872 <dim>1</dim>
2873 <dim>64</dim>
2874 <dim>80</dim>
2875 <dim>136</dim>
2876 </port>
2877 </output>
2878 </layer>
2879 <layer id="165" name="bottleneck2_3/fn/weights3076840016" type="Const" version="opset1">
2880 <data element_type="f32" offset="4664" shape="1" size="4"/>
2881 <output>
2882 <port id="0" precision="FP32">
2883 <dim>1</dim>
2884 </port>
2885 </output>
2886 </layer>
2887 <layer id="166" name="bottleneck2_3/fn" type="PReLU" version="opset1">
2888 <input>
2889 <port id="0" precision="FP32">
2890 <dim>1</dim>
2891 <dim>64</dim>
2892 <dim>80</dim>
2893 <dim>136</dim>
2894 </port>
2895 <port id="1" precision="FP32">
2896 <dim>1</dim>
2897 </port>
2898 </input>
2899 <output>
2900 <port id="2" names="bottleneck2_3/add" precision="FP32">
2901 <dim>1</dim>
2902 <dim>64</dim>
2903 <dim>80</dim>
2904 <dim>136</dim>
2905 </port>
2906 </output>
2907 </layer>
2908 <layer id="167" name="bottleneck2_4/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
2909 <data element_type="f32" offset="56732" shape="16, 64, 1, 1" size="4096"/>
2910 <output>
2911 <port id="0" precision="FP32">
2912 <dim>16</dim>
2913 <dim>64</dim>
2914 <dim>1</dim>
2915 <dim>1</dim>
2916 </port>
2917 </output>
2918 </layer>
2919 <layer id="168" name="bottleneck2_4/dim_red/conv" type="Convolution" version="opset1">
2920 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
2921 <input>
2922 <port id="0" precision="FP32">
2923 <dim>1</dim>
2924 <dim>64</dim>
2925 <dim>80</dim>
2926 <dim>136</dim>
2927 </port>
2928 <port id="1" precision="FP32">
2929 <dim>16</dim>
2930 <dim>64</dim>
2931 <dim>1</dim>
2932 <dim>1</dim>
2933 </port>
2934 </input>
2935 <output>
2936 <port id="2" precision="FP32">
2937 <dim>1</dim>
2938 <dim>16</dim>
2939 <dim>80</dim>
2940 <dim>136</dim>
2941 </port>
2942 </output>
2943 </layer>
2944 <layer id="169" name="data_add_2385723862" type="Const" version="opset1">
2945 <data element_type="f32" offset="60828" shape="1, 16, 1, 1" size="64"/>
2946 <output>
2947 <port id="0" precision="FP32">
2948 <dim>1</dim>
2949 <dim>16</dim>
2950 <dim>1</dim>
2951 <dim>1</dim>
2952 </port>
2953 </output>
2954 </layer>
2955 <layer id="170" name="bottleneck2_4/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
2956 <data auto_broadcast="numpy"/>
2957 <input>
2958 <port id="0" precision="FP32">
2959 <dim>1</dim>
2960 <dim>16</dim>
2961 <dim>80</dim>
2962 <dim>136</dim>
2963 </port>
2964 <port id="1" precision="FP32">
2965 <dim>1</dim>
2966 <dim>16</dim>
2967 <dim>1</dim>
2968 <dim>1</dim>
2969 </port>
2970 </input>
2971 <output>
2972 <port id="2" names="bottleneck2_4/dim_red/conv" precision="FP32">
2973 <dim>1</dim>
2974 <dim>16</dim>
2975 <dim>80</dim>
2976 <dim>136</dim>
2977 </port>
2978 </output>
2979 </layer>
2980 <layer id="171" name="bottleneck2_4/dim_red/fn/weights3085640454" type="Const" version="opset1">
2981 <data element_type="f32" offset="4664" shape="1" size="4"/>
2982 <output>
2983 <port id="0" precision="FP32">
2984 <dim>1</dim>
2985 </port>
2986 </output>
2987 </layer>
2988 <layer id="172" name="bottleneck2_4/dim_red/fn" type="PReLU" version="opset1">
2989 <input>
2990 <port id="0" precision="FP32">
2991 <dim>1</dim>
2992 <dim>16</dim>
2993 <dim>80</dim>
2994 <dim>136</dim>
2995 </port>
2996 <port id="1" precision="FP32">
2997 <dim>1</dim>
2998 </port>
2999 </input>
3000 <output>
3001 <port id="2" names="bottleneck2_4/dim_red/conv" precision="FP32">
3002 <dim>1</dim>
3003 <dim>16</dim>
3004 <dim>80</dim>
3005 <dim>136</dim>
3006 </port>
3007 </output>
3008 </layer>
3009 <layer id="173" name="bottleneck2_4/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
3010 <data element_type="f32" offset="60892" shape="16, 1, 1, 3, 3" size="576"/>
3011 <output>
3012 <port id="0" precision="FP32">
3013 <dim>16</dim>
3014 <dim>1</dim>
3015 <dim>1</dim>
3016 <dim>3</dim>
3017 <dim>3</dim>
3018 </port>
3019 </output>
3020 </layer>
3021 <layer id="174" name="bottleneck2_4/inner/dw1/conv" type="GroupConvolution" version="opset1">
3022 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
3023 <input>
3024 <port id="0" precision="FP32">
3025 <dim>1</dim>
3026 <dim>16</dim>
3027 <dim>80</dim>
3028 <dim>136</dim>
3029 </port>
3030 <port id="1" precision="FP32">
3031 <dim>16</dim>
3032 <dim>1</dim>
3033 <dim>1</dim>
3034 <dim>3</dim>
3035 <dim>3</dim>
3036 </port>
3037 </input>
3038 <output>
3039 <port id="2" precision="FP32">
3040 <dim>1</dim>
3041 <dim>16</dim>
3042 <dim>80</dim>
3043 <dim>136</dim>
3044 </port>
3045 </output>
3046 </layer>
3047 <layer id="175" name="data_add_2386523870" type="Const" version="opset1">
3048 <data element_type="f32" offset="61468" shape="1, 16, 1, 1" size="64"/>
3049 <output>
3050 <port id="0" precision="FP32">
3051 <dim>1</dim>
3052 <dim>16</dim>
3053 <dim>1</dim>
3054 <dim>1</dim>
3055 </port>
3056 </output>
3057 </layer>
3058 <layer id="176" name="bottleneck2_4/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
3059 <data auto_broadcast="numpy"/>
3060 <input>
3061 <port id="0" precision="FP32">
3062 <dim>1</dim>
3063 <dim>16</dim>
3064 <dim>80</dim>
3065 <dim>136</dim>
3066 </port>
3067 <port id="1" precision="FP32">
3068 <dim>1</dim>
3069 <dim>16</dim>
3070 <dim>1</dim>
3071 <dim>1</dim>
3072 </port>
3073 </input>
3074 <output>
3075 <port id="2" names="bottleneck2_4/inner/dw1/conv" precision="FP32">
3076 <dim>1</dim>
3077 <dim>16</dim>
3078 <dim>80</dim>
3079 <dim>136</dim>
3080 </port>
3081 </output>
3082 </layer>
3083 <layer id="177" name="bottleneck2_4/inner/dw1/fn/weights3082039965" type="Const" version="opset1">
3084 <data element_type="f32" offset="4664" shape="1" size="4"/>
3085 <output>
3086 <port id="0" precision="FP32">
3087 <dim>1</dim>
3088 </port>
3089 </output>
3090 </layer>
3091 <layer id="178" name="bottleneck2_4/inner/dw1/fn" type="PReLU" version="opset1">
3092 <input>
3093 <port id="0" precision="FP32">
3094 <dim>1</dim>
3095 <dim>16</dim>
3096 <dim>80</dim>
3097 <dim>136</dim>
3098 </port>
3099 <port id="1" precision="FP32">
3100 <dim>1</dim>
3101 </port>
3102 </input>
3103 <output>
3104 <port id="2" names="bottleneck2_4/inner/dw1/conv" precision="FP32">
3105 <dim>1</dim>
3106 <dim>16</dim>
3107 <dim>80</dim>
3108 <dim>136</dim>
3109 </port>
3110 </output>
3111 </layer>
3112 <layer id="179" name="bottleneck2_4/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
3113 <data element_type="f32" offset="61532" shape="64, 16, 1, 1" size="4096"/>
3114 <output>
3115 <port id="0" precision="FP32">
3116 <dim>64</dim>
3117 <dim>16</dim>
3118 <dim>1</dim>
3119 <dim>1</dim>
3120 </port>
3121 </output>
3122 </layer>
3123 <layer id="180" name="bottleneck2_4/dim_inc/conv" type="Convolution" version="opset1">
3124 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
3125 <input>
3126 <port id="0" precision="FP32">
3127 <dim>1</dim>
3128 <dim>16</dim>
3129 <dim>80</dim>
3130 <dim>136</dim>
3131 </port>
3132 <port id="1" precision="FP32">
3133 <dim>64</dim>
3134 <dim>16</dim>
3135 <dim>1</dim>
3136 <dim>1</dim>
3137 </port>
3138 </input>
3139 <output>
3140 <port id="2" precision="FP32">
3141 <dim>1</dim>
3142 <dim>64</dim>
3143 <dim>80</dim>
3144 <dim>136</dim>
3145 </port>
3146 </output>
3147 </layer>
3148 <layer id="181" name="data_add_2387323878" type="Const" version="opset1">
3149 <data element_type="f32" offset="65628" shape="1, 64, 1, 1" size="256"/>
3150 <output>
3151 <port id="0" precision="FP32">
3152 <dim>1</dim>
3153 <dim>64</dim>
3154 <dim>1</dim>
3155 <dim>1</dim>
3156 </port>
3157 </output>
3158 </layer>
3159 <layer id="182" name="bottleneck2_4/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
3160 <data auto_broadcast="numpy"/>
3161 <input>
3162 <port id="0" precision="FP32">
3163 <dim>1</dim>
3164 <dim>64</dim>
3165 <dim>80</dim>
3166 <dim>136</dim>
3167 </port>
3168 <port id="1" precision="FP32">
3169 <dim>1</dim>
3170 <dim>64</dim>
3171 <dim>1</dim>
3172 <dim>1</dim>
3173 </port>
3174 </input>
3175 <output>
3176 <port id="2" names="bottleneck2_4/dim_inc/conv" precision="FP32">
3177 <dim>1</dim>
3178 <dim>64</dim>
3179 <dim>80</dim>
3180 <dim>136</dim>
3181 </port>
3182 </output>
3183 </layer>
3184 <layer id="183" name="bottleneck2_4/add" type="Add" version="opset1">
3185 <data auto_broadcast="numpy"/>
3186 <input>
3187 <port id="0" precision="FP32">
3188 <dim>1</dim>
3189 <dim>64</dim>
3190 <dim>80</dim>
3191 <dim>136</dim>
3192 </port>
3193 <port id="1" precision="FP32">
3194 <dim>1</dim>
3195 <dim>64</dim>
3196 <dim>80</dim>
3197 <dim>136</dim>
3198 </port>
3199 </input>
3200 <output>
3201 <port id="2" names="bottleneck2_4/add" precision="FP32">
3202 <dim>1</dim>
3203 <dim>64</dim>
3204 <dim>80</dim>
3205 <dim>136</dim>
3206 </port>
3207 </output>
3208 </layer>
3209 <layer id="184" name="bottleneck2_4/fn/weights3106840703" type="Const" version="opset1">
3210 <data element_type="f32" offset="4664" shape="1" size="4"/>
3211 <output>
3212 <port id="0" precision="FP32">
3213 <dim>1</dim>
3214 </port>
3215 </output>
3216 </layer>
3217 <layer id="185" name="bottleneck2_4/fn" type="PReLU" version="opset1">
3218 <input>
3219 <port id="0" precision="FP32">
3220 <dim>1</dim>
3221 <dim>64</dim>
3222 <dim>80</dim>
3223 <dim>136</dim>
3224 </port>
3225 <port id="1" precision="FP32">
3226 <dim>1</dim>
3227 </port>
3228 </input>
3229 <output>
3230 <port id="2" names="bottleneck2_4/add" precision="FP32">
3231 <dim>1</dim>
3232 <dim>64</dim>
3233 <dim>80</dim>
3234 <dim>136</dim>
3235 </port>
3236 </output>
3237 </layer>
3238 <layer id="186" name="bottleneck2_5/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
3239 <data element_type="f32" offset="65884" shape="16, 64, 1, 1" size="4096"/>
3240 <output>
3241 <port id="0" precision="FP32">
3242 <dim>16</dim>
3243 <dim>64</dim>
3244 <dim>1</dim>
3245 <dim>1</dim>
3246 </port>
3247 </output>
3248 </layer>
3249 <layer id="187" name="bottleneck2_5/dim_red/conv" type="Convolution" version="opset1">
3250 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
3251 <input>
3252 <port id="0" precision="FP32">
3253 <dim>1</dim>
3254 <dim>64</dim>
3255 <dim>80</dim>
3256 <dim>136</dim>
3257 </port>
3258 <port id="1" precision="FP32">
3259 <dim>16</dim>
3260 <dim>64</dim>
3261 <dim>1</dim>
3262 <dim>1</dim>
3263 </port>
3264 </input>
3265 <output>
3266 <port id="2" precision="FP32">
3267 <dim>1</dim>
3268 <dim>16</dim>
3269 <dim>80</dim>
3270 <dim>136</dim>
3271 </port>
3272 </output>
3273 </layer>
3274 <layer id="188" name="data_add_2388123886" type="Const" version="opset1">
3275 <data element_type="f32" offset="69980" shape="1, 16, 1, 1" size="64"/>
3276 <output>
3277 <port id="0" precision="FP32">
3278 <dim>1</dim>
3279 <dim>16</dim>
3280 <dim>1</dim>
3281 <dim>1</dim>
3282 </port>
3283 </output>
3284 </layer>
3285 <layer id="189" name="bottleneck2_5/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
3286 <data auto_broadcast="numpy"/>
3287 <input>
3288 <port id="0" precision="FP32">
3289 <dim>1</dim>
3290 <dim>16</dim>
3291 <dim>80</dim>
3292 <dim>136</dim>
3293 </port>
3294 <port id="1" precision="FP32">
3295 <dim>1</dim>
3296 <dim>16</dim>
3297 <dim>1</dim>
3298 <dim>1</dim>
3299 </port>
3300 </input>
3301 <output>
3302 <port id="2" names="bottleneck2_5/dim_red/conv" precision="FP32">
3303 <dim>1</dim>
3304 <dim>16</dim>
3305 <dim>80</dim>
3306 <dim>136</dim>
3307 </port>
3308 </output>
3309 </layer>
3310 <layer id="190" name="bottleneck2_5/dim_red/fn/weights3082839890" type="Const" version="opset1">
3311 <data element_type="f32" offset="4664" shape="1" size="4"/>
3312 <output>
3313 <port id="0" precision="FP32">
3314 <dim>1</dim>
3315 </port>
3316 </output>
3317 </layer>
3318 <layer id="191" name="bottleneck2_5/dim_red/fn" type="PReLU" version="opset1">
3319 <input>
3320 <port id="0" precision="FP32">
3321 <dim>1</dim>
3322 <dim>16</dim>
3323 <dim>80</dim>
3324 <dim>136</dim>
3325 </port>
3326 <port id="1" precision="FP32">
3327 <dim>1</dim>
3328 </port>
3329 </input>
3330 <output>
3331 <port id="2" names="bottleneck2_5/dim_red/conv" precision="FP32">
3332 <dim>1</dim>
3333 <dim>16</dim>
3334 <dim>80</dim>
3335 <dim>136</dim>
3336 </port>
3337 </output>
3338 </layer>
3339 <layer id="192" name="bottleneck2_5/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
3340 <data element_type="f32" offset="70044" shape="16, 1, 1, 3, 3" size="576"/>
3341 <output>
3342 <port id="0" precision="FP32">
3343 <dim>16</dim>
3344 <dim>1</dim>
3345 <dim>1</dim>
3346 <dim>3</dim>
3347 <dim>3</dim>
3348 </port>
3349 </output>
3350 </layer>
3351 <layer id="193" name="bottleneck2_5/inner/dw1/conv" type="GroupConvolution" version="opset1">
3352 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
3353 <input>
3354 <port id="0" precision="FP32">
3355 <dim>1</dim>
3356 <dim>16</dim>
3357 <dim>80</dim>
3358 <dim>136</dim>
3359 </port>
3360 <port id="1" precision="FP32">
3361 <dim>16</dim>
3362 <dim>1</dim>
3363 <dim>1</dim>
3364 <dim>3</dim>
3365 <dim>3</dim>
3366 </port>
3367 </input>
3368 <output>
3369 <port id="2" precision="FP32">
3370 <dim>1</dim>
3371 <dim>16</dim>
3372 <dim>80</dim>
3373 <dim>136</dim>
3374 </port>
3375 </output>
3376 </layer>
3377 <layer id="194" name="data_add_2388923894" type="Const" version="opset1">
3378 <data element_type="f32" offset="70620" shape="1, 16, 1, 1" size="64"/>
3379 <output>
3380 <port id="0" precision="FP32">
3381 <dim>1</dim>
3382 <dim>16</dim>
3383 <dim>1</dim>
3384 <dim>1</dim>
3385 </port>
3386 </output>
3387 </layer>
3388 <layer id="195" name="bottleneck2_5/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
3389 <data auto_broadcast="numpy"/>
3390 <input>
3391 <port id="0" precision="FP32">
3392 <dim>1</dim>
3393 <dim>16</dim>
3394 <dim>80</dim>
3395 <dim>136</dim>
3396 </port>
3397 <port id="1" precision="FP32">
3398 <dim>1</dim>
3399 <dim>16</dim>
3400 <dim>1</dim>
3401 <dim>1</dim>
3402 </port>
3403 </input>
3404 <output>
3405 <port id="2" names="bottleneck2_5/inner/dw1/conv" precision="FP32">
3406 <dim>1</dim>
3407 <dim>16</dim>
3408 <dim>80</dim>
3409 <dim>136</dim>
3410 </port>
3411 </output>
3412 </layer>
3413 <layer id="196" name="bottleneck2_5/inner/dw1/fn/weights3088039707" type="Const" version="opset1">
3414 <data element_type="f32" offset="4664" shape="1" size="4"/>
3415 <output>
3416 <port id="0" precision="FP32">
3417 <dim>1</dim>
3418 </port>
3419 </output>
3420 </layer>
3421 <layer id="197" name="bottleneck2_5/inner/dw1/fn" type="PReLU" version="opset1">
3422 <input>
3423 <port id="0" precision="FP32">
3424 <dim>1</dim>
3425 <dim>16</dim>
3426 <dim>80</dim>
3427 <dim>136</dim>
3428 </port>
3429 <port id="1" precision="FP32">
3430 <dim>1</dim>
3431 </port>
3432 </input>
3433 <output>
3434 <port id="2" names="bottleneck2_5/inner/dw1/conv" precision="FP32">
3435 <dim>1</dim>
3436 <dim>16</dim>
3437 <dim>80</dim>
3438 <dim>136</dim>
3439 </port>
3440 </output>
3441 </layer>
3442 <layer id="198" name="bottleneck2_5/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
3443 <data element_type="f32" offset="70684" shape="64, 16, 1, 1" size="4096"/>
3444 <output>
3445 <port id="0" precision="FP32">
3446 <dim>64</dim>
3447 <dim>16</dim>
3448 <dim>1</dim>
3449 <dim>1</dim>
3450 </port>
3451 </output>
3452 </layer>
3453 <layer id="199" name="bottleneck2_5/dim_inc/conv" type="Convolution" version="opset1">
3454 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
3455 <input>
3456 <port id="0" precision="FP32">
3457 <dim>1</dim>
3458 <dim>16</dim>
3459 <dim>80</dim>
3460 <dim>136</dim>
3461 </port>
3462 <port id="1" precision="FP32">
3463 <dim>64</dim>
3464 <dim>16</dim>
3465 <dim>1</dim>
3466 <dim>1</dim>
3467 </port>
3468 </input>
3469 <output>
3470 <port id="2" precision="FP32">
3471 <dim>1</dim>
3472 <dim>64</dim>
3473 <dim>80</dim>
3474 <dim>136</dim>
3475 </port>
3476 </output>
3477 </layer>
3478 <layer id="200" name="data_add_2389723902" type="Const" version="opset1">
3479 <data element_type="f32" offset="74780" shape="1, 64, 1, 1" size="256"/>
3480 <output>
3481 <port id="0" precision="FP32">
3482 <dim>1</dim>
3483 <dim>64</dim>
3484 <dim>1</dim>
3485 <dim>1</dim>
3486 </port>
3487 </output>
3488 </layer>
3489 <layer id="201" name="bottleneck2_5/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
3490 <data auto_broadcast="numpy"/>
3491 <input>
3492 <port id="0" precision="FP32">
3493 <dim>1</dim>
3494 <dim>64</dim>
3495 <dim>80</dim>
3496 <dim>136</dim>
3497 </port>
3498 <port id="1" precision="FP32">
3499 <dim>1</dim>
3500 <dim>64</dim>
3501 <dim>1</dim>
3502 <dim>1</dim>
3503 </port>
3504 </input>
3505 <output>
3506 <port id="2" names="bottleneck2_5/dim_inc/conv" precision="FP32">
3507 <dim>1</dim>
3508 <dim>64</dim>
3509 <dim>80</dim>
3510 <dim>136</dim>
3511 </port>
3512 </output>
3513 </layer>
3514 <layer id="202" name="bottleneck2_5/add" type="Add" version="opset1">
3515 <data auto_broadcast="numpy"/>
3516 <input>
3517 <port id="0" precision="FP32">
3518 <dim>1</dim>
3519 <dim>64</dim>
3520 <dim>80</dim>
3521 <dim>136</dim>
3522 </port>
3523 <port id="1" precision="FP32">
3524 <dim>1</dim>
3525 <dim>64</dim>
3526 <dim>80</dim>
3527 <dim>136</dim>
3528 </port>
3529 </input>
3530 <output>
3531 <port id="2" names="bottleneck2_5/add" precision="FP32">
3532 <dim>1</dim>
3533 <dim>64</dim>
3534 <dim>80</dim>
3535 <dim>136</dim>
3536 </port>
3537 </output>
3538 </layer>
3539 <layer id="203" name="bottleneck2_5/fn/weights3085239683" type="Const" version="opset1">
3540 <data element_type="f32" offset="4664" shape="1" size="4"/>
3541 <output>
3542 <port id="0" precision="FP32">
3543 <dim>1</dim>
3544 </port>
3545 </output>
3546 </layer>
3547 <layer id="204" name="bottleneck2_5/fn" type="PReLU" version="opset1">
3548 <input>
3549 <port id="0" precision="FP32">
3550 <dim>1</dim>
3551 <dim>64</dim>
3552 <dim>80</dim>
3553 <dim>136</dim>
3554 </port>
3555 <port id="1" precision="FP32">
3556 <dim>1</dim>
3557 </port>
3558 </input>
3559 <output>
3560 <port id="2" names="bottleneck2_5/add" precision="FP32">
3561 <dim>1</dim>
3562 <dim>64</dim>
3563 <dim>80</dim>
3564 <dim>136</dim>
3565 </port>
3566 </output>
3567 </layer>
3568 <layer id="205" name="bottleneck2_6/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
3569 <data element_type="f32" offset="75036" shape="16, 64, 1, 1" size="4096"/>
3570 <output>
3571 <port id="0" precision="FP32">
3572 <dim>16</dim>
3573 <dim>64</dim>
3574 <dim>1</dim>
3575 <dim>1</dim>
3576 </port>
3577 </output>
3578 </layer>
3579 <layer id="206" name="bottleneck2_6/dim_red/conv" type="Convolution" version="opset1">
3580 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
3581 <input>
3582 <port id="0" precision="FP32">
3583 <dim>1</dim>
3584 <dim>64</dim>
3585 <dim>80</dim>
3586 <dim>136</dim>
3587 </port>
3588 <port id="1" precision="FP32">
3589 <dim>16</dim>
3590 <dim>64</dim>
3591 <dim>1</dim>
3592 <dim>1</dim>
3593 </port>
3594 </input>
3595 <output>
3596 <port id="2" precision="FP32">
3597 <dim>1</dim>
3598 <dim>16</dim>
3599 <dim>80</dim>
3600 <dim>136</dim>
3601 </port>
3602 </output>
3603 </layer>
3604 <layer id="207" name="data_add_2390523910" type="Const" version="opset1">
3605 <data element_type="f32" offset="79132" shape="1, 16, 1, 1" size="64"/>
3606 <output>
3607 <port id="0" precision="FP32">
3608 <dim>1</dim>
3609 <dim>16</dim>
3610 <dim>1</dim>
3611 <dim>1</dim>
3612 </port>
3613 </output>
3614 </layer>
3615 <layer id="208" name="bottleneck2_6/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
3616 <data auto_broadcast="numpy"/>
3617 <input>
3618 <port id="0" precision="FP32">
3619 <dim>1</dim>
3620 <dim>16</dim>
3621 <dim>80</dim>
3622 <dim>136</dim>
3623 </port>
3624 <port id="1" precision="FP32">
3625 <dim>1</dim>
3626 <dim>16</dim>
3627 <dim>1</dim>
3628 <dim>1</dim>
3629 </port>
3630 </input>
3631 <output>
3632 <port id="2" names="bottleneck2_6/dim_red/conv" precision="FP32">
3633 <dim>1</dim>
3634 <dim>16</dim>
3635 <dim>80</dim>
3636 <dim>136</dim>
3637 </port>
3638 </output>
3639 </layer>
3640 <layer id="209" name="bottleneck2_6/dim_red/fn/weights3097240064" type="Const" version="opset1">
3641 <data element_type="f32" offset="4664" shape="1" size="4"/>
3642 <output>
3643 <port id="0" precision="FP32">
3644 <dim>1</dim>
3645 </port>
3646 </output>
3647 </layer>
3648 <layer id="210" name="bottleneck2_6/dim_red/fn" type="PReLU" version="opset1">
3649 <input>
3650 <port id="0" precision="FP32">
3651 <dim>1</dim>
3652 <dim>16</dim>
3653 <dim>80</dim>
3654 <dim>136</dim>
3655 </port>
3656 <port id="1" precision="FP32">
3657 <dim>1</dim>
3658 </port>
3659 </input>
3660 <output>
3661 <port id="2" names="bottleneck2_6/dim_red/conv" precision="FP32">
3662 <dim>1</dim>
3663 <dim>16</dim>
3664 <dim>80</dim>
3665 <dim>136</dim>
3666 </port>
3667 </output>
3668 </layer>
3669 <layer id="211" name="bottleneck2_6/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
3670 <data element_type="f32" offset="79196" shape="16, 1, 1, 3, 3" size="576"/>
3671 <output>
3672 <port id="0" precision="FP32">
3673 <dim>16</dim>
3674 <dim>1</dim>
3675 <dim>1</dim>
3676 <dim>3</dim>
3677 <dim>3</dim>
3678 </port>
3679 </output>
3680 </layer>
3681 <layer id="212" name="bottleneck2_6/inner/dw1/conv" type="GroupConvolution" version="opset1">
3682 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
3683 <input>
3684 <port id="0" precision="FP32">
3685 <dim>1</dim>
3686 <dim>16</dim>
3687 <dim>80</dim>
3688 <dim>136</dim>
3689 </port>
3690 <port id="1" precision="FP32">
3691 <dim>16</dim>
3692 <dim>1</dim>
3693 <dim>1</dim>
3694 <dim>3</dim>
3695 <dim>3</dim>
3696 </port>
3697 </input>
3698 <output>
3699 <port id="2" precision="FP32">
3700 <dim>1</dim>
3701 <dim>16</dim>
3702 <dim>80</dim>
3703 <dim>136</dim>
3704 </port>
3705 </output>
3706 </layer>
3707 <layer id="213" name="data_add_2391323918" type="Const" version="opset1">
3708 <data element_type="f32" offset="79772" shape="1, 16, 1, 1" size="64"/>
3709 <output>
3710 <port id="0" precision="FP32">
3711 <dim>1</dim>
3712 <dim>16</dim>
3713 <dim>1</dim>
3714 <dim>1</dim>
3715 </port>
3716 </output>
3717 </layer>
3718 <layer id="214" name="bottleneck2_6/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
3719 <data auto_broadcast="numpy"/>
3720 <input>
3721 <port id="0" precision="FP32">
3722 <dim>1</dim>
3723 <dim>16</dim>
3724 <dim>80</dim>
3725 <dim>136</dim>
3726 </port>
3727 <port id="1" precision="FP32">
3728 <dim>1</dim>
3729 <dim>16</dim>
3730 <dim>1</dim>
3731 <dim>1</dim>
3732 </port>
3733 </input>
3734 <output>
3735 <port id="2" names="bottleneck2_6/inner/dw1/conv" precision="FP32">
3736 <dim>1</dim>
3737 <dim>16</dim>
3738 <dim>80</dim>
3739 <dim>136</dim>
3740 </port>
3741 </output>
3742 </layer>
3743 <layer id="215" name="bottleneck2_6/inner/dw1/fn/weights3114439989" type="Const" version="opset1">
3744 <data element_type="f32" offset="4664" shape="1" size="4"/>
3745 <output>
3746 <port id="0" precision="FP32">
3747 <dim>1</dim>
3748 </port>
3749 </output>
3750 </layer>
3751 <layer id="216" name="bottleneck2_6/inner/dw1/fn" type="PReLU" version="opset1">
3752 <input>
3753 <port id="0" precision="FP32">
3754 <dim>1</dim>
3755 <dim>16</dim>
3756 <dim>80</dim>
3757 <dim>136</dim>
3758 </port>
3759 <port id="1" precision="FP32">
3760 <dim>1</dim>
3761 </port>
3762 </input>
3763 <output>
3764 <port id="2" names="bottleneck2_6/inner/dw1/conv" precision="FP32">
3765 <dim>1</dim>
3766 <dim>16</dim>
3767 <dim>80</dim>
3768 <dim>136</dim>
3769 </port>
3770 </output>
3771 </layer>
3772 <layer id="217" name="bottleneck2_6/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
3773 <data element_type="f32" offset="79836" shape="64, 16, 1, 1" size="4096"/>
3774 <output>
3775 <port id="0" precision="FP32">
3776 <dim>64</dim>
3777 <dim>16</dim>
3778 <dim>1</dim>
3779 <dim>1</dim>
3780 </port>
3781 </output>
3782 </layer>
3783 <layer id="218" name="bottleneck2_6/dim_inc/conv" type="Convolution" version="opset1">
3784 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
3785 <input>
3786 <port id="0" precision="FP32">
3787 <dim>1</dim>
3788 <dim>16</dim>
3789 <dim>80</dim>
3790 <dim>136</dim>
3791 </port>
3792 <port id="1" precision="FP32">
3793 <dim>64</dim>
3794 <dim>16</dim>
3795 <dim>1</dim>
3796 <dim>1</dim>
3797 </port>
3798 </input>
3799 <output>
3800 <port id="2" precision="FP32">
3801 <dim>1</dim>
3802 <dim>64</dim>
3803 <dim>80</dim>
3804 <dim>136</dim>
3805 </port>
3806 </output>
3807 </layer>
3808 <layer id="219" name="data_add_2392123926" type="Const" version="opset1">
3809 <data element_type="f32" offset="83932" shape="1, 64, 1, 1" size="256"/>
3810 <output>
3811 <port id="0" precision="FP32">
3812 <dim>1</dim>
3813 <dim>64</dim>
3814 <dim>1</dim>
3815 <dim>1</dim>
3816 </port>
3817 </output>
3818 </layer>
3819 <layer id="220" name="bottleneck2_6/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
3820 <data auto_broadcast="numpy"/>
3821 <input>
3822 <port id="0" precision="FP32">
3823 <dim>1</dim>
3824 <dim>64</dim>
3825 <dim>80</dim>
3826 <dim>136</dim>
3827 </port>
3828 <port id="1" precision="FP32">
3829 <dim>1</dim>
3830 <dim>64</dim>
3831 <dim>1</dim>
3832 <dim>1</dim>
3833 </port>
3834 </input>
3835 <output>
3836 <port id="2" names="bottleneck2_6/dim_inc/conv" precision="FP32">
3837 <dim>1</dim>
3838 <dim>64</dim>
3839 <dim>80</dim>
3840 <dim>136</dim>
3841 </port>
3842 </output>
3843 </layer>
3844 <layer id="221" name="bottleneck2_6/add" type="Add" version="opset1">
3845 <data auto_broadcast="numpy"/>
3846 <input>
3847 <port id="0" precision="FP32">
3848 <dim>1</dim>
3849 <dim>64</dim>
3850 <dim>80</dim>
3851 <dim>136</dim>
3852 </port>
3853 <port id="1" precision="FP32">
3854 <dim>1</dim>
3855 <dim>64</dim>
3856 <dim>80</dim>
3857 <dim>136</dim>
3858 </port>
3859 </input>
3860 <output>
3861 <port id="2" names="bottleneck2_6/add" precision="FP32">
3862 <dim>1</dim>
3863 <dim>64</dim>
3864 <dim>80</dim>
3865 <dim>136</dim>
3866 </port>
3867 </output>
3868 </layer>
3869 <layer id="222" name="bottleneck2_6/fn/weights3107640616" type="Const" version="opset1">
3870 <data element_type="f32" offset="4664" shape="1" size="4"/>
3871 <output>
3872 <port id="0" precision="FP32">
3873 <dim>1</dim>
3874 </port>
3875 </output>
3876 </layer>
3877 <layer id="223" name="bottleneck2_6/fn" type="PReLU" version="opset1">
3878 <input>
3879 <port id="0" precision="FP32">
3880 <dim>1</dim>
3881 <dim>64</dim>
3882 <dim>80</dim>
3883 <dim>136</dim>
3884 </port>
3885 <port id="1" precision="FP32">
3886 <dim>1</dim>
3887 </port>
3888 </input>
3889 <output>
3890 <port id="2" names="bottleneck2_6/add" precision="FP32">
3891 <dim>1</dim>
3892 <dim>64</dim>
3893 <dim>80</dim>
3894 <dim>136</dim>
3895 </port>
3896 </output>
3897 </layer>
3898 <layer id="224" name="bottleneck2_7/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
3899 <data element_type="f32" offset="84188" shape="16, 64, 1, 1" size="4096"/>
3900 <output>
3901 <port id="0" precision="FP32">
3902 <dim>16</dim>
3903 <dim>64</dim>
3904 <dim>1</dim>
3905 <dim>1</dim>
3906 </port>
3907 </output>
3908 </layer>
3909 <layer id="225" name="bottleneck2_7/dim_red/conv" type="Convolution" version="opset1">
3910 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
3911 <input>
3912 <port id="0" precision="FP32">
3913 <dim>1</dim>
3914 <dim>64</dim>
3915 <dim>80</dim>
3916 <dim>136</dim>
3917 </port>
3918 <port id="1" precision="FP32">
3919 <dim>16</dim>
3920 <dim>64</dim>
3921 <dim>1</dim>
3922 <dim>1</dim>
3923 </port>
3924 </input>
3925 <output>
3926 <port id="2" precision="FP32">
3927 <dim>1</dim>
3928 <dim>16</dim>
3929 <dim>80</dim>
3930 <dim>136</dim>
3931 </port>
3932 </output>
3933 </layer>
3934 <layer id="226" name="data_add_2392923934" type="Const" version="opset1">
3935 <data element_type="f32" offset="88284" shape="1, 16, 1, 1" size="64"/>
3936 <output>
3937 <port id="0" precision="FP32">
3938 <dim>1</dim>
3939 <dim>16</dim>
3940 <dim>1</dim>
3941 <dim>1</dim>
3942 </port>
3943 </output>
3944 </layer>
3945 <layer id="227" name="bottleneck2_7/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
3946 <data auto_broadcast="numpy"/>
3947 <input>
3948 <port id="0" precision="FP32">
3949 <dim>1</dim>
3950 <dim>16</dim>
3951 <dim>80</dim>
3952 <dim>136</dim>
3953 </port>
3954 <port id="1" precision="FP32">
3955 <dim>1</dim>
3956 <dim>16</dim>
3957 <dim>1</dim>
3958 <dim>1</dim>
3959 </port>
3960 </input>
3961 <output>
3962 <port id="2" names="bottleneck2_7/dim_red/conv" precision="FP32">
3963 <dim>1</dim>
3964 <dim>16</dim>
3965 <dim>80</dim>
3966 <dim>136</dim>
3967 </port>
3968 </output>
3969 </layer>
3970 <layer id="228" name="bottleneck2_7/dim_red/fn/weights3110839845" type="Const" version="opset1">
3971 <data element_type="f32" offset="4664" shape="1" size="4"/>
3972 <output>
3973 <port id="0" precision="FP32">
3974 <dim>1</dim>
3975 </port>
3976 </output>
3977 </layer>
3978 <layer id="229" name="bottleneck2_7/dim_red/fn" type="PReLU" version="opset1">
3979 <input>
3980 <port id="0" precision="FP32">
3981 <dim>1</dim>
3982 <dim>16</dim>
3983 <dim>80</dim>
3984 <dim>136</dim>
3985 </port>
3986 <port id="1" precision="FP32">
3987 <dim>1</dim>
3988 </port>
3989 </input>
3990 <output>
3991 <port id="2" names="bottleneck2_7/dim_red/conv" precision="FP32">
3992 <dim>1</dim>
3993 <dim>16</dim>
3994 <dim>80</dim>
3995 <dim>136</dim>
3996 </port>
3997 </output>
3998 </layer>
3999 <layer id="230" name="bottleneck2_7/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
4000 <data element_type="f32" offset="88348" shape="16, 1, 1, 3, 3" size="576"/>
4001 <output>
4002 <port id="0" precision="FP32">
4003 <dim>16</dim>
4004 <dim>1</dim>
4005 <dim>1</dim>
4006 <dim>3</dim>
4007 <dim>3</dim>
4008 </port>
4009 </output>
4010 </layer>
4011 <layer id="231" name="bottleneck2_7/inner/dw1/conv" type="GroupConvolution" version="opset1">
4012 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
4013 <input>
4014 <port id="0" precision="FP32">
4015 <dim>1</dim>
4016 <dim>16</dim>
4017 <dim>80</dim>
4018 <dim>136</dim>
4019 </port>
4020 <port id="1" precision="FP32">
4021 <dim>16</dim>
4022 <dim>1</dim>
4023 <dim>1</dim>
4024 <dim>3</dim>
4025 <dim>3</dim>
4026 </port>
4027 </input>
4028 <output>
4029 <port id="2" precision="FP32">
4030 <dim>1</dim>
4031 <dim>16</dim>
4032 <dim>80</dim>
4033 <dim>136</dim>
4034 </port>
4035 </output>
4036 </layer>
4037 <layer id="232" name="data_add_2393723942" type="Const" version="opset1">
4038 <data element_type="f32" offset="88924" shape="1, 16, 1, 1" size="64"/>
4039 <output>
4040 <port id="0" precision="FP32">
4041 <dim>1</dim>
4042 <dim>16</dim>
4043 <dim>1</dim>
4044 <dim>1</dim>
4045 </port>
4046 </output>
4047 </layer>
4048 <layer id="233" name="bottleneck2_7/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
4049 <data auto_broadcast="numpy"/>
4050 <input>
4051 <port id="0" precision="FP32">
4052 <dim>1</dim>
4053 <dim>16</dim>
4054 <dim>80</dim>
4055 <dim>136</dim>
4056 </port>
4057 <port id="1" precision="FP32">
4058 <dim>1</dim>
4059 <dim>16</dim>
4060 <dim>1</dim>
4061 <dim>1</dim>
4062 </port>
4063 </input>
4064 <output>
4065 <port id="2" names="bottleneck2_7/inner/dw1/conv" precision="FP32">
4066 <dim>1</dim>
4067 <dim>16</dim>
4068 <dim>80</dim>
4069 <dim>136</dim>
4070 </port>
4071 </output>
4072 </layer>
4073 <layer id="234" name="bottleneck2_7/inner/dw1/fn/weights3118040055" type="Const" version="opset1">
4074 <data element_type="f32" offset="4664" shape="1" size="4"/>
4075 <output>
4076 <port id="0" precision="FP32">
4077 <dim>1</dim>
4078 </port>
4079 </output>
4080 </layer>
4081 <layer id="235" name="bottleneck2_7/inner/dw1/fn" type="PReLU" version="opset1">
4082 <input>
4083 <port id="0" precision="FP32">
4084 <dim>1</dim>
4085 <dim>16</dim>
4086 <dim>80</dim>
4087 <dim>136</dim>
4088 </port>
4089 <port id="1" precision="FP32">
4090 <dim>1</dim>
4091 </port>
4092 </input>
4093 <output>
4094 <port id="2" names="bottleneck2_7/inner/dw1/conv" precision="FP32">
4095 <dim>1</dim>
4096 <dim>16</dim>
4097 <dim>80</dim>
4098 <dim>136</dim>
4099 </port>
4100 </output>
4101 </layer>
4102 <layer id="236" name="bottleneck2_7/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
4103 <data element_type="f32" offset="88988" shape="64, 16, 1, 1" size="4096"/>
4104 <output>
4105 <port id="0" precision="FP32">
4106 <dim>64</dim>
4107 <dim>16</dim>
4108 <dim>1</dim>
4109 <dim>1</dim>
4110 </port>
4111 </output>
4112 </layer>
4113 <layer id="237" name="bottleneck2_7/dim_inc/conv" type="Convolution" version="opset1">
4114 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
4115 <input>
4116 <port id="0" precision="FP32">
4117 <dim>1</dim>
4118 <dim>16</dim>
4119 <dim>80</dim>
4120 <dim>136</dim>
4121 </port>
4122 <port id="1" precision="FP32">
4123 <dim>64</dim>
4124 <dim>16</dim>
4125 <dim>1</dim>
4126 <dim>1</dim>
4127 </port>
4128 </input>
4129 <output>
4130 <port id="2" precision="FP32">
4131 <dim>1</dim>
4132 <dim>64</dim>
4133 <dim>80</dim>
4134 <dim>136</dim>
4135 </port>
4136 </output>
4137 </layer>
4138 <layer id="238" name="data_add_2394523950" type="Const" version="opset1">
4139 <data element_type="f32" offset="93084" shape="1, 64, 1, 1" size="256"/>
4140 <output>
4141 <port id="0" precision="FP32">
4142 <dim>1</dim>
4143 <dim>64</dim>
4144 <dim>1</dim>
4145 <dim>1</dim>
4146 </port>
4147 </output>
4148 </layer>
4149 <layer id="239" name="bottleneck2_7/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
4150 <data auto_broadcast="numpy"/>
4151 <input>
4152 <port id="0" precision="FP32">
4153 <dim>1</dim>
4154 <dim>64</dim>
4155 <dim>80</dim>
4156 <dim>136</dim>
4157 </port>
4158 <port id="1" precision="FP32">
4159 <dim>1</dim>
4160 <dim>64</dim>
4161 <dim>1</dim>
4162 <dim>1</dim>
4163 </port>
4164 </input>
4165 <output>
4166 <port id="2" names="bottleneck2_7/dim_inc/conv" precision="FP32">
4167 <dim>1</dim>
4168 <dim>64</dim>
4169 <dim>80</dim>
4170 <dim>136</dim>
4171 </port>
4172 </output>
4173 </layer>
4174 <layer id="240" name="bottleneck2_7/add" type="Add" version="opset1">
4175 <data auto_broadcast="numpy"/>
4176 <input>
4177 <port id="0" precision="FP32">
4178 <dim>1</dim>
4179 <dim>64</dim>
4180 <dim>80</dim>
4181 <dim>136</dim>
4182 </port>
4183 <port id="1" precision="FP32">
4184 <dim>1</dim>
4185 <dim>64</dim>
4186 <dim>80</dim>
4187 <dim>136</dim>
4188 </port>
4189 </input>
4190 <output>
4191 <port id="2" names="bottleneck2_7/add" precision="FP32">
4192 <dim>1</dim>
4193 <dim>64</dim>
4194 <dim>80</dim>
4195 <dim>136</dim>
4196 </port>
4197 </output>
4198 </layer>
4199 <layer id="241" name="bottleneck2_7/fn/weights3106040265" type="Const" version="opset1">
4200 <data element_type="f32" offset="4664" shape="1" size="4"/>
4201 <output>
4202 <port id="0" precision="FP32">
4203 <dim>1</dim>
4204 </port>
4205 </output>
4206 </layer>
4207 <layer id="242" name="bottleneck2_7/fn" type="PReLU" version="opset1">
4208 <input>
4209 <port id="0" precision="FP32">
4210 <dim>1</dim>
4211 <dim>64</dim>
4212 <dim>80</dim>
4213 <dim>136</dim>
4214 </port>
4215 <port id="1" precision="FP32">
4216 <dim>1</dim>
4217 </port>
4218 </input>
4219 <output>
4220 <port id="2" names="bottleneck2_7/add" precision="FP32">
4221 <dim>1</dim>
4222 <dim>64</dim>
4223 <dim>80</dim>
4224 <dim>136</dim>
4225 </port>
4226 </output>
4227 </layer>
4228 <layer id="243" name="bottleneck2_8/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
4229 <data element_type="f32" offset="93340" shape="16, 64, 1, 1" size="4096"/>
4230 <output>
4231 <port id="0" precision="FP32">
4232 <dim>16</dim>
4233 <dim>64</dim>
4234 <dim>1</dim>
4235 <dim>1</dim>
4236 </port>
4237 </output>
4238 </layer>
4239 <layer id="244" name="bottleneck2_8/dim_red/conv" type="Convolution" version="opset1">
4240 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
4241 <input>
4242 <port id="0" precision="FP32">
4243 <dim>1</dim>
4244 <dim>64</dim>
4245 <dim>80</dim>
4246 <dim>136</dim>
4247 </port>
4248 <port id="1" precision="FP32">
4249 <dim>16</dim>
4250 <dim>64</dim>
4251 <dim>1</dim>
4252 <dim>1</dim>
4253 </port>
4254 </input>
4255 <output>
4256 <port id="2" precision="FP32">
4257 <dim>1</dim>
4258 <dim>16</dim>
4259 <dim>80</dim>
4260 <dim>136</dim>
4261 </port>
4262 </output>
4263 </layer>
4264 <layer id="245" name="data_add_2395323958" type="Const" version="opset1">
4265 <data element_type="f32" offset="97436" shape="1, 16, 1, 1" size="64"/>
4266 <output>
4267 <port id="0" precision="FP32">
4268 <dim>1</dim>
4269 <dim>16</dim>
4270 <dim>1</dim>
4271 <dim>1</dim>
4272 </port>
4273 </output>
4274 </layer>
4275 <layer id="246" name="bottleneck2_8/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
4276 <data auto_broadcast="numpy"/>
4277 <input>
4278 <port id="0" precision="FP32">
4279 <dim>1</dim>
4280 <dim>16</dim>
4281 <dim>80</dim>
4282 <dim>136</dim>
4283 </port>
4284 <port id="1" precision="FP32">
4285 <dim>1</dim>
4286 <dim>16</dim>
4287 <dim>1</dim>
4288 <dim>1</dim>
4289 </port>
4290 </input>
4291 <output>
4292 <port id="2" names="bottleneck2_8/dim_red/conv" precision="FP32">
4293 <dim>1</dim>
4294 <dim>16</dim>
4295 <dim>80</dim>
4296 <dim>136</dim>
4297 </port>
4298 </output>
4299 </layer>
4300 <layer id="247" name="bottleneck2_8/dim_red/fn/weights3100840364" type="Const" version="opset1">
4301 <data element_type="f32" offset="4664" shape="1" size="4"/>
4302 <output>
4303 <port id="0" precision="FP32">
4304 <dim>1</dim>
4305 </port>
4306 </output>
4307 </layer>
4308 <layer id="248" name="bottleneck2_8/dim_red/fn" type="PReLU" version="opset1">
4309 <input>
4310 <port id="0" precision="FP32">
4311 <dim>1</dim>
4312 <dim>16</dim>
4313 <dim>80</dim>
4314 <dim>136</dim>
4315 </port>
4316 <port id="1" precision="FP32">
4317 <dim>1</dim>
4318 </port>
4319 </input>
4320 <output>
4321 <port id="2" names="bottleneck2_8/dim_red/conv" precision="FP32">
4322 <dim>1</dim>
4323 <dim>16</dim>
4324 <dim>80</dim>
4325 <dim>136</dim>
4326 </port>
4327 </output>
4328 </layer>
4329 <layer id="249" name="bottleneck2_8/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
4330 <data element_type="f32" offset="97500" shape="16, 1, 1, 3, 3" size="576"/>
4331 <output>
4332 <port id="0" precision="FP32">
4333 <dim>16</dim>
4334 <dim>1</dim>
4335 <dim>1</dim>
4336 <dim>3</dim>
4337 <dim>3</dim>
4338 </port>
4339 </output>
4340 </layer>
4341 <layer id="250" name="bottleneck2_8/inner/dw1/conv" type="GroupConvolution" version="opset1">
4342 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
4343 <input>
4344 <port id="0" precision="FP32">
4345 <dim>1</dim>
4346 <dim>16</dim>
4347 <dim>80</dim>
4348 <dim>136</dim>
4349 </port>
4350 <port id="1" precision="FP32">
4351 <dim>16</dim>
4352 <dim>1</dim>
4353 <dim>1</dim>
4354 <dim>3</dim>
4355 <dim>3</dim>
4356 </port>
4357 </input>
4358 <output>
4359 <port id="2" precision="FP32">
4360 <dim>1</dim>
4361 <dim>16</dim>
4362 <dim>80</dim>
4363 <dim>136</dim>
4364 </port>
4365 </output>
4366 </layer>
4367 <layer id="251" name="data_add_2396123966" type="Const" version="opset1">
4368 <data element_type="f32" offset="98076" shape="1, 16, 1, 1" size="64"/>
4369 <output>
4370 <port id="0" precision="FP32">
4371 <dim>1</dim>
4372 <dim>16</dim>
4373 <dim>1</dim>
4374 <dim>1</dim>
4375 </port>
4376 </output>
4377 </layer>
4378 <layer id="252" name="bottleneck2_8/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
4379 <data auto_broadcast="numpy"/>
4380 <input>
4381 <port id="0" precision="FP32">
4382 <dim>1</dim>
4383 <dim>16</dim>
4384 <dim>80</dim>
4385 <dim>136</dim>
4386 </port>
4387 <port id="1" precision="FP32">
4388 <dim>1</dim>
4389 <dim>16</dim>
4390 <dim>1</dim>
4391 <dim>1</dim>
4392 </port>
4393 </input>
4394 <output>
4395 <port id="2" names="bottleneck2_8/inner/dw1/conv" precision="FP32">
4396 <dim>1</dim>
4397 <dim>16</dim>
4398 <dim>80</dim>
4399 <dim>136</dim>
4400 </port>
4401 </output>
4402 </layer>
4403 <layer id="253" name="bottleneck2_8/inner/dw1/fn/weights3094839839" type="Const" version="opset1">
4404 <data element_type="f32" offset="4664" shape="1" size="4"/>
4405 <output>
4406 <port id="0" precision="FP32">
4407 <dim>1</dim>
4408 </port>
4409 </output>
4410 </layer>
4411 <layer id="254" name="bottleneck2_8/inner/dw1/fn" type="PReLU" version="opset1">
4412 <input>
4413 <port id="0" precision="FP32">
4414 <dim>1</dim>
4415 <dim>16</dim>
4416 <dim>80</dim>
4417 <dim>136</dim>
4418 </port>
4419 <port id="1" precision="FP32">
4420 <dim>1</dim>
4421 </port>
4422 </input>
4423 <output>
4424 <port id="2" names="bottleneck2_8/inner/dw1/conv" precision="FP32">
4425 <dim>1</dim>
4426 <dim>16</dim>
4427 <dim>80</dim>
4428 <dim>136</dim>
4429 </port>
4430 </output>
4431 </layer>
4432 <layer id="255" name="bottleneck2_8/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
4433 <data element_type="f32" offset="98140" shape="64, 16, 1, 1" size="4096"/>
4434 <output>
4435 <port id="0" precision="FP32">
4436 <dim>64</dim>
4437 <dim>16</dim>
4438 <dim>1</dim>
4439 <dim>1</dim>
4440 </port>
4441 </output>
4442 </layer>
4443 <layer id="256" name="bottleneck2_8/dim_inc/conv" type="Convolution" version="opset1">
4444 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
4445 <input>
4446 <port id="0" precision="FP32">
4447 <dim>1</dim>
4448 <dim>16</dim>
4449 <dim>80</dim>
4450 <dim>136</dim>
4451 </port>
4452 <port id="1" precision="FP32">
4453 <dim>64</dim>
4454 <dim>16</dim>
4455 <dim>1</dim>
4456 <dim>1</dim>
4457 </port>
4458 </input>
4459 <output>
4460 <port id="2" precision="FP32">
4461 <dim>1</dim>
4462 <dim>64</dim>
4463 <dim>80</dim>
4464 <dim>136</dim>
4465 </port>
4466 </output>
4467 </layer>
4468 <layer id="257" name="data_add_2396923974" type="Const" version="opset1">
4469 <data element_type="f32" offset="102236" shape="1, 64, 1, 1" size="256"/>
4470 <output>
4471 <port id="0" precision="FP32">
4472 <dim>1</dim>
4473 <dim>64</dim>
4474 <dim>1</dim>
4475 <dim>1</dim>
4476 </port>
4477 </output>
4478 </layer>
4479 <layer id="258" name="bottleneck2_8/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
4480 <data auto_broadcast="numpy"/>
4481 <input>
4482 <port id="0" precision="FP32">
4483 <dim>1</dim>
4484 <dim>64</dim>
4485 <dim>80</dim>
4486 <dim>136</dim>
4487 </port>
4488 <port id="1" precision="FP32">
4489 <dim>1</dim>
4490 <dim>64</dim>
4491 <dim>1</dim>
4492 <dim>1</dim>
4493 </port>
4494 </input>
4495 <output>
4496 <port id="2" names="bottleneck2_8/dim_inc/conv" precision="FP32">
4497 <dim>1</dim>
4498 <dim>64</dim>
4499 <dim>80</dim>
4500 <dim>136</dim>
4501 </port>
4502 </output>
4503 </layer>
4504 <layer id="259" name="bottleneck2_8/add" type="Add" version="opset1">
4505 <data auto_broadcast="numpy"/>
4506 <input>
4507 <port id="0" precision="FP32">
4508 <dim>1</dim>
4509 <dim>64</dim>
4510 <dim>80</dim>
4511 <dim>136</dim>
4512 </port>
4513 <port id="1" precision="FP32">
4514 <dim>1</dim>
4515 <dim>64</dim>
4516 <dim>80</dim>
4517 <dim>136</dim>
4518 </port>
4519 </input>
4520 <output>
4521 <port id="2" names="bottleneck2_8/add" precision="FP32">
4522 <dim>1</dim>
4523 <dim>64</dim>
4524 <dim>80</dim>
4525 <dim>136</dim>
4526 </port>
4527 </output>
4528 </layer>
4529 <layer id="260" name="bottleneck2_8/fn/weights3106440124" type="Const" version="opset1">
4530 <data element_type="f32" offset="4664" shape="1" size="4"/>
4531 <output>
4532 <port id="0" precision="FP32">
4533 <dim>1</dim>
4534 </port>
4535 </output>
4536 </layer>
4537 <layer id="261" name="bottleneck2_8/fn" type="PReLU" version="opset1">
4538 <input>
4539 <port id="0" precision="FP32">
4540 <dim>1</dim>
4541 <dim>64</dim>
4542 <dim>80</dim>
4543 <dim>136</dim>
4544 </port>
4545 <port id="1" precision="FP32">
4546 <dim>1</dim>
4547 </port>
4548 </input>
4549 <output>
4550 <port id="2" names="bottleneck2_8/add" precision="FP32">
4551 <dim>1</dim>
4552 <dim>64</dim>
4553 <dim>80</dim>
4554 <dim>136</dim>
4555 </port>
4556 </output>
4557 </layer>
4558 <layer id="262" name="bottleneck3_0/skip/pooling" type="MaxPool" version="opset1">
4559 <data auto_pad="explicit" kernel="2, 2" pads_begin="0, 0" pads_end="0, 0" rounding_type="ceil" strides="2, 2"/>
4560 <input>
4561 <port id="0" precision="FP32">
4562 <dim>1</dim>
4563 <dim>64</dim>
4564 <dim>80</dim>
4565 <dim>136</dim>
4566 </port>
4567 </input>
4568 <output>
4569 <port id="1" names="bottleneck3_0/skip/pooling" precision="FP32">
4570 <dim>1</dim>
4571 <dim>64</dim>
4572 <dim>40</dim>
4573 <dim>68</dim>
4574 </port>
4575 </output>
4576 </layer>
4577 <layer id="263" name="bottleneck3_0/skip/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
4578 <data element_type="f32" offset="102492" shape="128, 64, 1, 1" size="32768"/>
4579 <output>
4580 <port id="0" precision="FP32">
4581 <dim>128</dim>
4582 <dim>64</dim>
4583 <dim>1</dim>
4584 <dim>1</dim>
4585 </port>
4586 </output>
4587 </layer>
4588 <layer id="264" name="bottleneck3_0/skip/conv" type="Convolution" version="opset1">
4589 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
4590 <input>
4591 <port id="0" precision="FP32">
4592 <dim>1</dim>
4593 <dim>64</dim>
4594 <dim>40</dim>
4595 <dim>68</dim>
4596 </port>
4597 <port id="1" precision="FP32">
4598 <dim>128</dim>
4599 <dim>64</dim>
4600 <dim>1</dim>
4601 <dim>1</dim>
4602 </port>
4603 </input>
4604 <output>
4605 <port id="2" precision="FP32">
4606 <dim>1</dim>
4607 <dim>128</dim>
4608 <dim>40</dim>
4609 <dim>68</dim>
4610 </port>
4611 </output>
4612 </layer>
4613 <layer id="265" name="data_add_2397723982" type="Const" version="opset1">
4614 <data element_type="f32" offset="135260" shape="1, 128, 1, 1" size="512"/>
4615 <output>
4616 <port id="0" precision="FP32">
4617 <dim>1</dim>
4618 <dim>128</dim>
4619 <dim>1</dim>
4620 <dim>1</dim>
4621 </port>
4622 </output>
4623 </layer>
4624 <layer id="266" name="bottleneck3_0/skip/bn/variance/Fused_Add_" type="Add" version="opset1">
4625 <data auto_broadcast="numpy"/>
4626 <input>
4627 <port id="0" precision="FP32">
4628 <dim>1</dim>
4629 <dim>128</dim>
4630 <dim>40</dim>
4631 <dim>68</dim>
4632 </port>
4633 <port id="1" precision="FP32">
4634 <dim>1</dim>
4635 <dim>128</dim>
4636 <dim>1</dim>
4637 <dim>1</dim>
4638 </port>
4639 </input>
4640 <output>
4641 <port id="2" names="bottleneck3_0/skip/conv" precision="FP32">
4642 <dim>1</dim>
4643 <dim>128</dim>
4644 <dim>40</dim>
4645 <dim>68</dim>
4646 </port>
4647 </output>
4648 </layer>
4649 <layer id="267" name="bottleneck3_0/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
4650 <data element_type="f32" offset="135772" shape="32, 64, 1, 1" size="8192"/>
4651 <output>
4652 <port id="0" precision="FP32">
4653 <dim>32</dim>
4654 <dim>64</dim>
4655 <dim>1</dim>
4656 <dim>1</dim>
4657 </port>
4658 </output>
4659 </layer>
4660 <layer id="268" name="bottleneck3_0/dim_red/conv" type="Convolution" version="opset1">
4661 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
4662 <input>
4663 <port id="0" precision="FP32">
4664 <dim>1</dim>
4665 <dim>64</dim>
4666 <dim>80</dim>
4667 <dim>136</dim>
4668 </port>
4669 <port id="1" precision="FP32">
4670 <dim>32</dim>
4671 <dim>64</dim>
4672 <dim>1</dim>
4673 <dim>1</dim>
4674 </port>
4675 </input>
4676 <output>
4677 <port id="2" precision="FP32">
4678 <dim>1</dim>
4679 <dim>32</dim>
4680 <dim>80</dim>
4681 <dim>136</dim>
4682 </port>
4683 </output>
4684 </layer>
4685 <layer id="269" name="data_add_2398523990" type="Const" version="opset1">
4686 <data element_type="f32" offset="143964" shape="1, 32, 1, 1" size="128"/>
4687 <output>
4688 <port id="0" precision="FP32">
4689 <dim>1</dim>
4690 <dim>32</dim>
4691 <dim>1</dim>
4692 <dim>1</dim>
4693 </port>
4694 </output>
4695 </layer>
4696 <layer id="270" name="bottleneck3_0/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
4697 <data auto_broadcast="numpy"/>
4698 <input>
4699 <port id="0" precision="FP32">
4700 <dim>1</dim>
4701 <dim>32</dim>
4702 <dim>80</dim>
4703 <dim>136</dim>
4704 </port>
4705 <port id="1" precision="FP32">
4706 <dim>1</dim>
4707 <dim>32</dim>
4708 <dim>1</dim>
4709 <dim>1</dim>
4710 </port>
4711 </input>
4712 <output>
4713 <port id="2" names="bottleneck3_0/dim_red/conv" precision="FP32">
4714 <dim>1</dim>
4715 <dim>32</dim>
4716 <dim>80</dim>
4717 <dim>136</dim>
4718 </port>
4719 </output>
4720 </layer>
4721 <layer id="271" name="bottleneck3_0/dim_red/fn/weights3097640670" type="Const" version="opset1">
4722 <data element_type="f32" offset="4664" shape="1" size="4"/>
4723 <output>
4724 <port id="0" precision="FP32">
4725 <dim>1</dim>
4726 </port>
4727 </output>
4728 </layer>
4729 <layer id="272" name="bottleneck3_0/dim_red/fn" type="PReLU" version="opset1">
4730 <input>
4731 <port id="0" precision="FP32">
4732 <dim>1</dim>
4733 <dim>32</dim>
4734 <dim>80</dim>
4735 <dim>136</dim>
4736 </port>
4737 <port id="1" precision="FP32">
4738 <dim>1</dim>
4739 </port>
4740 </input>
4741 <output>
4742 <port id="2" names="bottleneck3_0/dim_red/conv" precision="FP32">
4743 <dim>1</dim>
4744 <dim>32</dim>
4745 <dim>80</dim>
4746 <dim>136</dim>
4747 </port>
4748 </output>
4749 </layer>
4750 <layer id="273" name="bottleneck3_0/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
4751 <data element_type="f32" offset="144092" shape="32, 1, 1, 3, 3" size="1152"/>
4752 <output>
4753 <port id="0" precision="FP32">
4754 <dim>32</dim>
4755 <dim>1</dim>
4756 <dim>1</dim>
4757 <dim>3</dim>
4758 <dim>3</dim>
4759 </port>
4760 </output>
4761 </layer>
4762 <layer id="274" name="bottleneck3_0/inner/dw1/conv" type="GroupConvolution" version="opset1">
4763 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="2, 2"/>
4764 <input>
4765 <port id="0" precision="FP32">
4766 <dim>1</dim>
4767 <dim>32</dim>
4768 <dim>80</dim>
4769 <dim>136</dim>
4770 </port>
4771 <port id="1" precision="FP32">
4772 <dim>32</dim>
4773 <dim>1</dim>
4774 <dim>1</dim>
4775 <dim>3</dim>
4776 <dim>3</dim>
4777 </port>
4778 </input>
4779 <output>
4780 <port id="2" precision="FP32">
4781 <dim>1</dim>
4782 <dim>32</dim>
4783 <dim>40</dim>
4784 <dim>68</dim>
4785 </port>
4786 </output>
4787 </layer>
4788 <layer id="275" name="data_add_2399323998" type="Const" version="opset1">
4789 <data element_type="f32" offset="145244" shape="1, 32, 1, 1" size="128"/>
4790 <output>
4791 <port id="0" precision="FP32">
4792 <dim>1</dim>
4793 <dim>32</dim>
4794 <dim>1</dim>
4795 <dim>1</dim>
4796 </port>
4797 </output>
4798 </layer>
4799 <layer id="276" name="bottleneck3_0/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
4800 <data auto_broadcast="numpy"/>
4801 <input>
4802 <port id="0" precision="FP32">
4803 <dim>1</dim>
4804 <dim>32</dim>
4805 <dim>40</dim>
4806 <dim>68</dim>
4807 </port>
4808 <port id="1" precision="FP32">
4809 <dim>1</dim>
4810 <dim>32</dim>
4811 <dim>1</dim>
4812 <dim>1</dim>
4813 </port>
4814 </input>
4815 <output>
4816 <port id="2" names="bottleneck3_0/inner/dw1/conv" precision="FP32">
4817 <dim>1</dim>
4818 <dim>32</dim>
4819 <dim>40</dim>
4820 <dim>68</dim>
4821 </port>
4822 </output>
4823 </layer>
4824 <layer id="277" name="bottleneck3_0/inner/dw1/fn/weights3079640607" type="Const" version="opset1">
4825 <data element_type="f32" offset="4664" shape="1" size="4"/>
4826 <output>
4827 <port id="0" precision="FP32">
4828 <dim>1</dim>
4829 </port>
4830 </output>
4831 </layer>
4832 <layer id="278" name="bottleneck3_0/inner/dw1/fn" type="PReLU" version="opset1">
4833 <input>
4834 <port id="0" precision="FP32">
4835 <dim>1</dim>
4836 <dim>32</dim>
4837 <dim>40</dim>
4838 <dim>68</dim>
4839 </port>
4840 <port id="1" precision="FP32">
4841 <dim>1</dim>
4842 </port>
4843 </input>
4844 <output>
4845 <port id="2" names="bottleneck3_0/inner/dw1/conv" precision="FP32">
4846 <dim>1</dim>
4847 <dim>32</dim>
4848 <dim>40</dim>
4849 <dim>68</dim>
4850 </port>
4851 </output>
4852 </layer>
4853 <layer id="279" name="bottleneck3_0/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
4854 <data element_type="f32" offset="145372" shape="128, 32, 1, 1" size="16384"/>
4855 <output>
4856 <port id="0" precision="FP32">
4857 <dim>128</dim>
4858 <dim>32</dim>
4859 <dim>1</dim>
4860 <dim>1</dim>
4861 </port>
4862 </output>
4863 </layer>
4864 <layer id="280" name="bottleneck3_0/dim_inc/conv" type="Convolution" version="opset1">
4865 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
4866 <input>
4867 <port id="0" precision="FP32">
4868 <dim>1</dim>
4869 <dim>32</dim>
4870 <dim>40</dim>
4871 <dim>68</dim>
4872 </port>
4873 <port id="1" precision="FP32">
4874 <dim>128</dim>
4875 <dim>32</dim>
4876 <dim>1</dim>
4877 <dim>1</dim>
4878 </port>
4879 </input>
4880 <output>
4881 <port id="2" precision="FP32">
4882 <dim>1</dim>
4883 <dim>128</dim>
4884 <dim>40</dim>
4885 <dim>68</dim>
4886 </port>
4887 </output>
4888 </layer>
4889 <layer id="281" name="data_add_2400124006" type="Const" version="opset1">
4890 <data element_type="f32" offset="161756" shape="1, 128, 1, 1" size="512"/>
4891 <output>
4892 <port id="0" precision="FP32">
4893 <dim>1</dim>
4894 <dim>128</dim>
4895 <dim>1</dim>
4896 <dim>1</dim>
4897 </port>
4898 </output>
4899 </layer>
4900 <layer id="282" name="bottleneck3_0/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
4901 <data auto_broadcast="numpy"/>
4902 <input>
4903 <port id="0" precision="FP32">
4904 <dim>1</dim>
4905 <dim>128</dim>
4906 <dim>40</dim>
4907 <dim>68</dim>
4908 </port>
4909 <port id="1" precision="FP32">
4910 <dim>1</dim>
4911 <dim>128</dim>
4912 <dim>1</dim>
4913 <dim>1</dim>
4914 </port>
4915 </input>
4916 <output>
4917 <port id="2" names="bottleneck3_0/dim_inc/conv" precision="FP32">
4918 <dim>1</dim>
4919 <dim>128</dim>
4920 <dim>40</dim>
4921 <dim>68</dim>
4922 </port>
4923 </output>
4924 </layer>
4925 <layer id="283" name="bottleneck3_0/add" type="Add" version="opset1">
4926 <data auto_broadcast="numpy"/>
4927 <input>
4928 <port id="0" precision="FP32">
4929 <dim>1</dim>
4930 <dim>128</dim>
4931 <dim>40</dim>
4932 <dim>68</dim>
4933 </port>
4934 <port id="1" precision="FP32">
4935 <dim>1</dim>
4936 <dim>128</dim>
4937 <dim>40</dim>
4938 <dim>68</dim>
4939 </port>
4940 </input>
4941 <output>
4942 <port id="2" names="bottleneck3_0/add" precision="FP32">
4943 <dim>1</dim>
4944 <dim>128</dim>
4945 <dim>40</dim>
4946 <dim>68</dim>
4947 </port>
4948 </output>
4949 </layer>
4950 <layer id="284" name="bottleneck3_0/fn/weights3080840268" type="Const" version="opset1">
4951 <data element_type="f32" offset="4664" shape="1" size="4"/>
4952 <output>
4953 <port id="0" precision="FP32">
4954 <dim>1</dim>
4955 </port>
4956 </output>
4957 </layer>
4958 <layer id="285" name="bottleneck3_0/fn" type="PReLU" version="opset1">
4959 <input>
4960 <port id="0" precision="FP32">
4961 <dim>1</dim>
4962 <dim>128</dim>
4963 <dim>40</dim>
4964 <dim>68</dim>
4965 </port>
4966 <port id="1" precision="FP32">
4967 <dim>1</dim>
4968 </port>
4969 </input>
4970 <output>
4971 <port id="2" names="bottleneck3_0/add" precision="FP32">
4972 <dim>1</dim>
4973 <dim>128</dim>
4974 <dim>40</dim>
4975 <dim>68</dim>
4976 </port>
4977 </output>
4978 </layer>
4979 <layer id="286" name="bottleneck3_1/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
4980 <data element_type="f32" offset="162268" shape="32, 128, 1, 1" size="16384"/>
4981 <output>
4982 <port id="0" precision="FP32">
4983 <dim>32</dim>
4984 <dim>128</dim>
4985 <dim>1</dim>
4986 <dim>1</dim>
4987 </port>
4988 </output>
4989 </layer>
4990 <layer id="287" name="bottleneck3_1/dim_red/conv" type="Convolution" version="opset1">
4991 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
4992 <input>
4993 <port id="0" precision="FP32">
4994 <dim>1</dim>
4995 <dim>128</dim>
4996 <dim>40</dim>
4997 <dim>68</dim>
4998 </port>
4999 <port id="1" precision="FP32">
5000 <dim>32</dim>
5001 <dim>128</dim>
5002 <dim>1</dim>
5003 <dim>1</dim>
5004 </port>
5005 </input>
5006 <output>
5007 <port id="2" precision="FP32">
5008 <dim>1</dim>
5009 <dim>32</dim>
5010 <dim>40</dim>
5011 <dim>68</dim>
5012 </port>
5013 </output>
5014 </layer>
5015 <layer id="288" name="data_add_2400924014" type="Const" version="opset1">
5016 <data element_type="f32" offset="178652" shape="1, 32, 1, 1" size="128"/>
5017 <output>
5018 <port id="0" precision="FP32">
5019 <dim>1</dim>
5020 <dim>32</dim>
5021 <dim>1</dim>
5022 <dim>1</dim>
5023 </port>
5024 </output>
5025 </layer>
5026 <layer id="289" name="bottleneck3_1/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
5027 <data auto_broadcast="numpy"/>
5028 <input>
5029 <port id="0" precision="FP32">
5030 <dim>1</dim>
5031 <dim>32</dim>
5032 <dim>40</dim>
5033 <dim>68</dim>
5034 </port>
5035 <port id="1" precision="FP32">
5036 <dim>1</dim>
5037 <dim>32</dim>
5038 <dim>1</dim>
5039 <dim>1</dim>
5040 </port>
5041 </input>
5042 <output>
5043 <port id="2" names="bottleneck3_1/dim_red/conv" precision="FP32">
5044 <dim>1</dim>
5045 <dim>32</dim>
5046 <dim>40</dim>
5047 <dim>68</dim>
5048 </port>
5049 </output>
5050 </layer>
5051 <layer id="290" name="bottleneck3_1/dim_red/fn/weights3102040538" type="Const" version="opset1">
5052 <data element_type="f32" offset="4664" shape="1" size="4"/>
5053 <output>
5054 <port id="0" precision="FP32">
5055 <dim>1</dim>
5056 </port>
5057 </output>
5058 </layer>
5059 <layer id="291" name="bottleneck3_1/dim_red/fn" type="PReLU" version="opset1">
5060 <input>
5061 <port id="0" precision="FP32">
5062 <dim>1</dim>
5063 <dim>32</dim>
5064 <dim>40</dim>
5065 <dim>68</dim>
5066 </port>
5067 <port id="1" precision="FP32">
5068 <dim>1</dim>
5069 </port>
5070 </input>
5071 <output>
5072 <port id="2" names="bottleneck3_1/dim_red/conv" precision="FP32">
5073 <dim>1</dim>
5074 <dim>32</dim>
5075 <dim>40</dim>
5076 <dim>68</dim>
5077 </port>
5078 </output>
5079 </layer>
5080 <layer id="292" name="bottleneck3_1/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
5081 <data element_type="f32" offset="178780" shape="32, 1, 1, 3, 3" size="1152"/>
5082 <output>
5083 <port id="0" precision="FP32">
5084 <dim>32</dim>
5085 <dim>1</dim>
5086 <dim>1</dim>
5087 <dim>3</dim>
5088 <dim>3</dim>
5089 </port>
5090 </output>
5091 </layer>
5092 <layer id="293" name="bottleneck3_1/inner/dw1/conv" type="GroupConvolution" version="opset1">
5093 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
5094 <input>
5095 <port id="0" precision="FP32">
5096 <dim>1</dim>
5097 <dim>32</dim>
5098 <dim>40</dim>
5099 <dim>68</dim>
5100 </port>
5101 <port id="1" precision="FP32">
5102 <dim>32</dim>
5103 <dim>1</dim>
5104 <dim>1</dim>
5105 <dim>3</dim>
5106 <dim>3</dim>
5107 </port>
5108 </input>
5109 <output>
5110 <port id="2" precision="FP32">
5111 <dim>1</dim>
5112 <dim>32</dim>
5113 <dim>40</dim>
5114 <dim>68</dim>
5115 </port>
5116 </output>
5117 </layer>
5118 <layer id="294" name="data_add_2401724022" type="Const" version="opset1">
5119 <data element_type="f32" offset="179932" shape="1, 32, 1, 1" size="128"/>
5120 <output>
5121 <port id="0" precision="FP32">
5122 <dim>1</dim>
5123 <dim>32</dim>
5124 <dim>1</dim>
5125 <dim>1</dim>
5126 </port>
5127 </output>
5128 </layer>
5129 <layer id="295" name="bottleneck3_1/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
5130 <data auto_broadcast="numpy"/>
5131 <input>
5132 <port id="0" precision="FP32">
5133 <dim>1</dim>
5134 <dim>32</dim>
5135 <dim>40</dim>
5136 <dim>68</dim>
5137 </port>
5138 <port id="1" precision="FP32">
5139 <dim>1</dim>
5140 <dim>32</dim>
5141 <dim>1</dim>
5142 <dim>1</dim>
5143 </port>
5144 </input>
5145 <output>
5146 <port id="2" names="bottleneck3_1/inner/dw1/conv" precision="FP32">
5147 <dim>1</dim>
5148 <dim>32</dim>
5149 <dim>40</dim>
5150 <dim>68</dim>
5151 </port>
5152 </output>
5153 </layer>
5154 <layer id="296" name="bottleneck3_1/inner/dw1/fn/weights3082440517" type="Const" version="opset1">
5155 <data element_type="f32" offset="4664" shape="1" size="4"/>
5156 <output>
5157 <port id="0" precision="FP32">
5158 <dim>1</dim>
5159 </port>
5160 </output>
5161 </layer>
5162 <layer id="297" name="bottleneck3_1/inner/dw1/fn" type="PReLU" version="opset1">
5163 <input>
5164 <port id="0" precision="FP32">
5165 <dim>1</dim>
5166 <dim>32</dim>
5167 <dim>40</dim>
5168 <dim>68</dim>
5169 </port>
5170 <port id="1" precision="FP32">
5171 <dim>1</dim>
5172 </port>
5173 </input>
5174 <output>
5175 <port id="2" names="bottleneck3_1/inner/dw1/conv" precision="FP32">
5176 <dim>1</dim>
5177 <dim>32</dim>
5178 <dim>40</dim>
5179 <dim>68</dim>
5180 </port>
5181 </output>
5182 </layer>
5183 <layer id="298" name="bottleneck3_1/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
5184 <data element_type="f32" offset="180060" shape="128, 32, 1, 1" size="16384"/>
5185 <output>
5186 <port id="0" precision="FP32">
5187 <dim>128</dim>
5188 <dim>32</dim>
5189 <dim>1</dim>
5190 <dim>1</dim>
5191 </port>
5192 </output>
5193 </layer>
5194 <layer id="299" name="bottleneck3_1/dim_inc/conv" type="Convolution" version="opset1">
5195 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
5196 <input>
5197 <port id="0" precision="FP32">
5198 <dim>1</dim>
5199 <dim>32</dim>
5200 <dim>40</dim>
5201 <dim>68</dim>
5202 </port>
5203 <port id="1" precision="FP32">
5204 <dim>128</dim>
5205 <dim>32</dim>
5206 <dim>1</dim>
5207 <dim>1</dim>
5208 </port>
5209 </input>
5210 <output>
5211 <port id="2" precision="FP32">
5212 <dim>1</dim>
5213 <dim>128</dim>
5214 <dim>40</dim>
5215 <dim>68</dim>
5216 </port>
5217 </output>
5218 </layer>
5219 <layer id="300" name="data_add_2402524030" type="Const" version="opset1">
5220 <data element_type="f32" offset="196444" shape="1, 128, 1, 1" size="512"/>
5221 <output>
5222 <port id="0" precision="FP32">
5223 <dim>1</dim>
5224 <dim>128</dim>
5225 <dim>1</dim>
5226 <dim>1</dim>
5227 </port>
5228 </output>
5229 </layer>
5230 <layer id="301" name="bottleneck3_1/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
5231 <data auto_broadcast="numpy"/>
5232 <input>
5233 <port id="0" precision="FP32">
5234 <dim>1</dim>
5235 <dim>128</dim>
5236 <dim>40</dim>
5237 <dim>68</dim>
5238 </port>
5239 <port id="1" precision="FP32">
5240 <dim>1</dim>
5241 <dim>128</dim>
5242 <dim>1</dim>
5243 <dim>1</dim>
5244 </port>
5245 </input>
5246 <output>
5247 <port id="2" names="bottleneck3_1/dim_inc/conv" precision="FP32">
5248 <dim>1</dim>
5249 <dim>128</dim>
5250 <dim>40</dim>
5251 <dim>68</dim>
5252 </port>
5253 </output>
5254 </layer>
5255 <layer id="302" name="bottleneck3_1/add" type="Add" version="opset1">
5256 <data auto_broadcast="numpy"/>
5257 <input>
5258 <port id="0" precision="FP32">
5259 <dim>1</dim>
5260 <dim>128</dim>
5261 <dim>40</dim>
5262 <dim>68</dim>
5263 </port>
5264 <port id="1" precision="FP32">
5265 <dim>1</dim>
5266 <dim>128</dim>
5267 <dim>40</dim>
5268 <dim>68</dim>
5269 </port>
5270 </input>
5271 <output>
5272 <port id="2" names="bottleneck3_1/add" precision="FP32">
5273 <dim>1</dim>
5274 <dim>128</dim>
5275 <dim>40</dim>
5276 <dim>68</dim>
5277 </port>
5278 </output>
5279 </layer>
5280 <layer id="303" name="bottleneck3_1/fn/weights3086039869" type="Const" version="opset1">
5281 <data element_type="f32" offset="4664" shape="1" size="4"/>
5282 <output>
5283 <port id="0" precision="FP32">
5284 <dim>1</dim>
5285 </port>
5286 </output>
5287 </layer>
5288 <layer id="304" name="bottleneck3_1/fn" type="PReLU" version="opset1">
5289 <input>
5290 <port id="0" precision="FP32">
5291 <dim>1</dim>
5292 <dim>128</dim>
5293 <dim>40</dim>
5294 <dim>68</dim>
5295 </port>
5296 <port id="1" precision="FP32">
5297 <dim>1</dim>
5298 </port>
5299 </input>
5300 <output>
5301 <port id="2" names="bottleneck3_1/add" precision="FP32">
5302 <dim>1</dim>
5303 <dim>128</dim>
5304 <dim>40</dim>
5305 <dim>68</dim>
5306 </port>
5307 </output>
5308 </layer>
5309 <layer id="305" name="bottleneck3_2/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
5310 <data element_type="f32" offset="196956" shape="32, 128, 1, 1" size="16384"/>
5311 <output>
5312 <port id="0" precision="FP32">
5313 <dim>32</dim>
5314 <dim>128</dim>
5315 <dim>1</dim>
5316 <dim>1</dim>
5317 </port>
5318 </output>
5319 </layer>
5320 <layer id="306" name="bottleneck3_2/dim_red/conv" type="Convolution" version="opset1">
5321 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
5322 <input>
5323 <port id="0" precision="FP32">
5324 <dim>1</dim>
5325 <dim>128</dim>
5326 <dim>40</dim>
5327 <dim>68</dim>
5328 </port>
5329 <port id="1" precision="FP32">
5330 <dim>32</dim>
5331 <dim>128</dim>
5332 <dim>1</dim>
5333 <dim>1</dim>
5334 </port>
5335 </input>
5336 <output>
5337 <port id="2" precision="FP32">
5338 <dim>1</dim>
5339 <dim>32</dim>
5340 <dim>40</dim>
5341 <dim>68</dim>
5342 </port>
5343 </output>
5344 </layer>
5345 <layer id="307" name="data_add_2403324038" type="Const" version="opset1">
5346 <data element_type="f32" offset="213340" shape="1, 32, 1, 1" size="128"/>
5347 <output>
5348 <port id="0" precision="FP32">
5349 <dim>1</dim>
5350 <dim>32</dim>
5351 <dim>1</dim>
5352 <dim>1</dim>
5353 </port>
5354 </output>
5355 </layer>
5356 <layer id="308" name="bottleneck3_2/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
5357 <data auto_broadcast="numpy"/>
5358 <input>
5359 <port id="0" precision="FP32">
5360 <dim>1</dim>
5361 <dim>32</dim>
5362 <dim>40</dim>
5363 <dim>68</dim>
5364 </port>
5365 <port id="1" precision="FP32">
5366 <dim>1</dim>
5367 <dim>32</dim>
5368 <dim>1</dim>
5369 <dim>1</dim>
5370 </port>
5371 </input>
5372 <output>
5373 <port id="2" names="bottleneck3_2/dim_red/conv" precision="FP32">
5374 <dim>1</dim>
5375 <dim>32</dim>
5376 <dim>40</dim>
5377 <dim>68</dim>
5378 </port>
5379 </output>
5380 </layer>
5381 <layer id="309" name="bottleneck3_2/dim_red/fn/weights3117639980" type="Const" version="opset1">
5382 <data element_type="f32" offset="4664" shape="1" size="4"/>
5383 <output>
5384 <port id="0" precision="FP32">
5385 <dim>1</dim>
5386 </port>
5387 </output>
5388 </layer>
5389 <layer id="310" name="bottleneck3_2/dim_red/fn" type="PReLU" version="opset1">
5390 <input>
5391 <port id="0" precision="FP32">
5392 <dim>1</dim>
5393 <dim>32</dim>
5394 <dim>40</dim>
5395 <dim>68</dim>
5396 </port>
5397 <port id="1" precision="FP32">
5398 <dim>1</dim>
5399 </port>
5400 </input>
5401 <output>
5402 <port id="2" names="bottleneck3_2/dim_red/conv" precision="FP32">
5403 <dim>1</dim>
5404 <dim>32</dim>
5405 <dim>40</dim>
5406 <dim>68</dim>
5407 </port>
5408 </output>
5409 </layer>
5410 <layer id="311" name="bottleneck3_2/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
5411 <data element_type="f32" offset="213468" shape="32, 1, 1, 3, 3" size="1152"/>
5412 <output>
5413 <port id="0" precision="FP32">
5414 <dim>32</dim>
5415 <dim>1</dim>
5416 <dim>1</dim>
5417 <dim>3</dim>
5418 <dim>3</dim>
5419 </port>
5420 </output>
5421 </layer>
5422 <layer id="312" name="bottleneck3_2/inner/dw1/conv" type="GroupConvolution" version="opset1">
5423 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
5424 <input>
5425 <port id="0" precision="FP32">
5426 <dim>1</dim>
5427 <dim>32</dim>
5428 <dim>40</dim>
5429 <dim>68</dim>
5430 </port>
5431 <port id="1" precision="FP32">
5432 <dim>32</dim>
5433 <dim>1</dim>
5434 <dim>1</dim>
5435 <dim>3</dim>
5436 <dim>3</dim>
5437 </port>
5438 </input>
5439 <output>
5440 <port id="2" precision="FP32">
5441 <dim>1</dim>
5442 <dim>32</dim>
5443 <dim>40</dim>
5444 <dim>68</dim>
5445 </port>
5446 </output>
5447 </layer>
5448 <layer id="313" name="data_add_2404124046" type="Const" version="opset1">
5449 <data element_type="f32" offset="214620" shape="1, 32, 1, 1" size="128"/>
5450 <output>
5451 <port id="0" precision="FP32">
5452 <dim>1</dim>
5453 <dim>32</dim>
5454 <dim>1</dim>
5455 <dim>1</dim>
5456 </port>
5457 </output>
5458 </layer>
5459 <layer id="314" name="bottleneck3_2/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
5460 <data auto_broadcast="numpy"/>
5461 <input>
5462 <port id="0" precision="FP32">
5463 <dim>1</dim>
5464 <dim>32</dim>
5465 <dim>40</dim>
5466 <dim>68</dim>
5467 </port>
5468 <port id="1" precision="FP32">
5469 <dim>1</dim>
5470 <dim>32</dim>
5471 <dim>1</dim>
5472 <dim>1</dim>
5473 </port>
5474 </input>
5475 <output>
5476 <port id="2" names="bottleneck3_2/inner/dw1/conv" precision="FP32">
5477 <dim>1</dim>
5478 <dim>32</dim>
5479 <dim>40</dim>
5480 <dim>68</dim>
5481 </port>
5482 </output>
5483 </layer>
5484 <layer id="315" name="bottleneck3_2/inner/dw1/fn/weights3108039773" type="Const" version="opset1">
5485 <data element_type="f32" offset="4664" shape="1" size="4"/>
5486 <output>
5487 <port id="0" precision="FP32">
5488 <dim>1</dim>
5489 </port>
5490 </output>
5491 </layer>
5492 <layer id="316" name="bottleneck3_2/inner/dw1/fn" type="PReLU" version="opset1">
5493 <input>
5494 <port id="0" precision="FP32">
5495 <dim>1</dim>
5496 <dim>32</dim>
5497 <dim>40</dim>
5498 <dim>68</dim>
5499 </port>
5500 <port id="1" precision="FP32">
5501 <dim>1</dim>
5502 </port>
5503 </input>
5504 <output>
5505 <port id="2" names="bottleneck3_2/inner/dw1/conv" precision="FP32">
5506 <dim>1</dim>
5507 <dim>32</dim>
5508 <dim>40</dim>
5509 <dim>68</dim>
5510 </port>
5511 </output>
5512 </layer>
5513 <layer id="317" name="bottleneck3_2/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
5514 <data element_type="f32" offset="214748" shape="128, 32, 1, 1" size="16384"/>
5515 <output>
5516 <port id="0" precision="FP32">
5517 <dim>128</dim>
5518 <dim>32</dim>
5519 <dim>1</dim>
5520 <dim>1</dim>
5521 </port>
5522 </output>
5523 </layer>
5524 <layer id="318" name="bottleneck3_2/dim_inc/conv" type="Convolution" version="opset1">
5525 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
5526 <input>
5527 <port id="0" precision="FP32">
5528 <dim>1</dim>
5529 <dim>32</dim>
5530 <dim>40</dim>
5531 <dim>68</dim>
5532 </port>
5533 <port id="1" precision="FP32">
5534 <dim>128</dim>
5535 <dim>32</dim>
5536 <dim>1</dim>
5537 <dim>1</dim>
5538 </port>
5539 </input>
5540 <output>
5541 <port id="2" precision="FP32">
5542 <dim>1</dim>
5543 <dim>128</dim>
5544 <dim>40</dim>
5545 <dim>68</dim>
5546 </port>
5547 </output>
5548 </layer>
5549 <layer id="319" name="data_add_2404924054" type="Const" version="opset1">
5550 <data element_type="f32" offset="231132" shape="1, 128, 1, 1" size="512"/>
5551 <output>
5552 <port id="0" precision="FP32">
5553 <dim>1</dim>
5554 <dim>128</dim>
5555 <dim>1</dim>
5556 <dim>1</dim>
5557 </port>
5558 </output>
5559 </layer>
5560 <layer id="320" name="bottleneck3_2/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
5561 <data auto_broadcast="numpy"/>
5562 <input>
5563 <port id="0" precision="FP32">
5564 <dim>1</dim>
5565 <dim>128</dim>
5566 <dim>40</dim>
5567 <dim>68</dim>
5568 </port>
5569 <port id="1" precision="FP32">
5570 <dim>1</dim>
5571 <dim>128</dim>
5572 <dim>1</dim>
5573 <dim>1</dim>
5574 </port>
5575 </input>
5576 <output>
5577 <port id="2" names="bottleneck3_2/dim_inc/conv" precision="FP32">
5578 <dim>1</dim>
5579 <dim>128</dim>
5580 <dim>40</dim>
5581 <dim>68</dim>
5582 </port>
5583 </output>
5584 </layer>
5585 <layer id="321" name="bottleneck3_2/add" type="Add" version="opset1">
5586 <data auto_broadcast="numpy"/>
5587 <input>
5588 <port id="0" precision="FP32">
5589 <dim>1</dim>
5590 <dim>128</dim>
5591 <dim>40</dim>
5592 <dim>68</dim>
5593 </port>
5594 <port id="1" precision="FP32">
5595 <dim>1</dim>
5596 <dim>128</dim>
5597 <dim>40</dim>
5598 <dim>68</dim>
5599 </port>
5600 </input>
5601 <output>
5602 <port id="2" names="bottleneck3_2/add" precision="FP32">
5603 <dim>1</dim>
5604 <dim>128</dim>
5605 <dim>40</dim>
5606 <dim>68</dim>
5607 </port>
5608 </output>
5609 </layer>
5610 <layer id="322" name="bottleneck3_2/fn/weights3093640130" type="Const" version="opset1">
5611 <data element_type="f32" offset="4664" shape="1" size="4"/>
5612 <output>
5613 <port id="0" precision="FP32">
5614 <dim>1</dim>
5615 </port>
5616 </output>
5617 </layer>
5618 <layer id="323" name="bottleneck3_2/fn" type="PReLU" version="opset1">
5619 <input>
5620 <port id="0" precision="FP32">
5621 <dim>1</dim>
5622 <dim>128</dim>
5623 <dim>40</dim>
5624 <dim>68</dim>
5625 </port>
5626 <port id="1" precision="FP32">
5627 <dim>1</dim>
5628 </port>
5629 </input>
5630 <output>
5631 <port id="2" names="bottleneck3_2/add" precision="FP32">
5632 <dim>1</dim>
5633 <dim>128</dim>
5634 <dim>40</dim>
5635 <dim>68</dim>
5636 </port>
5637 </output>
5638 </layer>
5639 <layer id="324" name="bottleneck3_3/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
5640 <data element_type="f32" offset="231644" shape="32, 128, 1, 1" size="16384"/>
5641 <output>
5642 <port id="0" precision="FP32">
5643 <dim>32</dim>
5644 <dim>128</dim>
5645 <dim>1</dim>
5646 <dim>1</dim>
5647 </port>
5648 </output>
5649 </layer>
5650 <layer id="325" name="bottleneck3_3/dim_red/conv" type="Convolution" version="opset1">
5651 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
5652 <input>
5653 <port id="0" precision="FP32">
5654 <dim>1</dim>
5655 <dim>128</dim>
5656 <dim>40</dim>
5657 <dim>68</dim>
5658 </port>
5659 <port id="1" precision="FP32">
5660 <dim>32</dim>
5661 <dim>128</dim>
5662 <dim>1</dim>
5663 <dim>1</dim>
5664 </port>
5665 </input>
5666 <output>
5667 <port id="2" precision="FP32">
5668 <dim>1</dim>
5669 <dim>32</dim>
5670 <dim>40</dim>
5671 <dim>68</dim>
5672 </port>
5673 </output>
5674 </layer>
5675 <layer id="326" name="data_add_2405724062" type="Const" version="opset1">
5676 <data element_type="f32" offset="248028" shape="1, 32, 1, 1" size="128"/>
5677 <output>
5678 <port id="0" precision="FP32">
5679 <dim>1</dim>
5680 <dim>32</dim>
5681 <dim>1</dim>
5682 <dim>1</dim>
5683 </port>
5684 </output>
5685 </layer>
5686 <layer id="327" name="bottleneck3_3/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
5687 <data auto_broadcast="numpy"/>
5688 <input>
5689 <port id="0" precision="FP32">
5690 <dim>1</dim>
5691 <dim>32</dim>
5692 <dim>40</dim>
5693 <dim>68</dim>
5694 </port>
5695 <port id="1" precision="FP32">
5696 <dim>1</dim>
5697 <dim>32</dim>
5698 <dim>1</dim>
5699 <dim>1</dim>
5700 </port>
5701 </input>
5702 <output>
5703 <port id="2" names="bottleneck3_3/dim_red/conv" precision="FP32">
5704 <dim>1</dim>
5705 <dim>32</dim>
5706 <dim>40</dim>
5707 <dim>68</dim>
5708 </port>
5709 </output>
5710 </layer>
5711 <layer id="328" name="bottleneck3_3/dim_red/fn/weights3107239758" type="Const" version="opset1">
5712 <data element_type="f32" offset="4664" shape="1" size="4"/>
5713 <output>
5714 <port id="0" precision="FP32">
5715 <dim>1</dim>
5716 </port>
5717 </output>
5718 </layer>
5719 <layer id="329" name="bottleneck3_3/dim_red/fn" type="PReLU" version="opset1">
5720 <input>
5721 <port id="0" precision="FP32">
5722 <dim>1</dim>
5723 <dim>32</dim>
5724 <dim>40</dim>
5725 <dim>68</dim>
5726 </port>
5727 <port id="1" precision="FP32">
5728 <dim>1</dim>
5729 </port>
5730 </input>
5731 <output>
5732 <port id="2" names="bottleneck3_3/dim_red/conv" precision="FP32">
5733 <dim>1</dim>
5734 <dim>32</dim>
5735 <dim>40</dim>
5736 <dim>68</dim>
5737 </port>
5738 </output>
5739 </layer>
5740 <layer id="330" name="bottleneck3_3/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
5741 <data element_type="f32" offset="248156" shape="32, 1, 1, 3, 3" size="1152"/>
5742 <output>
5743 <port id="0" precision="FP32">
5744 <dim>32</dim>
5745 <dim>1</dim>
5746 <dim>1</dim>
5747 <dim>3</dim>
5748 <dim>3</dim>
5749 </port>
5750 </output>
5751 </layer>
5752 <layer id="331" name="bottleneck3_3/inner/dw1/conv" type="GroupConvolution" version="opset1">
5753 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
5754 <input>
5755 <port id="0" precision="FP32">
5756 <dim>1</dim>
5757 <dim>32</dim>
5758 <dim>40</dim>
5759 <dim>68</dim>
5760 </port>
5761 <port id="1" precision="FP32">
5762 <dim>32</dim>
5763 <dim>1</dim>
5764 <dim>1</dim>
5765 <dim>3</dim>
5766 <dim>3</dim>
5767 </port>
5768 </input>
5769 <output>
5770 <port id="2" precision="FP32">
5771 <dim>1</dim>
5772 <dim>32</dim>
5773 <dim>40</dim>
5774 <dim>68</dim>
5775 </port>
5776 </output>
5777 </layer>
5778 <layer id="332" name="data_add_2406524070" type="Const" version="opset1">
5779 <data element_type="f32" offset="249308" shape="1, 32, 1, 1" size="128"/>
5780 <output>
5781 <port id="0" precision="FP32">
5782 <dim>1</dim>
5783 <dim>32</dim>
5784 <dim>1</dim>
5785 <dim>1</dim>
5786 </port>
5787 </output>
5788 </layer>
5789 <layer id="333" name="bottleneck3_3/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
5790 <data auto_broadcast="numpy"/>
5791 <input>
5792 <port id="0" precision="FP32">
5793 <dim>1</dim>
5794 <dim>32</dim>
5795 <dim>40</dim>
5796 <dim>68</dim>
5797 </port>
5798 <port id="1" precision="FP32">
5799 <dim>1</dim>
5800 <dim>32</dim>
5801 <dim>1</dim>
5802 <dim>1</dim>
5803 </port>
5804 </input>
5805 <output>
5806 <port id="2" names="bottleneck3_3/inner/dw1/conv" precision="FP32">
5807 <dim>1</dim>
5808 <dim>32</dim>
5809 <dim>40</dim>
5810 <dim>68</dim>
5811 </port>
5812 </output>
5813 </layer>
5814 <layer id="334" name="bottleneck3_3/inner/dw1/fn/weights3104440001" type="Const" version="opset1">
5815 <data element_type="f32" offset="4664" shape="1" size="4"/>
5816 <output>
5817 <port id="0" precision="FP32">
5818 <dim>1</dim>
5819 </port>
5820 </output>
5821 </layer>
5822 <layer id="335" name="bottleneck3_3/inner/dw1/fn" type="PReLU" version="opset1">
5823 <input>
5824 <port id="0" precision="FP32">
5825 <dim>1</dim>
5826 <dim>32</dim>
5827 <dim>40</dim>
5828 <dim>68</dim>
5829 </port>
5830 <port id="1" precision="FP32">
5831 <dim>1</dim>
5832 </port>
5833 </input>
5834 <output>
5835 <port id="2" names="bottleneck3_3/inner/dw1/conv" precision="FP32">
5836 <dim>1</dim>
5837 <dim>32</dim>
5838 <dim>40</dim>
5839 <dim>68</dim>
5840 </port>
5841 </output>
5842 </layer>
5843 <layer id="336" name="bottleneck3_3/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
5844 <data element_type="f32" offset="249436" shape="128, 32, 1, 1" size="16384"/>
5845 <output>
5846 <port id="0" precision="FP32">
5847 <dim>128</dim>
5848 <dim>32</dim>
5849 <dim>1</dim>
5850 <dim>1</dim>
5851 </port>
5852 </output>
5853 </layer>
5854 <layer id="337" name="bottleneck3_3/dim_inc/conv" type="Convolution" version="opset1">
5855 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
5856 <input>
5857 <port id="0" precision="FP32">
5858 <dim>1</dim>
5859 <dim>32</dim>
5860 <dim>40</dim>
5861 <dim>68</dim>
5862 </port>
5863 <port id="1" precision="FP32">
5864 <dim>128</dim>
5865 <dim>32</dim>
5866 <dim>1</dim>
5867 <dim>1</dim>
5868 </port>
5869 </input>
5870 <output>
5871 <port id="2" precision="FP32">
5872 <dim>1</dim>
5873 <dim>128</dim>
5874 <dim>40</dim>
5875 <dim>68</dim>
5876 </port>
5877 </output>
5878 </layer>
5879 <layer id="338" name="data_add_2407324078" type="Const" version="opset1">
5880 <data element_type="f32" offset="265820" shape="1, 128, 1, 1" size="512"/>
5881 <output>
5882 <port id="0" precision="FP32">
5883 <dim>1</dim>
5884 <dim>128</dim>
5885 <dim>1</dim>
5886 <dim>1</dim>
5887 </port>
5888 </output>
5889 </layer>
5890 <layer id="339" name="bottleneck3_3/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
5891 <data auto_broadcast="numpy"/>
5892 <input>
5893 <port id="0" precision="FP32">
5894 <dim>1</dim>
5895 <dim>128</dim>
5896 <dim>40</dim>
5897 <dim>68</dim>
5898 </port>
5899 <port id="1" precision="FP32">
5900 <dim>1</dim>
5901 <dim>128</dim>
5902 <dim>1</dim>
5903 <dim>1</dim>
5904 </port>
5905 </input>
5906 <output>
5907 <port id="2" names="bottleneck3_3/dim_inc/conv" precision="FP32">
5908 <dim>1</dim>
5909 <dim>128</dim>
5910 <dim>40</dim>
5911 <dim>68</dim>
5912 </port>
5913 </output>
5914 </layer>
5915 <layer id="340" name="bottleneck3_3/add" type="Add" version="opset1">
5916 <data auto_broadcast="numpy"/>
5917 <input>
5918 <port id="0" precision="FP32">
5919 <dim>1</dim>
5920 <dim>128</dim>
5921 <dim>40</dim>
5922 <dim>68</dim>
5923 </port>
5924 <port id="1" precision="FP32">
5925 <dim>1</dim>
5926 <dim>128</dim>
5927 <dim>40</dim>
5928 <dim>68</dim>
5929 </port>
5930 </input>
5931 <output>
5932 <port id="2" names="bottleneck3_3/add" precision="FP32">
5933 <dim>1</dim>
5934 <dim>128</dim>
5935 <dim>40</dim>
5936 <dim>68</dim>
5937 </port>
5938 </output>
5939 </layer>
5940 <layer id="341" name="bottleneck3_3/fn/weights3083640325" type="Const" version="opset1">
5941 <data element_type="f32" offset="4664" shape="1" size="4"/>
5942 <output>
5943 <port id="0" precision="FP32">
5944 <dim>1</dim>
5945 </port>
5946 </output>
5947 </layer>
5948 <layer id="342" name="bottleneck3_3/fn" type="PReLU" version="opset1">
5949 <input>
5950 <port id="0" precision="FP32">
5951 <dim>1</dim>
5952 <dim>128</dim>
5953 <dim>40</dim>
5954 <dim>68</dim>
5955 </port>
5956 <port id="1" precision="FP32">
5957 <dim>1</dim>
5958 </port>
5959 </input>
5960 <output>
5961 <port id="2" names="bottleneck3_3/add" precision="FP32">
5962 <dim>1</dim>
5963 <dim>128</dim>
5964 <dim>40</dim>
5965 <dim>68</dim>
5966 </port>
5967 </output>
5968 </layer>
5969 <layer id="343" name="bottleneck3_4/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
5970 <data element_type="f32" offset="266332" shape="32, 128, 1, 1" size="16384"/>
5971 <output>
5972 <port id="0" precision="FP32">
5973 <dim>32</dim>
5974 <dim>128</dim>
5975 <dim>1</dim>
5976 <dim>1</dim>
5977 </port>
5978 </output>
5979 </layer>
5980 <layer id="344" name="bottleneck3_4/dim_red/conv" type="Convolution" version="opset1">
5981 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
5982 <input>
5983 <port id="0" precision="FP32">
5984 <dim>1</dim>
5985 <dim>128</dim>
5986 <dim>40</dim>
5987 <dim>68</dim>
5988 </port>
5989 <port id="1" precision="FP32">
5990 <dim>32</dim>
5991 <dim>128</dim>
5992 <dim>1</dim>
5993 <dim>1</dim>
5994 </port>
5995 </input>
5996 <output>
5997 <port id="2" precision="FP32">
5998 <dim>1</dim>
5999 <dim>32</dim>
6000 <dim>40</dim>
6001 <dim>68</dim>
6002 </port>
6003 </output>
6004 </layer>
6005 <layer id="345" name="data_add_2408124086" type="Const" version="opset1">
6006 <data element_type="f32" offset="282716" shape="1, 32, 1, 1" size="128"/>
6007 <output>
6008 <port id="0" precision="FP32">
6009 <dim>1</dim>
6010 <dim>32</dim>
6011 <dim>1</dim>
6012 <dim>1</dim>
6013 </port>
6014 </output>
6015 </layer>
6016 <layer id="346" name="bottleneck3_4/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
6017 <data auto_broadcast="numpy"/>
6018 <input>
6019 <port id="0" precision="FP32">
6020 <dim>1</dim>
6021 <dim>32</dim>
6022 <dim>40</dim>
6023 <dim>68</dim>
6024 </port>
6025 <port id="1" precision="FP32">
6026 <dim>1</dim>
6027 <dim>32</dim>
6028 <dim>1</dim>
6029 <dim>1</dim>
6030 </port>
6031 </input>
6032 <output>
6033 <port id="2" names="bottleneck3_4/dim_red/conv" precision="FP32">
6034 <dim>1</dim>
6035 <dim>32</dim>
6036 <dim>40</dim>
6037 <dim>68</dim>
6038 </port>
6039 </output>
6040 </layer>
6041 <layer id="347" name="bottleneck3_4/dim_red/fn/weights3077240091" type="Const" version="opset1">
6042 <data element_type="f32" offset="4664" shape="1" size="4"/>
6043 <output>
6044 <port id="0" precision="FP32">
6045 <dim>1</dim>
6046 </port>
6047 </output>
6048 </layer>
6049 <layer id="348" name="bottleneck3_4/dim_red/fn" type="PReLU" version="opset1">
6050 <input>
6051 <port id="0" precision="FP32">
6052 <dim>1</dim>
6053 <dim>32</dim>
6054 <dim>40</dim>
6055 <dim>68</dim>
6056 </port>
6057 <port id="1" precision="FP32">
6058 <dim>1</dim>
6059 </port>
6060 </input>
6061 <output>
6062 <port id="2" names="bottleneck3_4/dim_red/conv" precision="FP32">
6063 <dim>1</dim>
6064 <dim>32</dim>
6065 <dim>40</dim>
6066 <dim>68</dim>
6067 </port>
6068 </output>
6069 </layer>
6070 <layer id="349" name="bottleneck3_4/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
6071 <data element_type="f32" offset="282844" shape="32, 1, 1, 3, 3" size="1152"/>
6072 <output>
6073 <port id="0" precision="FP32">
6074 <dim>32</dim>
6075 <dim>1</dim>
6076 <dim>1</dim>
6077 <dim>3</dim>
6078 <dim>3</dim>
6079 </port>
6080 </output>
6081 </layer>
6082 <layer id="350" name="bottleneck3_4/inner/dw1/conv" type="GroupConvolution" version="opset1">
6083 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
6084 <input>
6085 <port id="0" precision="FP32">
6086 <dim>1</dim>
6087 <dim>32</dim>
6088 <dim>40</dim>
6089 <dim>68</dim>
6090 </port>
6091 <port id="1" precision="FP32">
6092 <dim>32</dim>
6093 <dim>1</dim>
6094 <dim>1</dim>
6095 <dim>3</dim>
6096 <dim>3</dim>
6097 </port>
6098 </input>
6099 <output>
6100 <port id="2" precision="FP32">
6101 <dim>1</dim>
6102 <dim>32</dim>
6103 <dim>40</dim>
6104 <dim>68</dim>
6105 </port>
6106 </output>
6107 </layer>
6108 <layer id="351" name="data_add_2408924094" type="Const" version="opset1">
6109 <data element_type="f32" offset="283996" shape="1, 32, 1, 1" size="128"/>
6110 <output>
6111 <port id="0" precision="FP32">
6112 <dim>1</dim>
6113 <dim>32</dim>
6114 <dim>1</dim>
6115 <dim>1</dim>
6116 </port>
6117 </output>
6118 </layer>
6119 <layer id="352" name="bottleneck3_4/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
6120 <data auto_broadcast="numpy"/>
6121 <input>
6122 <port id="0" precision="FP32">
6123 <dim>1</dim>
6124 <dim>32</dim>
6125 <dim>40</dim>
6126 <dim>68</dim>
6127 </port>
6128 <port id="1" precision="FP32">
6129 <dim>1</dim>
6130 <dim>32</dim>
6131 <dim>1</dim>
6132 <dim>1</dim>
6133 </port>
6134 </input>
6135 <output>
6136 <port id="2" names="bottleneck3_4/inner/dw1/conv" precision="FP32">
6137 <dim>1</dim>
6138 <dim>32</dim>
6139 <dim>40</dim>
6140 <dim>68</dim>
6141 </port>
6142 </output>
6143 </layer>
6144 <layer id="353" name="bottleneck3_4/inner/dw1/fn/weights3099640157" type="Const" version="opset1">
6145 <data element_type="f32" offset="4664" shape="1" size="4"/>
6146 <output>
6147 <port id="0" precision="FP32">
6148 <dim>1</dim>
6149 </port>
6150 </output>
6151 </layer>
6152 <layer id="354" name="bottleneck3_4/inner/dw1/fn" type="PReLU" version="opset1">
6153 <input>
6154 <port id="0" precision="FP32">
6155 <dim>1</dim>
6156 <dim>32</dim>
6157 <dim>40</dim>
6158 <dim>68</dim>
6159 </port>
6160 <port id="1" precision="FP32">
6161 <dim>1</dim>
6162 </port>
6163 </input>
6164 <output>
6165 <port id="2" names="bottleneck3_4/inner/dw1/conv" precision="FP32">
6166 <dim>1</dim>
6167 <dim>32</dim>
6168 <dim>40</dim>
6169 <dim>68</dim>
6170 </port>
6171 </output>
6172 </layer>
6173 <layer id="355" name="bottleneck3_4/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
6174 <data element_type="f32" offset="284124" shape="128, 32, 1, 1" size="16384"/>
6175 <output>
6176 <port id="0" precision="FP32">
6177 <dim>128</dim>
6178 <dim>32</dim>
6179 <dim>1</dim>
6180 <dim>1</dim>
6181 </port>
6182 </output>
6183 </layer>
6184 <layer id="356" name="bottleneck3_4/dim_inc/conv" type="Convolution" version="opset1">
6185 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
6186 <input>
6187 <port id="0" precision="FP32">
6188 <dim>1</dim>
6189 <dim>32</dim>
6190 <dim>40</dim>
6191 <dim>68</dim>
6192 </port>
6193 <port id="1" precision="FP32">
6194 <dim>128</dim>
6195 <dim>32</dim>
6196 <dim>1</dim>
6197 <dim>1</dim>
6198 </port>
6199 </input>
6200 <output>
6201 <port id="2" precision="FP32">
6202 <dim>1</dim>
6203 <dim>128</dim>
6204 <dim>40</dim>
6205 <dim>68</dim>
6206 </port>
6207 </output>
6208 </layer>
6209 <layer id="357" name="data_add_2409724102" type="Const" version="opset1">
6210 <data element_type="f32" offset="300508" shape="1, 128, 1, 1" size="512"/>
6211 <output>
6212 <port id="0" precision="FP32">
6213 <dim>1</dim>
6214 <dim>128</dim>
6215 <dim>1</dim>
6216 <dim>1</dim>
6217 </port>
6218 </output>
6219 </layer>
6220 <layer id="358" name="bottleneck3_4/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
6221 <data auto_broadcast="numpy"/>
6222 <input>
6223 <port id="0" precision="FP32">
6224 <dim>1</dim>
6225 <dim>128</dim>
6226 <dim>40</dim>
6227 <dim>68</dim>
6228 </port>
6229 <port id="1" precision="FP32">
6230 <dim>1</dim>
6231 <dim>128</dim>
6232 <dim>1</dim>
6233 <dim>1</dim>
6234 </port>
6235 </input>
6236 <output>
6237 <port id="2" names="bottleneck3_4/dim_inc/conv" precision="FP32">
6238 <dim>1</dim>
6239 <dim>128</dim>
6240 <dim>40</dim>
6241 <dim>68</dim>
6242 </port>
6243 </output>
6244 </layer>
6245 <layer id="359" name="bottleneck3_4/add" type="Add" version="opset1">
6246 <data auto_broadcast="numpy"/>
6247 <input>
6248 <port id="0" precision="FP32">
6249 <dim>1</dim>
6250 <dim>128</dim>
6251 <dim>40</dim>
6252 <dim>68</dim>
6253 </port>
6254 <port id="1" precision="FP32">
6255 <dim>1</dim>
6256 <dim>128</dim>
6257 <dim>40</dim>
6258 <dim>68</dim>
6259 </port>
6260 </input>
6261 <output>
6262 <port id="2" names="bottleneck3_4/add" precision="FP32">
6263 <dim>1</dim>
6264 <dim>128</dim>
6265 <dim>40</dim>
6266 <dim>68</dim>
6267 </port>
6268 </output>
6269 </layer>
6270 <layer id="360" name="bottleneck3_4/fn/weights3105640382" type="Const" version="opset1">
6271 <data element_type="f32" offset="4664" shape="1" size="4"/>
6272 <output>
6273 <port id="0" precision="FP32">
6274 <dim>1</dim>
6275 </port>
6276 </output>
6277 </layer>
6278 <layer id="361" name="bottleneck3_4/fn" type="PReLU" version="opset1">
6279 <input>
6280 <port id="0" precision="FP32">
6281 <dim>1</dim>
6282 <dim>128</dim>
6283 <dim>40</dim>
6284 <dim>68</dim>
6285 </port>
6286 <port id="1" precision="FP32">
6287 <dim>1</dim>
6288 </port>
6289 </input>
6290 <output>
6291 <port id="2" names="bottleneck3_4/add" precision="FP32">
6292 <dim>1</dim>
6293 <dim>128</dim>
6294 <dim>40</dim>
6295 <dim>68</dim>
6296 </port>
6297 </output>
6298 </layer>
6299 <layer id="362" name="bottleneck3_5/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
6300 <data element_type="f32" offset="301020" shape="32, 128, 1, 1" size="16384"/>
6301 <output>
6302 <port id="0" precision="FP32">
6303 <dim>32</dim>
6304 <dim>128</dim>
6305 <dim>1</dim>
6306 <dim>1</dim>
6307 </port>
6308 </output>
6309 </layer>
6310 <layer id="363" name="bottleneck3_5/dim_red/conv" type="Convolution" version="opset1">
6311 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
6312 <input>
6313 <port id="0" precision="FP32">
6314 <dim>1</dim>
6315 <dim>128</dim>
6316 <dim>40</dim>
6317 <dim>68</dim>
6318 </port>
6319 <port id="1" precision="FP32">
6320 <dim>32</dim>
6321 <dim>128</dim>
6322 <dim>1</dim>
6323 <dim>1</dim>
6324 </port>
6325 </input>
6326 <output>
6327 <port id="2" precision="FP32">
6328 <dim>1</dim>
6329 <dim>32</dim>
6330 <dim>40</dim>
6331 <dim>68</dim>
6332 </port>
6333 </output>
6334 </layer>
6335 <layer id="364" name="data_add_2410524110" type="Const" version="opset1">
6336 <data element_type="f32" offset="317404" shape="1, 32, 1, 1" size="128"/>
6337 <output>
6338 <port id="0" precision="FP32">
6339 <dim>1</dim>
6340 <dim>32</dim>
6341 <dim>1</dim>
6342 <dim>1</dim>
6343 </port>
6344 </output>
6345 </layer>
6346 <layer id="365" name="bottleneck3_5/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
6347 <data auto_broadcast="numpy"/>
6348 <input>
6349 <port id="0" precision="FP32">
6350 <dim>1</dim>
6351 <dim>32</dim>
6352 <dim>40</dim>
6353 <dim>68</dim>
6354 </port>
6355 <port id="1" precision="FP32">
6356 <dim>1</dim>
6357 <dim>32</dim>
6358 <dim>1</dim>
6359 <dim>1</dim>
6360 </port>
6361 </input>
6362 <output>
6363 <port id="2" names="bottleneck3_5/dim_red/conv" precision="FP32">
6364 <dim>1</dim>
6365 <dim>32</dim>
6366 <dim>40</dim>
6367 <dim>68</dim>
6368 </port>
6369 </output>
6370 </layer>
6371 <layer id="366" name="bottleneck3_5/dim_red/fn/weights3081240661" type="Const" version="opset1">
6372 <data element_type="f32" offset="4664" shape="1" size="4"/>
6373 <output>
6374 <port id="0" precision="FP32">
6375 <dim>1</dim>
6376 </port>
6377 </output>
6378 </layer>
6379 <layer id="367" name="bottleneck3_5/dim_red/fn" type="PReLU" version="opset1">
6380 <input>
6381 <port id="0" precision="FP32">
6382 <dim>1</dim>
6383 <dim>32</dim>
6384 <dim>40</dim>
6385 <dim>68</dim>
6386 </port>
6387 <port id="1" precision="FP32">
6388 <dim>1</dim>
6389 </port>
6390 </input>
6391 <output>
6392 <port id="2" names="bottleneck3_5/dim_red/conv" precision="FP32">
6393 <dim>1</dim>
6394 <dim>32</dim>
6395 <dim>40</dim>
6396 <dim>68</dim>
6397 </port>
6398 </output>
6399 </layer>
6400 <layer id="368" name="bottleneck3_5/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
6401 <data element_type="f32" offset="317532" shape="32, 1, 1, 3, 3" size="1152"/>
6402 <output>
6403 <port id="0" precision="FP32">
6404 <dim>32</dim>
6405 <dim>1</dim>
6406 <dim>1</dim>
6407 <dim>3</dim>
6408 <dim>3</dim>
6409 </port>
6410 </output>
6411 </layer>
6412 <layer id="369" name="bottleneck3_5/inner/dw1/conv" type="GroupConvolution" version="opset1">
6413 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
6414 <input>
6415 <port id="0" precision="FP32">
6416 <dim>1</dim>
6417 <dim>32</dim>
6418 <dim>40</dim>
6419 <dim>68</dim>
6420 </port>
6421 <port id="1" precision="FP32">
6422 <dim>32</dim>
6423 <dim>1</dim>
6424 <dim>1</dim>
6425 <dim>3</dim>
6426 <dim>3</dim>
6427 </port>
6428 </input>
6429 <output>
6430 <port id="2" precision="FP32">
6431 <dim>1</dim>
6432 <dim>32</dim>
6433 <dim>40</dim>
6434 <dim>68</dim>
6435 </port>
6436 </output>
6437 </layer>
6438 <layer id="370" name="data_add_2411324118" type="Const" version="opset1">
6439 <data element_type="f32" offset="318684" shape="1, 32, 1, 1" size="128"/>
6440 <output>
6441 <port id="0" precision="FP32">
6442 <dim>1</dim>
6443 <dim>32</dim>
6444 <dim>1</dim>
6445 <dim>1</dim>
6446 </port>
6447 </output>
6448 </layer>
6449 <layer id="371" name="bottleneck3_5/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
6450 <data auto_broadcast="numpy"/>
6451 <input>
6452 <port id="0" precision="FP32">
6453 <dim>1</dim>
6454 <dim>32</dim>
6455 <dim>40</dim>
6456 <dim>68</dim>
6457 </port>
6458 <port id="1" precision="FP32">
6459 <dim>1</dim>
6460 <dim>32</dim>
6461 <dim>1</dim>
6462 <dim>1</dim>
6463 </port>
6464 </input>
6465 <output>
6466 <port id="2" names="bottleneck3_5/inner/dw1/conv" precision="FP32">
6467 <dim>1</dim>
6468 <dim>32</dim>
6469 <dim>40</dim>
6470 <dim>68</dim>
6471 </port>
6472 </output>
6473 </layer>
6474 <layer id="372" name="bottleneck3_5/inner/dw1/fn/weights3113240100" type="Const" version="opset1">
6475 <data element_type="f32" offset="4664" shape="1" size="4"/>
6476 <output>
6477 <port id="0" precision="FP32">
6478 <dim>1</dim>
6479 </port>
6480 </output>
6481 </layer>
6482 <layer id="373" name="bottleneck3_5/inner/dw1/fn" type="PReLU" version="opset1">
6483 <input>
6484 <port id="0" precision="FP32">
6485 <dim>1</dim>
6486 <dim>32</dim>
6487 <dim>40</dim>
6488 <dim>68</dim>
6489 </port>
6490 <port id="1" precision="FP32">
6491 <dim>1</dim>
6492 </port>
6493 </input>
6494 <output>
6495 <port id="2" names="bottleneck3_5/inner/dw1/conv" precision="FP32">
6496 <dim>1</dim>
6497 <dim>32</dim>
6498 <dim>40</dim>
6499 <dim>68</dim>
6500 </port>
6501 </output>
6502 </layer>
6503 <layer id="374" name="bottleneck3_5/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
6504 <data element_type="f32" offset="318812" shape="128, 32, 1, 1" size="16384"/>
6505 <output>
6506 <port id="0" precision="FP32">
6507 <dim>128</dim>
6508 <dim>32</dim>
6509 <dim>1</dim>
6510 <dim>1</dim>
6511 </port>
6512 </output>
6513 </layer>
6514 <layer id="375" name="bottleneck3_5/dim_inc/conv" type="Convolution" version="opset1">
6515 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
6516 <input>
6517 <port id="0" precision="FP32">
6518 <dim>1</dim>
6519 <dim>32</dim>
6520 <dim>40</dim>
6521 <dim>68</dim>
6522 </port>
6523 <port id="1" precision="FP32">
6524 <dim>128</dim>
6525 <dim>32</dim>
6526 <dim>1</dim>
6527 <dim>1</dim>
6528 </port>
6529 </input>
6530 <output>
6531 <port id="2" precision="FP32">
6532 <dim>1</dim>
6533 <dim>128</dim>
6534 <dim>40</dim>
6535 <dim>68</dim>
6536 </port>
6537 </output>
6538 </layer>
6539 <layer id="376" name="data_add_2412124126" type="Const" version="opset1">
6540 <data element_type="f32" offset="335196" shape="1, 128, 1, 1" size="512"/>
6541 <output>
6542 <port id="0" precision="FP32">
6543 <dim>1</dim>
6544 <dim>128</dim>
6545 <dim>1</dim>
6546 <dim>1</dim>
6547 </port>
6548 </output>
6549 </layer>
6550 <layer id="377" name="bottleneck3_5/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
6551 <data auto_broadcast="numpy"/>
6552 <input>
6553 <port id="0" precision="FP32">
6554 <dim>1</dim>
6555 <dim>128</dim>
6556 <dim>40</dim>
6557 <dim>68</dim>
6558 </port>
6559 <port id="1" precision="FP32">
6560 <dim>1</dim>
6561 <dim>128</dim>
6562 <dim>1</dim>
6563 <dim>1</dim>
6564 </port>
6565 </input>
6566 <output>
6567 <port id="2" names="bottleneck3_5/dim_inc/conv" precision="FP32">
6568 <dim>1</dim>
6569 <dim>128</dim>
6570 <dim>40</dim>
6571 <dim>68</dim>
6572 </port>
6573 </output>
6574 </layer>
6575 <layer id="378" name="bottleneck3_5/add" type="Add" version="opset1">
6576 <data auto_broadcast="numpy"/>
6577 <input>
6578 <port id="0" precision="FP32">
6579 <dim>1</dim>
6580 <dim>128</dim>
6581 <dim>40</dim>
6582 <dim>68</dim>
6583 </port>
6584 <port id="1" precision="FP32">
6585 <dim>1</dim>
6586 <dim>128</dim>
6587 <dim>40</dim>
6588 <dim>68</dim>
6589 </port>
6590 </input>
6591 <output>
6592 <port id="2" names="bottleneck3_5/add" precision="FP32">
6593 <dim>1</dim>
6594 <dim>128</dim>
6595 <dim>40</dim>
6596 <dim>68</dim>
6597 </port>
6598 </output>
6599 </layer>
6600 <layer id="379" name="bottleneck3_5/fn/weights3108439911" type="Const" version="opset1">
6601 <data element_type="f32" offset="4664" shape="1" size="4"/>
6602 <output>
6603 <port id="0" precision="FP32">
6604 <dim>1</dim>
6605 </port>
6606 </output>
6607 </layer>
6608 <layer id="380" name="bottleneck3_5/fn" type="PReLU" version="opset1">
6609 <input>
6610 <port id="0" precision="FP32">
6611 <dim>1</dim>
6612 <dim>128</dim>
6613 <dim>40</dim>
6614 <dim>68</dim>
6615 </port>
6616 <port id="1" precision="FP32">
6617 <dim>1</dim>
6618 </port>
6619 </input>
6620 <output>
6621 <port id="2" names="bottleneck3_5/add" precision="FP32">
6622 <dim>1</dim>
6623 <dim>128</dim>
6624 <dim>40</dim>
6625 <dim>68</dim>
6626 </port>
6627 </output>
6628 </layer>
6629 <layer id="381" name="bottleneck3_6/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
6630 <data element_type="f32" offset="335708" shape="32, 128, 1, 1" size="16384"/>
6631 <output>
6632 <port id="0" precision="FP32">
6633 <dim>32</dim>
6634 <dim>128</dim>
6635 <dim>1</dim>
6636 <dim>1</dim>
6637 </port>
6638 </output>
6639 </layer>
6640 <layer id="382" name="bottleneck3_6/dim_red/conv" type="Convolution" version="opset1">
6641 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
6642 <input>
6643 <port id="0" precision="FP32">
6644 <dim>1</dim>
6645 <dim>128</dim>
6646 <dim>40</dim>
6647 <dim>68</dim>
6648 </port>
6649 <port id="1" precision="FP32">
6650 <dim>32</dim>
6651 <dim>128</dim>
6652 <dim>1</dim>
6653 <dim>1</dim>
6654 </port>
6655 </input>
6656 <output>
6657 <port id="2" precision="FP32">
6658 <dim>1</dim>
6659 <dim>32</dim>
6660 <dim>40</dim>
6661 <dim>68</dim>
6662 </port>
6663 </output>
6664 </layer>
6665 <layer id="383" name="data_add_2412924134" type="Const" version="opset1">
6666 <data element_type="f32" offset="352092" shape="1, 32, 1, 1" size="128"/>
6667 <output>
6668 <port id="0" precision="FP32">
6669 <dim>1</dim>
6670 <dim>32</dim>
6671 <dim>1</dim>
6672 <dim>1</dim>
6673 </port>
6674 </output>
6675 </layer>
6676 <layer id="384" name="bottleneck3_6/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
6677 <data auto_broadcast="numpy"/>
6678 <input>
6679 <port id="0" precision="FP32">
6680 <dim>1</dim>
6681 <dim>32</dim>
6682 <dim>40</dim>
6683 <dim>68</dim>
6684 </port>
6685 <port id="1" precision="FP32">
6686 <dim>1</dim>
6687 <dim>32</dim>
6688 <dim>1</dim>
6689 <dim>1</dim>
6690 </port>
6691 </input>
6692 <output>
6693 <port id="2" names="bottleneck3_6/dim_red/conv" precision="FP32">
6694 <dim>1</dim>
6695 <dim>32</dim>
6696 <dim>40</dim>
6697 <dim>68</dim>
6698 </port>
6699 </output>
6700 </layer>
6701 <layer id="385" name="bottleneck3_6/dim_red/fn/weights3084040604" type="Const" version="opset1">
6702 <data element_type="f32" offset="4664" shape="1" size="4"/>
6703 <output>
6704 <port id="0" precision="FP32">
6705 <dim>1</dim>
6706 </port>
6707 </output>
6708 </layer>
6709 <layer id="386" name="bottleneck3_6/dim_red/fn" type="PReLU" version="opset1">
6710 <input>
6711 <port id="0" precision="FP32">
6712 <dim>1</dim>
6713 <dim>32</dim>
6714 <dim>40</dim>
6715 <dim>68</dim>
6716 </port>
6717 <port id="1" precision="FP32">
6718 <dim>1</dim>
6719 </port>
6720 </input>
6721 <output>
6722 <port id="2" names="bottleneck3_6/dim_red/conv" precision="FP32">
6723 <dim>1</dim>
6724 <dim>32</dim>
6725 <dim>40</dim>
6726 <dim>68</dim>
6727 </port>
6728 </output>
6729 </layer>
6730 <layer id="387" name="bottleneck3_6/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
6731 <data element_type="f32" offset="352220" shape="32, 1, 1, 3, 3" size="1152"/>
6732 <output>
6733 <port id="0" precision="FP32">
6734 <dim>32</dim>
6735 <dim>1</dim>
6736 <dim>1</dim>
6737 <dim>3</dim>
6738 <dim>3</dim>
6739 </port>
6740 </output>
6741 </layer>
6742 <layer id="388" name="bottleneck3_6/inner/dw1/conv" type="GroupConvolution" version="opset1">
6743 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
6744 <input>
6745 <port id="0" precision="FP32">
6746 <dim>1</dim>
6747 <dim>32</dim>
6748 <dim>40</dim>
6749 <dim>68</dim>
6750 </port>
6751 <port id="1" precision="FP32">
6752 <dim>32</dim>
6753 <dim>1</dim>
6754 <dim>1</dim>
6755 <dim>3</dim>
6756 <dim>3</dim>
6757 </port>
6758 </input>
6759 <output>
6760 <port id="2" precision="FP32">
6761 <dim>1</dim>
6762 <dim>32</dim>
6763 <dim>40</dim>
6764 <dim>68</dim>
6765 </port>
6766 </output>
6767 </layer>
6768 <layer id="389" name="data_add_2413724142" type="Const" version="opset1">
6769 <data element_type="f32" offset="353372" shape="1, 32, 1, 1" size="128"/>
6770 <output>
6771 <port id="0" precision="FP32">
6772 <dim>1</dim>
6773 <dim>32</dim>
6774 <dim>1</dim>
6775 <dim>1</dim>
6776 </port>
6777 </output>
6778 </layer>
6779 <layer id="390" name="bottleneck3_6/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
6780 <data auto_broadcast="numpy"/>
6781 <input>
6782 <port id="0" precision="FP32">
6783 <dim>1</dim>
6784 <dim>32</dim>
6785 <dim>40</dim>
6786 <dim>68</dim>
6787 </port>
6788 <port id="1" precision="FP32">
6789 <dim>1</dim>
6790 <dim>32</dim>
6791 <dim>1</dim>
6792 <dim>1</dim>
6793 </port>
6794 </input>
6795 <output>
6796 <port id="2" names="bottleneck3_6/inner/dw1/conv" precision="FP32">
6797 <dim>1</dim>
6798 <dim>32</dim>
6799 <dim>40</dim>
6800 <dim>68</dim>
6801 </port>
6802 </output>
6803 </layer>
6804 <layer id="391" name="bottleneck3_6/inner/dw1/fn/weights3090840310" type="Const" version="opset1">
6805 <data element_type="f32" offset="4664" shape="1" size="4"/>
6806 <output>
6807 <port id="0" precision="FP32">
6808 <dim>1</dim>
6809 </port>
6810 </output>
6811 </layer>
6812 <layer id="392" name="bottleneck3_6/inner/dw1/fn" type="PReLU" version="opset1">
6813 <input>
6814 <port id="0" precision="FP32">
6815 <dim>1</dim>
6816 <dim>32</dim>
6817 <dim>40</dim>
6818 <dim>68</dim>
6819 </port>
6820 <port id="1" precision="FP32">
6821 <dim>1</dim>
6822 </port>
6823 </input>
6824 <output>
6825 <port id="2" names="bottleneck3_6/inner/dw1/conv" precision="FP32">
6826 <dim>1</dim>
6827 <dim>32</dim>
6828 <dim>40</dim>
6829 <dim>68</dim>
6830 </port>
6831 </output>
6832 </layer>
6833 <layer id="393" name="bottleneck3_6/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
6834 <data element_type="f32" offset="353500" shape="128, 32, 1, 1" size="16384"/>
6835 <output>
6836 <port id="0" precision="FP32">
6837 <dim>128</dim>
6838 <dim>32</dim>
6839 <dim>1</dim>
6840 <dim>1</dim>
6841 </port>
6842 </output>
6843 </layer>
6844 <layer id="394" name="bottleneck3_6/dim_inc/conv" type="Convolution" version="opset1">
6845 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
6846 <input>
6847 <port id="0" precision="FP32">
6848 <dim>1</dim>
6849 <dim>32</dim>
6850 <dim>40</dim>
6851 <dim>68</dim>
6852 </port>
6853 <port id="1" precision="FP32">
6854 <dim>128</dim>
6855 <dim>32</dim>
6856 <dim>1</dim>
6857 <dim>1</dim>
6858 </port>
6859 </input>
6860 <output>
6861 <port id="2" precision="FP32">
6862 <dim>1</dim>
6863 <dim>128</dim>
6864 <dim>40</dim>
6865 <dim>68</dim>
6866 </port>
6867 </output>
6868 </layer>
6869 <layer id="395" name="data_add_2414524150" type="Const" version="opset1">
6870 <data element_type="f32" offset="369884" shape="1, 128, 1, 1" size="512"/>
6871 <output>
6872 <port id="0" precision="FP32">
6873 <dim>1</dim>
6874 <dim>128</dim>
6875 <dim>1</dim>
6876 <dim>1</dim>
6877 </port>
6878 </output>
6879 </layer>
6880 <layer id="396" name="bottleneck3_6/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
6881 <data auto_broadcast="numpy"/>
6882 <input>
6883 <port id="0" precision="FP32">
6884 <dim>1</dim>
6885 <dim>128</dim>
6886 <dim>40</dim>
6887 <dim>68</dim>
6888 </port>
6889 <port id="1" precision="FP32">
6890 <dim>1</dim>
6891 <dim>128</dim>
6892 <dim>1</dim>
6893 <dim>1</dim>
6894 </port>
6895 </input>
6896 <output>
6897 <port id="2" names="bottleneck3_6/dim_inc/conv" precision="FP32">
6898 <dim>1</dim>
6899 <dim>128</dim>
6900 <dim>40</dim>
6901 <dim>68</dim>
6902 </port>
6903 </output>
6904 </layer>
6905 <layer id="397" name="bottleneck3_6/add" type="Add" version="opset1">
6906 <data auto_broadcast="numpy"/>
6907 <input>
6908 <port id="0" precision="FP32">
6909 <dim>1</dim>
6910 <dim>128</dim>
6911 <dim>40</dim>
6912 <dim>68</dim>
6913 </port>
6914 <port id="1" precision="FP32">
6915 <dim>1</dim>
6916 <dim>128</dim>
6917 <dim>40</dim>
6918 <dim>68</dim>
6919 </port>
6920 </input>
6921 <output>
6922 <port id="2" names="bottleneck3_6/add" precision="FP32">
6923 <dim>1</dim>
6924 <dim>128</dim>
6925 <dim>40</dim>
6926 <dim>68</dim>
6927 </port>
6928 </output>
6929 </layer>
6930 <layer id="398" name="bottleneck3_6/fn/weights3090039914" type="Const" version="opset1">
6931 <data element_type="f32" offset="4664" shape="1" size="4"/>
6932 <output>
6933 <port id="0" precision="FP32">
6934 <dim>1</dim>
6935 </port>
6936 </output>
6937 </layer>
6938 <layer id="399" name="bottleneck3_6/fn" type="PReLU" version="opset1">
6939 <input>
6940 <port id="0" precision="FP32">
6941 <dim>1</dim>
6942 <dim>128</dim>
6943 <dim>40</dim>
6944 <dim>68</dim>
6945 </port>
6946 <port id="1" precision="FP32">
6947 <dim>1</dim>
6948 </port>
6949 </input>
6950 <output>
6951 <port id="2" names="bottleneck3_6/add" precision="FP32">
6952 <dim>1</dim>
6953 <dim>128</dim>
6954 <dim>40</dim>
6955 <dim>68</dim>
6956 </port>
6957 </output>
6958 </layer>
6959 <layer id="400" name="bottleneck3_7/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
6960 <data element_type="f32" offset="370396" shape="32, 128, 1, 1" size="16384"/>
6961 <output>
6962 <port id="0" precision="FP32">
6963 <dim>32</dim>
6964 <dim>128</dim>
6965 <dim>1</dim>
6966 <dim>1</dim>
6967 </port>
6968 </output>
6969 </layer>
6970 <layer id="401" name="bottleneck3_7/dim_red/conv" type="Convolution" version="opset1">
6971 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
6972 <input>
6973 <port id="0" precision="FP32">
6974 <dim>1</dim>
6975 <dim>128</dim>
6976 <dim>40</dim>
6977 <dim>68</dim>
6978 </port>
6979 <port id="1" precision="FP32">
6980 <dim>32</dim>
6981 <dim>128</dim>
6982 <dim>1</dim>
6983 <dim>1</dim>
6984 </port>
6985 </input>
6986 <output>
6987 <port id="2" precision="FP32">
6988 <dim>1</dim>
6989 <dim>32</dim>
6990 <dim>40</dim>
6991 <dim>68</dim>
6992 </port>
6993 </output>
6994 </layer>
6995 <layer id="402" name="data_add_2415324158" type="Const" version="opset1">
6996 <data element_type="f32" offset="386780" shape="1, 32, 1, 1" size="128"/>
6997 <output>
6998 <port id="0" precision="FP32">
6999 <dim>1</dim>
7000 <dim>32</dim>
7001 <dim>1</dim>
7002 <dim>1</dim>
7003 </port>
7004 </output>
7005 </layer>
7006 <layer id="403" name="bottleneck3_7/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
7007 <data auto_broadcast="numpy"/>
7008 <input>
7009 <port id="0" precision="FP32">
7010 <dim>1</dim>
7011 <dim>32</dim>
7012 <dim>40</dim>
7013 <dim>68</dim>
7014 </port>
7015 <port id="1" precision="FP32">
7016 <dim>1</dim>
7017 <dim>32</dim>
7018 <dim>1</dim>
7019 <dim>1</dim>
7020 </port>
7021 </input>
7022 <output>
7023 <port id="2" names="bottleneck3_7/dim_red/conv" precision="FP32">
7024 <dim>1</dim>
7025 <dim>32</dim>
7026 <dim>40</dim>
7027 <dim>68</dim>
7028 </port>
7029 </output>
7030 </layer>
7031 <layer id="404" name="bottleneck3_7/dim_red/fn/weights3113640679" type="Const" version="opset1">
7032 <data element_type="f32" offset="4664" shape="1" size="4"/>
7033 <output>
7034 <port id="0" precision="FP32">
7035 <dim>1</dim>
7036 </port>
7037 </output>
7038 </layer>
7039 <layer id="405" name="bottleneck3_7/dim_red/fn" type="PReLU" version="opset1">
7040 <input>
7041 <port id="0" precision="FP32">
7042 <dim>1</dim>
7043 <dim>32</dim>
7044 <dim>40</dim>
7045 <dim>68</dim>
7046 </port>
7047 <port id="1" precision="FP32">
7048 <dim>1</dim>
7049 </port>
7050 </input>
7051 <output>
7052 <port id="2" names="bottleneck3_7/dim_red/conv" precision="FP32">
7053 <dim>1</dim>
7054 <dim>32</dim>
7055 <dim>40</dim>
7056 <dim>68</dim>
7057 </port>
7058 </output>
7059 </layer>
7060 <layer id="406" name="bottleneck3_7/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
7061 <data element_type="f32" offset="386908" shape="32, 1, 1, 3, 3" size="1152"/>
7062 <output>
7063 <port id="0" precision="FP32">
7064 <dim>32</dim>
7065 <dim>1</dim>
7066 <dim>1</dim>
7067 <dim>3</dim>
7068 <dim>3</dim>
7069 </port>
7070 </output>
7071 </layer>
7072 <layer id="407" name="bottleneck3_7/inner/dw1/conv" type="GroupConvolution" version="opset1">
7073 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
7074 <input>
7075 <port id="0" precision="FP32">
7076 <dim>1</dim>
7077 <dim>32</dim>
7078 <dim>40</dim>
7079 <dim>68</dim>
7080 </port>
7081 <port id="1" precision="FP32">
7082 <dim>32</dim>
7083 <dim>1</dim>
7084 <dim>1</dim>
7085 <dim>3</dim>
7086 <dim>3</dim>
7087 </port>
7088 </input>
7089 <output>
7090 <port id="2" precision="FP32">
7091 <dim>1</dim>
7092 <dim>32</dim>
7093 <dim>40</dim>
7094 <dim>68</dim>
7095 </port>
7096 </output>
7097 </layer>
7098 <layer id="408" name="data_add_2416124166" type="Const" version="opset1">
7099 <data element_type="f32" offset="388060" shape="1, 32, 1, 1" size="128"/>
7100 <output>
7101 <port id="0" precision="FP32">
7102 <dim>1</dim>
7103 <dim>32</dim>
7104 <dim>1</dim>
7105 <dim>1</dim>
7106 </port>
7107 </output>
7108 </layer>
7109 <layer id="409" name="bottleneck3_7/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
7110 <data auto_broadcast="numpy"/>
7111 <input>
7112 <port id="0" precision="FP32">
7113 <dim>1</dim>
7114 <dim>32</dim>
7115 <dim>40</dim>
7116 <dim>68</dim>
7117 </port>
7118 <port id="1" precision="FP32">
7119 <dim>1</dim>
7120 <dim>32</dim>
7121 <dim>1</dim>
7122 <dim>1</dim>
7123 </port>
7124 </input>
7125 <output>
7126 <port id="2" names="bottleneck3_7/inner/dw1/conv" precision="FP32">
7127 <dim>1</dim>
7128 <dim>32</dim>
7129 <dim>40</dim>
7130 <dim>68</dim>
7131 </port>
7132 </output>
7133 </layer>
7134 <layer id="410" name="bottleneck3_7/inner/dw1/fn/weights3098040349" type="Const" version="opset1">
7135 <data element_type="f32" offset="4664" shape="1" size="4"/>
7136 <output>
7137 <port id="0" precision="FP32">
7138 <dim>1</dim>
7139 </port>
7140 </output>
7141 </layer>
7142 <layer id="411" name="bottleneck3_7/inner/dw1/fn" type="PReLU" version="opset1">
7143 <input>
7144 <port id="0" precision="FP32">
7145 <dim>1</dim>
7146 <dim>32</dim>
7147 <dim>40</dim>
7148 <dim>68</dim>
7149 </port>
7150 <port id="1" precision="FP32">
7151 <dim>1</dim>
7152 </port>
7153 </input>
7154 <output>
7155 <port id="2" names="bottleneck3_7/inner/dw1/conv" precision="FP32">
7156 <dim>1</dim>
7157 <dim>32</dim>
7158 <dim>40</dim>
7159 <dim>68</dim>
7160 </port>
7161 </output>
7162 </layer>
7163 <layer id="412" name="bottleneck3_7/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
7164 <data element_type="f32" offset="388188" shape="128, 32, 1, 1" size="16384"/>
7165 <output>
7166 <port id="0" precision="FP32">
7167 <dim>128</dim>
7168 <dim>32</dim>
7169 <dim>1</dim>
7170 <dim>1</dim>
7171 </port>
7172 </output>
7173 </layer>
7174 <layer id="413" name="bottleneck3_7/dim_inc/conv" type="Convolution" version="opset1">
7175 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
7176 <input>
7177 <port id="0" precision="FP32">
7178 <dim>1</dim>
7179 <dim>32</dim>
7180 <dim>40</dim>
7181 <dim>68</dim>
7182 </port>
7183 <port id="1" precision="FP32">
7184 <dim>128</dim>
7185 <dim>32</dim>
7186 <dim>1</dim>
7187 <dim>1</dim>
7188 </port>
7189 </input>
7190 <output>
7191 <port id="2" precision="FP32">
7192 <dim>1</dim>
7193 <dim>128</dim>
7194 <dim>40</dim>
7195 <dim>68</dim>
7196 </port>
7197 </output>
7198 </layer>
7199 <layer id="414" name="data_add_2416924174" type="Const" version="opset1">
7200 <data element_type="f32" offset="404572" shape="1, 128, 1, 1" size="512"/>
7201 <output>
7202 <port id="0" precision="FP32">
7203 <dim>1</dim>
7204 <dim>128</dim>
7205 <dim>1</dim>
7206 <dim>1</dim>
7207 </port>
7208 </output>
7209 </layer>
7210 <layer id="415" name="bottleneck3_7/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
7211 <data auto_broadcast="numpy"/>
7212 <input>
7213 <port id="0" precision="FP32">
7214 <dim>1</dim>
7215 <dim>128</dim>
7216 <dim>40</dim>
7217 <dim>68</dim>
7218 </port>
7219 <port id="1" precision="FP32">
7220 <dim>1</dim>
7221 <dim>128</dim>
7222 <dim>1</dim>
7223 <dim>1</dim>
7224 </port>
7225 </input>
7226 <output>
7227 <port id="2" names="bottleneck3_7/dim_inc/conv" precision="FP32">
7228 <dim>1</dim>
7229 <dim>128</dim>
7230 <dim>40</dim>
7231 <dim>68</dim>
7232 </port>
7233 </output>
7234 </layer>
7235 <layer id="416" name="bottleneck3_7/add" type="Add" version="opset1">
7236 <data auto_broadcast="numpy"/>
7237 <input>
7238 <port id="0" precision="FP32">
7239 <dim>1</dim>
7240 <dim>128</dim>
7241 <dim>40</dim>
7242 <dim>68</dim>
7243 </port>
7244 <port id="1" precision="FP32">
7245 <dim>1</dim>
7246 <dim>128</dim>
7247 <dim>40</dim>
7248 <dim>68</dim>
7249 </port>
7250 </input>
7251 <output>
7252 <port id="2" names="bottleneck3_7/add" precision="FP32">
7253 <dim>1</dim>
7254 <dim>128</dim>
7255 <dim>40</dim>
7256 <dim>68</dim>
7257 </port>
7258 </output>
7259 </layer>
7260 <layer id="417" name="bottleneck3_7/fn/weights3102840676" type="Const" version="opset1">
7261 <data element_type="f32" offset="4664" shape="1" size="4"/>
7262 <output>
7263 <port id="0" precision="FP32">
7264 <dim>1</dim>
7265 </port>
7266 </output>
7267 </layer>
7268 <layer id="418" name="bottleneck3_7/fn" type="PReLU" version="opset1">
7269 <input>
7270 <port id="0" precision="FP32">
7271 <dim>1</dim>
7272 <dim>128</dim>
7273 <dim>40</dim>
7274 <dim>68</dim>
7275 </port>
7276 <port id="1" precision="FP32">
7277 <dim>1</dim>
7278 </port>
7279 </input>
7280 <output>
7281 <port id="2" names="bottleneck3_7/add" precision="FP32">
7282 <dim>1</dim>
7283 <dim>128</dim>
7284 <dim>40</dim>
7285 <dim>68</dim>
7286 </port>
7287 </output>
7288 </layer>
7289 <layer id="419" name="bottleneck3_8/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
7290 <data element_type="f32" offset="405084" shape="32, 128, 1, 1" size="16384"/>
7291 <output>
7292 <port id="0" precision="FP32">
7293 <dim>32</dim>
7294 <dim>128</dim>
7295 <dim>1</dim>
7296 <dim>1</dim>
7297 </port>
7298 </output>
7299 </layer>
7300 <layer id="420" name="bottleneck3_8/dim_red/conv" type="Convolution" version="opset1">
7301 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
7302 <input>
7303 <port id="0" precision="FP32">
7304 <dim>1</dim>
7305 <dim>128</dim>
7306 <dim>40</dim>
7307 <dim>68</dim>
7308 </port>
7309 <port id="1" precision="FP32">
7310 <dim>32</dim>
7311 <dim>128</dim>
7312 <dim>1</dim>
7313 <dim>1</dim>
7314 </port>
7315 </input>
7316 <output>
7317 <port id="2" precision="FP32">
7318 <dim>1</dim>
7319 <dim>32</dim>
7320 <dim>40</dim>
7321 <dim>68</dim>
7322 </port>
7323 </output>
7324 </layer>
7325 <layer id="421" name="data_add_2417724182" type="Const" version="opset1">
7326 <data element_type="f32" offset="421468" shape="1, 32, 1, 1" size="128"/>
7327 <output>
7328 <port id="0" precision="FP32">
7329 <dim>1</dim>
7330 <dim>32</dim>
7331 <dim>1</dim>
7332 <dim>1</dim>
7333 </port>
7334 </output>
7335 </layer>
7336 <layer id="422" name="bottleneck3_8/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
7337 <data auto_broadcast="numpy"/>
7338 <input>
7339 <port id="0" precision="FP32">
7340 <dim>1</dim>
7341 <dim>32</dim>
7342 <dim>40</dim>
7343 <dim>68</dim>
7344 </port>
7345 <port id="1" precision="FP32">
7346 <dim>1</dim>
7347 <dim>32</dim>
7348 <dim>1</dim>
7349 <dim>1</dim>
7350 </port>
7351 </input>
7352 <output>
7353 <port id="2" names="bottleneck3_8/dim_red/conv" precision="FP32">
7354 <dim>1</dim>
7355 <dim>32</dim>
7356 <dim>40</dim>
7357 <dim>68</dim>
7358 </port>
7359 </output>
7360 </layer>
7361 <layer id="423" name="bottleneck3_8/dim_red/fn/weights3098440022" type="Const" version="opset1">
7362 <data element_type="f32" offset="4664" shape="1" size="4"/>
7363 <output>
7364 <port id="0" precision="FP32">
7365 <dim>1</dim>
7366 </port>
7367 </output>
7368 </layer>
7369 <layer id="424" name="bottleneck3_8/dim_red/fn" type="PReLU" version="opset1">
7370 <input>
7371 <port id="0" precision="FP32">
7372 <dim>1</dim>
7373 <dim>32</dim>
7374 <dim>40</dim>
7375 <dim>68</dim>
7376 </port>
7377 <port id="1" precision="FP32">
7378 <dim>1</dim>
7379 </port>
7380 </input>
7381 <output>
7382 <port id="2" names="bottleneck3_8/dim_red/conv" precision="FP32">
7383 <dim>1</dim>
7384 <dim>32</dim>
7385 <dim>40</dim>
7386 <dim>68</dim>
7387 </port>
7388 </output>
7389 </layer>
7390 <layer id="425" name="bottleneck3_8/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
7391 <data element_type="f32" offset="421596" shape="32, 1, 1, 3, 3" size="1152"/>
7392 <output>
7393 <port id="0" precision="FP32">
7394 <dim>32</dim>
7395 <dim>1</dim>
7396 <dim>1</dim>
7397 <dim>3</dim>
7398 <dim>3</dim>
7399 </port>
7400 </output>
7401 </layer>
7402 <layer id="426" name="bottleneck3_8/inner/dw1/conv" type="GroupConvolution" version="opset1">
7403 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
7404 <input>
7405 <port id="0" precision="FP32">
7406 <dim>1</dim>
7407 <dim>32</dim>
7408 <dim>40</dim>
7409 <dim>68</dim>
7410 </port>
7411 <port id="1" precision="FP32">
7412 <dim>32</dim>
7413 <dim>1</dim>
7414 <dim>1</dim>
7415 <dim>3</dim>
7416 <dim>3</dim>
7417 </port>
7418 </input>
7419 <output>
7420 <port id="2" precision="FP32">
7421 <dim>1</dim>
7422 <dim>32</dim>
7423 <dim>40</dim>
7424 <dim>68</dim>
7425 </port>
7426 </output>
7427 </layer>
7428 <layer id="427" name="data_add_2418524190" type="Const" version="opset1">
7429 <data element_type="f32" offset="422748" shape="1, 32, 1, 1" size="128"/>
7430 <output>
7431 <port id="0" precision="FP32">
7432 <dim>1</dim>
7433 <dim>32</dim>
7434 <dim>1</dim>
7435 <dim>1</dim>
7436 </port>
7437 </output>
7438 </layer>
7439 <layer id="428" name="bottleneck3_8/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
7440 <data auto_broadcast="numpy"/>
7441 <input>
7442 <port id="0" precision="FP32">
7443 <dim>1</dim>
7444 <dim>32</dim>
7445 <dim>40</dim>
7446 <dim>68</dim>
7447 </port>
7448 <port id="1" precision="FP32">
7449 <dim>1</dim>
7450 <dim>32</dim>
7451 <dim>1</dim>
7452 <dim>1</dim>
7453 </port>
7454 </input>
7455 <output>
7456 <port id="2" names="bottleneck3_8/inner/dw1/conv" precision="FP32">
7457 <dim>1</dim>
7458 <dim>32</dim>
7459 <dim>40</dim>
7460 <dim>68</dim>
7461 </port>
7462 </output>
7463 </layer>
7464 <layer id="429" name="bottleneck3_8/inner/dw1/fn/weights3104839899" type="Const" version="opset1">
7465 <data element_type="f32" offset="4664" shape="1" size="4"/>
7466 <output>
7467 <port id="0" precision="FP32">
7468 <dim>1</dim>
7469 </port>
7470 </output>
7471 </layer>
7472 <layer id="430" name="bottleneck3_8/inner/dw1/fn" type="PReLU" version="opset1">
7473 <input>
7474 <port id="0" precision="FP32">
7475 <dim>1</dim>
7476 <dim>32</dim>
7477 <dim>40</dim>
7478 <dim>68</dim>
7479 </port>
7480 <port id="1" precision="FP32">
7481 <dim>1</dim>
7482 </port>
7483 </input>
7484 <output>
7485 <port id="2" names="bottleneck3_8/inner/dw1/conv" precision="FP32">
7486 <dim>1</dim>
7487 <dim>32</dim>
7488 <dim>40</dim>
7489 <dim>68</dim>
7490 </port>
7491 </output>
7492 </layer>
7493 <layer id="431" name="bottleneck3_8/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
7494 <data element_type="f32" offset="422876" shape="128, 32, 1, 1" size="16384"/>
7495 <output>
7496 <port id="0" precision="FP32">
7497 <dim>128</dim>
7498 <dim>32</dim>
7499 <dim>1</dim>
7500 <dim>1</dim>
7501 </port>
7502 </output>
7503 </layer>
7504 <layer id="432" name="bottleneck3_8/dim_inc/conv" type="Convolution" version="opset1">
7505 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
7506 <input>
7507 <port id="0" precision="FP32">
7508 <dim>1</dim>
7509 <dim>32</dim>
7510 <dim>40</dim>
7511 <dim>68</dim>
7512 </port>
7513 <port id="1" precision="FP32">
7514 <dim>128</dim>
7515 <dim>32</dim>
7516 <dim>1</dim>
7517 <dim>1</dim>
7518 </port>
7519 </input>
7520 <output>
7521 <port id="2" precision="FP32">
7522 <dim>1</dim>
7523 <dim>128</dim>
7524 <dim>40</dim>
7525 <dim>68</dim>
7526 </port>
7527 </output>
7528 </layer>
7529 <layer id="433" name="data_add_2419324198" type="Const" version="opset1">
7530 <data element_type="f32" offset="439260" shape="1, 128, 1, 1" size="512"/>
7531 <output>
7532 <port id="0" precision="FP32">
7533 <dim>1</dim>
7534 <dim>128</dim>
7535 <dim>1</dim>
7536 <dim>1</dim>
7537 </port>
7538 </output>
7539 </layer>
7540 <layer id="434" name="bottleneck3_8/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
7541 <data auto_broadcast="numpy"/>
7542 <input>
7543 <port id="0" precision="FP32">
7544 <dim>1</dim>
7545 <dim>128</dim>
7546 <dim>40</dim>
7547 <dim>68</dim>
7548 </port>
7549 <port id="1" precision="FP32">
7550 <dim>1</dim>
7551 <dim>128</dim>
7552 <dim>1</dim>
7553 <dim>1</dim>
7554 </port>
7555 </input>
7556 <output>
7557 <port id="2" names="bottleneck3_8/dim_inc/conv" precision="FP32">
7558 <dim>1</dim>
7559 <dim>128</dim>
7560 <dim>40</dim>
7561 <dim>68</dim>
7562 </port>
7563 </output>
7564 </layer>
7565 <layer id="435" name="bottleneck3_8/add" type="Add" version="opset1">
7566 <data auto_broadcast="numpy"/>
7567 <input>
7568 <port id="0" precision="FP32">
7569 <dim>1</dim>
7570 <dim>128</dim>
7571 <dim>40</dim>
7572 <dim>68</dim>
7573 </port>
7574 <port id="1" precision="FP32">
7575 <dim>1</dim>
7576 <dim>128</dim>
7577 <dim>40</dim>
7578 <dim>68</dim>
7579 </port>
7580 </input>
7581 <output>
7582 <port id="2" names="bottleneck3_8/add" precision="FP32">
7583 <dim>1</dim>
7584 <dim>128</dim>
7585 <dim>40</dim>
7586 <dim>68</dim>
7587 </port>
7588 </output>
7589 </layer>
7590 <layer id="436" name="bottleneck3_8/fn/weights3083239761" type="Const" version="opset1">
7591 <data element_type="f32" offset="4664" shape="1" size="4"/>
7592 <output>
7593 <port id="0" precision="FP32">
7594 <dim>1</dim>
7595 </port>
7596 </output>
7597 </layer>
7598 <layer id="437" name="bottleneck3_8/fn" type="PReLU" version="opset1">
7599 <input>
7600 <port id="0" precision="FP32">
7601 <dim>1</dim>
7602 <dim>128</dim>
7603 <dim>40</dim>
7604 <dim>68</dim>
7605 </port>
7606 <port id="1" precision="FP32">
7607 <dim>1</dim>
7608 </port>
7609 </input>
7610 <output>
7611 <port id="2" names="bottleneck3_8/add" precision="FP32">
7612 <dim>1</dim>
7613 <dim>128</dim>
7614 <dim>40</dim>
7615 <dim>68</dim>
7616 </port>
7617 </output>
7618 </layer>
7619 <layer id="438" name="bottleneck3_9/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
7620 <data element_type="f32" offset="439772" shape="32, 128, 1, 1" size="16384"/>
7621 <output>
7622 <port id="0" precision="FP32">
7623 <dim>32</dim>
7624 <dim>128</dim>
7625 <dim>1</dim>
7626 <dim>1</dim>
7627 </port>
7628 </output>
7629 </layer>
7630 <layer id="439" name="bottleneck3_9/dim_red/conv" type="Convolution" version="opset1">
7631 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
7632 <input>
7633 <port id="0" precision="FP32">
7634 <dim>1</dim>
7635 <dim>128</dim>
7636 <dim>40</dim>
7637 <dim>68</dim>
7638 </port>
7639 <port id="1" precision="FP32">
7640 <dim>32</dim>
7641 <dim>128</dim>
7642 <dim>1</dim>
7643 <dim>1</dim>
7644 </port>
7645 </input>
7646 <output>
7647 <port id="2" precision="FP32">
7648 <dim>1</dim>
7649 <dim>32</dim>
7650 <dim>40</dim>
7651 <dim>68</dim>
7652 </port>
7653 </output>
7654 </layer>
7655 <layer id="440" name="data_add_2420124206" type="Const" version="opset1">
7656 <data element_type="f32" offset="456156" shape="1, 32, 1, 1" size="128"/>
7657 <output>
7658 <port id="0" precision="FP32">
7659 <dim>1</dim>
7660 <dim>32</dim>
7661 <dim>1</dim>
7662 <dim>1</dim>
7663 </port>
7664 </output>
7665 </layer>
7666 <layer id="441" name="bottleneck3_9/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
7667 <data auto_broadcast="numpy"/>
7668 <input>
7669 <port id="0" precision="FP32">
7670 <dim>1</dim>
7671 <dim>32</dim>
7672 <dim>40</dim>
7673 <dim>68</dim>
7674 </port>
7675 <port id="1" precision="FP32">
7676 <dim>1</dim>
7677 <dim>32</dim>
7678 <dim>1</dim>
7679 <dim>1</dim>
7680 </port>
7681 </input>
7682 <output>
7683 <port id="2" names="bottleneck3_9/dim_red/conv" precision="FP32">
7684 <dim>1</dim>
7685 <dim>32</dim>
7686 <dim>40</dim>
7687 <dim>68</dim>
7688 </port>
7689 </output>
7690 </layer>
7691 <layer id="442" name="bottleneck3_9/dim_red/fn/weights3093240487" type="Const" version="opset1">
7692 <data element_type="f32" offset="4664" shape="1" size="4"/>
7693 <output>
7694 <port id="0" precision="FP32">
7695 <dim>1</dim>
7696 </port>
7697 </output>
7698 </layer>
7699 <layer id="443" name="bottleneck3_9/dim_red/fn" type="PReLU" version="opset1">
7700 <input>
7701 <port id="0" precision="FP32">
7702 <dim>1</dim>
7703 <dim>32</dim>
7704 <dim>40</dim>
7705 <dim>68</dim>
7706 </port>
7707 <port id="1" precision="FP32">
7708 <dim>1</dim>
7709 </port>
7710 </input>
7711 <output>
7712 <port id="2" names="bottleneck3_9/dim_red/conv" precision="FP32">
7713 <dim>1</dim>
7714 <dim>32</dim>
7715 <dim>40</dim>
7716 <dim>68</dim>
7717 </port>
7718 </output>
7719 </layer>
7720 <layer id="444" name="bottleneck3_9/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
7721 <data element_type="f32" offset="456284" shape="32, 1, 1, 3, 3" size="1152"/>
7722 <output>
7723 <port id="0" precision="FP32">
7724 <dim>32</dim>
7725 <dim>1</dim>
7726 <dim>1</dim>
7727 <dim>3</dim>
7728 <dim>3</dim>
7729 </port>
7730 </output>
7731 </layer>
7732 <layer id="445" name="bottleneck3_9/inner/dw1/conv" type="GroupConvolution" version="opset1">
7733 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
7734 <input>
7735 <port id="0" precision="FP32">
7736 <dim>1</dim>
7737 <dim>32</dim>
7738 <dim>40</dim>
7739 <dim>68</dim>
7740 </port>
7741 <port id="1" precision="FP32">
7742 <dim>32</dim>
7743 <dim>1</dim>
7744 <dim>1</dim>
7745 <dim>3</dim>
7746 <dim>3</dim>
7747 </port>
7748 </input>
7749 <output>
7750 <port id="2" precision="FP32">
7751 <dim>1</dim>
7752 <dim>32</dim>
7753 <dim>40</dim>
7754 <dim>68</dim>
7755 </port>
7756 </output>
7757 </layer>
7758 <layer id="446" name="data_add_2420924214" type="Const" version="opset1">
7759 <data element_type="f32" offset="457436" shape="1, 32, 1, 1" size="128"/>
7760 <output>
7761 <port id="0" precision="FP32">
7762 <dim>1</dim>
7763 <dim>32</dim>
7764 <dim>1</dim>
7765 <dim>1</dim>
7766 </port>
7767 </output>
7768 </layer>
7769 <layer id="447" name="bottleneck3_9/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
7770 <data auto_broadcast="numpy"/>
7771 <input>
7772 <port id="0" precision="FP32">
7773 <dim>1</dim>
7774 <dim>32</dim>
7775 <dim>40</dim>
7776 <dim>68</dim>
7777 </port>
7778 <port id="1" precision="FP32">
7779 <dim>1</dim>
7780 <dim>32</dim>
7781 <dim>1</dim>
7782 <dim>1</dim>
7783 </port>
7784 </input>
7785 <output>
7786 <port id="2" names="bottleneck3_9/inner/dw1/conv" precision="FP32">
7787 <dim>1</dim>
7788 <dim>32</dim>
7789 <dim>40</dim>
7790 <dim>68</dim>
7791 </port>
7792 </output>
7793 </layer>
7794 <layer id="448" name="bottleneck3_9/inner/dw1/fn/weights3112040592" type="Const" version="opset1">
7795 <data element_type="f32" offset="4664" shape="1" size="4"/>
7796 <output>
7797 <port id="0" precision="FP32">
7798 <dim>1</dim>
7799 </port>
7800 </output>
7801 </layer>
7802 <layer id="449" name="bottleneck3_9/inner/dw1/fn" type="PReLU" version="opset1">
7803 <input>
7804 <port id="0" precision="FP32">
7805 <dim>1</dim>
7806 <dim>32</dim>
7807 <dim>40</dim>
7808 <dim>68</dim>
7809 </port>
7810 <port id="1" precision="FP32">
7811 <dim>1</dim>
7812 </port>
7813 </input>
7814 <output>
7815 <port id="2" names="bottleneck3_9/inner/dw1/conv" precision="FP32">
7816 <dim>1</dim>
7817 <dim>32</dim>
7818 <dim>40</dim>
7819 <dim>68</dim>
7820 </port>
7821 </output>
7822 </layer>
7823 <layer id="450" name="bottleneck3_9/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
7824 <data element_type="f32" offset="457564" shape="128, 32, 1, 1" size="16384"/>
7825 <output>
7826 <port id="0" precision="FP32">
7827 <dim>128</dim>
7828 <dim>32</dim>
7829 <dim>1</dim>
7830 <dim>1</dim>
7831 </port>
7832 </output>
7833 </layer>
7834 <layer id="451" name="bottleneck3_9/dim_inc/conv" type="Convolution" version="opset1">
7835 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
7836 <input>
7837 <port id="0" precision="FP32">
7838 <dim>1</dim>
7839 <dim>32</dim>
7840 <dim>40</dim>
7841 <dim>68</dim>
7842 </port>
7843 <port id="1" precision="FP32">
7844 <dim>128</dim>
7845 <dim>32</dim>
7846 <dim>1</dim>
7847 <dim>1</dim>
7848 </port>
7849 </input>
7850 <output>
7851 <port id="2" precision="FP32">
7852 <dim>1</dim>
7853 <dim>128</dim>
7854 <dim>40</dim>
7855 <dim>68</dim>
7856 </port>
7857 </output>
7858 </layer>
7859 <layer id="452" name="data_add_2421724222" type="Const" version="opset1">
7860 <data element_type="f32" offset="473948" shape="1, 128, 1, 1" size="512"/>
7861 <output>
7862 <port id="0" precision="FP32">
7863 <dim>1</dim>
7864 <dim>128</dim>
7865 <dim>1</dim>
7866 <dim>1</dim>
7867 </port>
7868 </output>
7869 </layer>
7870 <layer id="453" name="bottleneck3_9/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
7871 <data auto_broadcast="numpy"/>
7872 <input>
7873 <port id="0" precision="FP32">
7874 <dim>1</dim>
7875 <dim>128</dim>
7876 <dim>40</dim>
7877 <dim>68</dim>
7878 </port>
7879 <port id="1" precision="FP32">
7880 <dim>1</dim>
7881 <dim>128</dim>
7882 <dim>1</dim>
7883 <dim>1</dim>
7884 </port>
7885 </input>
7886 <output>
7887 <port id="2" names="bottleneck3_9/dim_inc/conv" precision="FP32">
7888 <dim>1</dim>
7889 <dim>128</dim>
7890 <dim>40</dim>
7891 <dim>68</dim>
7892 </port>
7893 </output>
7894 </layer>
7895 <layer id="454" name="bottleneck3_9/add" type="Add" version="opset1">
7896 <data auto_broadcast="numpy"/>
7897 <input>
7898 <port id="0" precision="FP32">
7899 <dim>1</dim>
7900 <dim>128</dim>
7901 <dim>40</dim>
7902 <dim>68</dim>
7903 </port>
7904 <port id="1" precision="FP32">
7905 <dim>1</dim>
7906 <dim>128</dim>
7907 <dim>40</dim>
7908 <dim>68</dim>
7909 </port>
7910 </input>
7911 <output>
7912 <port id="2" names="bottleneck3_9/add" precision="FP32">
7913 <dim>1</dim>
7914 <dim>128</dim>
7915 <dim>40</dim>
7916 <dim>68</dim>
7917 </port>
7918 </output>
7919 </layer>
7920 <layer id="455" name="bottleneck3_9/fn/weights3116840514" type="Const" version="opset1">
7921 <data element_type="f32" offset="4664" shape="1" size="4"/>
7922 <output>
7923 <port id="0" precision="FP32">
7924 <dim>1</dim>
7925 </port>
7926 </output>
7927 </layer>
7928 <layer id="456" name="bottleneck3_9/fn" type="PReLU" version="opset1">
7929 <input>
7930 <port id="0" precision="FP32">
7931 <dim>1</dim>
7932 <dim>128</dim>
7933 <dim>40</dim>
7934 <dim>68</dim>
7935 </port>
7936 <port id="1" precision="FP32">
7937 <dim>1</dim>
7938 </port>
7939 </input>
7940 <output>
7941 <port id="2" names="bottleneck3_9/add" precision="FP32">
7942 <dim>1</dim>
7943 <dim>128</dim>
7944 <dim>40</dim>
7945 <dim>68</dim>
7946 </port>
7947 </output>
7948 </layer>
7949 <layer id="457" name="bottleneck3_10/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
7950 <data element_type="f32" offset="474460" shape="32, 128, 1, 1" size="16384"/>
7951 <output>
7952 <port id="0" precision="FP32">
7953 <dim>32</dim>
7954 <dim>128</dim>
7955 <dim>1</dim>
7956 <dim>1</dim>
7957 </port>
7958 </output>
7959 </layer>
7960 <layer id="458" name="bottleneck3_10/dim_red/conv" type="Convolution" version="opset1">
7961 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
7962 <input>
7963 <port id="0" precision="FP32">
7964 <dim>1</dim>
7965 <dim>128</dim>
7966 <dim>40</dim>
7967 <dim>68</dim>
7968 </port>
7969 <port id="1" precision="FP32">
7970 <dim>32</dim>
7971 <dim>128</dim>
7972 <dim>1</dim>
7973 <dim>1</dim>
7974 </port>
7975 </input>
7976 <output>
7977 <port id="2" precision="FP32">
7978 <dim>1</dim>
7979 <dim>32</dim>
7980 <dim>40</dim>
7981 <dim>68</dim>
7982 </port>
7983 </output>
7984 </layer>
7985 <layer id="459" name="data_add_2422524230" type="Const" version="opset1">
7986 <data element_type="f32" offset="490844" shape="1, 32, 1, 1" size="128"/>
7987 <output>
7988 <port id="0" precision="FP32">
7989 <dim>1</dim>
7990 <dim>32</dim>
7991 <dim>1</dim>
7992 <dim>1</dim>
7993 </port>
7994 </output>
7995 </layer>
7996 <layer id="460" name="bottleneck3_10/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
7997 <data auto_broadcast="numpy"/>
7998 <input>
7999 <port id="0" precision="FP32">
8000 <dim>1</dim>
8001 <dim>32</dim>
8002 <dim>40</dim>
8003 <dim>68</dim>
8004 </port>
8005 <port id="1" precision="FP32">
8006 <dim>1</dim>
8007 <dim>32</dim>
8008 <dim>1</dim>
8009 <dim>1</dim>
8010 </port>
8011 </input>
8012 <output>
8013 <port id="2" names="bottleneck3_10/dim_red/conv" precision="FP32">
8014 <dim>1</dim>
8015 <dim>32</dim>
8016 <dim>40</dim>
8017 <dim>68</dim>
8018 </port>
8019 </output>
8020 </layer>
8021 <layer id="461" name="bottleneck3_10/dim_red/fn/weights3100040610" type="Const" version="opset1">
8022 <data element_type="f32" offset="4664" shape="1" size="4"/>
8023 <output>
8024 <port id="0" precision="FP32">
8025 <dim>1</dim>
8026 </port>
8027 </output>
8028 </layer>
8029 <layer id="462" name="bottleneck3_10/dim_red/fn" type="PReLU" version="opset1">
8030 <input>
8031 <port id="0" precision="FP32">
8032 <dim>1</dim>
8033 <dim>32</dim>
8034 <dim>40</dim>
8035 <dim>68</dim>
8036 </port>
8037 <port id="1" precision="FP32">
8038 <dim>1</dim>
8039 </port>
8040 </input>
8041 <output>
8042 <port id="2" names="bottleneck3_10/dim_red/conv" precision="FP32">
8043 <dim>1</dim>
8044 <dim>32</dim>
8045 <dim>40</dim>
8046 <dim>68</dim>
8047 </port>
8048 </output>
8049 </layer>
8050 <layer id="463" name="bottleneck3_10/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
8051 <data element_type="f32" offset="490972" shape="32, 1, 1, 3, 3" size="1152"/>
8052 <output>
8053 <port id="0" precision="FP32">
8054 <dim>32</dim>
8055 <dim>1</dim>
8056 <dim>1</dim>
8057 <dim>3</dim>
8058 <dim>3</dim>
8059 </port>
8060 </output>
8061 </layer>
8062 <layer id="464" name="bottleneck3_10/inner/dw1/conv" type="GroupConvolution" version="opset1">
8063 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
8064 <input>
8065 <port id="0" precision="FP32">
8066 <dim>1</dim>
8067 <dim>32</dim>
8068 <dim>40</dim>
8069 <dim>68</dim>
8070 </port>
8071 <port id="1" precision="FP32">
8072 <dim>32</dim>
8073 <dim>1</dim>
8074 <dim>1</dim>
8075 <dim>3</dim>
8076 <dim>3</dim>
8077 </port>
8078 </input>
8079 <output>
8080 <port id="2" precision="FP32">
8081 <dim>1</dim>
8082 <dim>32</dim>
8083 <dim>40</dim>
8084 <dim>68</dim>
8085 </port>
8086 </output>
8087 </layer>
8088 <layer id="465" name="data_add_2423324238" type="Const" version="opset1">
8089 <data element_type="f32" offset="492124" shape="1, 32, 1, 1" size="128"/>
8090 <output>
8091 <port id="0" precision="FP32">
8092 <dim>1</dim>
8093 <dim>32</dim>
8094 <dim>1</dim>
8095 <dim>1</dim>
8096 </port>
8097 </output>
8098 </layer>
8099 <layer id="466" name="bottleneck3_10/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
8100 <data auto_broadcast="numpy"/>
8101 <input>
8102 <port id="0" precision="FP32">
8103 <dim>1</dim>
8104 <dim>32</dim>
8105 <dim>40</dim>
8106 <dim>68</dim>
8107 </port>
8108 <port id="1" precision="FP32">
8109 <dim>1</dim>
8110 <dim>32</dim>
8111 <dim>1</dim>
8112 <dim>1</dim>
8113 </port>
8114 </input>
8115 <output>
8116 <port id="2" names="bottleneck3_10/inner/dw1/conv" precision="FP32">
8117 <dim>1</dim>
8118 <dim>32</dim>
8119 <dim>40</dim>
8120 <dim>68</dim>
8121 </port>
8122 </output>
8123 </layer>
8124 <layer id="467" name="bottleneck3_10/inner/dw1/fn/weights3116040688" type="Const" version="opset1">
8125 <data element_type="f32" offset="4664" shape="1" size="4"/>
8126 <output>
8127 <port id="0" precision="FP32">
8128 <dim>1</dim>
8129 </port>
8130 </output>
8131 </layer>
8132 <layer id="468" name="bottleneck3_10/inner/dw1/fn" type="PReLU" version="opset1">
8133 <input>
8134 <port id="0" precision="FP32">
8135 <dim>1</dim>
8136 <dim>32</dim>
8137 <dim>40</dim>
8138 <dim>68</dim>
8139 </port>
8140 <port id="1" precision="FP32">
8141 <dim>1</dim>
8142 </port>
8143 </input>
8144 <output>
8145 <port id="2" names="bottleneck3_10/inner/dw1/conv" precision="FP32">
8146 <dim>1</dim>
8147 <dim>32</dim>
8148 <dim>40</dim>
8149 <dim>68</dim>
8150 </port>
8151 </output>
8152 </layer>
8153 <layer id="469" name="bottleneck3_10/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
8154 <data element_type="f32" offset="492252" shape="128, 32, 1, 1" size="16384"/>
8155 <output>
8156 <port id="0" precision="FP32">
8157 <dim>128</dim>
8158 <dim>32</dim>
8159 <dim>1</dim>
8160 <dim>1</dim>
8161 </port>
8162 </output>
8163 </layer>
8164 <layer id="470" name="bottleneck3_10/dim_inc/conv" type="Convolution" version="opset1">
8165 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
8166 <input>
8167 <port id="0" precision="FP32">
8168 <dim>1</dim>
8169 <dim>32</dim>
8170 <dim>40</dim>
8171 <dim>68</dim>
8172 </port>
8173 <port id="1" precision="FP32">
8174 <dim>128</dim>
8175 <dim>32</dim>
8176 <dim>1</dim>
8177 <dim>1</dim>
8178 </port>
8179 </input>
8180 <output>
8181 <port id="2" precision="FP32">
8182 <dim>1</dim>
8183 <dim>128</dim>
8184 <dim>40</dim>
8185 <dim>68</dim>
8186 </port>
8187 </output>
8188 </layer>
8189 <layer id="471" name="data_add_2424124246" type="Const" version="opset1">
8190 <data element_type="f32" offset="508636" shape="1, 128, 1, 1" size="512"/>
8191 <output>
8192 <port id="0" precision="FP32">
8193 <dim>1</dim>
8194 <dim>128</dim>
8195 <dim>1</dim>
8196 <dim>1</dim>
8197 </port>
8198 </output>
8199 </layer>
8200 <layer id="472" name="bottleneck3_10/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
8201 <data auto_broadcast="numpy"/>
8202 <input>
8203 <port id="0" precision="FP32">
8204 <dim>1</dim>
8205 <dim>128</dim>
8206 <dim>40</dim>
8207 <dim>68</dim>
8208 </port>
8209 <port id="1" precision="FP32">
8210 <dim>1</dim>
8211 <dim>128</dim>
8212 <dim>1</dim>
8213 <dim>1</dim>
8214 </port>
8215 </input>
8216 <output>
8217 <port id="2" names="bottleneck3_10/dim_inc/conv" precision="FP32">
8218 <dim>1</dim>
8219 <dim>128</dim>
8220 <dim>40</dim>
8221 <dim>68</dim>
8222 </port>
8223 </output>
8224 </layer>
8225 <layer id="473" name="bottleneck3_10/add" type="Add" version="opset1">
8226 <data auto_broadcast="numpy"/>
8227 <input>
8228 <port id="0" precision="FP32">
8229 <dim>1</dim>
8230 <dim>128</dim>
8231 <dim>40</dim>
8232 <dim>68</dim>
8233 </port>
8234 <port id="1" precision="FP32">
8235 <dim>1</dim>
8236 <dim>128</dim>
8237 <dim>40</dim>
8238 <dim>68</dim>
8239 </port>
8240 </input>
8241 <output>
8242 <port id="2" names="bottleneck3_10/add" precision="FP32">
8243 <dim>1</dim>
8244 <dim>128</dim>
8245 <dim>40</dim>
8246 <dim>68</dim>
8247 </port>
8248 </output>
8249 </layer>
8250 <layer id="474" name="bottleneck3_10/fn/weights3103639695" type="Const" version="opset1">
8251 <data element_type="f32" offset="4664" shape="1" size="4"/>
8252 <output>
8253 <port id="0" precision="FP32">
8254 <dim>1</dim>
8255 </port>
8256 </output>
8257 </layer>
8258 <layer id="475" name="bottleneck3_10/fn" type="PReLU" version="opset1">
8259 <input>
8260 <port id="0" precision="FP32">
8261 <dim>1</dim>
8262 <dim>128</dim>
8263 <dim>40</dim>
8264 <dim>68</dim>
8265 </port>
8266 <port id="1" precision="FP32">
8267 <dim>1</dim>
8268 </port>
8269 </input>
8270 <output>
8271 <port id="2" names="bottleneck3_10/add" precision="FP32">
8272 <dim>1</dim>
8273 <dim>128</dim>
8274 <dim>40</dim>
8275 <dim>68</dim>
8276 </port>
8277 </output>
8278 </layer>
8279 <layer id="476" name="bottleneck4_0/skip/pooling" type="MaxPool" version="opset1">
8280 <data auto_pad="explicit" kernel="2, 2" pads_begin="0, 0" pads_end="0, 0" rounding_type="ceil" strides="2, 2"/>
8281 <input>
8282 <port id="0" precision="FP32">
8283 <dim>1</dim>
8284 <dim>128</dim>
8285 <dim>40</dim>
8286 <dim>68</dim>
8287 </port>
8288 </input>
8289 <output>
8290 <port id="1" names="bottleneck4_0/skip/pooling" precision="FP32">
8291 <dim>1</dim>
8292 <dim>128</dim>
8293 <dim>20</dim>
8294 <dim>34</dim>
8295 </port>
8296 </output>
8297 </layer>
8298 <layer id="477" name="bottleneck4_0/skip/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
8299 <data element_type="f32" offset="509148" shape="256, 128, 1, 1" size="131072"/>
8300 <output>
8301 <port id="0" precision="FP32">
8302 <dim>256</dim>
8303 <dim>128</dim>
8304 <dim>1</dim>
8305 <dim>1</dim>
8306 </port>
8307 </output>
8308 </layer>
8309 <layer id="478" name="bottleneck4_0/skip/conv" type="Convolution" version="opset1">
8310 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
8311 <input>
8312 <port id="0" precision="FP32">
8313 <dim>1</dim>
8314 <dim>128</dim>
8315 <dim>20</dim>
8316 <dim>34</dim>
8317 </port>
8318 <port id="1" precision="FP32">
8319 <dim>256</dim>
8320 <dim>128</dim>
8321 <dim>1</dim>
8322 <dim>1</dim>
8323 </port>
8324 </input>
8325 <output>
8326 <port id="2" precision="FP32">
8327 <dim>1</dim>
8328 <dim>256</dim>
8329 <dim>20</dim>
8330 <dim>34</dim>
8331 </port>
8332 </output>
8333 </layer>
8334 <layer id="479" name="data_add_2424924254" type="Const" version="opset1">
8335 <data element_type="f32" offset="640220" shape="1, 256, 1, 1" size="1024"/>
8336 <output>
8337 <port id="0" precision="FP32">
8338 <dim>1</dim>
8339 <dim>256</dim>
8340 <dim>1</dim>
8341 <dim>1</dim>
8342 </port>
8343 </output>
8344 </layer>
8345 <layer id="480" name="bottleneck4_0/skip/bn/variance/Fused_Add_" type="Add" version="opset1">
8346 <data auto_broadcast="numpy"/>
8347 <input>
8348 <port id="0" precision="FP32">
8349 <dim>1</dim>
8350 <dim>256</dim>
8351 <dim>20</dim>
8352 <dim>34</dim>
8353 </port>
8354 <port id="1" precision="FP32">
8355 <dim>1</dim>
8356 <dim>256</dim>
8357 <dim>1</dim>
8358 <dim>1</dim>
8359 </port>
8360 </input>
8361 <output>
8362 <port id="2" names="bottleneck4_0/skip/conv" precision="FP32">
8363 <dim>1</dim>
8364 <dim>256</dim>
8365 <dim>20</dim>
8366 <dim>34</dim>
8367 </port>
8368 </output>
8369 </layer>
8370 <layer id="481" name="bottleneck4_0/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
8371 <data element_type="f32" offset="641244" shape="64, 128, 1, 1" size="32768"/>
8372 <output>
8373 <port id="0" precision="FP32">
8374 <dim>64</dim>
8375 <dim>128</dim>
8376 <dim>1</dim>
8377 <dim>1</dim>
8378 </port>
8379 </output>
8380 </layer>
8381 <layer id="482" name="bottleneck4_0/dim_red/conv" type="Convolution" version="opset1">
8382 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
8383 <input>
8384 <port id="0" precision="FP32">
8385 <dim>1</dim>
8386 <dim>128</dim>
8387 <dim>40</dim>
8388 <dim>68</dim>
8389 </port>
8390 <port id="1" precision="FP32">
8391 <dim>64</dim>
8392 <dim>128</dim>
8393 <dim>1</dim>
8394 <dim>1</dim>
8395 </port>
8396 </input>
8397 <output>
8398 <port id="2" precision="FP32">
8399 <dim>1</dim>
8400 <dim>64</dim>
8401 <dim>40</dim>
8402 <dim>68</dim>
8403 </port>
8404 </output>
8405 </layer>
8406 <layer id="483" name="data_add_2425724262" type="Const" version="opset1">
8407 <data element_type="f32" offset="674012" shape="1, 64, 1, 1" size="256"/>
8408 <output>
8409 <port id="0" precision="FP32">
8410 <dim>1</dim>
8411 <dim>64</dim>
8412 <dim>1</dim>
8413 <dim>1</dim>
8414 </port>
8415 </output>
8416 </layer>
8417 <layer id="484" name="bottleneck4_0/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
8418 <data auto_broadcast="numpy"/>
8419 <input>
8420 <port id="0" precision="FP32">
8421 <dim>1</dim>
8422 <dim>64</dim>
8423 <dim>40</dim>
8424 <dim>68</dim>
8425 </port>
8426 <port id="1" precision="FP32">
8427 <dim>1</dim>
8428 <dim>64</dim>
8429 <dim>1</dim>
8430 <dim>1</dim>
8431 </port>
8432 </input>
8433 <output>
8434 <port id="2" names="bottleneck4_0/dim_red/conv" precision="FP32">
8435 <dim>1</dim>
8436 <dim>64</dim>
8437 <dim>40</dim>
8438 <dim>68</dim>
8439 </port>
8440 </output>
8441 </layer>
8442 <layer id="485" name="bottleneck4_0/dim_red/fn/weights3109639941" type="Const" version="opset1">
8443 <data element_type="f32" offset="4664" shape="1" size="4"/>
8444 <output>
8445 <port id="0" precision="FP32">
8446 <dim>1</dim>
8447 </port>
8448 </output>
8449 </layer>
8450 <layer id="486" name="bottleneck4_0/dim_red/fn" type="PReLU" version="opset1">
8451 <input>
8452 <port id="0" precision="FP32">
8453 <dim>1</dim>
8454 <dim>64</dim>
8455 <dim>40</dim>
8456 <dim>68</dim>
8457 </port>
8458 <port id="1" precision="FP32">
8459 <dim>1</dim>
8460 </port>
8461 </input>
8462 <output>
8463 <port id="2" names="bottleneck4_0/dim_red/conv" precision="FP32">
8464 <dim>1</dim>
8465 <dim>64</dim>
8466 <dim>40</dim>
8467 <dim>68</dim>
8468 </port>
8469 </output>
8470 </layer>
8471 <layer id="487" name="bottleneck4_0/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
8472 <data element_type="f32" offset="674268" shape="64, 1, 1, 3, 3" size="2304"/>
8473 <output>
8474 <port id="0" precision="FP32">
8475 <dim>64</dim>
8476 <dim>1</dim>
8477 <dim>1</dim>
8478 <dim>3</dim>
8479 <dim>3</dim>
8480 </port>
8481 </output>
8482 </layer>
8483 <layer id="488" name="bottleneck4_0/inner/dw1/conv" type="GroupConvolution" version="opset1">
8484 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="2, 2"/>
8485 <input>
8486 <port id="0" precision="FP32">
8487 <dim>1</dim>
8488 <dim>64</dim>
8489 <dim>40</dim>
8490 <dim>68</dim>
8491 </port>
8492 <port id="1" precision="FP32">
8493 <dim>64</dim>
8494 <dim>1</dim>
8495 <dim>1</dim>
8496 <dim>3</dim>
8497 <dim>3</dim>
8498 </port>
8499 </input>
8500 <output>
8501 <port id="2" precision="FP32">
8502 <dim>1</dim>
8503 <dim>64</dim>
8504 <dim>20</dim>
8505 <dim>34</dim>
8506 </port>
8507 </output>
8508 </layer>
8509 <layer id="489" name="data_add_2426524270" type="Const" version="opset1">
8510 <data element_type="f32" offset="676572" shape="1, 64, 1, 1" size="256"/>
8511 <output>
8512 <port id="0" precision="FP32">
8513 <dim>1</dim>
8514 <dim>64</dim>
8515 <dim>1</dim>
8516 <dim>1</dim>
8517 </port>
8518 </output>
8519 </layer>
8520 <layer id="490" name="bottleneck4_0/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
8521 <data auto_broadcast="numpy"/>
8522 <input>
8523 <port id="0" precision="FP32">
8524 <dim>1</dim>
8525 <dim>64</dim>
8526 <dim>20</dim>
8527 <dim>34</dim>
8528 </port>
8529 <port id="1" precision="FP32">
8530 <dim>1</dim>
8531 <dim>64</dim>
8532 <dim>1</dim>
8533 <dim>1</dim>
8534 </port>
8535 </input>
8536 <output>
8537 <port id="2" names="bottleneck4_0/inner/dw1/conv" precision="FP32">
8538 <dim>1</dim>
8539 <dim>64</dim>
8540 <dim>20</dim>
8541 <dim>34</dim>
8542 </port>
8543 </output>
8544 </layer>
8545 <layer id="491" name="bottleneck4_0/inner/dw1/fn/weights3118439713" type="Const" version="opset1">
8546 <data element_type="f32" offset="4664" shape="1" size="4"/>
8547 <output>
8548 <port id="0" precision="FP32">
8549 <dim>1</dim>
8550 </port>
8551 </output>
8552 </layer>
8553 <layer id="492" name="bottleneck4_0/inner/dw1/fn" type="PReLU" version="opset1">
8554 <input>
8555 <port id="0" precision="FP32">
8556 <dim>1</dim>
8557 <dim>64</dim>
8558 <dim>20</dim>
8559 <dim>34</dim>
8560 </port>
8561 <port id="1" precision="FP32">
8562 <dim>1</dim>
8563 </port>
8564 </input>
8565 <output>
8566 <port id="2" names="bottleneck4_0/inner/dw1/conv" precision="FP32">
8567 <dim>1</dim>
8568 <dim>64</dim>
8569 <dim>20</dim>
8570 <dim>34</dim>
8571 </port>
8572 </output>
8573 </layer>
8574 <layer id="493" name="bottleneck4_0/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
8575 <data element_type="f32" offset="676828" shape="256, 64, 1, 1" size="65536"/>
8576 <output>
8577 <port id="0" precision="FP32">
8578 <dim>256</dim>
8579 <dim>64</dim>
8580 <dim>1</dim>
8581 <dim>1</dim>
8582 </port>
8583 </output>
8584 </layer>
8585 <layer id="494" name="bottleneck4_0/dim_inc/conv" type="Convolution" version="opset1">
8586 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
8587 <input>
8588 <port id="0" precision="FP32">
8589 <dim>1</dim>
8590 <dim>64</dim>
8591 <dim>20</dim>
8592 <dim>34</dim>
8593 </port>
8594 <port id="1" precision="FP32">
8595 <dim>256</dim>
8596 <dim>64</dim>
8597 <dim>1</dim>
8598 <dim>1</dim>
8599 </port>
8600 </input>
8601 <output>
8602 <port id="2" precision="FP32">
8603 <dim>1</dim>
8604 <dim>256</dim>
8605 <dim>20</dim>
8606 <dim>34</dim>
8607 </port>
8608 </output>
8609 </layer>
8610 <layer id="495" name="data_add_2427324278" type="Const" version="opset1">
8611 <data element_type="f32" offset="742364" shape="1, 256, 1, 1" size="1024"/>
8612 <output>
8613 <port id="0" precision="FP32">
8614 <dim>1</dim>
8615 <dim>256</dim>
8616 <dim>1</dim>
8617 <dim>1</dim>
8618 </port>
8619 </output>
8620 </layer>
8621 <layer id="496" name="bottleneck4_0/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
8622 <data auto_broadcast="numpy"/>
8623 <input>
8624 <port id="0" precision="FP32">
8625 <dim>1</dim>
8626 <dim>256</dim>
8627 <dim>20</dim>
8628 <dim>34</dim>
8629 </port>
8630 <port id="1" precision="FP32">
8631 <dim>1</dim>
8632 <dim>256</dim>
8633 <dim>1</dim>
8634 <dim>1</dim>
8635 </port>
8636 </input>
8637 <output>
8638 <port id="2" names="bottleneck4_0/dim_inc/conv" precision="FP32">
8639 <dim>1</dim>
8640 <dim>256</dim>
8641 <dim>20</dim>
8642 <dim>34</dim>
8643 </port>
8644 </output>
8645 </layer>
8646 <layer id="497" name="bottleneck4_0/add" type="Add" version="opset1">
8647 <data auto_broadcast="numpy"/>
8648 <input>
8649 <port id="0" precision="FP32">
8650 <dim>1</dim>
8651 <dim>256</dim>
8652 <dim>20</dim>
8653 <dim>34</dim>
8654 </port>
8655 <port id="1" precision="FP32">
8656 <dim>1</dim>
8657 <dim>256</dim>
8658 <dim>20</dim>
8659 <dim>34</dim>
8660 </port>
8661 </input>
8662 <output>
8663 <port id="2" names="bottleneck4_0/add" precision="FP32">
8664 <dim>1</dim>
8665 <dim>256</dim>
8666 <dim>20</dim>
8667 <dim>34</dim>
8668 </port>
8669 </output>
8670 </layer>
8671 <layer id="498" name="bottleneck4_0/fn/weights3078039842" type="Const" version="opset1">
8672 <data element_type="f32" offset="4664" shape="1" size="4"/>
8673 <output>
8674 <port id="0" precision="FP32">
8675 <dim>1</dim>
8676 </port>
8677 </output>
8678 </layer>
8679 <layer id="499" name="bottleneck4_0/fn" type="PReLU" version="opset1">
8680 <input>
8681 <port id="0" precision="FP32">
8682 <dim>1</dim>
8683 <dim>256</dim>
8684 <dim>20</dim>
8685 <dim>34</dim>
8686 </port>
8687 <port id="1" precision="FP32">
8688 <dim>1</dim>
8689 </port>
8690 </input>
8691 <output>
8692 <port id="2" names="bottleneck4_0/add" precision="FP32">
8693 <dim>1</dim>
8694 <dim>256</dim>
8695 <dim>20</dim>
8696 <dim>34</dim>
8697 </port>
8698 </output>
8699 </layer>
8700 <layer id="500" name="bottleneck4_1/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
8701 <data element_type="f32" offset="743388" shape="64, 256, 1, 1" size="65536"/>
8702 <output>
8703 <port id="0" precision="FP32">
8704 <dim>64</dim>
8705 <dim>256</dim>
8706 <dim>1</dim>
8707 <dim>1</dim>
8708 </port>
8709 </output>
8710 </layer>
8711 <layer id="501" name="bottleneck4_1/dim_red/conv" type="Convolution" version="opset1">
8712 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
8713 <input>
8714 <port id="0" precision="FP32">
8715 <dim>1</dim>
8716 <dim>256</dim>
8717 <dim>20</dim>
8718 <dim>34</dim>
8719 </port>
8720 <port id="1" precision="FP32">
8721 <dim>64</dim>
8722 <dim>256</dim>
8723 <dim>1</dim>
8724 <dim>1</dim>
8725 </port>
8726 </input>
8727 <output>
8728 <port id="2" precision="FP32">
8729 <dim>1</dim>
8730 <dim>64</dim>
8731 <dim>20</dim>
8732 <dim>34</dim>
8733 </port>
8734 </output>
8735 </layer>
8736 <layer id="502" name="data_add_2428124286" type="Const" version="opset1">
8737 <data element_type="f32" offset="808924" shape="1, 64, 1, 1" size="256"/>
8738 <output>
8739 <port id="0" precision="FP32">
8740 <dim>1</dim>
8741 <dim>64</dim>
8742 <dim>1</dim>
8743 <dim>1</dim>
8744 </port>
8745 </output>
8746 </layer>
8747 <layer id="503" name="bottleneck4_1/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
8748 <data auto_broadcast="numpy"/>
8749 <input>
8750 <port id="0" precision="FP32">
8751 <dim>1</dim>
8752 <dim>64</dim>
8753 <dim>20</dim>
8754 <dim>34</dim>
8755 </port>
8756 <port id="1" precision="FP32">
8757 <dim>1</dim>
8758 <dim>64</dim>
8759 <dim>1</dim>
8760 <dim>1</dim>
8761 </port>
8762 </input>
8763 <output>
8764 <port id="2" names="bottleneck4_1/dim_red/conv" precision="FP32">
8765 <dim>1</dim>
8766 <dim>64</dim>
8767 <dim>20</dim>
8768 <dim>34</dim>
8769 </port>
8770 </output>
8771 </layer>
8772 <layer id="504" name="bottleneck4_1/dim_red/fn/weights3112840550" type="Const" version="opset1">
8773 <data element_type="f32" offset="4664" shape="1" size="4"/>
8774 <output>
8775 <port id="0" precision="FP32">
8776 <dim>1</dim>
8777 </port>
8778 </output>
8779 </layer>
8780 <layer id="505" name="bottleneck4_1/dim_red/fn" type="PReLU" version="opset1">
8781 <input>
8782 <port id="0" precision="FP32">
8783 <dim>1</dim>
8784 <dim>64</dim>
8785 <dim>20</dim>
8786 <dim>34</dim>
8787 </port>
8788 <port id="1" precision="FP32">
8789 <dim>1</dim>
8790 </port>
8791 </input>
8792 <output>
8793 <port id="2" names="bottleneck4_1/dim_red/conv" precision="FP32">
8794 <dim>1</dim>
8795 <dim>64</dim>
8796 <dim>20</dim>
8797 <dim>34</dim>
8798 </port>
8799 </output>
8800 </layer>
8801 <layer id="506" name="bottleneck4_1/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
8802 <data element_type="f32" offset="809180" shape="64, 1, 1, 3, 3" size="2304"/>
8803 <output>
8804 <port id="0" precision="FP32">
8805 <dim>64</dim>
8806 <dim>1</dim>
8807 <dim>1</dim>
8808 <dim>3</dim>
8809 <dim>3</dim>
8810 </port>
8811 </output>
8812 </layer>
8813 <layer id="507" name="bottleneck4_1/inner/dw1/conv" type="GroupConvolution" version="opset1">
8814 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
8815 <input>
8816 <port id="0" precision="FP32">
8817 <dim>1</dim>
8818 <dim>64</dim>
8819 <dim>20</dim>
8820 <dim>34</dim>
8821 </port>
8822 <port id="1" precision="FP32">
8823 <dim>64</dim>
8824 <dim>1</dim>
8825 <dim>1</dim>
8826 <dim>3</dim>
8827 <dim>3</dim>
8828 </port>
8829 </input>
8830 <output>
8831 <port id="2" precision="FP32">
8832 <dim>1</dim>
8833 <dim>64</dim>
8834 <dim>20</dim>
8835 <dim>34</dim>
8836 </port>
8837 </output>
8838 </layer>
8839 <layer id="508" name="data_add_2428924294" type="Const" version="opset1">
8840 <data element_type="f32" offset="811484" shape="1, 64, 1, 1" size="256"/>
8841 <output>
8842 <port id="0" precision="FP32">
8843 <dim>1</dim>
8844 <dim>64</dim>
8845 <dim>1</dim>
8846 <dim>1</dim>
8847 </port>
8848 </output>
8849 </layer>
8850 <layer id="509" name="bottleneck4_1/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
8851 <data auto_broadcast="numpy"/>
8852 <input>
8853 <port id="0" precision="FP32">
8854 <dim>1</dim>
8855 <dim>64</dim>
8856 <dim>20</dim>
8857 <dim>34</dim>
8858 </port>
8859 <port id="1" precision="FP32">
8860 <dim>1</dim>
8861 <dim>64</dim>
8862 <dim>1</dim>
8863 <dim>1</dim>
8864 </port>
8865 </input>
8866 <output>
8867 <port id="2" names="bottleneck4_1/inner/dw1/conv" precision="FP32">
8868 <dim>1</dim>
8869 <dim>64</dim>
8870 <dim>20</dim>
8871 <dim>34</dim>
8872 </port>
8873 </output>
8874 </layer>
8875 <layer id="510" name="bottleneck4_1/inner/dw1/fn/weights3101640097" type="Const" version="opset1">
8876 <data element_type="f32" offset="4664" shape="1" size="4"/>
8877 <output>
8878 <port id="0" precision="FP32">
8879 <dim>1</dim>
8880 </port>
8881 </output>
8882 </layer>
8883 <layer id="511" name="bottleneck4_1/inner/dw1/fn" type="PReLU" version="opset1">
8884 <input>
8885 <port id="0" precision="FP32">
8886 <dim>1</dim>
8887 <dim>64</dim>
8888 <dim>20</dim>
8889 <dim>34</dim>
8890 </port>
8891 <port id="1" precision="FP32">
8892 <dim>1</dim>
8893 </port>
8894 </input>
8895 <output>
8896 <port id="2" names="bottleneck4_1/inner/dw1/conv" precision="FP32">
8897 <dim>1</dim>
8898 <dim>64</dim>
8899 <dim>20</dim>
8900 <dim>34</dim>
8901 </port>
8902 </output>
8903 </layer>
8904 <layer id="512" name="bottleneck4_1/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
8905 <data element_type="f32" offset="811740" shape="256, 64, 1, 1" size="65536"/>
8906 <output>
8907 <port id="0" precision="FP32">
8908 <dim>256</dim>
8909 <dim>64</dim>
8910 <dim>1</dim>
8911 <dim>1</dim>
8912 </port>
8913 </output>
8914 </layer>
8915 <layer id="513" name="bottleneck4_1/dim_inc/conv" type="Convolution" version="opset1">
8916 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
8917 <input>
8918 <port id="0" precision="FP32">
8919 <dim>1</dim>
8920 <dim>64</dim>
8921 <dim>20</dim>
8922 <dim>34</dim>
8923 </port>
8924 <port id="1" precision="FP32">
8925 <dim>256</dim>
8926 <dim>64</dim>
8927 <dim>1</dim>
8928 <dim>1</dim>
8929 </port>
8930 </input>
8931 <output>
8932 <port id="2" precision="FP32">
8933 <dim>1</dim>
8934 <dim>256</dim>
8935 <dim>20</dim>
8936 <dim>34</dim>
8937 </port>
8938 </output>
8939 </layer>
8940 <layer id="514" name="data_add_2429724302" type="Const" version="opset1">
8941 <data element_type="f32" offset="877276" shape="1, 256, 1, 1" size="1024"/>
8942 <output>
8943 <port id="0" precision="FP32">
8944 <dim>1</dim>
8945 <dim>256</dim>
8946 <dim>1</dim>
8947 <dim>1</dim>
8948 </port>
8949 </output>
8950 </layer>
8951 <layer id="515" name="bottleneck4_1/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
8952 <data auto_broadcast="numpy"/>
8953 <input>
8954 <port id="0" precision="FP32">
8955 <dim>1</dim>
8956 <dim>256</dim>
8957 <dim>20</dim>
8958 <dim>34</dim>
8959 </port>
8960 <port id="1" precision="FP32">
8961 <dim>1</dim>
8962 <dim>256</dim>
8963 <dim>1</dim>
8964 <dim>1</dim>
8965 </port>
8966 </input>
8967 <output>
8968 <port id="2" names="bottleneck4_1/dim_inc/conv" precision="FP32">
8969 <dim>1</dim>
8970 <dim>256</dim>
8971 <dim>20</dim>
8972 <dim>34</dim>
8973 </port>
8974 </output>
8975 </layer>
8976 <layer id="516" name="bottleneck4_1/add" type="Add" version="opset1">
8977 <data auto_broadcast="numpy"/>
8978 <input>
8979 <port id="0" precision="FP32">
8980 <dim>1</dim>
8981 <dim>256</dim>
8982 <dim>20</dim>
8983 <dim>34</dim>
8984 </port>
8985 <port id="1" precision="FP32">
8986 <dim>1</dim>
8987 <dim>256</dim>
8988 <dim>20</dim>
8989 <dim>34</dim>
8990 </port>
8991 </input>
8992 <output>
8993 <port id="2" names="bottleneck4_1/add" precision="FP32">
8994 <dim>1</dim>
8995 <dim>256</dim>
8996 <dim>20</dim>
8997 <dim>34</dim>
8998 </port>
8999 </output>
9000 </layer>
9001 <layer id="517" name="bottleneck4_1/fn/weights3078840664" type="Const" version="opset1">
9002 <data element_type="f32" offset="4664" shape="1" size="4"/>
9003 <output>
9004 <port id="0" precision="FP32">
9005 <dim>1</dim>
9006 </port>
9007 </output>
9008 </layer>
9009 <layer id="518" name="bottleneck4_1/fn" type="PReLU" version="opset1">
9010 <input>
9011 <port id="0" precision="FP32">
9012 <dim>1</dim>
9013 <dim>256</dim>
9014 <dim>20</dim>
9015 <dim>34</dim>
9016 </port>
9017 <port id="1" precision="FP32">
9018 <dim>1</dim>
9019 </port>
9020 </input>
9021 <output>
9022 <port id="2" names="bottleneck4_1/add" precision="FP32">
9023 <dim>1</dim>
9024 <dim>256</dim>
9025 <dim>20</dim>
9026 <dim>34</dim>
9027 </port>
9028 </output>
9029 </layer>
9030 <layer id="519" name="bottleneck4_2/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
9031 <data element_type="f32" offset="878300" shape="64, 256, 1, 1" size="65536"/>
9032 <output>
9033 <port id="0" precision="FP32">
9034 <dim>64</dim>
9035 <dim>256</dim>
9036 <dim>1</dim>
9037 <dim>1</dim>
9038 </port>
9039 </output>
9040 </layer>
9041 <layer id="520" name="bottleneck4_2/dim_red/conv" type="Convolution" version="opset1">
9042 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
9043 <input>
9044 <port id="0" precision="FP32">
9045 <dim>1</dim>
9046 <dim>256</dim>
9047 <dim>20</dim>
9048 <dim>34</dim>
9049 </port>
9050 <port id="1" precision="FP32">
9051 <dim>64</dim>
9052 <dim>256</dim>
9053 <dim>1</dim>
9054 <dim>1</dim>
9055 </port>
9056 </input>
9057 <output>
9058 <port id="2" precision="FP32">
9059 <dim>1</dim>
9060 <dim>64</dim>
9061 <dim>20</dim>
9062 <dim>34</dim>
9063 </port>
9064 </output>
9065 </layer>
9066 <layer id="521" name="data_add_2430524310" type="Const" version="opset1">
9067 <data element_type="f32" offset="943836" shape="1, 64, 1, 1" size="256"/>
9068 <output>
9069 <port id="0" precision="FP32">
9070 <dim>1</dim>
9071 <dim>64</dim>
9072 <dim>1</dim>
9073 <dim>1</dim>
9074 </port>
9075 </output>
9076 </layer>
9077 <layer id="522" name="bottleneck4_2/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
9078 <data auto_broadcast="numpy"/>
9079 <input>
9080 <port id="0" precision="FP32">
9081 <dim>1</dim>
9082 <dim>64</dim>
9083 <dim>20</dim>
9084 <dim>34</dim>
9085 </port>
9086 <port id="1" precision="FP32">
9087 <dim>1</dim>
9088 <dim>64</dim>
9089 <dim>1</dim>
9090 <dim>1</dim>
9091 </port>
9092 </input>
9093 <output>
9094 <port id="2" names="bottleneck4_2/dim_red/conv" precision="FP32">
9095 <dim>1</dim>
9096 <dim>64</dim>
9097 <dim>20</dim>
9098 <dim>34</dim>
9099 </port>
9100 </output>
9101 </layer>
9102 <layer id="523" name="bottleneck4_2/dim_red/fn/weights3080440121" type="Const" version="opset1">
9103 <data element_type="f32" offset="4664" shape="1" size="4"/>
9104 <output>
9105 <port id="0" precision="FP32">
9106 <dim>1</dim>
9107 </port>
9108 </output>
9109 </layer>
9110 <layer id="524" name="bottleneck4_2/dim_red/fn" type="PReLU" version="opset1">
9111 <input>
9112 <port id="0" precision="FP32">
9113 <dim>1</dim>
9114 <dim>64</dim>
9115 <dim>20</dim>
9116 <dim>34</dim>
9117 </port>
9118 <port id="1" precision="FP32">
9119 <dim>1</dim>
9120 </port>
9121 </input>
9122 <output>
9123 <port id="2" names="bottleneck4_2/dim_red/conv" precision="FP32">
9124 <dim>1</dim>
9125 <dim>64</dim>
9126 <dim>20</dim>
9127 <dim>34</dim>
9128 </port>
9129 </output>
9130 </layer>
9131 <layer id="525" name="bottleneck4_2/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
9132 <data element_type="f32" offset="944092" shape="64, 1, 1, 3, 3" size="2304"/>
9133 <output>
9134 <port id="0" precision="FP32">
9135 <dim>64</dim>
9136 <dim>1</dim>
9137 <dim>1</dim>
9138 <dim>3</dim>
9139 <dim>3</dim>
9140 </port>
9141 </output>
9142 </layer>
9143 <layer id="526" name="bottleneck4_2/inner/dw1/conv" type="GroupConvolution" version="opset1">
9144 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
9145 <input>
9146 <port id="0" precision="FP32">
9147 <dim>1</dim>
9148 <dim>64</dim>
9149 <dim>20</dim>
9150 <dim>34</dim>
9151 </port>
9152 <port id="1" precision="FP32">
9153 <dim>64</dim>
9154 <dim>1</dim>
9155 <dim>1</dim>
9156 <dim>3</dim>
9157 <dim>3</dim>
9158 </port>
9159 </input>
9160 <output>
9161 <port id="2" precision="FP32">
9162 <dim>1</dim>
9163 <dim>64</dim>
9164 <dim>20</dim>
9165 <dim>34</dim>
9166 </port>
9167 </output>
9168 </layer>
9169 <layer id="527" name="data_add_2431324318" type="Const" version="opset1">
9170 <data element_type="f32" offset="946396" shape="1, 64, 1, 1" size="256"/>
9171 <output>
9172 <port id="0" precision="FP32">
9173 <dim>1</dim>
9174 <dim>64</dim>
9175 <dim>1</dim>
9176 <dim>1</dim>
9177 </port>
9178 </output>
9179 </layer>
9180 <layer id="528" name="bottleneck4_2/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
9181 <data auto_broadcast="numpy"/>
9182 <input>
9183 <port id="0" precision="FP32">
9184 <dim>1</dim>
9185 <dim>64</dim>
9186 <dim>20</dim>
9187 <dim>34</dim>
9188 </port>
9189 <port id="1" precision="FP32">
9190 <dim>1</dim>
9191 <dim>64</dim>
9192 <dim>1</dim>
9193 <dim>1</dim>
9194 </port>
9195 </input>
9196 <output>
9197 <port id="2" names="bottleneck4_2/inner/dw1/conv" precision="FP32">
9198 <dim>1</dim>
9199 <dim>64</dim>
9200 <dim>20</dim>
9201 <dim>34</dim>
9202 </port>
9203 </output>
9204 </layer>
9205 <layer id="529" name="bottleneck4_2/inner/dw1/fn/weights3078440649" type="Const" version="opset1">
9206 <data element_type="f32" offset="4664" shape="1" size="4"/>
9207 <output>
9208 <port id="0" precision="FP32">
9209 <dim>1</dim>
9210 </port>
9211 </output>
9212 </layer>
9213 <layer id="530" name="bottleneck4_2/inner/dw1/fn" type="PReLU" version="opset1">
9214 <input>
9215 <port id="0" precision="FP32">
9216 <dim>1</dim>
9217 <dim>64</dim>
9218 <dim>20</dim>
9219 <dim>34</dim>
9220 </port>
9221 <port id="1" precision="FP32">
9222 <dim>1</dim>
9223 </port>
9224 </input>
9225 <output>
9226 <port id="2" names="bottleneck4_2/inner/dw1/conv" precision="FP32">
9227 <dim>1</dim>
9228 <dim>64</dim>
9229 <dim>20</dim>
9230 <dim>34</dim>
9231 </port>
9232 </output>
9233 </layer>
9234 <layer id="531" name="bottleneck4_2/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
9235 <data element_type="f32" offset="946652" shape="256, 64, 1, 1" size="65536"/>
9236 <output>
9237 <port id="0" precision="FP32">
9238 <dim>256</dim>
9239 <dim>64</dim>
9240 <dim>1</dim>
9241 <dim>1</dim>
9242 </port>
9243 </output>
9244 </layer>
9245 <layer id="532" name="bottleneck4_2/dim_inc/conv" type="Convolution" version="opset1">
9246 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
9247 <input>
9248 <port id="0" precision="FP32">
9249 <dim>1</dim>
9250 <dim>64</dim>
9251 <dim>20</dim>
9252 <dim>34</dim>
9253 </port>
9254 <port id="1" precision="FP32">
9255 <dim>256</dim>
9256 <dim>64</dim>
9257 <dim>1</dim>
9258 <dim>1</dim>
9259 </port>
9260 </input>
9261 <output>
9262 <port id="2" precision="FP32">
9263 <dim>1</dim>
9264 <dim>256</dim>
9265 <dim>20</dim>
9266 <dim>34</dim>
9267 </port>
9268 </output>
9269 </layer>
9270 <layer id="533" name="data_add_2432124326" type="Const" version="opset1">
9271 <data element_type="f32" offset="1012188" shape="1, 256, 1, 1" size="1024"/>
9272 <output>
9273 <port id="0" precision="FP32">
9274 <dim>1</dim>
9275 <dim>256</dim>
9276 <dim>1</dim>
9277 <dim>1</dim>
9278 </port>
9279 </output>
9280 </layer>
9281 <layer id="534" name="bottleneck4_2/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
9282 <data auto_broadcast="numpy"/>
9283 <input>
9284 <port id="0" precision="FP32">
9285 <dim>1</dim>
9286 <dim>256</dim>
9287 <dim>20</dim>
9288 <dim>34</dim>
9289 </port>
9290 <port id="1" precision="FP32">
9291 <dim>1</dim>
9292 <dim>256</dim>
9293 <dim>1</dim>
9294 <dim>1</dim>
9295 </port>
9296 </input>
9297 <output>
9298 <port id="2" names="bottleneck4_2/dim_inc/conv" precision="FP32">
9299 <dim>1</dim>
9300 <dim>256</dim>
9301 <dim>20</dim>
9302 <dim>34</dim>
9303 </port>
9304 </output>
9305 </layer>
9306 <layer id="535" name="bottleneck4_2/add" type="Add" version="opset1">
9307 <data auto_broadcast="numpy"/>
9308 <input>
9309 <port id="0" precision="FP32">
9310 <dim>1</dim>
9311 <dim>256</dim>
9312 <dim>20</dim>
9313 <dim>34</dim>
9314 </port>
9315 <port id="1" precision="FP32">
9316 <dim>1</dim>
9317 <dim>256</dim>
9318 <dim>20</dim>
9319 <dim>34</dim>
9320 </port>
9321 </input>
9322 <output>
9323 <port id="2" names="bottleneck4_2/add" precision="FP32">
9324 <dim>1</dim>
9325 <dim>256</dim>
9326 <dim>20</dim>
9327 <dim>34</dim>
9328 </port>
9329 </output>
9330 </layer>
9331 <layer id="536" name="bottleneck4_2/fn/weights3084440229" type="Const" version="opset1">
9332 <data element_type="f32" offset="4664" shape="1" size="4"/>
9333 <output>
9334 <port id="0" precision="FP32">
9335 <dim>1</dim>
9336 </port>
9337 </output>
9338 </layer>
9339 <layer id="537" name="bottleneck4_2/fn" type="PReLU" version="opset1">
9340 <input>
9341 <port id="0" precision="FP32">
9342 <dim>1</dim>
9343 <dim>256</dim>
9344 <dim>20</dim>
9345 <dim>34</dim>
9346 </port>
9347 <port id="1" precision="FP32">
9348 <dim>1</dim>
9349 </port>
9350 </input>
9351 <output>
9352 <port id="2" names="bottleneck4_2/add" precision="FP32">
9353 <dim>1</dim>
9354 <dim>256</dim>
9355 <dim>20</dim>
9356 <dim>34</dim>
9357 </port>
9358 </output>
9359 </layer>
9360 <layer id="538" name="bottleneck4_3/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
9361 <data element_type="f32" offset="1013212" shape="64, 256, 1, 1" size="65536"/>
9362 <output>
9363 <port id="0" precision="FP32">
9364 <dim>64</dim>
9365 <dim>256</dim>
9366 <dim>1</dim>
9367 <dim>1</dim>
9368 </port>
9369 </output>
9370 </layer>
9371 <layer id="539" name="bottleneck4_3/dim_red/conv" type="Convolution" version="opset1">
9372 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
9373 <input>
9374 <port id="0" precision="FP32">
9375 <dim>1</dim>
9376 <dim>256</dim>
9377 <dim>20</dim>
9378 <dim>34</dim>
9379 </port>
9380 <port id="1" precision="FP32">
9381 <dim>64</dim>
9382 <dim>256</dim>
9383 <dim>1</dim>
9384 <dim>1</dim>
9385 </port>
9386 </input>
9387 <output>
9388 <port id="2" precision="FP32">
9389 <dim>1</dim>
9390 <dim>64</dim>
9391 <dim>20</dim>
9392 <dim>34</dim>
9393 </port>
9394 </output>
9395 </layer>
9396 <layer id="540" name="data_add_2432924334" type="Const" version="opset1">
9397 <data element_type="f32" offset="1078748" shape="1, 64, 1, 1" size="256"/>
9398 <output>
9399 <port id="0" precision="FP32">
9400 <dim>1</dim>
9401 <dim>64</dim>
9402 <dim>1</dim>
9403 <dim>1</dim>
9404 </port>
9405 </output>
9406 </layer>
9407 <layer id="541" name="bottleneck4_3/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
9408 <data auto_broadcast="numpy"/>
9409 <input>
9410 <port id="0" precision="FP32">
9411 <dim>1</dim>
9412 <dim>64</dim>
9413 <dim>20</dim>
9414 <dim>34</dim>
9415 </port>
9416 <port id="1" precision="FP32">
9417 <dim>1</dim>
9418 <dim>64</dim>
9419 <dim>1</dim>
9420 <dim>1</dim>
9421 </port>
9422 </input>
9423 <output>
9424 <port id="2" names="bottleneck4_3/dim_red/conv" precision="FP32">
9425 <dim>1</dim>
9426 <dim>64</dim>
9427 <dim>20</dim>
9428 <dim>34</dim>
9429 </port>
9430 </output>
9431 </layer>
9432 <layer id="542" name="bottleneck4_3/dim_red/fn/weights3112440511" type="Const" version="opset1">
9433 <data element_type="f32" offset="4664" shape="1" size="4"/>
9434 <output>
9435 <port id="0" precision="FP32">
9436 <dim>1</dim>
9437 </port>
9438 </output>
9439 </layer>
9440 <layer id="543" name="bottleneck4_3/dim_red/fn" type="PReLU" version="opset1">
9441 <input>
9442 <port id="0" precision="FP32">
9443 <dim>1</dim>
9444 <dim>64</dim>
9445 <dim>20</dim>
9446 <dim>34</dim>
9447 </port>
9448 <port id="1" precision="FP32">
9449 <dim>1</dim>
9450 </port>
9451 </input>
9452 <output>
9453 <port id="2" names="bottleneck4_3/dim_red/conv" precision="FP32">
9454 <dim>1</dim>
9455 <dim>64</dim>
9456 <dim>20</dim>
9457 <dim>34</dim>
9458 </port>
9459 </output>
9460 </layer>
9461 <layer id="544" name="bottleneck4_3/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
9462 <data element_type="f32" offset="1079004" shape="64, 1, 1, 3, 3" size="2304"/>
9463 <output>
9464 <port id="0" precision="FP32">
9465 <dim>64</dim>
9466 <dim>1</dim>
9467 <dim>1</dim>
9468 <dim>3</dim>
9469 <dim>3</dim>
9470 </port>
9471 </output>
9472 </layer>
9473 <layer id="545" name="bottleneck4_3/inner/dw1/conv" type="GroupConvolution" version="opset1">
9474 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
9475 <input>
9476 <port id="0" precision="FP32">
9477 <dim>1</dim>
9478 <dim>64</dim>
9479 <dim>20</dim>
9480 <dim>34</dim>
9481 </port>
9482 <port id="1" precision="FP32">
9483 <dim>64</dim>
9484 <dim>1</dim>
9485 <dim>1</dim>
9486 <dim>3</dim>
9487 <dim>3</dim>
9488 </port>
9489 </input>
9490 <output>
9491 <port id="2" precision="FP32">
9492 <dim>1</dim>
9493 <dim>64</dim>
9494 <dim>20</dim>
9495 <dim>34</dim>
9496 </port>
9497 </output>
9498 </layer>
9499 <layer id="546" name="data_add_2433724342" type="Const" version="opset1">
9500 <data element_type="f32" offset="1081308" shape="1, 64, 1, 1" size="256"/>
9501 <output>
9502 <port id="0" precision="FP32">
9503 <dim>1</dim>
9504 <dim>64</dim>
9505 <dim>1</dim>
9506 <dim>1</dim>
9507 </port>
9508 </output>
9509 </layer>
9510 <layer id="547" name="bottleneck4_3/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
9511 <data auto_broadcast="numpy"/>
9512 <input>
9513 <port id="0" precision="FP32">
9514 <dim>1</dim>
9515 <dim>64</dim>
9516 <dim>20</dim>
9517 <dim>34</dim>
9518 </port>
9519 <port id="1" precision="FP32">
9520 <dim>1</dim>
9521 <dim>64</dim>
9522 <dim>1</dim>
9523 <dim>1</dim>
9524 </port>
9525 </input>
9526 <output>
9527 <port id="2" names="bottleneck4_3/inner/dw1/conv" precision="FP32">
9528 <dim>1</dim>
9529 <dim>64</dim>
9530 <dim>20</dim>
9531 <dim>34</dim>
9532 </port>
9533 </output>
9534 </layer>
9535 <layer id="548" name="bottleneck4_3/inner/dw1/fn/weights3108840466" type="Const" version="opset1">
9536 <data element_type="f32" offset="4664" shape="1" size="4"/>
9537 <output>
9538 <port id="0" precision="FP32">
9539 <dim>1</dim>
9540 </port>
9541 </output>
9542 </layer>
9543 <layer id="549" name="bottleneck4_3/inner/dw1/fn" type="PReLU" version="opset1">
9544 <input>
9545 <port id="0" precision="FP32">
9546 <dim>1</dim>
9547 <dim>64</dim>
9548 <dim>20</dim>
9549 <dim>34</dim>
9550 </port>
9551 <port id="1" precision="FP32">
9552 <dim>1</dim>
9553 </port>
9554 </input>
9555 <output>
9556 <port id="2" names="bottleneck4_3/inner/dw1/conv" precision="FP32">
9557 <dim>1</dim>
9558 <dim>64</dim>
9559 <dim>20</dim>
9560 <dim>34</dim>
9561 </port>
9562 </output>
9563 </layer>
9564 <layer id="550" name="bottleneck4_3/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
9565 <data element_type="f32" offset="1081564" shape="256, 64, 1, 1" size="65536"/>
9566 <output>
9567 <port id="0" precision="FP32">
9568 <dim>256</dim>
9569 <dim>64</dim>
9570 <dim>1</dim>
9571 <dim>1</dim>
9572 </port>
9573 </output>
9574 </layer>
9575 <layer id="551" name="bottleneck4_3/dim_inc/conv" type="Convolution" version="opset1">
9576 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
9577 <input>
9578 <port id="0" precision="FP32">
9579 <dim>1</dim>
9580 <dim>64</dim>
9581 <dim>20</dim>
9582 <dim>34</dim>
9583 </port>
9584 <port id="1" precision="FP32">
9585 <dim>256</dim>
9586 <dim>64</dim>
9587 <dim>1</dim>
9588 <dim>1</dim>
9589 </port>
9590 </input>
9591 <output>
9592 <port id="2" precision="FP32">
9593 <dim>1</dim>
9594 <dim>256</dim>
9595 <dim>20</dim>
9596 <dim>34</dim>
9597 </port>
9598 </output>
9599 </layer>
9600 <layer id="552" name="data_add_2434524350" type="Const" version="opset1">
9601 <data element_type="f32" offset="1147100" shape="1, 256, 1, 1" size="1024"/>
9602 <output>
9603 <port id="0" precision="FP32">
9604 <dim>1</dim>
9605 <dim>256</dim>
9606 <dim>1</dim>
9607 <dim>1</dim>
9608 </port>
9609 </output>
9610 </layer>
9611 <layer id="553" name="bottleneck4_3/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
9612 <data auto_broadcast="numpy"/>
9613 <input>
9614 <port id="0" precision="FP32">
9615 <dim>1</dim>
9616 <dim>256</dim>
9617 <dim>20</dim>
9618 <dim>34</dim>
9619 </port>
9620 <port id="1" precision="FP32">
9621 <dim>1</dim>
9622 <dim>256</dim>
9623 <dim>1</dim>
9624 <dim>1</dim>
9625 </port>
9626 </input>
9627 <output>
9628 <port id="2" names="bottleneck4_3/dim_inc/conv" precision="FP32">
9629 <dim>1</dim>
9630 <dim>256</dim>
9631 <dim>20</dim>
9632 <dim>34</dim>
9633 </port>
9634 </output>
9635 </layer>
9636 <layer id="554" name="bottleneck4_3/add" type="Add" version="opset1">
9637 <data auto_broadcast="numpy"/>
9638 <input>
9639 <port id="0" precision="FP32">
9640 <dim>1</dim>
9641 <dim>256</dim>
9642 <dim>20</dim>
9643 <dim>34</dim>
9644 </port>
9645 <port id="1" precision="FP32">
9646 <dim>1</dim>
9647 <dim>256</dim>
9648 <dim>20</dim>
9649 <dim>34</dim>
9650 </port>
9651 </input>
9652 <output>
9653 <port id="2" names="bottleneck4_3/add" precision="FP32">
9654 <dim>1</dim>
9655 <dim>256</dim>
9656 <dim>20</dim>
9657 <dim>34</dim>
9658 </port>
9659 </output>
9660 </layer>
9661 <layer id="555" name="bottleneck4_3/fn/weights3088440685" type="Const" version="opset1">
9662 <data element_type="f32" offset="4664" shape="1" size="4"/>
9663 <output>
9664 <port id="0" precision="FP32">
9665 <dim>1</dim>
9666 </port>
9667 </output>
9668 </layer>
9669 <layer id="556" name="bottleneck4_3/fn" type="PReLU" version="opset1">
9670 <input>
9671 <port id="0" precision="FP32">
9672 <dim>1</dim>
9673 <dim>256</dim>
9674 <dim>20</dim>
9675 <dim>34</dim>
9676 </port>
9677 <port id="1" precision="FP32">
9678 <dim>1</dim>
9679 </port>
9680 </input>
9681 <output>
9682 <port id="2" names="bottleneck4_3/add" precision="FP32">
9683 <dim>1</dim>
9684 <dim>256</dim>
9685 <dim>20</dim>
9686 <dim>34</dim>
9687 </port>
9688 </output>
9689 </layer>
9690 <layer id="557" name="bottleneck4_4/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
9691 <data element_type="f32" offset="1148124" shape="64, 256, 1, 1" size="65536"/>
9692 <output>
9693 <port id="0" precision="FP32">
9694 <dim>64</dim>
9695 <dim>256</dim>
9696 <dim>1</dim>
9697 <dim>1</dim>
9698 </port>
9699 </output>
9700 </layer>
9701 <layer id="558" name="bottleneck4_4/dim_red/conv" type="Convolution" version="opset1">
9702 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
9703 <input>
9704 <port id="0" precision="FP32">
9705 <dim>1</dim>
9706 <dim>256</dim>
9707 <dim>20</dim>
9708 <dim>34</dim>
9709 </port>
9710 <port id="1" precision="FP32">
9711 <dim>64</dim>
9712 <dim>256</dim>
9713 <dim>1</dim>
9714 <dim>1</dim>
9715 </port>
9716 </input>
9717 <output>
9718 <port id="2" precision="FP32">
9719 <dim>1</dim>
9720 <dim>64</dim>
9721 <dim>20</dim>
9722 <dim>34</dim>
9723 </port>
9724 </output>
9725 </layer>
9726 <layer id="559" name="data_add_2435324358" type="Const" version="opset1">
9727 <data element_type="f32" offset="1213660" shape="1, 64, 1, 1" size="256"/>
9728 <output>
9729 <port id="0" precision="FP32">
9730 <dim>1</dim>
9731 <dim>64</dim>
9732 <dim>1</dim>
9733 <dim>1</dim>
9734 </port>
9735 </output>
9736 </layer>
9737 <layer id="560" name="bottleneck4_4/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
9738 <data auto_broadcast="numpy"/>
9739 <input>
9740 <port id="0" precision="FP32">
9741 <dim>1</dim>
9742 <dim>64</dim>
9743 <dim>20</dim>
9744 <dim>34</dim>
9745 </port>
9746 <port id="1" precision="FP32">
9747 <dim>1</dim>
9748 <dim>64</dim>
9749 <dim>1</dim>
9750 <dim>1</dim>
9751 </port>
9752 </input>
9753 <output>
9754 <port id="2" names="bottleneck4_4/dim_red/conv" precision="FP32">
9755 <dim>1</dim>
9756 <dim>64</dim>
9757 <dim>20</dim>
9758 <dim>34</dim>
9759 </port>
9760 </output>
9761 </layer>
9762 <layer id="561" name="bottleneck4_4/dim_red/fn/weights3116439731" type="Const" version="opset1">
9763 <data element_type="f32" offset="4664" shape="1" size="4"/>
9764 <output>
9765 <port id="0" precision="FP32">
9766 <dim>1</dim>
9767 </port>
9768 </output>
9769 </layer>
9770 <layer id="562" name="bottleneck4_4/dim_red/fn" type="PReLU" version="opset1">
9771 <input>
9772 <port id="0" precision="FP32">
9773 <dim>1</dim>
9774 <dim>64</dim>
9775 <dim>20</dim>
9776 <dim>34</dim>
9777 </port>
9778 <port id="1" precision="FP32">
9779 <dim>1</dim>
9780 </port>
9781 </input>
9782 <output>
9783 <port id="2" names="bottleneck4_4/dim_red/conv" precision="FP32">
9784 <dim>1</dim>
9785 <dim>64</dim>
9786 <dim>20</dim>
9787 <dim>34</dim>
9788 </port>
9789 </output>
9790 </layer>
9791 <layer id="563" name="bottleneck4_4/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
9792 <data element_type="f32" offset="1213916" shape="64, 1, 1, 3, 3" size="2304"/>
9793 <output>
9794 <port id="0" precision="FP32">
9795 <dim>64</dim>
9796 <dim>1</dim>
9797 <dim>1</dim>
9798 <dim>3</dim>
9799 <dim>3</dim>
9800 </port>
9801 </output>
9802 </layer>
9803 <layer id="564" name="bottleneck4_4/inner/dw1/conv" type="GroupConvolution" version="opset1">
9804 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
9805 <input>
9806 <port id="0" precision="FP32">
9807 <dim>1</dim>
9808 <dim>64</dim>
9809 <dim>20</dim>
9810 <dim>34</dim>
9811 </port>
9812 <port id="1" precision="FP32">
9813 <dim>64</dim>
9814 <dim>1</dim>
9815 <dim>1</dim>
9816 <dim>3</dim>
9817 <dim>3</dim>
9818 </port>
9819 </input>
9820 <output>
9821 <port id="2" precision="FP32">
9822 <dim>1</dim>
9823 <dim>64</dim>
9824 <dim>20</dim>
9825 <dim>34</dim>
9826 </port>
9827 </output>
9828 </layer>
9829 <layer id="565" name="data_add_2436124366" type="Const" version="opset1">
9830 <data element_type="f32" offset="1216220" shape="1, 64, 1, 1" size="256"/>
9831 <output>
9832 <port id="0" precision="FP32">
9833 <dim>1</dim>
9834 <dim>64</dim>
9835 <dim>1</dim>
9836 <dim>1</dim>
9837 </port>
9838 </output>
9839 </layer>
9840 <layer id="566" name="bottleneck4_4/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
9841 <data auto_broadcast="numpy"/>
9842 <input>
9843 <port id="0" precision="FP32">
9844 <dim>1</dim>
9845 <dim>64</dim>
9846 <dim>20</dim>
9847 <dim>34</dim>
9848 </port>
9849 <port id="1" precision="FP32">
9850 <dim>1</dim>
9851 <dim>64</dim>
9852 <dim>1</dim>
9853 <dim>1</dim>
9854 </port>
9855 </input>
9856 <output>
9857 <port id="2" names="bottleneck4_4/inner/dw1/conv" precision="FP32">
9858 <dim>1</dim>
9859 <dim>64</dim>
9860 <dim>20</dim>
9861 <dim>34</dim>
9862 </port>
9863 </output>
9864 </layer>
9865 <layer id="567" name="bottleneck4_4/inner/dw1/fn/weights3076040484" type="Const" version="opset1">
9866 <data element_type="f32" offset="4664" shape="1" size="4"/>
9867 <output>
9868 <port id="0" precision="FP32">
9869 <dim>1</dim>
9870 </port>
9871 </output>
9872 </layer>
9873 <layer id="568" name="bottleneck4_4/inner/dw1/fn" type="PReLU" version="opset1">
9874 <input>
9875 <port id="0" precision="FP32">
9876 <dim>1</dim>
9877 <dim>64</dim>
9878 <dim>20</dim>
9879 <dim>34</dim>
9880 </port>
9881 <port id="1" precision="FP32">
9882 <dim>1</dim>
9883 </port>
9884 </input>
9885 <output>
9886 <port id="2" names="bottleneck4_4/inner/dw1/conv" precision="FP32">
9887 <dim>1</dim>
9888 <dim>64</dim>
9889 <dim>20</dim>
9890 <dim>34</dim>
9891 </port>
9892 </output>
9893 </layer>
9894 <layer id="569" name="bottleneck4_4/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
9895 <data element_type="f32" offset="1216476" shape="256, 64, 1, 1" size="65536"/>
9896 <output>
9897 <port id="0" precision="FP32">
9898 <dim>256</dim>
9899 <dim>64</dim>
9900 <dim>1</dim>
9901 <dim>1</dim>
9902 </port>
9903 </output>
9904 </layer>
9905 <layer id="570" name="bottleneck4_4/dim_inc/conv" type="Convolution" version="opset1">
9906 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
9907 <input>
9908 <port id="0" precision="FP32">
9909 <dim>1</dim>
9910 <dim>64</dim>
9911 <dim>20</dim>
9912 <dim>34</dim>
9913 </port>
9914 <port id="1" precision="FP32">
9915 <dim>256</dim>
9916 <dim>64</dim>
9917 <dim>1</dim>
9918 <dim>1</dim>
9919 </port>
9920 </input>
9921 <output>
9922 <port id="2" precision="FP32">
9923 <dim>1</dim>
9924 <dim>256</dim>
9925 <dim>20</dim>
9926 <dim>34</dim>
9927 </port>
9928 </output>
9929 </layer>
9930 <layer id="571" name="data_add_2436924374" type="Const" version="opset1">
9931 <data element_type="f32" offset="1282012" shape="1, 256, 1, 1" size="1024"/>
9932 <output>
9933 <port id="0" precision="FP32">
9934 <dim>1</dim>
9935 <dim>256</dim>
9936 <dim>1</dim>
9937 <dim>1</dim>
9938 </port>
9939 </output>
9940 </layer>
9941 <layer id="572" name="bottleneck4_4/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
9942 <data auto_broadcast="numpy"/>
9943 <input>
9944 <port id="0" precision="FP32">
9945 <dim>1</dim>
9946 <dim>256</dim>
9947 <dim>20</dim>
9948 <dim>34</dim>
9949 </port>
9950 <port id="1" precision="FP32">
9951 <dim>1</dim>
9952 <dim>256</dim>
9953 <dim>1</dim>
9954 <dim>1</dim>
9955 </port>
9956 </input>
9957 <output>
9958 <port id="2" names="bottleneck4_4/dim_inc/conv" precision="FP32">
9959 <dim>1</dim>
9960 <dim>256</dim>
9961 <dim>20</dim>
9962 <dim>34</dim>
9963 </port>
9964 </output>
9965 </layer>
9966 <layer id="573" name="bottleneck4_4/add" type="Add" version="opset1">
9967 <data auto_broadcast="numpy"/>
9968 <input>
9969 <port id="0" precision="FP32">
9970 <dim>1</dim>
9971 <dim>256</dim>
9972 <dim>20</dim>
9973 <dim>34</dim>
9974 </port>
9975 <port id="1" precision="FP32">
9976 <dim>1</dim>
9977 <dim>256</dim>
9978 <dim>20</dim>
9979 <dim>34</dim>
9980 </port>
9981 </input>
9982 <output>
9983 <port id="2" names="bottleneck4_4/add" precision="FP32">
9984 <dim>1</dim>
9985 <dim>256</dim>
9986 <dim>20</dim>
9987 <dim>34</dim>
9988 </port>
9989 </output>
9990 </layer>
9991 <layer id="574" name="bottleneck4_4/fn/weights3098839926" type="Const" version="opset1">
9992 <data element_type="f32" offset="4664" shape="1" size="4"/>
9993 <output>
9994 <port id="0" precision="FP32">
9995 <dim>1</dim>
9996 </port>
9997 </output>
9998 </layer>
9999 <layer id="575" name="bottleneck4_4/fn" type="PReLU" version="opset1">
10000 <input>
10001 <port id="0" precision="FP32">
10002 <dim>1</dim>
10003 <dim>256</dim>
10004 <dim>20</dim>
10005 <dim>34</dim>
10006 </port>
10007 <port id="1" precision="FP32">
10008 <dim>1</dim>
10009 </port>
10010 </input>
10011 <output>
10012 <port id="2" names="bottleneck4_4/add" precision="FP32">
10013 <dim>1</dim>
10014 <dim>256</dim>
10015 <dim>20</dim>
10016 <dim>34</dim>
10017 </port>
10018 </output>
10019 </layer>
10020 <layer id="576" name="bottleneck4_5/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
10021 <data element_type="f32" offset="1283036" shape="64, 256, 1, 1" size="65536"/>
10022 <output>
10023 <port id="0" precision="FP32">
10024 <dim>64</dim>
10025 <dim>256</dim>
10026 <dim>1</dim>
10027 <dim>1</dim>
10028 </port>
10029 </output>
10030 </layer>
10031 <layer id="577" name="bottleneck4_5/dim_red/conv" type="Convolution" version="opset1">
10032 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
10033 <input>
10034 <port id="0" precision="FP32">
10035 <dim>1</dim>
10036 <dim>256</dim>
10037 <dim>20</dim>
10038 <dim>34</dim>
10039 </port>
10040 <port id="1" precision="FP32">
10041 <dim>64</dim>
10042 <dim>256</dim>
10043 <dim>1</dim>
10044 <dim>1</dim>
10045 </port>
10046 </input>
10047 <output>
10048 <port id="2" precision="FP32">
10049 <dim>1</dim>
10050 <dim>64</dim>
10051 <dim>20</dim>
10052 <dim>34</dim>
10053 </port>
10054 </output>
10055 </layer>
10056 <layer id="578" name="data_add_2437724382" type="Const" version="opset1">
10057 <data element_type="f32" offset="1348572" shape="1, 64, 1, 1" size="256"/>
10058 <output>
10059 <port id="0" precision="FP32">
10060 <dim>1</dim>
10061 <dim>64</dim>
10062 <dim>1</dim>
10063 <dim>1</dim>
10064 </port>
10065 </output>
10066 </layer>
10067 <layer id="579" name="bottleneck4_5/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
10068 <data auto_broadcast="numpy"/>
10069 <input>
10070 <port id="0" precision="FP32">
10071 <dim>1</dim>
10072 <dim>64</dim>
10073 <dim>20</dim>
10074 <dim>34</dim>
10075 </port>
10076 <port id="1" precision="FP32">
10077 <dim>1</dim>
10078 <dim>64</dim>
10079 <dim>1</dim>
10080 <dim>1</dim>
10081 </port>
10082 </input>
10083 <output>
10084 <port id="2" names="bottleneck4_5/dim_red/conv" precision="FP32">
10085 <dim>1</dim>
10086 <dim>64</dim>
10087 <dim>20</dim>
10088 <dim>34</dim>
10089 </port>
10090 </output>
10091 </layer>
10092 <layer id="580" name="bottleneck4_5/dim_red/fn/weights3117240481" type="Const" version="opset1">
10093 <data element_type="f32" offset="4664" shape="1" size="4"/>
10094 <output>
10095 <port id="0" precision="FP32">
10096 <dim>1</dim>
10097 </port>
10098 </output>
10099 </layer>
10100 <layer id="581" name="bottleneck4_5/dim_red/fn" type="PReLU" version="opset1">
10101 <input>
10102 <port id="0" precision="FP32">
10103 <dim>1</dim>
10104 <dim>64</dim>
10105 <dim>20</dim>
10106 <dim>34</dim>
10107 </port>
10108 <port id="1" precision="FP32">
10109 <dim>1</dim>
10110 </port>
10111 </input>
10112 <output>
10113 <port id="2" names="bottleneck4_5/dim_red/conv" precision="FP32">
10114 <dim>1</dim>
10115 <dim>64</dim>
10116 <dim>20</dim>
10117 <dim>34</dim>
10118 </port>
10119 </output>
10120 </layer>
10121 <layer id="582" name="bottleneck4_5/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
10122 <data element_type="f32" offset="1348828" shape="64, 1, 1, 3, 3" size="2304"/>
10123 <output>
10124 <port id="0" precision="FP32">
10125 <dim>64</dim>
10126 <dim>1</dim>
10127 <dim>1</dim>
10128 <dim>3</dim>
10129 <dim>3</dim>
10130 </port>
10131 </output>
10132 </layer>
10133 <layer id="583" name="bottleneck4_5/inner/dw1/conv" type="GroupConvolution" version="opset1">
10134 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
10135 <input>
10136 <port id="0" precision="FP32">
10137 <dim>1</dim>
10138 <dim>64</dim>
10139 <dim>20</dim>
10140 <dim>34</dim>
10141 </port>
10142 <port id="1" precision="FP32">
10143 <dim>64</dim>
10144 <dim>1</dim>
10145 <dim>1</dim>
10146 <dim>3</dim>
10147 <dim>3</dim>
10148 </port>
10149 </input>
10150 <output>
10151 <port id="2" precision="FP32">
10152 <dim>1</dim>
10153 <dim>64</dim>
10154 <dim>20</dim>
10155 <dim>34</dim>
10156 </port>
10157 </output>
10158 </layer>
10159 <layer id="584" name="data_add_2438524390" type="Const" version="opset1">
10160 <data element_type="f32" offset="1351132" shape="1, 64, 1, 1" size="256"/>
10161 <output>
10162 <port id="0" precision="FP32">
10163 <dim>1</dim>
10164 <dim>64</dim>
10165 <dim>1</dim>
10166 <dim>1</dim>
10167 </port>
10168 </output>
10169 </layer>
10170 <layer id="585" name="bottleneck4_5/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
10171 <data auto_broadcast="numpy"/>
10172 <input>
10173 <port id="0" precision="FP32">
10174 <dim>1</dim>
10175 <dim>64</dim>
10176 <dim>20</dim>
10177 <dim>34</dim>
10178 </port>
10179 <port id="1" precision="FP32">
10180 <dim>1</dim>
10181 <dim>64</dim>
10182 <dim>1</dim>
10183 <dim>1</dim>
10184 </port>
10185 </input>
10186 <output>
10187 <port id="2" names="bottleneck4_5/inner/dw1/conv" precision="FP32">
10188 <dim>1</dim>
10189 <dim>64</dim>
10190 <dim>20</dim>
10191 <dim>34</dim>
10192 </port>
10193 </output>
10194 </layer>
10195 <layer id="586" name="bottleneck4_5/inner/dw1/fn/weights3076439938" type="Const" version="opset1">
10196 <data element_type="f32" offset="4664" shape="1" size="4"/>
10197 <output>
10198 <port id="0" precision="FP32">
10199 <dim>1</dim>
10200 </port>
10201 </output>
10202 </layer>
10203 <layer id="587" name="bottleneck4_5/inner/dw1/fn" type="PReLU" version="opset1">
10204 <input>
10205 <port id="0" precision="FP32">
10206 <dim>1</dim>
10207 <dim>64</dim>
10208 <dim>20</dim>
10209 <dim>34</dim>
10210 </port>
10211 <port id="1" precision="FP32">
10212 <dim>1</dim>
10213 </port>
10214 </input>
10215 <output>
10216 <port id="2" names="bottleneck4_5/inner/dw1/conv" precision="FP32">
10217 <dim>1</dim>
10218 <dim>64</dim>
10219 <dim>20</dim>
10220 <dim>34</dim>
10221 </port>
10222 </output>
10223 </layer>
10224 <layer id="588" name="bottleneck4_5/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
10225 <data element_type="f32" offset="1351388" shape="256, 64, 1, 1" size="65536"/>
10226 <output>
10227 <port id="0" precision="FP32">
10228 <dim>256</dim>
10229 <dim>64</dim>
10230 <dim>1</dim>
10231 <dim>1</dim>
10232 </port>
10233 </output>
10234 </layer>
10235 <layer id="589" name="bottleneck4_5/dim_inc/conv" type="Convolution" version="opset1">
10236 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
10237 <input>
10238 <port id="0" precision="FP32">
10239 <dim>1</dim>
10240 <dim>64</dim>
10241 <dim>20</dim>
10242 <dim>34</dim>
10243 </port>
10244 <port id="1" precision="FP32">
10245 <dim>256</dim>
10246 <dim>64</dim>
10247 <dim>1</dim>
10248 <dim>1</dim>
10249 </port>
10250 </input>
10251 <output>
10252 <port id="2" precision="FP32">
10253 <dim>1</dim>
10254 <dim>256</dim>
10255 <dim>20</dim>
10256 <dim>34</dim>
10257 </port>
10258 </output>
10259 </layer>
10260 <layer id="590" name="data_add_2439324398" type="Const" version="opset1">
10261 <data element_type="f32" offset="1416924" shape="1, 256, 1, 1" size="1024"/>
10262 <output>
10263 <port id="0" precision="FP32">
10264 <dim>1</dim>
10265 <dim>256</dim>
10266 <dim>1</dim>
10267 <dim>1</dim>
10268 </port>
10269 </output>
10270 </layer>
10271 <layer id="591" name="bottleneck4_5/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
10272 <data auto_broadcast="numpy"/>
10273 <input>
10274 <port id="0" precision="FP32">
10275 <dim>1</dim>
10276 <dim>256</dim>
10277 <dim>20</dim>
10278 <dim>34</dim>
10279 </port>
10280 <port id="1" precision="FP32">
10281 <dim>1</dim>
10282 <dim>256</dim>
10283 <dim>1</dim>
10284 <dim>1</dim>
10285 </port>
10286 </input>
10287 <output>
10288 <port id="2" names="bottleneck4_5/dim_inc/conv" precision="FP32">
10289 <dim>1</dim>
10290 <dim>256</dim>
10291 <dim>20</dim>
10292 <dim>34</dim>
10293 </port>
10294 </output>
10295 </layer>
10296 <layer id="592" name="bottleneck4_5/add" type="Add" version="opset1">
10297 <data auto_broadcast="numpy"/>
10298 <input>
10299 <port id="0" precision="FP32">
10300 <dim>1</dim>
10301 <dim>256</dim>
10302 <dim>20</dim>
10303 <dim>34</dim>
10304 </port>
10305 <port id="1" precision="FP32">
10306 <dim>1</dim>
10307 <dim>256</dim>
10308 <dim>20</dim>
10309 <dim>34</dim>
10310 </port>
10311 </input>
10312 <output>
10313 <port id="2" names="bottleneck4_5/add" precision="FP32">
10314 <dim>1</dim>
10315 <dim>256</dim>
10316 <dim>20</dim>
10317 <dim>34</dim>
10318 </port>
10319 </output>
10320 </layer>
10321 <layer id="593" name="bottleneck4_5/fn/weights3084840586" type="Const" version="opset1">
10322 <data element_type="f32" offset="4664" shape="1" size="4"/>
10323 <output>
10324 <port id="0" precision="FP32">
10325 <dim>1</dim>
10326 </port>
10327 </output>
10328 </layer>
10329 <layer id="594" name="bottleneck4_5/fn" type="PReLU" version="opset1">
10330 <input>
10331 <port id="0" precision="FP32">
10332 <dim>1</dim>
10333 <dim>256</dim>
10334 <dim>20</dim>
10335 <dim>34</dim>
10336 </port>
10337 <port id="1" precision="FP32">
10338 <dim>1</dim>
10339 </port>
10340 </input>
10341 <output>
10342 <port id="2" names="bottleneck4_5/add" precision="FP32">
10343 <dim>1</dim>
10344 <dim>256</dim>
10345 <dim>20</dim>
10346 <dim>34</dim>
10347 </port>
10348 </output>
10349 </layer>
10350 <layer id="595" name="bottleneck4_6/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
10351 <data element_type="f32" offset="1417948" shape="64, 256, 1, 1" size="65536"/>
10352 <output>
10353 <port id="0" precision="FP32">
10354 <dim>64</dim>
10355 <dim>256</dim>
10356 <dim>1</dim>
10357 <dim>1</dim>
10358 </port>
10359 </output>
10360 </layer>
10361 <layer id="596" name="bottleneck4_6/dim_red/conv" type="Convolution" version="opset1">
10362 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
10363 <input>
10364 <port id="0" precision="FP32">
10365 <dim>1</dim>
10366 <dim>256</dim>
10367 <dim>20</dim>
10368 <dim>34</dim>
10369 </port>
10370 <port id="1" precision="FP32">
10371 <dim>64</dim>
10372 <dim>256</dim>
10373 <dim>1</dim>
10374 <dim>1</dim>
10375 </port>
10376 </input>
10377 <output>
10378 <port id="2" precision="FP32">
10379 <dim>1</dim>
10380 <dim>64</dim>
10381 <dim>20</dim>
10382 <dim>34</dim>
10383 </port>
10384 </output>
10385 </layer>
10386 <layer id="597" name="data_add_2440124406" type="Const" version="opset1">
10387 <data element_type="f32" offset="1483484" shape="1, 64, 1, 1" size="256"/>
10388 <output>
10389 <port id="0" precision="FP32">
10390 <dim>1</dim>
10391 <dim>64</dim>
10392 <dim>1</dim>
10393 <dim>1</dim>
10394 </port>
10395 </output>
10396 </layer>
10397 <layer id="598" name="bottleneck4_6/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
10398 <data auto_broadcast="numpy"/>
10399 <input>
10400 <port id="0" precision="FP32">
10401 <dim>1</dim>
10402 <dim>64</dim>
10403 <dim>20</dim>
10404 <dim>34</dim>
10405 </port>
10406 <port id="1" precision="FP32">
10407 <dim>1</dim>
10408 <dim>64</dim>
10409 <dim>1</dim>
10410 <dim>1</dim>
10411 </port>
10412 </input>
10413 <output>
10414 <port id="2" names="bottleneck4_6/dim_red/conv" precision="FP32">
10415 <dim>1</dim>
10416 <dim>64</dim>
10417 <dim>20</dim>
10418 <dim>34</dim>
10419 </port>
10420 </output>
10421 </layer>
10422 <layer id="599" name="bottleneck4_6/dim_red/fn/weights3096839815" type="Const" version="opset1">
10423 <data element_type="f32" offset="4664" shape="1" size="4"/>
10424 <output>
10425 <port id="0" precision="FP32">
10426 <dim>1</dim>
10427 </port>
10428 </output>
10429 </layer>
10430 <layer id="600" name="bottleneck4_6/dim_red/fn" type="PReLU" version="opset1">
10431 <input>
10432 <port id="0" precision="FP32">
10433 <dim>1</dim>
10434 <dim>64</dim>
10435 <dim>20</dim>
10436 <dim>34</dim>
10437 </port>
10438 <port id="1" precision="FP32">
10439 <dim>1</dim>
10440 </port>
10441 </input>
10442 <output>
10443 <port id="2" names="bottleneck4_6/dim_red/conv" precision="FP32">
10444 <dim>1</dim>
10445 <dim>64</dim>
10446 <dim>20</dim>
10447 <dim>34</dim>
10448 </port>
10449 </output>
10450 </layer>
10451 <layer id="601" name="bottleneck4_6/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
10452 <data element_type="f32" offset="1483740" shape="64, 1, 1, 3, 3" size="2304"/>
10453 <output>
10454 <port id="0" precision="FP32">
10455 <dim>64</dim>
10456 <dim>1</dim>
10457 <dim>1</dim>
10458 <dim>3</dim>
10459 <dim>3</dim>
10460 </port>
10461 </output>
10462 </layer>
10463 <layer id="602" name="bottleneck4_6/inner/dw1/conv" type="GroupConvolution" version="opset1">
10464 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
10465 <input>
10466 <port id="0" precision="FP32">
10467 <dim>1</dim>
10468 <dim>64</dim>
10469 <dim>20</dim>
10470 <dim>34</dim>
10471 </port>
10472 <port id="1" precision="FP32">
10473 <dim>64</dim>
10474 <dim>1</dim>
10475 <dim>1</dim>
10476 <dim>3</dim>
10477 <dim>3</dim>
10478 </port>
10479 </input>
10480 <output>
10481 <port id="2" precision="FP32">
10482 <dim>1</dim>
10483 <dim>64</dim>
10484 <dim>20</dim>
10485 <dim>34</dim>
10486 </port>
10487 </output>
10488 </layer>
10489 <layer id="603" name="data_add_2440924414" type="Const" version="opset1">
10490 <data element_type="f32" offset="1486044" shape="1, 64, 1, 1" size="256"/>
10491 <output>
10492 <port id="0" precision="FP32">
10493 <dim>1</dim>
10494 <dim>64</dim>
10495 <dim>1</dim>
10496 <dim>1</dim>
10497 </port>
10498 </output>
10499 </layer>
10500 <layer id="604" name="bottleneck4_6/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
10501 <data auto_broadcast="numpy"/>
10502 <input>
10503 <port id="0" precision="FP32">
10504 <dim>1</dim>
10505 <dim>64</dim>
10506 <dim>20</dim>
10507 <dim>34</dim>
10508 </port>
10509 <port id="1" precision="FP32">
10510 <dim>1</dim>
10511 <dim>64</dim>
10512 <dim>1</dim>
10513 <dim>1</dim>
10514 </port>
10515 </input>
10516 <output>
10517 <port id="2" names="bottleneck4_6/inner/dw1/conv" precision="FP32">
10518 <dim>1</dim>
10519 <dim>64</dim>
10520 <dim>20</dim>
10521 <dim>34</dim>
10522 </port>
10523 </output>
10524 </layer>
10525 <layer id="605" name="bottleneck4_6/inner/dw1/fn/weights3109240031" type="Const" version="opset1">
10526 <data element_type="f32" offset="4664" shape="1" size="4"/>
10527 <output>
10528 <port id="0" precision="FP32">
10529 <dim>1</dim>
10530 </port>
10531 </output>
10532 </layer>
10533 <layer id="606" name="bottleneck4_6/inner/dw1/fn" type="PReLU" version="opset1">
10534 <input>
10535 <port id="0" precision="FP32">
10536 <dim>1</dim>
10537 <dim>64</dim>
10538 <dim>20</dim>
10539 <dim>34</dim>
10540 </port>
10541 <port id="1" precision="FP32">
10542 <dim>1</dim>
10543 </port>
10544 </input>
10545 <output>
10546 <port id="2" names="bottleneck4_6/inner/dw1/conv" precision="FP32">
10547 <dim>1</dim>
10548 <dim>64</dim>
10549 <dim>20</dim>
10550 <dim>34</dim>
10551 </port>
10552 </output>
10553 </layer>
10554 <layer id="607" name="bottleneck4_6/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
10555 <data element_type="f32" offset="1486300" shape="256, 64, 1, 1" size="65536"/>
10556 <output>
10557 <port id="0" precision="FP32">
10558 <dim>256</dim>
10559 <dim>64</dim>
10560 <dim>1</dim>
10561 <dim>1</dim>
10562 </port>
10563 </output>
10564 </layer>
10565 <layer id="608" name="bottleneck4_6/dim_inc/conv" type="Convolution" version="opset1">
10566 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
10567 <input>
10568 <port id="0" precision="FP32">
10569 <dim>1</dim>
10570 <dim>64</dim>
10571 <dim>20</dim>
10572 <dim>34</dim>
10573 </port>
10574 <port id="1" precision="FP32">
10575 <dim>256</dim>
10576 <dim>64</dim>
10577 <dim>1</dim>
10578 <dim>1</dim>
10579 </port>
10580 </input>
10581 <output>
10582 <port id="2" precision="FP32">
10583 <dim>1</dim>
10584 <dim>256</dim>
10585 <dim>20</dim>
10586 <dim>34</dim>
10587 </port>
10588 </output>
10589 </layer>
10590 <layer id="609" name="data_add_2441724422" type="Const" version="opset1">
10591 <data element_type="f32" offset="1551836" shape="1, 256, 1, 1" size="1024"/>
10592 <output>
10593 <port id="0" precision="FP32">
10594 <dim>1</dim>
10595 <dim>256</dim>
10596 <dim>1</dim>
10597 <dim>1</dim>
10598 </port>
10599 </output>
10600 </layer>
10601 <layer id="610" name="bottleneck4_6/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
10602 <data auto_broadcast="numpy"/>
10603 <input>
10604 <port id="0" precision="FP32">
10605 <dim>1</dim>
10606 <dim>256</dim>
10607 <dim>20</dim>
10608 <dim>34</dim>
10609 </port>
10610 <port id="1" precision="FP32">
10611 <dim>1</dim>
10612 <dim>256</dim>
10613 <dim>1</dim>
10614 <dim>1</dim>
10615 </port>
10616 </input>
10617 <output>
10618 <port id="2" names="bottleneck4_6/dim_inc/conv" precision="FP32">
10619 <dim>1</dim>
10620 <dim>256</dim>
10621 <dim>20</dim>
10622 <dim>34</dim>
10623 </port>
10624 </output>
10625 </layer>
10626 <layer id="611" name="bottleneck4_6/add" type="Add" version="opset1">
10627 <data auto_broadcast="numpy"/>
10628 <input>
10629 <port id="0" precision="FP32">
10630 <dim>1</dim>
10631 <dim>256</dim>
10632 <dim>20</dim>
10633 <dim>34</dim>
10634 </port>
10635 <port id="1" precision="FP32">
10636 <dim>1</dim>
10637 <dim>256</dim>
10638 <dim>20</dim>
10639 <dim>34</dim>
10640 </port>
10641 </input>
10642 <output>
10643 <port id="2" names="bottleneck4_6/add" precision="FP32">
10644 <dim>1</dim>
10645 <dim>256</dim>
10646 <dim>20</dim>
10647 <dim>34</dim>
10648 </port>
10649 </output>
10650 </layer>
10651 <layer id="612" name="bottleneck4_6/fn/weights3111640460" type="Const" version="opset1">
10652 <data element_type="f32" offset="4664" shape="1" size="4"/>
10653 <output>
10654 <port id="0" precision="FP32">
10655 <dim>1</dim>
10656 </port>
10657 </output>
10658 </layer>
10659 <layer id="613" name="bottleneck4_6/fn" type="PReLU" version="opset1">
10660 <input>
10661 <port id="0" precision="FP32">
10662 <dim>1</dim>
10663 <dim>256</dim>
10664 <dim>20</dim>
10665 <dim>34</dim>
10666 </port>
10667 <port id="1" precision="FP32">
10668 <dim>1</dim>
10669 </port>
10670 </input>
10671 <output>
10672 <port id="2" names="bottleneck4_6/add" precision="FP32">
10673 <dim>1</dim>
10674 <dim>256</dim>
10675 <dim>20</dim>
10676 <dim>34</dim>
10677 </port>
10678 </output>
10679 </layer>
10680 <layer id="614" name="bottleneck4_7/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
10681 <data element_type="f32" offset="1552860" shape="64, 256, 1, 1" size="65536"/>
10682 <output>
10683 <port id="0" precision="FP32">
10684 <dim>64</dim>
10685 <dim>256</dim>
10686 <dim>1</dim>
10687 <dim>1</dim>
10688 </port>
10689 </output>
10690 </layer>
10691 <layer id="615" name="bottleneck4_7/dim_red/conv" type="Convolution" version="opset1">
10692 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
10693 <input>
10694 <port id="0" precision="FP32">
10695 <dim>1</dim>
10696 <dim>256</dim>
10697 <dim>20</dim>
10698 <dim>34</dim>
10699 </port>
10700 <port id="1" precision="FP32">
10701 <dim>64</dim>
10702 <dim>256</dim>
10703 <dim>1</dim>
10704 <dim>1</dim>
10705 </port>
10706 </input>
10707 <output>
10708 <port id="2" precision="FP32">
10709 <dim>1</dim>
10710 <dim>64</dim>
10711 <dim>20</dim>
10712 <dim>34</dim>
10713 </port>
10714 </output>
10715 </layer>
10716 <layer id="616" name="data_add_2442524430" type="Const" version="opset1">
10717 <data element_type="f32" offset="1618396" shape="1, 64, 1, 1" size="256"/>
10718 <output>
10719 <port id="0" precision="FP32">
10720 <dim>1</dim>
10721 <dim>64</dim>
10722 <dim>1</dim>
10723 <dim>1</dim>
10724 </port>
10725 </output>
10726 </layer>
10727 <layer id="617" name="bottleneck4_7/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
10728 <data auto_broadcast="numpy"/>
10729 <input>
10730 <port id="0" precision="FP32">
10731 <dim>1</dim>
10732 <dim>64</dim>
10733 <dim>20</dim>
10734 <dim>34</dim>
10735 </port>
10736 <port id="1" precision="FP32">
10737 <dim>1</dim>
10738 <dim>64</dim>
10739 <dim>1</dim>
10740 <dim>1</dim>
10741 </port>
10742 </input>
10743 <output>
10744 <port id="2" names="bottleneck4_7/dim_red/conv" precision="FP32">
10745 <dim>1</dim>
10746 <dim>64</dim>
10747 <dim>20</dim>
10748 <dim>34</dim>
10749 </port>
10750 </output>
10751 </layer>
10752 <layer id="618" name="bottleneck4_7/dim_red/fn/weights3095240595" type="Const" version="opset1">
10753 <data element_type="f32" offset="4664" shape="1" size="4"/>
10754 <output>
10755 <port id="0" precision="FP32">
10756 <dim>1</dim>
10757 </port>
10758 </output>
10759 </layer>
10760 <layer id="619" name="bottleneck4_7/dim_red/fn" type="PReLU" version="opset1">
10761 <input>
10762 <port id="0" precision="FP32">
10763 <dim>1</dim>
10764 <dim>64</dim>
10765 <dim>20</dim>
10766 <dim>34</dim>
10767 </port>
10768 <port id="1" precision="FP32">
10769 <dim>1</dim>
10770 </port>
10771 </input>
10772 <output>
10773 <port id="2" names="bottleneck4_7/dim_red/conv" precision="FP32">
10774 <dim>1</dim>
10775 <dim>64</dim>
10776 <dim>20</dim>
10777 <dim>34</dim>
10778 </port>
10779 </output>
10780 </layer>
10781 <layer id="620" name="bottleneck4_7/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
10782 <data element_type="f32" offset="1618652" shape="64, 1, 1, 3, 3" size="2304"/>
10783 <output>
10784 <port id="0" precision="FP32">
10785 <dim>64</dim>
10786 <dim>1</dim>
10787 <dim>1</dim>
10788 <dim>3</dim>
10789 <dim>3</dim>
10790 </port>
10791 </output>
10792 </layer>
10793 <layer id="621" name="bottleneck4_7/inner/dw1/conv" type="GroupConvolution" version="opset1">
10794 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
10795 <input>
10796 <port id="0" precision="FP32">
10797 <dim>1</dim>
10798 <dim>64</dim>
10799 <dim>20</dim>
10800 <dim>34</dim>
10801 </port>
10802 <port id="1" precision="FP32">
10803 <dim>64</dim>
10804 <dim>1</dim>
10805 <dim>1</dim>
10806 <dim>3</dim>
10807 <dim>3</dim>
10808 </port>
10809 </input>
10810 <output>
10811 <port id="2" precision="FP32">
10812 <dim>1</dim>
10813 <dim>64</dim>
10814 <dim>20</dim>
10815 <dim>34</dim>
10816 </port>
10817 </output>
10818 </layer>
10819 <layer id="622" name="data_add_2443324438" type="Const" version="opset1">
10820 <data element_type="f32" offset="1620956" shape="1, 64, 1, 1" size="256"/>
10821 <output>
10822 <port id="0" precision="FP32">
10823 <dim>1</dim>
10824 <dim>64</dim>
10825 <dim>1</dim>
10826 <dim>1</dim>
10827 </port>
10828 </output>
10829 </layer>
10830 <layer id="623" name="bottleneck4_7/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
10831 <data auto_broadcast="numpy"/>
10832 <input>
10833 <port id="0" precision="FP32">
10834 <dim>1</dim>
10835 <dim>64</dim>
10836 <dim>20</dim>
10837 <dim>34</dim>
10838 </port>
10839 <port id="1" precision="FP32">
10840 <dim>1</dim>
10841 <dim>64</dim>
10842 <dim>1</dim>
10843 <dim>1</dim>
10844 </port>
10845 </input>
10846 <output>
10847 <port id="2" names="bottleneck4_7/inner/dw1/conv" precision="FP32">
10848 <dim>1</dim>
10849 <dim>64</dim>
10850 <dim>20</dim>
10851 <dim>34</dim>
10852 </port>
10853 </output>
10854 </layer>
10855 <layer id="624" name="bottleneck4_7/inner/dw1/fn/weights3101240547" type="Const" version="opset1">
10856 <data element_type="f32" offset="4664" shape="1" size="4"/>
10857 <output>
10858 <port id="0" precision="FP32">
10859 <dim>1</dim>
10860 </port>
10861 </output>
10862 </layer>
10863 <layer id="625" name="bottleneck4_7/inner/dw1/fn" type="PReLU" version="opset1">
10864 <input>
10865 <port id="0" precision="FP32">
10866 <dim>1</dim>
10867 <dim>64</dim>
10868 <dim>20</dim>
10869 <dim>34</dim>
10870 </port>
10871 <port id="1" precision="FP32">
10872 <dim>1</dim>
10873 </port>
10874 </input>
10875 <output>
10876 <port id="2" names="bottleneck4_7/inner/dw1/conv" precision="FP32">
10877 <dim>1</dim>
10878 <dim>64</dim>
10879 <dim>20</dim>
10880 <dim>34</dim>
10881 </port>
10882 </output>
10883 </layer>
10884 <layer id="626" name="bottleneck4_7/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
10885 <data element_type="f32" offset="1621212" shape="256, 64, 1, 1" size="65536"/>
10886 <output>
10887 <port id="0" precision="FP32">
10888 <dim>256</dim>
10889 <dim>64</dim>
10890 <dim>1</dim>
10891 <dim>1</dim>
10892 </port>
10893 </output>
10894 </layer>
10895 <layer id="627" name="bottleneck4_7/dim_inc/conv" type="Convolution" version="opset1">
10896 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
10897 <input>
10898 <port id="0" precision="FP32">
10899 <dim>1</dim>
10900 <dim>64</dim>
10901 <dim>20</dim>
10902 <dim>34</dim>
10903 </port>
10904 <port id="1" precision="FP32">
10905 <dim>256</dim>
10906 <dim>64</dim>
10907 <dim>1</dim>
10908 <dim>1</dim>
10909 </port>
10910 </input>
10911 <output>
10912 <port id="2" precision="FP32">
10913 <dim>1</dim>
10914 <dim>256</dim>
10915 <dim>20</dim>
10916 <dim>34</dim>
10917 </port>
10918 </output>
10919 </layer>
10920 <layer id="628" name="data_add_2444124446" type="Const" version="opset1">
10921 <data element_type="f32" offset="1686748" shape="1, 256, 1, 1" size="1024"/>
10922 <output>
10923 <port id="0" precision="FP32">
10924 <dim>1</dim>
10925 <dim>256</dim>
10926 <dim>1</dim>
10927 <dim>1</dim>
10928 </port>
10929 </output>
10930 </layer>
10931 <layer id="629" name="bottleneck4_7/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
10932 <data auto_broadcast="numpy"/>
10933 <input>
10934 <port id="0" precision="FP32">
10935 <dim>1</dim>
10936 <dim>256</dim>
10937 <dim>20</dim>
10938 <dim>34</dim>
10939 </port>
10940 <port id="1" precision="FP32">
10941 <dim>1</dim>
10942 <dim>256</dim>
10943 <dim>1</dim>
10944 <dim>1</dim>
10945 </port>
10946 </input>
10947 <output>
10948 <port id="2" names="bottleneck4_7/dim_inc/conv" precision="FP32">
10949 <dim>1</dim>
10950 <dim>256</dim>
10951 <dim>20</dim>
10952 <dim>34</dim>
10953 </port>
10954 </output>
10955 </layer>
10956 <layer id="630" name="bottleneck4_7/add" type="Add" version="opset1">
10957 <data auto_broadcast="numpy"/>
10958 <input>
10959 <port id="0" precision="FP32">
10960 <dim>1</dim>
10961 <dim>256</dim>
10962 <dim>20</dim>
10963 <dim>34</dim>
10964 </port>
10965 <port id="1" precision="FP32">
10966 <dim>1</dim>
10967 <dim>256</dim>
10968 <dim>20</dim>
10969 <dim>34</dim>
10970 </port>
10971 </input>
10972 <output>
10973 <port id="2" names="bottleneck4_7/add" precision="FP32">
10974 <dim>1</dim>
10975 <dim>256</dim>
10976 <dim>20</dim>
10977 <dim>34</dim>
10978 </port>
10979 </output>
10980 </layer>
10981 <layer id="631" name="bottleneck4_7/fn/weights3118840052" type="Const" version="opset1">
10982 <data element_type="f32" offset="4664" shape="1" size="4"/>
10983 <output>
10984 <port id="0" precision="FP32">
10985 <dim>1</dim>
10986 </port>
10987 </output>
10988 </layer>
10989 <layer id="632" name="bottleneck4_7/fn" type="PReLU" version="opset1">
10990 <input>
10991 <port id="0" precision="FP32">
10992 <dim>1</dim>
10993 <dim>256</dim>
10994 <dim>20</dim>
10995 <dim>34</dim>
10996 </port>
10997 <port id="1" precision="FP32">
10998 <dim>1</dim>
10999 </port>
11000 </input>
11001 <output>
11002 <port id="2" names="bottleneck4_7/add" precision="FP32">
11003 <dim>1</dim>
11004 <dim>256</dim>
11005 <dim>20</dim>
11006 <dim>34</dim>
11007 </port>
11008 </output>
11009 </layer>
11010 <layer id="633" name="bottleneck4_8/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
11011 <data element_type="f32" offset="1687772" shape="64, 256, 1, 1" size="65536"/>
11012 <output>
11013 <port id="0" precision="FP32">
11014 <dim>64</dim>
11015 <dim>256</dim>
11016 <dim>1</dim>
11017 <dim>1</dim>
11018 </port>
11019 </output>
11020 </layer>
11021 <layer id="634" name="bottleneck4_8/dim_red/conv" type="Convolution" version="opset1">
11022 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
11023 <input>
11024 <port id="0" precision="FP32">
11025 <dim>1</dim>
11026 <dim>256</dim>
11027 <dim>20</dim>
11028 <dim>34</dim>
11029 </port>
11030 <port id="1" precision="FP32">
11031 <dim>64</dim>
11032 <dim>256</dim>
11033 <dim>1</dim>
11034 <dim>1</dim>
11035 </port>
11036 </input>
11037 <output>
11038 <port id="2" precision="FP32">
11039 <dim>1</dim>
11040 <dim>64</dim>
11041 <dim>20</dim>
11042 <dim>34</dim>
11043 </port>
11044 </output>
11045 </layer>
11046 <layer id="635" name="data_add_2444924454" type="Const" version="opset1">
11047 <data element_type="f32" offset="1753308" shape="1, 64, 1, 1" size="256"/>
11048 <output>
11049 <port id="0" precision="FP32">
11050 <dim>1</dim>
11051 <dim>64</dim>
11052 <dim>1</dim>
11053 <dim>1</dim>
11054 </port>
11055 </output>
11056 </layer>
11057 <layer id="636" name="bottleneck4_8/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
11058 <data auto_broadcast="numpy"/>
11059 <input>
11060 <port id="0" precision="FP32">
11061 <dim>1</dim>
11062 <dim>64</dim>
11063 <dim>20</dim>
11064 <dim>34</dim>
11065 </port>
11066 <port id="1" precision="FP32">
11067 <dim>1</dim>
11068 <dim>64</dim>
11069 <dim>1</dim>
11070 <dim>1</dim>
11071 </port>
11072 </input>
11073 <output>
11074 <port id="2" names="bottleneck4_8/dim_red/conv" precision="FP32">
11075 <dim>1</dim>
11076 <dim>64</dim>
11077 <dim>20</dim>
11078 <dim>34</dim>
11079 </port>
11080 </output>
11081 </layer>
11082 <layer id="637" name="bottleneck4_8/dim_red/fn/weights3091640496" type="Const" version="opset1">
11083 <data element_type="f32" offset="4664" shape="1" size="4"/>
11084 <output>
11085 <port id="0" precision="FP32">
11086 <dim>1</dim>
11087 </port>
11088 </output>
11089 </layer>
11090 <layer id="638" name="bottleneck4_8/dim_red/fn" type="PReLU" version="opset1">
11091 <input>
11092 <port id="0" precision="FP32">
11093 <dim>1</dim>
11094 <dim>64</dim>
11095 <dim>20</dim>
11096 <dim>34</dim>
11097 </port>
11098 <port id="1" precision="FP32">
11099 <dim>1</dim>
11100 </port>
11101 </input>
11102 <output>
11103 <port id="2" names="bottleneck4_8/dim_red/conv" precision="FP32">
11104 <dim>1</dim>
11105 <dim>64</dim>
11106 <dim>20</dim>
11107 <dim>34</dim>
11108 </port>
11109 </output>
11110 </layer>
11111 <layer id="639" name="bottleneck4_8/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
11112 <data element_type="f32" offset="1753564" shape="64, 1, 1, 3, 3" size="2304"/>
11113 <output>
11114 <port id="0" precision="FP32">
11115 <dim>64</dim>
11116 <dim>1</dim>
11117 <dim>1</dim>
11118 <dim>3</dim>
11119 <dim>3</dim>
11120 </port>
11121 </output>
11122 </layer>
11123 <layer id="640" name="bottleneck4_8/inner/dw1/conv" type="GroupConvolution" version="opset1">
11124 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
11125 <input>
11126 <port id="0" precision="FP32">
11127 <dim>1</dim>
11128 <dim>64</dim>
11129 <dim>20</dim>
11130 <dim>34</dim>
11131 </port>
11132 <port id="1" precision="FP32">
11133 <dim>64</dim>
11134 <dim>1</dim>
11135 <dim>1</dim>
11136 <dim>3</dim>
11137 <dim>3</dim>
11138 </port>
11139 </input>
11140 <output>
11141 <port id="2" precision="FP32">
11142 <dim>1</dim>
11143 <dim>64</dim>
11144 <dim>20</dim>
11145 <dim>34</dim>
11146 </port>
11147 </output>
11148 </layer>
11149 <layer id="641" name="data_add_2445724462" type="Const" version="opset1">
11150 <data element_type="f32" offset="1755868" shape="1, 64, 1, 1" size="256"/>
11151 <output>
11152 <port id="0" precision="FP32">
11153 <dim>1</dim>
11154 <dim>64</dim>
11155 <dim>1</dim>
11156 <dim>1</dim>
11157 </port>
11158 </output>
11159 </layer>
11160 <layer id="642" name="bottleneck4_8/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
11161 <data auto_broadcast="numpy"/>
11162 <input>
11163 <port id="0" precision="FP32">
11164 <dim>1</dim>
11165 <dim>64</dim>
11166 <dim>20</dim>
11167 <dim>34</dim>
11168 </port>
11169 <port id="1" precision="FP32">
11170 <dim>1</dim>
11171 <dim>64</dim>
11172 <dim>1</dim>
11173 <dim>1</dim>
11174 </port>
11175 </input>
11176 <output>
11177 <port id="2" names="bottleneck4_8/inner/dw1/conv" precision="FP32">
11178 <dim>1</dim>
11179 <dim>64</dim>
11180 <dim>20</dim>
11181 <dim>34</dim>
11182 </port>
11183 </output>
11184 </layer>
11185 <layer id="643" name="bottleneck4_8/inner/dw1/fn/weights3094039866" type="Const" version="opset1">
11186 <data element_type="f32" offset="4664" shape="1" size="4"/>
11187 <output>
11188 <port id="0" precision="FP32">
11189 <dim>1</dim>
11190 </port>
11191 </output>
11192 </layer>
11193 <layer id="644" name="bottleneck4_8/inner/dw1/fn" type="PReLU" version="opset1">
11194 <input>
11195 <port id="0" precision="FP32">
11196 <dim>1</dim>
11197 <dim>64</dim>
11198 <dim>20</dim>
11199 <dim>34</dim>
11200 </port>
11201 <port id="1" precision="FP32">
11202 <dim>1</dim>
11203 </port>
11204 </input>
11205 <output>
11206 <port id="2" names="bottleneck4_8/inner/dw1/conv" precision="FP32">
11207 <dim>1</dim>
11208 <dim>64</dim>
11209 <dim>20</dim>
11210 <dim>34</dim>
11211 </port>
11212 </output>
11213 </layer>
11214 <layer id="645" name="bottleneck4_8/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
11215 <data element_type="f32" offset="1756124" shape="256, 64, 1, 1" size="65536"/>
11216 <output>
11217 <port id="0" precision="FP32">
11218 <dim>256</dim>
11219 <dim>64</dim>
11220 <dim>1</dim>
11221 <dim>1</dim>
11222 </port>
11223 </output>
11224 </layer>
11225 <layer id="646" name="bottleneck4_8/dim_inc/conv" type="Convolution" version="opset1">
11226 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
11227 <input>
11228 <port id="0" precision="FP32">
11229 <dim>1</dim>
11230 <dim>64</dim>
11231 <dim>20</dim>
11232 <dim>34</dim>
11233 </port>
11234 <port id="1" precision="FP32">
11235 <dim>256</dim>
11236 <dim>64</dim>
11237 <dim>1</dim>
11238 <dim>1</dim>
11239 </port>
11240 </input>
11241 <output>
11242 <port id="2" precision="FP32">
11243 <dim>1</dim>
11244 <dim>256</dim>
11245 <dim>20</dim>
11246 <dim>34</dim>
11247 </port>
11248 </output>
11249 </layer>
11250 <layer id="647" name="data_add_2446524470" type="Const" version="opset1">
11251 <data element_type="f32" offset="1821660" shape="1, 256, 1, 1" size="1024"/>
11252 <output>
11253 <port id="0" precision="FP32">
11254 <dim>1</dim>
11255 <dim>256</dim>
11256 <dim>1</dim>
11257 <dim>1</dim>
11258 </port>
11259 </output>
11260 </layer>
11261 <layer id="648" name="bottleneck4_8/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
11262 <data auto_broadcast="numpy"/>
11263 <input>
11264 <port id="0" precision="FP32">
11265 <dim>1</dim>
11266 <dim>256</dim>
11267 <dim>20</dim>
11268 <dim>34</dim>
11269 </port>
11270 <port id="1" precision="FP32">
11271 <dim>1</dim>
11272 <dim>256</dim>
11273 <dim>1</dim>
11274 <dim>1</dim>
11275 </port>
11276 </input>
11277 <output>
11278 <port id="2" names="bottleneck4_8/dim_inc/conv" precision="FP32">
11279 <dim>1</dim>
11280 <dim>256</dim>
11281 <dim>20</dim>
11282 <dim>34</dim>
11283 </port>
11284 </output>
11285 </layer>
11286 <layer id="649" name="bottleneck4_8/add" type="Add" version="opset1">
11287 <data auto_broadcast="numpy"/>
11288 <input>
11289 <port id="0" precision="FP32">
11290 <dim>1</dim>
11291 <dim>256</dim>
11292 <dim>20</dim>
11293 <dim>34</dim>
11294 </port>
11295 <port id="1" precision="FP32">
11296 <dim>1</dim>
11297 <dim>256</dim>
11298 <dim>20</dim>
11299 <dim>34</dim>
11300 </port>
11301 </input>
11302 <output>
11303 <port id="2" names="bottleneck4_8/add" precision="FP32">
11304 <dim>1</dim>
11305 <dim>256</dim>
11306 <dim>20</dim>
11307 <dim>34</dim>
11308 </port>
11309 </output>
11310 </layer>
11311 <layer id="650" name="bottleneck4_8/fn/weights3089640028" type="Const" version="opset1">
11312 <data element_type="f32" offset="4664" shape="1" size="4"/>
11313 <output>
11314 <port id="0" precision="FP32">
11315 <dim>1</dim>
11316 </port>
11317 </output>
11318 </layer>
11319 <layer id="651" name="bottleneck4_8/fn" type="PReLU" version="opset1">
11320 <input>
11321 <port id="0" precision="FP32">
11322 <dim>1</dim>
11323 <dim>256</dim>
11324 <dim>20</dim>
11325 <dim>34</dim>
11326 </port>
11327 <port id="1" precision="FP32">
11328 <dim>1</dim>
11329 </port>
11330 </input>
11331 <output>
11332 <port id="2" names="bottleneck4_8/add" precision="FP32">
11333 <dim>1</dim>
11334 <dim>256</dim>
11335 <dim>20</dim>
11336 <dim>34</dim>
11337 </port>
11338 </output>
11339 </layer>
11340 <layer id="652" name="bottleneck4_9/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
11341 <data element_type="f32" offset="1822684" shape="64, 256, 1, 1" size="65536"/>
11342 <output>
11343 <port id="0" precision="FP32">
11344 <dim>64</dim>
11345 <dim>256</dim>
11346 <dim>1</dim>
11347 <dim>1</dim>
11348 </port>
11349 </output>
11350 </layer>
11351 <layer id="653" name="bottleneck4_9/dim_red/conv" type="Convolution" version="opset1">
11352 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
11353 <input>
11354 <port id="0" precision="FP32">
11355 <dim>1</dim>
11356 <dim>256</dim>
11357 <dim>20</dim>
11358 <dim>34</dim>
11359 </port>
11360 <port id="1" precision="FP32">
11361 <dim>64</dim>
11362 <dim>256</dim>
11363 <dim>1</dim>
11364 <dim>1</dim>
11365 </port>
11366 </input>
11367 <output>
11368 <port id="2" precision="FP32">
11369 <dim>1</dim>
11370 <dim>64</dim>
11371 <dim>20</dim>
11372 <dim>34</dim>
11373 </port>
11374 </output>
11375 </layer>
11376 <layer id="654" name="data_add_2447324478" type="Const" version="opset1">
11377 <data element_type="f32" offset="1888220" shape="1, 64, 1, 1" size="256"/>
11378 <output>
11379 <port id="0" precision="FP32">
11380 <dim>1</dim>
11381 <dim>64</dim>
11382 <dim>1</dim>
11383 <dim>1</dim>
11384 </port>
11385 </output>
11386 </layer>
11387 <layer id="655" name="bottleneck4_9/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
11388 <data auto_broadcast="numpy"/>
11389 <input>
11390 <port id="0" precision="FP32">
11391 <dim>1</dim>
11392 <dim>64</dim>
11393 <dim>20</dim>
11394 <dim>34</dim>
11395 </port>
11396 <port id="1" precision="FP32">
11397 <dim>1</dim>
11398 <dim>64</dim>
11399 <dim>1</dim>
11400 <dim>1</dim>
11401 </port>
11402 </input>
11403 <output>
11404 <port id="2" names="bottleneck4_9/dim_red/conv" precision="FP32">
11405 <dim>1</dim>
11406 <dim>64</dim>
11407 <dim>20</dim>
11408 <dim>34</dim>
11409 </port>
11410 </output>
11411 </layer>
11412 <layer id="656" name="bottleneck4_9/dim_red/fn/weights3105240346" type="Const" version="opset1">
11413 <data element_type="f32" offset="4664" shape="1" size="4"/>
11414 <output>
11415 <port id="0" precision="FP32">
11416 <dim>1</dim>
11417 </port>
11418 </output>
11419 </layer>
11420 <layer id="657" name="bottleneck4_9/dim_red/fn" type="PReLU" version="opset1">
11421 <input>
11422 <port id="0" precision="FP32">
11423 <dim>1</dim>
11424 <dim>64</dim>
11425 <dim>20</dim>
11426 <dim>34</dim>
11427 </port>
11428 <port id="1" precision="FP32">
11429 <dim>1</dim>
11430 </port>
11431 </input>
11432 <output>
11433 <port id="2" names="bottleneck4_9/dim_red/conv" precision="FP32">
11434 <dim>1</dim>
11435 <dim>64</dim>
11436 <dim>20</dim>
11437 <dim>34</dim>
11438 </port>
11439 </output>
11440 </layer>
11441 <layer id="658" name="bottleneck4_9/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
11442 <data element_type="f32" offset="1888476" shape="64, 1, 1, 3, 3" size="2304"/>
11443 <output>
11444 <port id="0" precision="FP32">
11445 <dim>64</dim>
11446 <dim>1</dim>
11447 <dim>1</dim>
11448 <dim>3</dim>
11449 <dim>3</dim>
11450 </port>
11451 </output>
11452 </layer>
11453 <layer id="659" name="bottleneck4_9/inner/dw1/conv" type="GroupConvolution" version="opset1">
11454 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
11455 <input>
11456 <port id="0" precision="FP32">
11457 <dim>1</dim>
11458 <dim>64</dim>
11459 <dim>20</dim>
11460 <dim>34</dim>
11461 </port>
11462 <port id="1" precision="FP32">
11463 <dim>64</dim>
11464 <dim>1</dim>
11465 <dim>1</dim>
11466 <dim>3</dim>
11467 <dim>3</dim>
11468 </port>
11469 </input>
11470 <output>
11471 <port id="2" precision="FP32">
11472 <dim>1</dim>
11473 <dim>64</dim>
11474 <dim>20</dim>
11475 <dim>34</dim>
11476 </port>
11477 </output>
11478 </layer>
11479 <layer id="660" name="data_add_2448124486" type="Const" version="opset1">
11480 <data element_type="f32" offset="1890780" shape="1, 64, 1, 1" size="256"/>
11481 <output>
11482 <port id="0" precision="FP32">
11483 <dim>1</dim>
11484 <dim>64</dim>
11485 <dim>1</dim>
11486 <dim>1</dim>
11487 </port>
11488 </output>
11489 </layer>
11490 <layer id="661" name="bottleneck4_9/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
11491 <data auto_broadcast="numpy"/>
11492 <input>
11493 <port id="0" precision="FP32">
11494 <dim>1</dim>
11495 <dim>64</dim>
11496 <dim>20</dim>
11497 <dim>34</dim>
11498 </port>
11499 <port id="1" precision="FP32">
11500 <dim>1</dim>
11501 <dim>64</dim>
11502 <dim>1</dim>
11503 <dim>1</dim>
11504 </port>
11505 </input>
11506 <output>
11507 <port id="2" names="bottleneck4_9/inner/dw1/conv" precision="FP32">
11508 <dim>1</dim>
11509 <dim>64</dim>
11510 <dim>20</dim>
11511 <dim>34</dim>
11512 </port>
11513 </output>
11514 </layer>
11515 <layer id="662" name="bottleneck4_9/inner/dw1/fn/weights3099240472" type="Const" version="opset1">
11516 <data element_type="f32" offset="4664" shape="1" size="4"/>
11517 <output>
11518 <port id="0" precision="FP32">
11519 <dim>1</dim>
11520 </port>
11521 </output>
11522 </layer>
11523 <layer id="663" name="bottleneck4_9/inner/dw1/fn" type="PReLU" version="opset1">
11524 <input>
11525 <port id="0" precision="FP32">
11526 <dim>1</dim>
11527 <dim>64</dim>
11528 <dim>20</dim>
11529 <dim>34</dim>
11530 </port>
11531 <port id="1" precision="FP32">
11532 <dim>1</dim>
11533 </port>
11534 </input>
11535 <output>
11536 <port id="2" names="bottleneck4_9/inner/dw1/conv" precision="FP32">
11537 <dim>1</dim>
11538 <dim>64</dim>
11539 <dim>20</dim>
11540 <dim>34</dim>
11541 </port>
11542 </output>
11543 </layer>
11544 <layer id="664" name="bottleneck4_9/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
11545 <data element_type="f32" offset="1891036" shape="256, 64, 1, 1" size="65536"/>
11546 <output>
11547 <port id="0" precision="FP32">
11548 <dim>256</dim>
11549 <dim>64</dim>
11550 <dim>1</dim>
11551 <dim>1</dim>
11552 </port>
11553 </output>
11554 </layer>
11555 <layer id="665" name="bottleneck4_9/dim_inc/conv" type="Convolution" version="opset1">
11556 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
11557 <input>
11558 <port id="0" precision="FP32">
11559 <dim>1</dim>
11560 <dim>64</dim>
11561 <dim>20</dim>
11562 <dim>34</dim>
11563 </port>
11564 <port id="1" precision="FP32">
11565 <dim>256</dim>
11566 <dim>64</dim>
11567 <dim>1</dim>
11568 <dim>1</dim>
11569 </port>
11570 </input>
11571 <output>
11572 <port id="2" precision="FP32">
11573 <dim>1</dim>
11574 <dim>256</dim>
11575 <dim>20</dim>
11576 <dim>34</dim>
11577 </port>
11578 </output>
11579 </layer>
11580 <layer id="666" name="data_add_2448924494" type="Const" version="opset1">
11581 <data element_type="f32" offset="1956572" shape="1, 256, 1, 1" size="1024"/>
11582 <output>
11583 <port id="0" precision="FP32">
11584 <dim>1</dim>
11585 <dim>256</dim>
11586 <dim>1</dim>
11587 <dim>1</dim>
11588 </port>
11589 </output>
11590 </layer>
11591 <layer id="667" name="bottleneck4_9/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
11592 <data auto_broadcast="numpy"/>
11593 <input>
11594 <port id="0" precision="FP32">
11595 <dim>1</dim>
11596 <dim>256</dim>
11597 <dim>20</dim>
11598 <dim>34</dim>
11599 </port>
11600 <port id="1" precision="FP32">
11601 <dim>1</dim>
11602 <dim>256</dim>
11603 <dim>1</dim>
11604 <dim>1</dim>
11605 </port>
11606 </input>
11607 <output>
11608 <port id="2" names="bottleneck4_9/dim_inc/conv" precision="FP32">
11609 <dim>1</dim>
11610 <dim>256</dim>
11611 <dim>20</dim>
11612 <dim>34</dim>
11613 </port>
11614 </output>
11615 </layer>
11616 <layer id="668" name="bottleneck4_9/add" type="Add" version="opset1">
11617 <data auto_broadcast="numpy"/>
11618 <input>
11619 <port id="0" precision="FP32">
11620 <dim>1</dim>
11621 <dim>256</dim>
11622 <dim>20</dim>
11623 <dim>34</dim>
11624 </port>
11625 <port id="1" precision="FP32">
11626 <dim>1</dim>
11627 <dim>256</dim>
11628 <dim>20</dim>
11629 <dim>34</dim>
11630 </port>
11631 </input>
11632 <output>
11633 <port id="2" names="bottleneck4_9/add" precision="FP32">
11634 <dim>1</dim>
11635 <dim>256</dim>
11636 <dim>20</dim>
11637 <dim>34</dim>
11638 </port>
11639 </output>
11640 </layer>
11641 <layer id="669" name="bottleneck4_9/fn/weights3092040463" type="Const" version="opset1">
11642 <data element_type="f32" offset="4664" shape="1" size="4"/>
11643 <output>
11644 <port id="0" precision="FP32">
11645 <dim>1</dim>
11646 </port>
11647 </output>
11648 </layer>
11649 <layer id="670" name="bottleneck4_9/fn" type="PReLU" version="opset1">
11650 <input>
11651 <port id="0" precision="FP32">
11652 <dim>1</dim>
11653 <dim>256</dim>
11654 <dim>20</dim>
11655 <dim>34</dim>
11656 </port>
11657 <port id="1" precision="FP32">
11658 <dim>1</dim>
11659 </port>
11660 </input>
11661 <output>
11662 <port id="2" names="bottleneck4_9/add" precision="FP32">
11663 <dim>1</dim>
11664 <dim>256</dim>
11665 <dim>20</dim>
11666 <dim>34</dim>
11667 </port>
11668 </output>
11669 </layer>
11670 <layer id="671" name="bottleneck4_10/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
11671 <data element_type="f32" offset="1957596" shape="64, 256, 1, 1" size="65536"/>
11672 <output>
11673 <port id="0" precision="FP32">
11674 <dim>64</dim>
11675 <dim>256</dim>
11676 <dim>1</dim>
11677 <dim>1</dim>
11678 </port>
11679 </output>
11680 </layer>
11681 <layer id="672" name="bottleneck4_10/dim_red/conv" type="Convolution" version="opset1">
11682 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
11683 <input>
11684 <port id="0" precision="FP32">
11685 <dim>1</dim>
11686 <dim>256</dim>
11687 <dim>20</dim>
11688 <dim>34</dim>
11689 </port>
11690 <port id="1" precision="FP32">
11691 <dim>64</dim>
11692 <dim>256</dim>
11693 <dim>1</dim>
11694 <dim>1</dim>
11695 </port>
11696 </input>
11697 <output>
11698 <port id="2" precision="FP32">
11699 <dim>1</dim>
11700 <dim>64</dim>
11701 <dim>20</dim>
11702 <dim>34</dim>
11703 </port>
11704 </output>
11705 </layer>
11706 <layer id="673" name="data_add_2449724502" type="Const" version="opset1">
11707 <data element_type="f32" offset="2023132" shape="1, 64, 1, 1" size="256"/>
11708 <output>
11709 <port id="0" precision="FP32">
11710 <dim>1</dim>
11711 <dim>64</dim>
11712 <dim>1</dim>
11713 <dim>1</dim>
11714 </port>
11715 </output>
11716 </layer>
11717 <layer id="674" name="bottleneck4_10/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
11718 <data auto_broadcast="numpy"/>
11719 <input>
11720 <port id="0" precision="FP32">
11721 <dim>1</dim>
11722 <dim>64</dim>
11723 <dim>20</dim>
11724 <dim>34</dim>
11725 </port>
11726 <port id="1" precision="FP32">
11727 <dim>1</dim>
11728 <dim>64</dim>
11729 <dim>1</dim>
11730 <dim>1</dim>
11731 </port>
11732 </input>
11733 <output>
11734 <port id="2" names="bottleneck4_10/dim_red/conv" precision="FP32">
11735 <dim>1</dim>
11736 <dim>64</dim>
11737 <dim>20</dim>
11738 <dim>34</dim>
11739 </port>
11740 </output>
11741 </layer>
11742 <layer id="675" name="bottleneck4_10/dim_red/fn/weights3086840214" type="Const" version="opset1">
11743 <data element_type="f32" offset="4664" shape="1" size="4"/>
11744 <output>
11745 <port id="0" precision="FP32">
11746 <dim>1</dim>
11747 </port>
11748 </output>
11749 </layer>
11750 <layer id="676" name="bottleneck4_10/dim_red/fn" type="PReLU" version="opset1">
11751 <input>
11752 <port id="0" precision="FP32">
11753 <dim>1</dim>
11754 <dim>64</dim>
11755 <dim>20</dim>
11756 <dim>34</dim>
11757 </port>
11758 <port id="1" precision="FP32">
11759 <dim>1</dim>
11760 </port>
11761 </input>
11762 <output>
11763 <port id="2" names="bottleneck4_10/dim_red/conv" precision="FP32">
11764 <dim>1</dim>
11765 <dim>64</dim>
11766 <dim>20</dim>
11767 <dim>34</dim>
11768 </port>
11769 </output>
11770 </layer>
11771 <layer id="677" name="bottleneck4_10/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
11772 <data element_type="f32" offset="2023388" shape="64, 1, 1, 3, 3" size="2304"/>
11773 <output>
11774 <port id="0" precision="FP32">
11775 <dim>64</dim>
11776 <dim>1</dim>
11777 <dim>1</dim>
11778 <dim>3</dim>
11779 <dim>3</dim>
11780 </port>
11781 </output>
11782 </layer>
11783 <layer id="678" name="bottleneck4_10/inner/dw1/conv" type="GroupConvolution" version="opset1">
11784 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
11785 <input>
11786 <port id="0" precision="FP32">
11787 <dim>1</dim>
11788 <dim>64</dim>
11789 <dim>20</dim>
11790 <dim>34</dim>
11791 </port>
11792 <port id="1" precision="FP32">
11793 <dim>64</dim>
11794 <dim>1</dim>
11795 <dim>1</dim>
11796 <dim>3</dim>
11797 <dim>3</dim>
11798 </port>
11799 </input>
11800 <output>
11801 <port id="2" precision="FP32">
11802 <dim>1</dim>
11803 <dim>64</dim>
11804 <dim>20</dim>
11805 <dim>34</dim>
11806 </port>
11807 </output>
11808 </layer>
11809 <layer id="679" name="data_add_2450524510" type="Const" version="opset1">
11810 <data element_type="f32" offset="2025692" shape="1, 64, 1, 1" size="256"/>
11811 <output>
11812 <port id="0" precision="FP32">
11813 <dim>1</dim>
11814 <dim>64</dim>
11815 <dim>1</dim>
11816 <dim>1</dim>
11817 </port>
11818 </output>
11819 </layer>
11820 <layer id="680" name="bottleneck4_10/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
11821 <data auto_broadcast="numpy"/>
11822 <input>
11823 <port id="0" precision="FP32">
11824 <dim>1</dim>
11825 <dim>64</dim>
11826 <dim>20</dim>
11827 <dim>34</dim>
11828 </port>
11829 <port id="1" precision="FP32">
11830 <dim>1</dim>
11831 <dim>64</dim>
11832 <dim>1</dim>
11833 <dim>1</dim>
11834 </port>
11835 </input>
11836 <output>
11837 <port id="2" names="bottleneck4_10/inner/dw1/conv" precision="FP32">
11838 <dim>1</dim>
11839 <dim>64</dim>
11840 <dim>20</dim>
11841 <dim>34</dim>
11842 </port>
11843 </output>
11844 </layer>
11845 <layer id="681" name="bottleneck4_10/inner/dw1/fn/weights3111240634" type="Const" version="opset1">
11846 <data element_type="f32" offset="4664" shape="1" size="4"/>
11847 <output>
11848 <port id="0" precision="FP32">
11849 <dim>1</dim>
11850 </port>
11851 </output>
11852 </layer>
11853 <layer id="682" name="bottleneck4_10/inner/dw1/fn" type="PReLU" version="opset1">
11854 <input>
11855 <port id="0" precision="FP32">
11856 <dim>1</dim>
11857 <dim>64</dim>
11858 <dim>20</dim>
11859 <dim>34</dim>
11860 </port>
11861 <port id="1" precision="FP32">
11862 <dim>1</dim>
11863 </port>
11864 </input>
11865 <output>
11866 <port id="2" names="bottleneck4_10/inner/dw1/conv" precision="FP32">
11867 <dim>1</dim>
11868 <dim>64</dim>
11869 <dim>20</dim>
11870 <dim>34</dim>
11871 </port>
11872 </output>
11873 </layer>
11874 <layer id="683" name="bottleneck4_10/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
11875 <data element_type="f32" offset="2025948" shape="256, 64, 1, 1" size="65536"/>
11876 <output>
11877 <port id="0" precision="FP32">
11878 <dim>256</dim>
11879 <dim>64</dim>
11880 <dim>1</dim>
11881 <dim>1</dim>
11882 </port>
11883 </output>
11884 </layer>
11885 <layer id="684" name="bottleneck4_10/dim_inc/conv" type="Convolution" version="opset1">
11886 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
11887 <input>
11888 <port id="0" precision="FP32">
11889 <dim>1</dim>
11890 <dim>64</dim>
11891 <dim>20</dim>
11892 <dim>34</dim>
11893 </port>
11894 <port id="1" precision="FP32">
11895 <dim>256</dim>
11896 <dim>64</dim>
11897 <dim>1</dim>
11898 <dim>1</dim>
11899 </port>
11900 </input>
11901 <output>
11902 <port id="2" precision="FP32">
11903 <dim>1</dim>
11904 <dim>256</dim>
11905 <dim>20</dim>
11906 <dim>34</dim>
11907 </port>
11908 </output>
11909 </layer>
11910 <layer id="685" name="data_add_2451324518" type="Const" version="opset1">
11911 <data element_type="f32" offset="2091484" shape="1, 256, 1, 1" size="1024"/>
11912 <output>
11913 <port id="0" precision="FP32">
11914 <dim>1</dim>
11915 <dim>256</dim>
11916 <dim>1</dim>
11917 <dim>1</dim>
11918 </port>
11919 </output>
11920 </layer>
11921 <layer id="686" name="bottleneck4_10/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
11922 <data auto_broadcast="numpy"/>
11923 <input>
11924 <port id="0" precision="FP32">
11925 <dim>1</dim>
11926 <dim>256</dim>
11927 <dim>20</dim>
11928 <dim>34</dim>
11929 </port>
11930 <port id="1" precision="FP32">
11931 <dim>1</dim>
11932 <dim>256</dim>
11933 <dim>1</dim>
11934 <dim>1</dim>
11935 </port>
11936 </input>
11937 <output>
11938 <port id="2" names="bottleneck4_10/dim_inc/conv" precision="FP32">
11939 <dim>1</dim>
11940 <dim>256</dim>
11941 <dim>20</dim>
11942 <dim>34</dim>
11943 </port>
11944 </output>
11945 </layer>
11946 <layer id="687" name="bottleneck4_10/add" type="Add" version="opset1">
11947 <data auto_broadcast="numpy"/>
11948 <input>
11949 <port id="0" precision="FP32">
11950 <dim>1</dim>
11951 <dim>256</dim>
11952 <dim>20</dim>
11953 <dim>34</dim>
11954 </port>
11955 <port id="1" precision="FP32">
11956 <dim>1</dim>
11957 <dim>256</dim>
11958 <dim>20</dim>
11959 <dim>34</dim>
11960 </port>
11961 </input>
11962 <output>
11963 <port id="2" names="bottleneck4_10/add" precision="FP32">
11964 <dim>1</dim>
11965 <dim>256</dim>
11966 <dim>20</dim>
11967 <dim>34</dim>
11968 </port>
11969 </output>
11970 </layer>
11971 <layer id="688" name="bottleneck4_10/fn/weights3089240424" type="Const" version="opset1">
11972 <data element_type="f32" offset="4664" shape="1" size="4"/>
11973 <output>
11974 <port id="0" precision="FP32">
11975 <dim>1</dim>
11976 </port>
11977 </output>
11978 </layer>
11979 <layer id="689" name="bottleneck4_10/fn" type="PReLU" version="opset1">
11980 <input>
11981 <port id="0" precision="FP32">
11982 <dim>1</dim>
11983 <dim>256</dim>
11984 <dim>20</dim>
11985 <dim>34</dim>
11986 </port>
11987 <port id="1" precision="FP32">
11988 <dim>1</dim>
11989 </port>
11990 </input>
11991 <output>
11992 <port id="2" names="bottleneck4_10/add" precision="FP32">
11993 <dim>1</dim>
11994 <dim>256</dim>
11995 <dim>20</dim>
11996 <dim>34</dim>
11997 </port>
11998 </output>
11999 </layer>
12000 <layer id="690" name="bottleneck4_11/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
12001 <data element_type="f32" offset="2092508" shape="64, 256, 1, 1" size="65536"/>
12002 <output>
12003 <port id="0" precision="FP32">
12004 <dim>64</dim>
12005 <dim>256</dim>
12006 <dim>1</dim>
12007 <dim>1</dim>
12008 </port>
12009 </output>
12010 </layer>
12011 <layer id="691" name="bottleneck4_11/dim_red/conv" type="Convolution" version="opset1">
12012 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
12013 <input>
12014 <port id="0" precision="FP32">
12015 <dim>1</dim>
12016 <dim>256</dim>
12017 <dim>20</dim>
12018 <dim>34</dim>
12019 </port>
12020 <port id="1" precision="FP32">
12021 <dim>64</dim>
12022 <dim>256</dim>
12023 <dim>1</dim>
12024 <dim>1</dim>
12025 </port>
12026 </input>
12027 <output>
12028 <port id="2" precision="FP32">
12029 <dim>1</dim>
12030 <dim>64</dim>
12031 <dim>20</dim>
12032 <dim>34</dim>
12033 </port>
12034 </output>
12035 </layer>
12036 <layer id="692" name="data_add_2452124526" type="Const" version="opset1">
12037 <data element_type="f32" offset="2158044" shape="1, 64, 1, 1" size="256"/>
12038 <output>
12039 <port id="0" precision="FP32">
12040 <dim>1</dim>
12041 <dim>64</dim>
12042 <dim>1</dim>
12043 <dim>1</dim>
12044 </port>
12045 </output>
12046 </layer>
12047 <layer id="693" name="bottleneck4_11/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
12048 <data auto_broadcast="numpy"/>
12049 <input>
12050 <port id="0" precision="FP32">
12051 <dim>1</dim>
12052 <dim>64</dim>
12053 <dim>20</dim>
12054 <dim>34</dim>
12055 </port>
12056 <port id="1" precision="FP32">
12057 <dim>1</dim>
12058 <dim>64</dim>
12059 <dim>1</dim>
12060 <dim>1</dim>
12061 </port>
12062 </input>
12063 <output>
12064 <port id="2" names="bottleneck4_11/dim_red/conv" precision="FP32">
12065 <dim>1</dim>
12066 <dim>64</dim>
12067 <dim>20</dim>
12068 <dim>34</dim>
12069 </port>
12070 </output>
12071 </layer>
12072 <layer id="694" name="bottleneck4_11/dim_red/fn/weights3104040334" type="Const" version="opset1">
12073 <data element_type="f32" offset="4664" shape="1" size="4"/>
12074 <output>
12075 <port id="0" precision="FP32">
12076 <dim>1</dim>
12077 </port>
12078 </output>
12079 </layer>
12080 <layer id="695" name="bottleneck4_11/dim_red/fn" type="PReLU" version="opset1">
12081 <input>
12082 <port id="0" precision="FP32">
12083 <dim>1</dim>
12084 <dim>64</dim>
12085 <dim>20</dim>
12086 <dim>34</dim>
12087 </port>
12088 <port id="1" precision="FP32">
12089 <dim>1</dim>
12090 </port>
12091 </input>
12092 <output>
12093 <port id="2" names="bottleneck4_11/dim_red/conv" precision="FP32">
12094 <dim>1</dim>
12095 <dim>64</dim>
12096 <dim>20</dim>
12097 <dim>34</dim>
12098 </port>
12099 </output>
12100 </layer>
12101 <layer id="696" name="bottleneck4_11/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
12102 <data element_type="f32" offset="2158300" shape="64, 1, 1, 3, 3" size="2304"/>
12103 <output>
12104 <port id="0" precision="FP32">
12105 <dim>64</dim>
12106 <dim>1</dim>
12107 <dim>1</dim>
12108 <dim>3</dim>
12109 <dim>3</dim>
12110 </port>
12111 </output>
12112 </layer>
12113 <layer id="697" name="bottleneck4_11/inner/dw1/conv" type="GroupConvolution" version="opset1">
12114 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
12115 <input>
12116 <port id="0" precision="FP32">
12117 <dim>1</dim>
12118 <dim>64</dim>
12119 <dim>20</dim>
12120 <dim>34</dim>
12121 </port>
12122 <port id="1" precision="FP32">
12123 <dim>64</dim>
12124 <dim>1</dim>
12125 <dim>1</dim>
12126 <dim>3</dim>
12127 <dim>3</dim>
12128 </port>
12129 </input>
12130 <output>
12131 <port id="2" precision="FP32">
12132 <dim>1</dim>
12133 <dim>64</dim>
12134 <dim>20</dim>
12135 <dim>34</dim>
12136 </port>
12137 </output>
12138 </layer>
12139 <layer id="698" name="data_add_2452924534" type="Const" version="opset1">
12140 <data element_type="f32" offset="2160604" shape="1, 64, 1, 1" size="256"/>
12141 <output>
12142 <port id="0" precision="FP32">
12143 <dim>1</dim>
12144 <dim>64</dim>
12145 <dim>1</dim>
12146 <dim>1</dim>
12147 </port>
12148 </output>
12149 </layer>
12150 <layer id="699" name="bottleneck4_11/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
12151 <data auto_broadcast="numpy"/>
12152 <input>
12153 <port id="0" precision="FP32">
12154 <dim>1</dim>
12155 <dim>64</dim>
12156 <dim>20</dim>
12157 <dim>34</dim>
12158 </port>
12159 <port id="1" precision="FP32">
12160 <dim>1</dim>
12161 <dim>64</dim>
12162 <dim>1</dim>
12163 <dim>1</dim>
12164 </port>
12165 </input>
12166 <output>
12167 <port id="2" names="bottleneck4_11/inner/dw1/conv" precision="FP32">
12168 <dim>1</dim>
12169 <dim>64</dim>
12170 <dim>20</dim>
12171 <dim>34</dim>
12172 </port>
12173 </output>
12174 </layer>
12175 <layer id="700" name="bottleneck4_11/inner/dw1/fn/weights3114040292" type="Const" version="opset1">
12176 <data element_type="f32" offset="4664" shape="1" size="4"/>
12177 <output>
12178 <port id="0" precision="FP32">
12179 <dim>1</dim>
12180 </port>
12181 </output>
12182 </layer>
12183 <layer id="701" name="bottleneck4_11/inner/dw1/fn" type="PReLU" version="opset1">
12184 <input>
12185 <port id="0" precision="FP32">
12186 <dim>1</dim>
12187 <dim>64</dim>
12188 <dim>20</dim>
12189 <dim>34</dim>
12190 </port>
12191 <port id="1" precision="FP32">
12192 <dim>1</dim>
12193 </port>
12194 </input>
12195 <output>
12196 <port id="2" names="bottleneck4_11/inner/dw1/conv" precision="FP32">
12197 <dim>1</dim>
12198 <dim>64</dim>
12199 <dim>20</dim>
12200 <dim>34</dim>
12201 </port>
12202 </output>
12203 </layer>
12204 <layer id="702" name="bottleneck4_11/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
12205 <data element_type="f32" offset="2160860" shape="256, 64, 1, 1" size="65536"/>
12206 <output>
12207 <port id="0" precision="FP32">
12208 <dim>256</dim>
12209 <dim>64</dim>
12210 <dim>1</dim>
12211 <dim>1</dim>
12212 </port>
12213 </output>
12214 </layer>
12215 <layer id="703" name="bottleneck4_11/dim_inc/conv" type="Convolution" version="opset1">
12216 <data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
12217 <input>
12218 <port id="0" precision="FP32">
12219 <dim>1</dim>
12220 <dim>64</dim>
12221 <dim>20</dim>
12222 <dim>34</dim>
12223 </port>
12224 <port id="1" precision="FP32">
12225 <dim>256</dim>
12226 <dim>64</dim>
12227 <dim>1</dim>
12228 <dim>1</dim>
12229 </port>
12230 </input>
12231 <output>
12232 <port id="2" precision="FP32">
12233 <dim>1</dim>
12234 <dim>256</dim>
12235 <dim>20</dim>
12236 <dim>34</dim>
12237 </port>
12238 </output>
12239 </layer>
12240 <layer id="704" name="data_add_2453724542" type="Const" version="opset1">
12241 <data element_type="f32" offset="2226396" shape="1, 256, 1, 1" size="1024"/>
12242 <output>
12243 <port id="0" precision="FP32">
12244 <dim>1</dim>
12245 <dim>256</dim>
12246 <dim>1</dim>
12247 <dim>1</dim>
12248 </port>
12249 </output>
12250 </layer>
12251 <layer id="705" name="bottleneck4_11/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
12252 <data auto_broadcast="numpy"/>
12253 <input>
12254 <port id="0" precision="FP32">
12255 <dim>1</dim>
12256 <dim>256</dim>
12257 <dim>20</dim>
12258 <dim>34</dim>
12259 </port>
12260 <port id="1" precision="FP32">
12261 <dim>1</dim>
12262 <dim>256</dim>
12263 <dim>1</dim>
12264 <dim>1</dim>
12265 </port>
12266 </input>
12267 <output>
12268 <port id="2" names="bottleneck4_11/dim_inc/conv" precision="FP32">
12269 <dim>1</dim>
12270 <dim>256</dim>
12271 <dim>20</dim>
12272 <dim>34</dim>
12273 </port>
12274 </output>
12275 </layer>
12276 <layer id="706" name="bottleneck4_11/add" type="Add" version="opset1">
12277 <data auto_broadcast="numpy"/>
12278 <input>
12279 <port id="0" precision="FP32">
12280 <dim>1</dim>
12281 <dim>256</dim>
12282 <dim>20</dim>
12283 <dim>34</dim>
12284 </port>
12285 <port id="1" precision="FP32">
12286 <dim>1</dim>
12287 <dim>256</dim>
12288 <dim>20</dim>
12289 <dim>34</dim>
12290 </port>
12291 </input>
12292 <output>
12293 <port id="2" names="bottleneck4_11/add" precision="FP32">
12294 <dim>1</dim>
12295 <dim>256</dim>
12296 <dim>20</dim>
12297 <dim>34</dim>
12298 </port>
12299 </output>
12300 </layer>
12301 <layer id="707" name="bottleneck4_11/fn/weights3094440475" type="Const" version="opset1">
12302 <data element_type="f32" offset="4664" shape="1" size="4"/>
12303 <output>
12304 <port id="0" precision="FP32">
12305 <dim>1</dim>
12306 </port>
12307 </output>
12308 </layer>
12309 <layer id="708" name="bottleneck4_11/fn" type="PReLU" version="opset1">
12310 <input>
12311 <port id="0" precision="FP32">
12312 <dim>1</dim>
12313 <dim>256</dim>
12314 <dim>20</dim>
12315 <dim>34</dim>
12316 </port>
12317 <port id="1" precision="FP32">
12318 <dim>1</dim>
12319 </port>
12320 </input>
12321 <output>
12322 <port id="2" names="bb_16xout_pd" precision="FP32">
12323 <dim>1</dim>
12324 <dim>256</dim>
12325 <dim>20</dim>
12326 <dim>34</dim>
12327 </port>
12328 </output>
12329 </layer>
12330 <layer id="709" name="1046" type="Const" version="opset1">
12331 <data element_type="f32" offset="2227420" shape="48, 256, 3, 3" size="442368"/>
12332 <output>
12333 <port id="0" precision="FP32">
12334 <dim>48</dim>
12335 <dim>256</dim>
12336 <dim>3</dim>
12337 <dim>3</dim>
12338 </port>
12339 </output>
12340 </layer>
12341 <layer id="710" name="mbox_loc1/out/conv/WithoutBiases" type="Convolution" version="opset1">
12342 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
12343 <input>
12344 <port id="0" precision="FP32">
12345 <dim>1</dim>
12346 <dim>256</dim>
12347 <dim>20</dim>
12348 <dim>34</dim>
12349 </port>
12350 <port id="1" precision="FP32">
12351 <dim>48</dim>
12352 <dim>256</dim>
12353 <dim>3</dim>
12354 <dim>3</dim>
12355 </port>
12356 </input>
12357 <output>
12358 <port id="2" precision="FP32">
12359 <dim>1</dim>
12360 <dim>48</dim>
12361 <dim>20</dim>
12362 <dim>34</dim>
12363 </port>
12364 </output>
12365 </layer>
12366 <layer id="711" name="mbox_loc1/out/conv/Dims13831" type="Const" version="opset1">
12367 <data element_type="f32" offset="2669788" shape="1, 48, 1, 1" size="192"/>
12368 <output>
12369 <port id="0" precision="FP32">
12370 <dim>1</dim>
12371 <dim>48</dim>
12372 <dim>1</dim>
12373 <dim>1</dim>
12374 </port>
12375 </output>
12376 </layer>
12377 <layer id="712" name="mbox_loc1/out/conv" type="Add" version="opset1">
12378 <data auto_broadcast="numpy"/>
12379 <input>
12380 <port id="0" precision="FP32">
12381 <dim>1</dim>
12382 <dim>48</dim>
12383 <dim>20</dim>
12384 <dim>34</dim>
12385 </port>
12386 <port id="1" precision="FP32">
12387 <dim>1</dim>
12388 <dim>48</dim>
12389 <dim>1</dim>
12390 <dim>1</dim>
12391 </port>
12392 </input>
12393 <output>
12394 <port id="2" names="mbox_loc1/out/conv" precision="FP32">
12395 <dim>1</dim>
12396 <dim>48</dim>
12397 <dim>20</dim>
12398 <dim>34</dim>
12399 </port>
12400 </output>
12401 </layer>
12402 <layer id="713" name="1296" type="Const" version="opset1">
12403 <data element_type="i64" offset="2669980" shape="4" size="32"/>
12404 <output>
12405 <port id="0" precision="I64">
12406 <dim>4</dim>
12407 </port>
12408 </output>
12409 </layer>
12410 <layer id="714" name="mbox_loc1/out/conv/perm" type="Transpose" version="opset1">
12411 <input>
12412 <port id="0" precision="FP32">
12413 <dim>1</dim>
12414 <dim>48</dim>
12415 <dim>20</dim>
12416 <dim>34</dim>
12417 </port>
12418 <port id="1" precision="I64">
12419 <dim>4</dim>
12420 </port>
12421 </input>
12422 <output>
12423 <port id="2" names="mbox_loc1/out/conv/perm" precision="FP32">
12424 <dim>1</dim>
12425 <dim>20</dim>
12426 <dim>34</dim>
12427 <dim>48</dim>
12428 </port>
12429 </output>
12430 </layer>
12431 <layer id="715" name="1308/shapes_concat" type="Const" version="opset1">
12432 <data element_type="i64" offset="2670012" shape="2" size="16"/>
12433 <output>
12434 <port id="0" precision="I64">
12435 <dim>2</dim>
12436 </port>
12437 </output>
12438 </layer>
12439 <layer id="716" name="mbox_loc1/out/conv/flat" type="Reshape" version="opset1">
12440 <data special_zero="true"/>
12441 <input>
12442 <port id="0" precision="FP32">
12443 <dim>1</dim>
12444 <dim>20</dim>
12445 <dim>34</dim>
12446 <dim>48</dim>
12447 </port>
12448 <port id="1" precision="I64">
12449 <dim>2</dim>
12450 </port>
12451 </input>
12452 <output>
12453 <port id="2" names="mbox_loc1/out/conv/flat" precision="FP32">
12454 <dim>1</dim>
12455 <dim>32640</dim>
12456 </port>
12457 </output>
12458 </layer>
12459 <layer id="717" name="1004" type="Const" version="opset1">
12460 <data element_type="f32" offset="2670028" shape="24, 256, 3, 3" size="221184"/>
12461 <output>
12462 <port id="0" precision="FP32">
12463 <dim>24</dim>
12464 <dim>256</dim>
12465 <dim>3</dim>
12466 <dim>3</dim>
12467 </port>
12468 </output>
12469 </layer>
12470 <layer id="718" name="mbox_conf1/out/conv/WithoutBiases" type="Convolution" version="opset1">
12471 <data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
12472 <input>
12473 <port id="0" precision="FP32">
12474 <dim>1</dim>
12475 <dim>256</dim>
12476 <dim>20</dim>
12477 <dim>34</dim>
12478 </port>
12479 <port id="1" precision="FP32">
12480 <dim>24</dim>
12481 <dim>256</dim>
12482 <dim>3</dim>
12483 <dim>3</dim>
12484 </port>
12485 </input>
12486 <output>
12487 <port id="2" precision="FP32">
12488 <dim>1</dim>
12489 <dim>24</dim>
12490 <dim>20</dim>
12491 <dim>34</dim>
12492 </port>
12493 </output>
12494 </layer>
12495 <layer id="719" name="mbox_conf1/out/conv/Dims13825" type="Const" version="opset1">
12496 <data element_type="f32" offset="2891212" shape="1, 24, 1, 1" size="96"/>
12497 <output>
12498 <port id="0" precision="FP32">
12499 <dim>1</dim>
12500 <dim>24</dim>
12501 <dim>1</dim>
12502 <dim>1</dim>
12503 </port>
12504 </output>
12505 </layer>
12506 <layer id="720" name="mbox_conf1/out/conv" type="Add" version="opset1">
12507 <data auto_broadcast="numpy"/>
12508 <input>
12509 <port id="0" precision="FP32">
12510 <dim>1</dim>
12511 <dim>24</dim>
12512 <dim>20</dim>
12513 <dim>34</dim>
12514 </port>
12515 <port id="1" precision="FP32">
12516 <dim>1</dim>
12517 <dim>24</dim>
12518 <dim>1</dim>
12519 <dim>1</dim>
12520 </port>
12521 </input>
12522 <output>
12523 <port id="2" names="mbox_conf1/out/conv" precision="FP32">
12524 <dim>1</dim>
12525 <dim>24</dim>
12526 <dim>20</dim>
12527 <dim>34</dim>
12528 </port>
12529 </output>
12530 </layer>
12531 <layer id="721" name="1297" type="Const" version="opset1">
12532 <data element_type="i64" offset="2669980" shape="4" size="32"/>
12533 <output>
12534 <port id="0" precision="I64">
12535 <dim>4</dim>
12536 </port>
12537 </output>
12538 </layer>
12539 <layer id="722" name="mbox_conf1/out/conv/perm" type="Transpose" version="opset1">
12540 <input>
12541 <port id="0" precision="FP32">
12542 <dim>1</dim>
12543 <dim>24</dim>
12544 <dim>20</dim>
12545 <dim>34</dim>
12546 </port>
12547 <port id="1" precision="I64">
12548 <dim>4</dim>
12549 </port>
12550 </input>
12551 <output>
12552 <port id="2" names="mbox_conf1/out/conv/perm" precision="FP32">
12553 <dim>1</dim>
12554 <dim>20</dim>
12555 <dim>34</dim>
12556 <dim>24</dim>
12557 </port>
12558 </output>
12559 </layer>
12560 <layer id="723" name="1303/shapes_concat" type="Const" version="opset1">
12561 <data element_type="i64" offset="2670012" shape="2" size="16"/>
12562 <output>
12563 <port id="0" precision="I64">
12564 <dim>2</dim>
12565 </port>
12566 </output>
12567 </layer>
12568 <layer id="724" name="mbox_conf1/out/conv/flat" type="Reshape" version="opset1">
12569 <data special_zero="true"/>
12570 <input>
12571 <port id="0" precision="FP32">
12572 <dim>1</dim>
12573 <dim>20</dim>
12574 <dim>34</dim>
12575 <dim>24</dim>
12576 </port>
12577 <port id="1" precision="I64">
12578 <dim>2</dim>
12579 </port>
12580 </input>
12581 <output>
12582 <port id="2" names="mbox_conf1/out/conv/flat" precision="FP32">
12583 <dim>1</dim>
12584 <dim>16320</dim>
12585 </port>
12586 </output>
12587 </layer>
12588 <layer id="725" name="1295" type="Const" version="opset1">
12589 <data element_type="i64" offset="2891308" shape="3" size="24"/>
12590 <output>
12591 <port id="0" precision="I64">
12592 <dim>3</dim>
12593 </port>
12594 </output>
12595 </layer>
12596 <layer id="726" name="mbox_conf1/out/conv/flat/reshape" type="Reshape" version="opset1">
12597 <data special_zero="true"/>
12598 <input>
12599 <port id="0" precision="FP32">
12600 <dim>1</dim>
12601 <dim>16320</dim>
12602 </port>
12603 <port id="1" precision="I64">
12604 <dim>3</dim>
12605 </port>
12606 </input>
12607 <output>
12608 <port id="2" names="mbox_conf1/out/conv/flat/reshape" precision="FP32">
12609 <dim>1</dim>
12610 <dim>8160</dim>
12611 <dim>2</dim>
12612 </port>
12613 </output>
12614 </layer>
12615 <layer id="727" name="mbox_conf1/out/conv/flat/softmax" type="SoftMax" version="opset1">
12616 <data axis="2"/>
12617 <input>
12618 <port id="0" precision="FP32">
12619 <dim>1</dim>
12620 <dim>8160</dim>
12621 <dim>2</dim>
12622 </port>
12623 </input>
12624 <output>
12625 <port id="1" names="mbox_conf1/out/conv/flat/softmax" precision="FP32">
12626 <dim>1</dim>
12627 <dim>8160</dim>
12628 <dim>2</dim>
12629 </port>
12630 </output>
12631 </layer>
12632 <layer id="728" name="1298/shapes_concat" type="Const" version="opset1">
12633 <data element_type="i64" offset="2670012" shape="2" size="16"/>
12634 <output>
12635 <port id="0" precision="I64">
12636 <dim>2</dim>
12637 </port>
12638 </output>
12639 </layer>
12640 <layer id="729" name="mbox_conf1/out/conv/flat/softmax/flat" type="Reshape" version="opset1">
12641 <data special_zero="true"/>
12642 <input>
12643 <port id="0" precision="FP32">
12644 <dim>1</dim>
12645 <dim>8160</dim>
12646 <dim>2</dim>
12647 </port>
12648 <port id="1" precision="I64">
12649 <dim>2</dim>
12650 </port>
12651 </input>
12652 <output>
12653 <port id="2" names="mbox_conf1/out/conv/flat/softmax/flat" precision="FP32">
12654 <dim>1</dim>
12655 <dim>16320</dim>
12656 </port>
12657 </output>
12658 </layer>
12659 <layer id="730" name="mbox1/priorbox/0_port" type="ShapeOf" version="opset3">
12660 <data output_type="i64"/>
12661 <input>
12662 <port id="0" precision="FP32">
12663 <dim>1</dim>
12664 <dim>256</dim>
12665 <dim>20</dim>
12666 <dim>34</dim>
12667 </port>
12668 </input>
12669 <output>
12670 <port id="1" precision="I64">
12671 <dim>4</dim>
12672 </port>
12673 </output>
12674 </layer>
12675 <layer id="731" name="mbox1/priorbox/ss_begin2978640640" type="Const" version="opset1">
12676 <data element_type="i64" offset="2891332" shape="1" size="8"/>
12677 <output>
12678 <port id="0" precision="I64">
12679 <dim>1</dim>
12680 </port>
12681 </output>
12682 </layer>
12683 <layer id="732" name="mbox1/priorbox/ss_end2978740277" type="Const" version="opset1">
12684 <data element_type="i64" offset="2891340" shape="1" size="8"/>
12685 <output>
12686 <port id="0" precision="I64">
12687 <dim>1</dim>
12688 </port>
12689 </output>
12690 </layer>
12691 <layer id="733" name="mbox1/priorbox/ss_stride2978839821" type="Const" version="opset1">
12692 <data element_type="i64" offset="2891348" shape="1" size="8"/>
12693 <output>
12694 <port id="0" precision="I64">
12695 <dim>1</dim>
12696 </port>
12697 </output>
12698 </layer>
12699 <layer id="734" name="mbox1/priorbox/ss_0_port" type="StridedSlice" version="opset1">
12700 <data begin_mask="0" ellipsis_mask="0" end_mask="1" new_axis_mask="0" shrink_axis_mask="0"/>
12701 <input>
12702 <port id="0" precision="I64">
12703 <dim>4</dim>
12704 </port>
12705 <port id="1" precision="I64">
12706 <dim>1</dim>
12707 </port>
12708 <port id="2" precision="I64">
12709 <dim>1</dim>
12710 </port>
12711 <port id="3" precision="I64">
12712 <dim>1</dim>
12713 </port>
12714 </input>
12715 <output>
12716 <port id="4" precision="I64">
12717 <dim>2</dim>
12718 </port>
12719 </output>
12720 </layer>
12721 <layer id="735" name="mbox1/priorbox/1_port" type="ShapeOf" version="opset3">
12722 <data output_type="i64"/>
12723 <input>
12724 <port id="0" precision="FP32">
12725 <dim>1</dim>
12726 <dim>3</dim>
12727 <dim>320</dim>
12728 <dim>544</dim>
12729 </port>
12730 </input>
12731 <output>
12732 <port id="1" precision="I64">
12733 <dim>4</dim>
12734 </port>
12735 </output>
12736 </layer>
12737 <layer id="736" name="mbox1/priorbox/ss_begin2978639851" type="Const" version="opset1">
12738 <data element_type="i64" offset="2891332" shape="1" size="8"/>
12739 <output>
12740 <port id="0" precision="I64">
12741 <dim>1</dim>
12742 </port>
12743 </output>
12744 </layer>
12745 <layer id="737" name="mbox1/priorbox/ss_end2978739902" type="Const" version="opset1">
12746 <data element_type="i64" offset="2891340" shape="1" size="8"/>
12747 <output>
12748 <port id="0" precision="I64">
12749 <dim>1</dim>
12750 </port>
12751 </output>
12752 </layer>
12753 <layer id="738" name="mbox1/priorbox/ss_stride2978839968" type="Const" version="opset1">
12754 <data element_type="i64" offset="2891348" shape="1" size="8"/>
12755 <output>
12756 <port id="0" precision="I64">
12757 <dim>1</dim>
12758 </port>
12759 </output>
12760 </layer>
12761 <layer id="739" name="mbox1/priorbox/ss_1_port" type="StridedSlice" version="opset1">
12762 <data begin_mask="0" ellipsis_mask="0" end_mask="1" new_axis_mask="0" shrink_axis_mask="0"/>
12763 <input>
12764 <port id="0" precision="I64">
12765 <dim>4</dim>
12766 </port>
12767 <port id="1" precision="I64">
12768 <dim>1</dim>
12769 </port>
12770 <port id="2" precision="I64">
12771 <dim>1</dim>
12772 </port>
12773 <port id="3" precision="I64">
12774 <dim>1</dim>
12775 </port>
12776 </input>
12777 <output>
12778 <port id="4" precision="I64">
12779 <dim>2</dim>
12780 </port>
12781 </output>
12782 </layer>
12783 <layer id="740" name="mbox1/priorbox/naked_not_unsqueezed" type="PriorBoxClustered" version="opset1">
12784 <data clip="false" height="34.07, 47.11, 54.22, 65.78, 75.56, 80.89, 89.78, 99.26, 115.56, 163.26, 194.07, 197.33" offset="0.5" step="0" step_h="16" step_w="16" variance="0.1, 0.1, 0.2, 0.2" width="11.33, 17, 20.68, 23.52, 28.05, 37.4, 30.03, 35.7, 44.2, 55.25, 78.12, 135.15"/>
12785 <input>
12786 <port id="0" precision="I64">
12787 <dim>2</dim>
12788 </port>
12789 <port id="1" precision="I64">
12790 <dim>2</dim>
12791 </port>
12792 </input>
12793 <output>
12794 <port id="2" precision="FP32">
12795 <dim>2</dim>
12796 <dim>32640</dim>
12797 </port>
12798 </output>
12799 </layer>
12800 <layer id="741" name="mbox1/priorbox/unsqueeze/value2979640376" type="Const" version="opset1">
12801 <data element_type="i64" offset="2891356" shape="1" size="8"/>
12802 <output>
12803 <port id="0" precision="I64">
12804 <dim>1</dim>
12805 </port>
12806 </output>
12807 </layer>
12808 <layer id="742" name="mbox1/priorbox" type="Unsqueeze" version="opset1">
12809 <input>
12810 <port id="0" precision="FP32">
12811 <dim>2</dim>
12812 <dim>32640</dim>
12813 </port>
12814 <port id="1" precision="I64">
12815 <dim>1</dim>
12816 </port>
12817 </input>
12818 <output>
12819 <port id="2" names="mbox1/priorbox" precision="FP32">
12820 <dim>1</dim>
12821 <dim>2</dim>
12822 <dim>32640</dim>
12823 </port>
12824 </output>
12825 </layer>
12826 <layer id="743" name="detection_out" type="DetectionOutput" version="opset1">
12827 <data background_label_id="0" clip_after_nms="false" clip_before_nms="false" code_type="caffe.PriorBoxParameter.CENTER_SIZE" confidence_threshold="0.0099999997764825821" decrease_label_id="false" input_height="1" input_width="1" keep_top_k="200" nms_threshold="0.44999998807907104" normalized="true" num_classes="2" objectness_score="0" share_location="true" top_k="400" variance_encoded_in_target="false"/>
12828 <input>
12829 <port id="0" precision="FP32">
12830 <dim>1</dim>
12831 <dim>32640</dim>
12832 </port>
12833 <port id="1" precision="FP32">
12834 <dim>1</dim>
12835 <dim>16320</dim>
12836 </port>
12837 <port id="2" precision="FP32">
12838 <dim>1</dim>
12839 <dim>2</dim>
12840 <dim>32640</dim>
12841 </port>
12842 </input>
12843 <output>
12844 <port id="3" names="detection_out" precision="FP32">
12845 <dim>1</dim>
12846 <dim>1</dim>
12847 <dim>200</dim>
12848 <dim>7</dim>
12849 </port>
12850 </output>
12851 </layer>
12852 <layer id="744" name="detection_out/sink_port_0" type="Result" version="opset1">
12853 <input>
12854 <port id="0" precision="FP32">
12855 <dim>1</dim>
12856 <dim>1</dim>
12857 <dim>200</dim>
12858 <dim>7</dim>
12859 </port>
12860 </input>
12861 </layer>
12862 </layers>
12863 <edges>
12864 <edge from-layer="0" from-port="0" to-layer="735" to-port="0"/>
12865 <edge from-layer="0" from-port="0" to-layer="2" to-port="0"/>
12866 <edge from-layer="1" from-port="0" to-layer="2" to-port="1"/>
12867 <edge from-layer="2" from-port="2" to-layer="4" to-port="0"/>
12868 <edge from-layer="3" from-port="0" to-layer="4" to-port="1"/>
12869 <edge from-layer="4" from-port="2" to-layer="6" to-port="0"/>
12870 <edge from-layer="5" from-port="0" to-layer="6" to-port="1"/>
12871 <edge from-layer="6" from-port="2" to-layer="8" to-port="0"/>
12872 <edge from-layer="7" from-port="0" to-layer="8" to-port="1"/>
12873 <edge from-layer="8" from-port="2" to-layer="9" to-port="0"/>
12874 <edge from-layer="9" from-port="1" to-layer="11" to-port="0"/>
12875 <edge from-layer="9" from-port="1" to-layer="26" to-port="0"/>
12876 <edge from-layer="10" from-port="0" to-layer="11" to-port="1"/>
12877 <edge from-layer="11" from-port="2" to-layer="13" to-port="0"/>
12878 <edge from-layer="12" from-port="0" to-layer="13" to-port="1"/>
12879 <edge from-layer="13" from-port="2" to-layer="15" to-port="0"/>
12880 <edge from-layer="14" from-port="0" to-layer="15" to-port="1"/>
12881 <edge from-layer="15" from-port="2" to-layer="17" to-port="0"/>
12882 <edge from-layer="16" from-port="0" to-layer="17" to-port="1"/>
12883 <edge from-layer="17" from-port="2" to-layer="19" to-port="0"/>
12884 <edge from-layer="18" from-port="0" to-layer="19" to-port="1"/>
12885 <edge from-layer="19" from-port="2" to-layer="21" to-port="0"/>
12886 <edge from-layer="20" from-port="0" to-layer="21" to-port="1"/>
12887 <edge from-layer="21" from-port="2" to-layer="23" to-port="0"/>
12888 <edge from-layer="22" from-port="0" to-layer="23" to-port="1"/>
12889 <edge from-layer="23" from-port="2" to-layer="25" to-port="0"/>
12890 <edge from-layer="24" from-port="0" to-layer="25" to-port="1"/>
12891 <edge from-layer="25" from-port="2" to-layer="26" to-port="1"/>
12892 <edge from-layer="26" from-port="2" to-layer="28" to-port="0"/>
12893 <edge from-layer="27" from-port="0" to-layer="28" to-port="1"/>
12894 <edge from-layer="28" from-port="2" to-layer="30" to-port="0"/>
12895 <edge from-layer="28" from-port="2" to-layer="45" to-port="0"/>
12896 <edge from-layer="29" from-port="0" to-layer="30" to-port="1"/>
12897 <edge from-layer="30" from-port="2" to-layer="32" to-port="0"/>
12898 <edge from-layer="31" from-port="0" to-layer="32" to-port="1"/>
12899 <edge from-layer="32" from-port="2" to-layer="34" to-port="0"/>
12900 <edge from-layer="33" from-port="0" to-layer="34" to-port="1"/>
12901 <edge from-layer="34" from-port="2" to-layer="36" to-port="0"/>
12902 <edge from-layer="35" from-port="0" to-layer="36" to-port="1"/>
12903 <edge from-layer="36" from-port="2" to-layer="38" to-port="0"/>
12904 <edge from-layer="37" from-port="0" to-layer="38" to-port="1"/>
12905 <edge from-layer="38" from-port="2" to-layer="40" to-port="0"/>
12906 <edge from-layer="39" from-port="0" to-layer="40" to-port="1"/>
12907 <edge from-layer="40" from-port="2" to-layer="42" to-port="0"/>
12908 <edge from-layer="41" from-port="0" to-layer="42" to-port="1"/>
12909 <edge from-layer="42" from-port="2" to-layer="44" to-port="0"/>
12910 <edge from-layer="43" from-port="0" to-layer="44" to-port="1"/>
12911 <edge from-layer="44" from-port="2" to-layer="45" to-port="1"/>
12912 <edge from-layer="45" from-port="2" to-layer="47" to-port="0"/>
12913 <edge from-layer="46" from-port="0" to-layer="47" to-port="1"/>
12914 <edge from-layer="47" from-port="2" to-layer="49" to-port="0"/>
12915 <edge from-layer="47" from-port="2" to-layer="64" to-port="0"/>
12916 <edge from-layer="48" from-port="0" to-layer="49" to-port="1"/>
12917 <edge from-layer="49" from-port="2" to-layer="51" to-port="0"/>
12918 <edge from-layer="50" from-port="0" to-layer="51" to-port="1"/>
12919 <edge from-layer="51" from-port="2" to-layer="53" to-port="0"/>
12920 <edge from-layer="52" from-port="0" to-layer="53" to-port="1"/>
12921 <edge from-layer="53" from-port="2" to-layer="55" to-port="0"/>
12922 <edge from-layer="54" from-port="0" to-layer="55" to-port="1"/>
12923 <edge from-layer="55" from-port="2" to-layer="57" to-port="0"/>
12924 <edge from-layer="56" from-port="0" to-layer="57" to-port="1"/>
12925 <edge from-layer="57" from-port="2" to-layer="59" to-port="0"/>
12926 <edge from-layer="58" from-port="0" to-layer="59" to-port="1"/>
12927 <edge from-layer="59" from-port="2" to-layer="61" to-port="0"/>
12928 <edge from-layer="60" from-port="0" to-layer="61" to-port="1"/>
12929 <edge from-layer="61" from-port="2" to-layer="63" to-port="0"/>
12930 <edge from-layer="62" from-port="0" to-layer="63" to-port="1"/>
12931 <edge from-layer="63" from-port="2" to-layer="64" to-port="1"/>
12932 <edge from-layer="64" from-port="2" to-layer="66" to-port="0"/>
12933 <edge from-layer="65" from-port="0" to-layer="66" to-port="1"/>
12934 <edge from-layer="66" from-port="2" to-layer="68" to-port="0"/>
12935 <edge from-layer="66" from-port="2" to-layer="83" to-port="0"/>
12936 <edge from-layer="67" from-port="0" to-layer="68" to-port="1"/>
12937 <edge from-layer="68" from-port="2" to-layer="70" to-port="0"/>
12938 <edge from-layer="69" from-port="0" to-layer="70" to-port="1"/>
12939 <edge from-layer="70" from-port="2" to-layer="72" to-port="0"/>
12940 <edge from-layer="71" from-port="0" to-layer="72" to-port="1"/>
12941 <edge from-layer="72" from-port="2" to-layer="74" to-port="0"/>
12942 <edge from-layer="73" from-port="0" to-layer="74" to-port="1"/>
12943 <edge from-layer="74" from-port="2" to-layer="76" to-port="0"/>
12944 <edge from-layer="75" from-port="0" to-layer="76" to-port="1"/>
12945 <edge from-layer="76" from-port="2" to-layer="78" to-port="0"/>
12946 <edge from-layer="77" from-port="0" to-layer="78" to-port="1"/>
12947 <edge from-layer="78" from-port="2" to-layer="80" to-port="0"/>
12948 <edge from-layer="79" from-port="0" to-layer="80" to-port="1"/>
12949 <edge from-layer="80" from-port="2" to-layer="82" to-port="0"/>
12950 <edge from-layer="81" from-port="0" to-layer="82" to-port="1"/>
12951 <edge from-layer="82" from-port="2" to-layer="83" to-port="1"/>
12952 <edge from-layer="83" from-port="2" to-layer="85" to-port="0"/>
12953 <edge from-layer="84" from-port="0" to-layer="85" to-port="1"/>
12954 <edge from-layer="85" from-port="2" to-layer="86" to-port="0"/>
12955 <edge from-layer="85" from-port="2" to-layer="92" to-port="0"/>
12956 <edge from-layer="86" from-port="1" to-layer="88" to-port="0"/>
12957 <edge from-layer="87" from-port="0" to-layer="88" to-port="1"/>
12958 <edge from-layer="88" from-port="2" to-layer="90" to-port="0"/>
12959 <edge from-layer="89" from-port="0" to-layer="90" to-port="1"/>
12960 <edge from-layer="90" from-port="2" to-layer="107" to-port="0"/>
12961 <edge from-layer="91" from-port="0" to-layer="92" to-port="1"/>
12962 <edge from-layer="92" from-port="2" to-layer="94" to-port="0"/>
12963 <edge from-layer="93" from-port="0" to-layer="94" to-port="1"/>
12964 <edge from-layer="94" from-port="2" to-layer="96" to-port="0"/>
12965 <edge from-layer="95" from-port="0" to-layer="96" to-port="1"/>
12966 <edge from-layer="96" from-port="2" to-layer="98" to-port="0"/>
12967 <edge from-layer="97" from-port="0" to-layer="98" to-port="1"/>
12968 <edge from-layer="98" from-port="2" to-layer="100" to-port="0"/>
12969 <edge from-layer="99" from-port="0" to-layer="100" to-port="1"/>
12970 <edge from-layer="100" from-port="2" to-layer="102" to-port="0"/>
12971 <edge from-layer="101" from-port="0" to-layer="102" to-port="1"/>
12972 <edge from-layer="102" from-port="2" to-layer="104" to-port="0"/>
12973 <edge from-layer="103" from-port="0" to-layer="104" to-port="1"/>
12974 <edge from-layer="104" from-port="2" to-layer="106" to-port="0"/>
12975 <edge from-layer="105" from-port="0" to-layer="106" to-port="1"/>
12976 <edge from-layer="106" from-port="2" to-layer="107" to-port="1"/>
12977 <edge from-layer="107" from-port="2" to-layer="109" to-port="0"/>
12978 <edge from-layer="108" from-port="0" to-layer="109" to-port="1"/>
12979 <edge from-layer="109" from-port="2" to-layer="126" to-port="0"/>
12980 <edge from-layer="109" from-port="2" to-layer="111" to-port="0"/>
12981 <edge from-layer="110" from-port="0" to-layer="111" to-port="1"/>
12982 <edge from-layer="111" from-port="2" to-layer="113" to-port="0"/>
12983 <edge from-layer="112" from-port="0" to-layer="113" to-port="1"/>
12984 <edge from-layer="113" from-port="2" to-layer="115" to-port="0"/>
12985 <edge from-layer="114" from-port="0" to-layer="115" to-port="1"/>
12986 <edge from-layer="115" from-port="2" to-layer="117" to-port="0"/>
12987 <edge from-layer="116" from-port="0" to-layer="117" to-port="1"/>
12988 <edge from-layer="117" from-port="2" to-layer="119" to-port="0"/>
12989 <edge from-layer="118" from-port="0" to-layer="119" to-port="1"/>
12990 <edge from-layer="119" from-port="2" to-layer="121" to-port="0"/>
12991 <edge from-layer="120" from-port="0" to-layer="121" to-port="1"/>
12992 <edge from-layer="121" from-port="2" to-layer="123" to-port="0"/>
12993 <edge from-layer="122" from-port="0" to-layer="123" to-port="1"/>
12994 <edge from-layer="123" from-port="2" to-layer="125" to-port="0"/>
12995 <edge from-layer="124" from-port="0" to-layer="125" to-port="1"/>
12996 <edge from-layer="125" from-port="2" to-layer="126" to-port="1"/>
12997 <edge from-layer="126" from-port="2" to-layer="128" to-port="0"/>
12998 <edge from-layer="127" from-port="0" to-layer="128" to-port="1"/>
12999 <edge from-layer="128" from-port="2" to-layer="130" to-port="0"/>
13000 <edge from-layer="128" from-port="2" to-layer="145" to-port="0"/>
13001 <edge from-layer="129" from-port="0" to-layer="130" to-port="1"/>
13002 <edge from-layer="130" from-port="2" to-layer="132" to-port="0"/>
13003 <edge from-layer="131" from-port="0" to-layer="132" to-port="1"/>
13004 <edge from-layer="132" from-port="2" to-layer="134" to-port="0"/>
13005 <edge from-layer="133" from-port="0" to-layer="134" to-port="1"/>
13006 <edge from-layer="134" from-port="2" to-layer="136" to-port="0"/>
13007 <edge from-layer="135" from-port="0" to-layer="136" to-port="1"/>
13008 <edge from-layer="136" from-port="2" to-layer="138" to-port="0"/>
13009 <edge from-layer="137" from-port="0" to-layer="138" to-port="1"/>
13010 <edge from-layer="138" from-port="2" to-layer="140" to-port="0"/>
13011 <edge from-layer="139" from-port="0" to-layer="140" to-port="1"/>
13012 <edge from-layer="140" from-port="2" to-layer="142" to-port="0"/>
13013 <edge from-layer="141" from-port="0" to-layer="142" to-port="1"/>
13014 <edge from-layer="142" from-port="2" to-layer="144" to-port="0"/>
13015 <edge from-layer="143" from-port="0" to-layer="144" to-port="1"/>
13016 <edge from-layer="144" from-port="2" to-layer="145" to-port="1"/>
13017 <edge from-layer="145" from-port="2" to-layer="147" to-port="0"/>
13018 <edge from-layer="146" from-port="0" to-layer="147" to-port="1"/>
13019 <edge from-layer="147" from-port="2" to-layer="149" to-port="0"/>
13020 <edge from-layer="147" from-port="2" to-layer="164" to-port="0"/>
13021 <edge from-layer="148" from-port="0" to-layer="149" to-port="1"/>
13022 <edge from-layer="149" from-port="2" to-layer="151" to-port="0"/>
13023 <edge from-layer="150" from-port="0" to-layer="151" to-port="1"/>
13024 <edge from-layer="151" from-port="2" to-layer="153" to-port="0"/>
13025 <edge from-layer="152" from-port="0" to-layer="153" to-port="1"/>
13026 <edge from-layer="153" from-port="2" to-layer="155" to-port="0"/>
13027 <edge from-layer="154" from-port="0" to-layer="155" to-port="1"/>
13028 <edge from-layer="155" from-port="2" to-layer="157" to-port="0"/>
13029 <edge from-layer="156" from-port="0" to-layer="157" to-port="1"/>
13030 <edge from-layer="157" from-port="2" to-layer="159" to-port="0"/>
13031 <edge from-layer="158" from-port="0" to-layer="159" to-port="1"/>
13032 <edge from-layer="159" from-port="2" to-layer="161" to-port="0"/>
13033 <edge from-layer="160" from-port="0" to-layer="161" to-port="1"/>
13034 <edge from-layer="161" from-port="2" to-layer="163" to-port="0"/>
13035 <edge from-layer="162" from-port="0" to-layer="163" to-port="1"/>
13036 <edge from-layer="163" from-port="2" to-layer="164" to-port="1"/>
13037 <edge from-layer="164" from-port="2" to-layer="166" to-port="0"/>
13038 <edge from-layer="165" from-port="0" to-layer="166" to-port="1"/>
13039 <edge from-layer="166" from-port="2" to-layer="168" to-port="0"/>
13040 <edge from-layer="166" from-port="2" to-layer="183" to-port="0"/>
13041 <edge from-layer="167" from-port="0" to-layer="168" to-port="1"/>
13042 <edge from-layer="168" from-port="2" to-layer="170" to-port="0"/>
13043 <edge from-layer="169" from-port="0" to-layer="170" to-port="1"/>
13044 <edge from-layer="170" from-port="2" to-layer="172" to-port="0"/>
13045 <edge from-layer="171" from-port="0" to-layer="172" to-port="1"/>
13046 <edge from-layer="172" from-port="2" to-layer="174" to-port="0"/>
13047 <edge from-layer="173" from-port="0" to-layer="174" to-port="1"/>
13048 <edge from-layer="174" from-port="2" to-layer="176" to-port="0"/>
13049 <edge from-layer="175" from-port="0" to-layer="176" to-port="1"/>
13050 <edge from-layer="176" from-port="2" to-layer="178" to-port="0"/>
13051 <edge from-layer="177" from-port="0" to-layer="178" to-port="1"/>
13052 <edge from-layer="178" from-port="2" to-layer="180" to-port="0"/>
13053 <edge from-layer="179" from-port="0" to-layer="180" to-port="1"/>
13054 <edge from-layer="180" from-port="2" to-layer="182" to-port="0"/>
13055 <edge from-layer="181" from-port="0" to-layer="182" to-port="1"/>
13056 <edge from-layer="182" from-port="2" to-layer="183" to-port="1"/>
13057 <edge from-layer="183" from-port="2" to-layer="185" to-port="0"/>
13058 <edge from-layer="184" from-port="0" to-layer="185" to-port="1"/>
13059 <edge from-layer="185" from-port="2" to-layer="187" to-port="0"/>
13060 <edge from-layer="185" from-port="2" to-layer="202" to-port="0"/>
13061 <edge from-layer="186" from-port="0" to-layer="187" to-port="1"/>
13062 <edge from-layer="187" from-port="2" to-layer="189" to-port="0"/>
13063 <edge from-layer="188" from-port="0" to-layer="189" to-port="1"/>
13064 <edge from-layer="189" from-port="2" to-layer="191" to-port="0"/>
13065 <edge from-layer="190" from-port="0" to-layer="191" to-port="1"/>
13066 <edge from-layer="191" from-port="2" to-layer="193" to-port="0"/>
13067 <edge from-layer="192" from-port="0" to-layer="193" to-port="1"/>
13068 <edge from-layer="193" from-port="2" to-layer="195" to-port="0"/>
13069 <edge from-layer="194" from-port="0" to-layer="195" to-port="1"/>
13070 <edge from-layer="195" from-port="2" to-layer="197" to-port="0"/>
13071 <edge from-layer="196" from-port="0" to-layer="197" to-port="1"/>
13072 <edge from-layer="197" from-port="2" to-layer="199" to-port="0"/>
13073 <edge from-layer="198" from-port="0" to-layer="199" to-port="1"/>
13074 <edge from-layer="199" from-port="2" to-layer="201" to-port="0"/>
13075 <edge from-layer="200" from-port="0" to-layer="201" to-port="1"/>
13076 <edge from-layer="201" from-port="2" to-layer="202" to-port="1"/>
13077 <edge from-layer="202" from-port="2" to-layer="204" to-port="0"/>
13078 <edge from-layer="203" from-port="0" to-layer="204" to-port="1"/>
13079 <edge from-layer="204" from-port="2" to-layer="221" to-port="0"/>
13080 <edge from-layer="204" from-port="2" to-layer="206" to-port="0"/>
13081 <edge from-layer="205" from-port="0" to-layer="206" to-port="1"/>
13082 <edge from-layer="206" from-port="2" to-layer="208" to-port="0"/>
13083 <edge from-layer="207" from-port="0" to-layer="208" to-port="1"/>
13084 <edge from-layer="208" from-port="2" to-layer="210" to-port="0"/>
13085 <edge from-layer="209" from-port="0" to-layer="210" to-port="1"/>
13086 <edge from-layer="210" from-port="2" to-layer="212" to-port="0"/>
13087 <edge from-layer="211" from-port="0" to-layer="212" to-port="1"/>
13088 <edge from-layer="212" from-port="2" to-layer="214" to-port="0"/>
13089 <edge from-layer="213" from-port="0" to-layer="214" to-port="1"/>
13090 <edge from-layer="214" from-port="2" to-layer="216" to-port="0"/>
13091 <edge from-layer="215" from-port="0" to-layer="216" to-port="1"/>
13092 <edge from-layer="216" from-port="2" to-layer="218" to-port="0"/>
13093 <edge from-layer="217" from-port="0" to-layer="218" to-port="1"/>
13094 <edge from-layer="218" from-port="2" to-layer="220" to-port="0"/>
13095 <edge from-layer="219" from-port="0" to-layer="220" to-port="1"/>
13096 <edge from-layer="220" from-port="2" to-layer="221" to-port="1"/>
13097 <edge from-layer="221" from-port="2" to-layer="223" to-port="0"/>
13098 <edge from-layer="222" from-port="0" to-layer="223" to-port="1"/>
13099 <edge from-layer="223" from-port="2" to-layer="225" to-port="0"/>
13100 <edge from-layer="223" from-port="2" to-layer="240" to-port="0"/>
13101 <edge from-layer="224" from-port="0" to-layer="225" to-port="1"/>
13102 <edge from-layer="225" from-port="2" to-layer="227" to-port="0"/>
13103 <edge from-layer="226" from-port="0" to-layer="227" to-port="1"/>
13104 <edge from-layer="227" from-port="2" to-layer="229" to-port="0"/>
13105 <edge from-layer="228" from-port="0" to-layer="229" to-port="1"/>
13106 <edge from-layer="229" from-port="2" to-layer="231" to-port="0"/>
13107 <edge from-layer="230" from-port="0" to-layer="231" to-port="1"/>
13108 <edge from-layer="231" from-port="2" to-layer="233" to-port="0"/>
13109 <edge from-layer="232" from-port="0" to-layer="233" to-port="1"/>
13110 <edge from-layer="233" from-port="2" to-layer="235" to-port="0"/>
13111 <edge from-layer="234" from-port="0" to-layer="235" to-port="1"/>
13112 <edge from-layer="235" from-port="2" to-layer="237" to-port="0"/>
13113 <edge from-layer="236" from-port="0" to-layer="237" to-port="1"/>
13114 <edge from-layer="237" from-port="2" to-layer="239" to-port="0"/>
13115 <edge from-layer="238" from-port="0" to-layer="239" to-port="1"/>
13116 <edge from-layer="239" from-port="2" to-layer="240" to-port="1"/>
13117 <edge from-layer="240" from-port="2" to-layer="242" to-port="0"/>
13118 <edge from-layer="241" from-port="0" to-layer="242" to-port="1"/>
13119 <edge from-layer="242" from-port="2" to-layer="244" to-port="0"/>
13120 <edge from-layer="242" from-port="2" to-layer="259" to-port="0"/>
13121 <edge from-layer="243" from-port="0" to-layer="244" to-port="1"/>
13122 <edge from-layer="244" from-port="2" to-layer="246" to-port="0"/>
13123 <edge from-layer="245" from-port="0" to-layer="246" to-port="1"/>
13124 <edge from-layer="246" from-port="2" to-layer="248" to-port="0"/>
13125 <edge from-layer="247" from-port="0" to-layer="248" to-port="1"/>
13126 <edge from-layer="248" from-port="2" to-layer="250" to-port="0"/>
13127 <edge from-layer="249" from-port="0" to-layer="250" to-port="1"/>
13128 <edge from-layer="250" from-port="2" to-layer="252" to-port="0"/>
13129 <edge from-layer="251" from-port="0" to-layer="252" to-port="1"/>
13130 <edge from-layer="252" from-port="2" to-layer="254" to-port="0"/>
13131 <edge from-layer="253" from-port="0" to-layer="254" to-port="1"/>
13132 <edge from-layer="254" from-port="2" to-layer="256" to-port="0"/>
13133 <edge from-layer="255" from-port="0" to-layer="256" to-port="1"/>
13134 <edge from-layer="256" from-port="2" to-layer="258" to-port="0"/>
13135 <edge from-layer="257" from-port="0" to-layer="258" to-port="1"/>
13136 <edge from-layer="258" from-port="2" to-layer="259" to-port="1"/>
13137 <edge from-layer="259" from-port="2" to-layer="261" to-port="0"/>
13138 <edge from-layer="260" from-port="0" to-layer="261" to-port="1"/>
13139 <edge from-layer="261" from-port="2" to-layer="262" to-port="0"/>
13140 <edge from-layer="261" from-port="2" to-layer="268" to-port="0"/>
13141 <edge from-layer="262" from-port="1" to-layer="264" to-port="0"/>
13142 <edge from-layer="263" from-port="0" to-layer="264" to-port="1"/>
13143 <edge from-layer="264" from-port="2" to-layer="266" to-port="0"/>
13144 <edge from-layer="265" from-port="0" to-layer="266" to-port="1"/>
13145 <edge from-layer="266" from-port="2" to-layer="283" to-port="0"/>
13146 <edge from-layer="267" from-port="0" to-layer="268" to-port="1"/>
13147 <edge from-layer="268" from-port="2" to-layer="270" to-port="0"/>
13148 <edge from-layer="269" from-port="0" to-layer="270" to-port="1"/>
13149 <edge from-layer="270" from-port="2" to-layer="272" to-port="0"/>
13150 <edge from-layer="271" from-port="0" to-layer="272" to-port="1"/>
13151 <edge from-layer="272" from-port="2" to-layer="274" to-port="0"/>
13152 <edge from-layer="273" from-port="0" to-layer="274" to-port="1"/>
13153 <edge from-layer="274" from-port="2" to-layer="276" to-port="0"/>
13154 <edge from-layer="275" from-port="0" to-layer="276" to-port="1"/>
13155 <edge from-layer="276" from-port="2" to-layer="278" to-port="0"/>
13156 <edge from-layer="277" from-port="0" to-layer="278" to-port="1"/>
13157 <edge from-layer="278" from-port="2" to-layer="280" to-port="0"/>
13158 <edge from-layer="279" from-port="0" to-layer="280" to-port="1"/>
13159 <edge from-layer="280" from-port="2" to-layer="282" to-port="0"/>
13160 <edge from-layer="281" from-port="0" to-layer="282" to-port="1"/>
13161 <edge from-layer="282" from-port="2" to-layer="283" to-port="1"/>
13162 <edge from-layer="283" from-port="2" to-layer="285" to-port="0"/>
13163 <edge from-layer="284" from-port="0" to-layer="285" to-port="1"/>
13164 <edge from-layer="285" from-port="2" to-layer="302" to-port="0"/>
13165 <edge from-layer="285" from-port="2" to-layer="287" to-port="0"/>
13166 <edge from-layer="286" from-port="0" to-layer="287" to-port="1"/>
13167 <edge from-layer="287" from-port="2" to-layer="289" to-port="0"/>
13168 <edge from-layer="288" from-port="0" to-layer="289" to-port="1"/>
13169 <edge from-layer="289" from-port="2" to-layer="291" to-port="0"/>
13170 <edge from-layer="290" from-port="0" to-layer="291" to-port="1"/>
13171 <edge from-layer="291" from-port="2" to-layer="293" to-port="0"/>
13172 <edge from-layer="292" from-port="0" to-layer="293" to-port="1"/>
13173 <edge from-layer="293" from-port="2" to-layer="295" to-port="0"/>
13174 <edge from-layer="294" from-port="0" to-layer="295" to-port="1"/>
13175 <edge from-layer="295" from-port="2" to-layer="297" to-port="0"/>
13176 <edge from-layer="296" from-port="0" to-layer="297" to-port="1"/>
13177 <edge from-layer="297" from-port="2" to-layer="299" to-port="0"/>
13178 <edge from-layer="298" from-port="0" to-layer="299" to-port="1"/>
13179 <edge from-layer="299" from-port="2" to-layer="301" to-port="0"/>
13180 <edge from-layer="300" from-port="0" to-layer="301" to-port="1"/>
13181 <edge from-layer="301" from-port="2" to-layer="302" to-port="1"/>
13182 <edge from-layer="302" from-port="2" to-layer="304" to-port="0"/>
13183 <edge from-layer="303" from-port="0" to-layer="304" to-port="1"/>
13184 <edge from-layer="304" from-port="2" to-layer="306" to-port="0"/>
13185 <edge from-layer="304" from-port="2" to-layer="321" to-port="0"/>
13186 <edge from-layer="305" from-port="0" to-layer="306" to-port="1"/>
13187 <edge from-layer="306" from-port="2" to-layer="308" to-port="0"/>
13188 <edge from-layer="307" from-port="0" to-layer="308" to-port="1"/>
13189 <edge from-layer="308" from-port="2" to-layer="310" to-port="0"/>
13190 <edge from-layer="309" from-port="0" to-layer="310" to-port="1"/>
13191 <edge from-layer="310" from-port="2" to-layer="312" to-port="0"/>
13192 <edge from-layer="311" from-port="0" to-layer="312" to-port="1"/>
13193 <edge from-layer="312" from-port="2" to-layer="314" to-port="0"/>
13194 <edge from-layer="313" from-port="0" to-layer="314" to-port="1"/>
13195 <edge from-layer="314" from-port="2" to-layer="316" to-port="0"/>
13196 <edge from-layer="315" from-port="0" to-layer="316" to-port="1"/>
13197 <edge from-layer="316" from-port="2" to-layer="318" to-port="0"/>
13198 <edge from-layer="317" from-port="0" to-layer="318" to-port="1"/>
13199 <edge from-layer="318" from-port="2" to-layer="320" to-port="0"/>
13200 <edge from-layer="319" from-port="0" to-layer="320" to-port="1"/>
13201 <edge from-layer="320" from-port="2" to-layer="321" to-port="1"/>
13202 <edge from-layer="321" from-port="2" to-layer="323" to-port="0"/>
13203 <edge from-layer="322" from-port="0" to-layer="323" to-port="1"/>
13204 <edge from-layer="323" from-port="2" to-layer="325" to-port="0"/>
13205 <edge from-layer="323" from-port="2" to-layer="340" to-port="0"/>
13206 <edge from-layer="324" from-port="0" to-layer="325" to-port="1"/>
13207 <edge from-layer="325" from-port="2" to-layer="327" to-port="0"/>
13208 <edge from-layer="326" from-port="0" to-layer="327" to-port="1"/>
13209 <edge from-layer="327" from-port="2" to-layer="329" to-port="0"/>
13210 <edge from-layer="328" from-port="0" to-layer="329" to-port="1"/>
13211 <edge from-layer="329" from-port="2" to-layer="331" to-port="0"/>
13212 <edge from-layer="330" from-port="0" to-layer="331" to-port="1"/>
13213 <edge from-layer="331" from-port="2" to-layer="333" to-port="0"/>
13214 <edge from-layer="332" from-port="0" to-layer="333" to-port="1"/>
13215 <edge from-layer="333" from-port="2" to-layer="335" to-port="0"/>
13216 <edge from-layer="334" from-port="0" to-layer="335" to-port="1"/>
13217 <edge from-layer="335" from-port="2" to-layer="337" to-port="0"/>
13218 <edge from-layer="336" from-port="0" to-layer="337" to-port="1"/>
13219 <edge from-layer="337" from-port="2" to-layer="339" to-port="0"/>
13220 <edge from-layer="338" from-port="0" to-layer="339" to-port="1"/>
13221 <edge from-layer="339" from-port="2" to-layer="340" to-port="1"/>
13222 <edge from-layer="340" from-port="2" to-layer="342" to-port="0"/>
13223 <edge from-layer="341" from-port="0" to-layer="342" to-port="1"/>
13224 <edge from-layer="342" from-port="2" to-layer="359" to-port="0"/>
13225 <edge from-layer="342" from-port="2" to-layer="344" to-port="0"/>
13226 <edge from-layer="343" from-port="0" to-layer="344" to-port="1"/>
13227 <edge from-layer="344" from-port="2" to-layer="346" to-port="0"/>
13228 <edge from-layer="345" from-port="0" to-layer="346" to-port="1"/>
13229 <edge from-layer="346" from-port="2" to-layer="348" to-port="0"/>
13230 <edge from-layer="347" from-port="0" to-layer="348" to-port="1"/>
13231 <edge from-layer="348" from-port="2" to-layer="350" to-port="0"/>
13232 <edge from-layer="349" from-port="0" to-layer="350" to-port="1"/>
13233 <edge from-layer="350" from-port="2" to-layer="352" to-port="0"/>
13234 <edge from-layer="351" from-port="0" to-layer="352" to-port="1"/>
13235 <edge from-layer="352" from-port="2" to-layer="354" to-port="0"/>
13236 <edge from-layer="353" from-port="0" to-layer="354" to-port="1"/>
13237 <edge from-layer="354" from-port="2" to-layer="356" to-port="0"/>
13238 <edge from-layer="355" from-port="0" to-layer="356" to-port="1"/>
13239 <edge from-layer="356" from-port="2" to-layer="358" to-port="0"/>
13240 <edge from-layer="357" from-port="0" to-layer="358" to-port="1"/>
13241 <edge from-layer="358" from-port="2" to-layer="359" to-port="1"/>
13242 <edge from-layer="359" from-port="2" to-layer="361" to-port="0"/>
13243 <edge from-layer="360" from-port="0" to-layer="361" to-port="1"/>
13244 <edge from-layer="361" from-port="2" to-layer="378" to-port="0"/>
13245 <edge from-layer="361" from-port="2" to-layer="363" to-port="0"/>
13246 <edge from-layer="362" from-port="0" to-layer="363" to-port="1"/>
13247 <edge from-layer="363" from-port="2" to-layer="365" to-port="0"/>
13248 <edge from-layer="364" from-port="0" to-layer="365" to-port="1"/>
13249 <edge from-layer="365" from-port="2" to-layer="367" to-port="0"/>
13250 <edge from-layer="366" from-port="0" to-layer="367" to-port="1"/>
13251 <edge from-layer="367" from-port="2" to-layer="369" to-port="0"/>
13252 <edge from-layer="368" from-port="0" to-layer="369" to-port="1"/>
13253 <edge from-layer="369" from-port="2" to-layer="371" to-port="0"/>
13254 <edge from-layer="370" from-port="0" to-layer="371" to-port="1"/>
13255 <edge from-layer="371" from-port="2" to-layer="373" to-port="0"/>
13256 <edge from-layer="372" from-port="0" to-layer="373" to-port="1"/>
13257 <edge from-layer="373" from-port="2" to-layer="375" to-port="0"/>
13258 <edge from-layer="374" from-port="0" to-layer="375" to-port="1"/>
13259 <edge from-layer="375" from-port="2" to-layer="377" to-port="0"/>
13260 <edge from-layer="376" from-port="0" to-layer="377" to-port="1"/>
13261 <edge from-layer="377" from-port="2" to-layer="378" to-port="1"/>
13262 <edge from-layer="378" from-port="2" to-layer="380" to-port="0"/>
13263 <edge from-layer="379" from-port="0" to-layer="380" to-port="1"/>
13264 <edge from-layer="380" from-port="2" to-layer="397" to-port="0"/>
13265 <edge from-layer="380" from-port="2" to-layer="382" to-port="0"/>
13266 <edge from-layer="381" from-port="0" to-layer="382" to-port="1"/>
13267 <edge from-layer="382" from-port="2" to-layer="384" to-port="0"/>
13268 <edge from-layer="383" from-port="0" to-layer="384" to-port="1"/>
13269 <edge from-layer="384" from-port="2" to-layer="386" to-port="0"/>
13270 <edge from-layer="385" from-port="0" to-layer="386" to-port="1"/>
13271 <edge from-layer="386" from-port="2" to-layer="388" to-port="0"/>
13272 <edge from-layer="387" from-port="0" to-layer="388" to-port="1"/>
13273 <edge from-layer="388" from-port="2" to-layer="390" to-port="0"/>
13274 <edge from-layer="389" from-port="0" to-layer="390" to-port="1"/>
13275 <edge from-layer="390" from-port="2" to-layer="392" to-port="0"/>
13276 <edge from-layer="391" from-port="0" to-layer="392" to-port="1"/>
13277 <edge from-layer="392" from-port="2" to-layer="394" to-port="0"/>
13278 <edge from-layer="393" from-port="0" to-layer="394" to-port="1"/>
13279 <edge from-layer="394" from-port="2" to-layer="396" to-port="0"/>
13280 <edge from-layer="395" from-port="0" to-layer="396" to-port="1"/>
13281 <edge from-layer="396" from-port="2" to-layer="397" to-port="1"/>
13282 <edge from-layer="397" from-port="2" to-layer="399" to-port="0"/>
13283 <edge from-layer="398" from-port="0" to-layer="399" to-port="1"/>
13284 <edge from-layer="399" from-port="2" to-layer="401" to-port="0"/>
13285 <edge from-layer="399" from-port="2" to-layer="416" to-port="0"/>
13286 <edge from-layer="400" from-port="0" to-layer="401" to-port="1"/>
13287 <edge from-layer="401" from-port="2" to-layer="403" to-port="0"/>
13288 <edge from-layer="402" from-port="0" to-layer="403" to-port="1"/>
13289 <edge from-layer="403" from-port="2" to-layer="405" to-port="0"/>
13290 <edge from-layer="404" from-port="0" to-layer="405" to-port="1"/>
13291 <edge from-layer="405" from-port="2" to-layer="407" to-port="0"/>
13292 <edge from-layer="406" from-port="0" to-layer="407" to-port="1"/>
13293 <edge from-layer="407" from-port="2" to-layer="409" to-port="0"/>
13294 <edge from-layer="408" from-port="0" to-layer="409" to-port="1"/>
13295 <edge from-layer="409" from-port="2" to-layer="411" to-port="0"/>
13296 <edge from-layer="410" from-port="0" to-layer="411" to-port="1"/>
13297 <edge from-layer="411" from-port="2" to-layer="413" to-port="0"/>
13298 <edge from-layer="412" from-port="0" to-layer="413" to-port="1"/>
13299 <edge from-layer="413" from-port="2" to-layer="415" to-port="0"/>
13300 <edge from-layer="414" from-port="0" to-layer="415" to-port="1"/>
13301 <edge from-layer="415" from-port="2" to-layer="416" to-port="1"/>
13302 <edge from-layer="416" from-port="2" to-layer="418" to-port="0"/>
13303 <edge from-layer="417" from-port="0" to-layer="418" to-port="1"/>
13304 <edge from-layer="418" from-port="2" to-layer="420" to-port="0"/>
13305 <edge from-layer="418" from-port="2" to-layer="435" to-port="0"/>
13306 <edge from-layer="419" from-port="0" to-layer="420" to-port="1"/>
13307 <edge from-layer="420" from-port="2" to-layer="422" to-port="0"/>
13308 <edge from-layer="421" from-port="0" to-layer="422" to-port="1"/>
13309 <edge from-layer="422" from-port="2" to-layer="424" to-port="0"/>
13310 <edge from-layer="423" from-port="0" to-layer="424" to-port="1"/>
13311 <edge from-layer="424" from-port="2" to-layer="426" to-port="0"/>
13312 <edge from-layer="425" from-port="0" to-layer="426" to-port="1"/>
13313 <edge from-layer="426" from-port="2" to-layer="428" to-port="0"/>
13314 <edge from-layer="427" from-port="0" to-layer="428" to-port="1"/>
13315 <edge from-layer="428" from-port="2" to-layer="430" to-port="0"/>
13316 <edge from-layer="429" from-port="0" to-layer="430" to-port="1"/>
13317 <edge from-layer="430" from-port="2" to-layer="432" to-port="0"/>
13318 <edge from-layer="431" from-port="0" to-layer="432" to-port="1"/>
13319 <edge from-layer="432" from-port="2" to-layer="434" to-port="0"/>
13320 <edge from-layer="433" from-port="0" to-layer="434" to-port="1"/>
13321 <edge from-layer="434" from-port="2" to-layer="435" to-port="1"/>
13322 <edge from-layer="435" from-port="2" to-layer="437" to-port="0"/>
13323 <edge from-layer="436" from-port="0" to-layer="437" to-port="1"/>
13324 <edge from-layer="437" from-port="2" to-layer="454" to-port="0"/>
13325 <edge from-layer="437" from-port="2" to-layer="439" to-port="0"/>
13326 <edge from-layer="438" from-port="0" to-layer="439" to-port="1"/>
13327 <edge from-layer="439" from-port="2" to-layer="441" to-port="0"/>
13328 <edge from-layer="440" from-port="0" to-layer="441" to-port="1"/>
13329 <edge from-layer="441" from-port="2" to-layer="443" to-port="0"/>
13330 <edge from-layer="442" from-port="0" to-layer="443" to-port="1"/>
13331 <edge from-layer="443" from-port="2" to-layer="445" to-port="0"/>
13332 <edge from-layer="444" from-port="0" to-layer="445" to-port="1"/>
13333 <edge from-layer="445" from-port="2" to-layer="447" to-port="0"/>
13334 <edge from-layer="446" from-port="0" to-layer="447" to-port="1"/>
13335 <edge from-layer="447" from-port="2" to-layer="449" to-port="0"/>
13336 <edge from-layer="448" from-port="0" to-layer="449" to-port="1"/>
13337 <edge from-layer="449" from-port="2" to-layer="451" to-port="0"/>
13338 <edge from-layer="450" from-port="0" to-layer="451" to-port="1"/>
13339 <edge from-layer="451" from-port="2" to-layer="453" to-port="0"/>
13340 <edge from-layer="452" from-port="0" to-layer="453" to-port="1"/>
13341 <edge from-layer="453" from-port="2" to-layer="454" to-port="1"/>
13342 <edge from-layer="454" from-port="2" to-layer="456" to-port="0"/>
13343 <edge from-layer="455" from-port="0" to-layer="456" to-port="1"/>
13344 <edge from-layer="456" from-port="2" to-layer="473" to-port="0"/>
13345 <edge from-layer="456" from-port="2" to-layer="458" to-port="0"/>
13346 <edge from-layer="457" from-port="0" to-layer="458" to-port="1"/>
13347 <edge from-layer="458" from-port="2" to-layer="460" to-port="0"/>
13348 <edge from-layer="459" from-port="0" to-layer="460" to-port="1"/>
13349 <edge from-layer="460" from-port="2" to-layer="462" to-port="0"/>
13350 <edge from-layer="461" from-port="0" to-layer="462" to-port="1"/>
13351 <edge from-layer="462" from-port="2" to-layer="464" to-port="0"/>
13352 <edge from-layer="463" from-port="0" to-layer="464" to-port="1"/>
13353 <edge from-layer="464" from-port="2" to-layer="466" to-port="0"/>
13354 <edge from-layer="465" from-port="0" to-layer="466" to-port="1"/>
13355 <edge from-layer="466" from-port="2" to-layer="468" to-port="0"/>
13356 <edge from-layer="467" from-port="0" to-layer="468" to-port="1"/>
13357 <edge from-layer="468" from-port="2" to-layer="470" to-port="0"/>
13358 <edge from-layer="469" from-port="0" to-layer="470" to-port="1"/>
13359 <edge from-layer="470" from-port="2" to-layer="472" to-port="0"/>
13360 <edge from-layer="471" from-port="0" to-layer="472" to-port="1"/>
13361 <edge from-layer="472" from-port="2" to-layer="473" to-port="1"/>
13362 <edge from-layer="473" from-port="2" to-layer="475" to-port="0"/>
13363 <edge from-layer="474" from-port="0" to-layer="475" to-port="1"/>
13364 <edge from-layer="475" from-port="2" to-layer="476" to-port="0"/>
13365 <edge from-layer="475" from-port="2" to-layer="482" to-port="0"/>
13366 <edge from-layer="476" from-port="1" to-layer="478" to-port="0"/>
13367 <edge from-layer="477" from-port="0" to-layer="478" to-port="1"/>
13368 <edge from-layer="478" from-port="2" to-layer="480" to-port="0"/>
13369 <edge from-layer="479" from-port="0" to-layer="480" to-port="1"/>
13370 <edge from-layer="480" from-port="2" to-layer="497" to-port="0"/>
13371 <edge from-layer="481" from-port="0" to-layer="482" to-port="1"/>
13372 <edge from-layer="482" from-port="2" to-layer="484" to-port="0"/>
13373 <edge from-layer="483" from-port="0" to-layer="484" to-port="1"/>
13374 <edge from-layer="484" from-port="2" to-layer="486" to-port="0"/>
13375 <edge from-layer="485" from-port="0" to-layer="486" to-port="1"/>
13376 <edge from-layer="486" from-port="2" to-layer="488" to-port="0"/>
13377 <edge from-layer="487" from-port="0" to-layer="488" to-port="1"/>
13378 <edge from-layer="488" from-port="2" to-layer="490" to-port="0"/>
13379 <edge from-layer="489" from-port="0" to-layer="490" to-port="1"/>
13380 <edge from-layer="490" from-port="2" to-layer="492" to-port="0"/>
13381 <edge from-layer="491" from-port="0" to-layer="492" to-port="1"/>
13382 <edge from-layer="492" from-port="2" to-layer="494" to-port="0"/>
13383 <edge from-layer="493" from-port="0" to-layer="494" to-port="1"/>
13384 <edge from-layer="494" from-port="2" to-layer="496" to-port="0"/>
13385 <edge from-layer="495" from-port="0" to-layer="496" to-port="1"/>
13386 <edge from-layer="496" from-port="2" to-layer="497" to-port="1"/>
13387 <edge from-layer="497" from-port="2" to-layer="499" to-port="0"/>
13388 <edge from-layer="498" from-port="0" to-layer="499" to-port="1"/>
13389 <edge from-layer="499" from-port="2" to-layer="501" to-port="0"/>
13390 <edge from-layer="499" from-port="2" to-layer="516" to-port="0"/>
13391 <edge from-layer="500" from-port="0" to-layer="501" to-port="1"/>
13392 <edge from-layer="501" from-port="2" to-layer="503" to-port="0"/>
13393 <edge from-layer="502" from-port="0" to-layer="503" to-port="1"/>
13394 <edge from-layer="503" from-port="2" to-layer="505" to-port="0"/>
13395 <edge from-layer="504" from-port="0" to-layer="505" to-port="1"/>
13396 <edge from-layer="505" from-port="2" to-layer="507" to-port="0"/>
13397 <edge from-layer="506" from-port="0" to-layer="507" to-port="1"/>
13398 <edge from-layer="507" from-port="2" to-layer="509" to-port="0"/>
13399 <edge from-layer="508" from-port="0" to-layer="509" to-port="1"/>
13400 <edge from-layer="509" from-port="2" to-layer="511" to-port="0"/>
13401 <edge from-layer="510" from-port="0" to-layer="511" to-port="1"/>
13402 <edge from-layer="511" from-port="2" to-layer="513" to-port="0"/>
13403 <edge from-layer="512" from-port="0" to-layer="513" to-port="1"/>
13404 <edge from-layer="513" from-port="2" to-layer="515" to-port="0"/>
13405 <edge from-layer="514" from-port="0" to-layer="515" to-port="1"/>
13406 <edge from-layer="515" from-port="2" to-layer="516" to-port="1"/>
13407 <edge from-layer="516" from-port="2" to-layer="518" to-port="0"/>
13408 <edge from-layer="517" from-port="0" to-layer="518" to-port="1"/>
13409 <edge from-layer="518" from-port="2" to-layer="520" to-port="0"/>
13410 <edge from-layer="518" from-port="2" to-layer="535" to-port="0"/>
13411 <edge from-layer="519" from-port="0" to-layer="520" to-port="1"/>
13412 <edge from-layer="520" from-port="2" to-layer="522" to-port="0"/>
13413 <edge from-layer="521" from-port="0" to-layer="522" to-port="1"/>
13414 <edge from-layer="522" from-port="2" to-layer="524" to-port="0"/>
13415 <edge from-layer="523" from-port="0" to-layer="524" to-port="1"/>
13416 <edge from-layer="524" from-port="2" to-layer="526" to-port="0"/>
13417 <edge from-layer="525" from-port="0" to-layer="526" to-port="1"/>
13418 <edge from-layer="526" from-port="2" to-layer="528" to-port="0"/>
13419 <edge from-layer="527" from-port="0" to-layer="528" to-port="1"/>
13420 <edge from-layer="528" from-port="2" to-layer="530" to-port="0"/>
13421 <edge from-layer="529" from-port="0" to-layer="530" to-port="1"/>
13422 <edge from-layer="530" from-port="2" to-layer="532" to-port="0"/>
13423 <edge from-layer="531" from-port="0" to-layer="532" to-port="1"/>
13424 <edge from-layer="532" from-port="2" to-layer="534" to-port="0"/>
13425 <edge from-layer="533" from-port="0" to-layer="534" to-port="1"/>
13426 <edge from-layer="534" from-port="2" to-layer="535" to-port="1"/>
13427 <edge from-layer="535" from-port="2" to-layer="537" to-port="0"/>
13428 <edge from-layer="536" from-port="0" to-layer="537" to-port="1"/>
13429 <edge from-layer="537" from-port="2" to-layer="539" to-port="0"/>
13430 <edge from-layer="537" from-port="2" to-layer="554" to-port="0"/>
13431 <edge from-layer="538" from-port="0" to-layer="539" to-port="1"/>
13432 <edge from-layer="539" from-port="2" to-layer="541" to-port="0"/>
13433 <edge from-layer="540" from-port="0" to-layer="541" to-port="1"/>
13434 <edge from-layer="541" from-port="2" to-layer="543" to-port="0"/>
13435 <edge from-layer="542" from-port="0" to-layer="543" to-port="1"/>
13436 <edge from-layer="543" from-port="2" to-layer="545" to-port="0"/>
13437 <edge from-layer="544" from-port="0" to-layer="545" to-port="1"/>
13438 <edge from-layer="545" from-port="2" to-layer="547" to-port="0"/>
13439 <edge from-layer="546" from-port="0" to-layer="547" to-port="1"/>
13440 <edge from-layer="547" from-port="2" to-layer="549" to-port="0"/>
13441 <edge from-layer="548" from-port="0" to-layer="549" to-port="1"/>
13442 <edge from-layer="549" from-port="2" to-layer="551" to-port="0"/>
13443 <edge from-layer="550" from-port="0" to-layer="551" to-port="1"/>
13444 <edge from-layer="551" from-port="2" to-layer="553" to-port="0"/>
13445 <edge from-layer="552" from-port="0" to-layer="553" to-port="1"/>
13446 <edge from-layer="553" from-port="2" to-layer="554" to-port="1"/>
13447 <edge from-layer="554" from-port="2" to-layer="556" to-port="0"/>
13448 <edge from-layer="555" from-port="0" to-layer="556" to-port="1"/>
13449 <edge from-layer="556" from-port="2" to-layer="558" to-port="0"/>
13450 <edge from-layer="556" from-port="2" to-layer="573" to-port="0"/>
13451 <edge from-layer="557" from-port="0" to-layer="558" to-port="1"/>
13452 <edge from-layer="558" from-port="2" to-layer="560" to-port="0"/>
13453 <edge from-layer="559" from-port="0" to-layer="560" to-port="1"/>
13454 <edge from-layer="560" from-port="2" to-layer="562" to-port="0"/>
13455 <edge from-layer="561" from-port="0" to-layer="562" to-port="1"/>
13456 <edge from-layer="562" from-port="2" to-layer="564" to-port="0"/>
13457 <edge from-layer="563" from-port="0" to-layer="564" to-port="1"/>
13458 <edge from-layer="564" from-port="2" to-layer="566" to-port="0"/>
13459 <edge from-layer="565" from-port="0" to-layer="566" to-port="1"/>
13460 <edge from-layer="566" from-port="2" to-layer="568" to-port="0"/>
13461 <edge from-layer="567" from-port="0" to-layer="568" to-port="1"/>
13462 <edge from-layer="568" from-port="2" to-layer="570" to-port="0"/>
13463 <edge from-layer="569" from-port="0" to-layer="570" to-port="1"/>
13464 <edge from-layer="570" from-port="2" to-layer="572" to-port="0"/>
13465 <edge from-layer="571" from-port="0" to-layer="572" to-port="1"/>
13466 <edge from-layer="572" from-port="2" to-layer="573" to-port="1"/>
13467 <edge from-layer="573" from-port="2" to-layer="575" to-port="0"/>
13468 <edge from-layer="574" from-port="0" to-layer="575" to-port="1"/>
13469 <edge from-layer="575" from-port="2" to-layer="592" to-port="0"/>
13470 <edge from-layer="575" from-port="2" to-layer="577" to-port="0"/>
13471 <edge from-layer="576" from-port="0" to-layer="577" to-port="1"/>
13472 <edge from-layer="577" from-port="2" to-layer="579" to-port="0"/>
13473 <edge from-layer="578" from-port="0" to-layer="579" to-port="1"/>
13474 <edge from-layer="579" from-port="2" to-layer="581" to-port="0"/>
13475 <edge from-layer="580" from-port="0" to-layer="581" to-port="1"/>
13476 <edge from-layer="581" from-port="2" to-layer="583" to-port="0"/>
13477 <edge from-layer="582" from-port="0" to-layer="583" to-port="1"/>
13478 <edge from-layer="583" from-port="2" to-layer="585" to-port="0"/>
13479 <edge from-layer="584" from-port="0" to-layer="585" to-port="1"/>
13480 <edge from-layer="585" from-port="2" to-layer="587" to-port="0"/>
13481 <edge from-layer="586" from-port="0" to-layer="587" to-port="1"/>
13482 <edge from-layer="587" from-port="2" to-layer="589" to-port="0"/>
13483 <edge from-layer="588" from-port="0" to-layer="589" to-port="1"/>
13484 <edge from-layer="589" from-port="2" to-layer="591" to-port="0"/>
13485 <edge from-layer="590" from-port="0" to-layer="591" to-port="1"/>
13486 <edge from-layer="591" from-port="2" to-layer="592" to-port="1"/>
13487 <edge from-layer="592" from-port="2" to-layer="594" to-port="0"/>
13488 <edge from-layer="593" from-port="0" to-layer="594" to-port="1"/>
13489 <edge from-layer="594" from-port="2" to-layer="611" to-port="0"/>
13490 <edge from-layer="594" from-port="2" to-layer="596" to-port="0"/>
13491 <edge from-layer="595" from-port="0" to-layer="596" to-port="1"/>
13492 <edge from-layer="596" from-port="2" to-layer="598" to-port="0"/>
13493 <edge from-layer="597" from-port="0" to-layer="598" to-port="1"/>
13494 <edge from-layer="598" from-port="2" to-layer="600" to-port="0"/>
13495 <edge from-layer="599" from-port="0" to-layer="600" to-port="1"/>
13496 <edge from-layer="600" from-port="2" to-layer="602" to-port="0"/>
13497 <edge from-layer="601" from-port="0" to-layer="602" to-port="1"/>
13498 <edge from-layer="602" from-port="2" to-layer="604" to-port="0"/>
13499 <edge from-layer="603" from-port="0" to-layer="604" to-port="1"/>
13500 <edge from-layer="604" from-port="2" to-layer="606" to-port="0"/>
13501 <edge from-layer="605" from-port="0" to-layer="606" to-port="1"/>
13502 <edge from-layer="606" from-port="2" to-layer="608" to-port="0"/>
13503 <edge from-layer="607" from-port="0" to-layer="608" to-port="1"/>
13504 <edge from-layer="608" from-port="2" to-layer="610" to-port="0"/>
13505 <edge from-layer="609" from-port="0" to-layer="610" to-port="1"/>
13506 <edge from-layer="610" from-port="2" to-layer="611" to-port="1"/>
13507 <edge from-layer="611" from-port="2" to-layer="613" to-port="0"/>
13508 <edge from-layer="612" from-port="0" to-layer="613" to-port="1"/>
13509 <edge from-layer="613" from-port="2" to-layer="615" to-port="0"/>
13510 <edge from-layer="613" from-port="2" to-layer="630" to-port="0"/>
13511 <edge from-layer="614" from-port="0" to-layer="615" to-port="1"/>
13512 <edge from-layer="615" from-port="2" to-layer="617" to-port="0"/>
13513 <edge from-layer="616" from-port="0" to-layer="617" to-port="1"/>
13514 <edge from-layer="617" from-port="2" to-layer="619" to-port="0"/>
13515 <edge from-layer="618" from-port="0" to-layer="619" to-port="1"/>
13516 <edge from-layer="619" from-port="2" to-layer="621" to-port="0"/>
13517 <edge from-layer="620" from-port="0" to-layer="621" to-port="1"/>
13518 <edge from-layer="621" from-port="2" to-layer="623" to-port="0"/>
13519 <edge from-layer="622" from-port="0" to-layer="623" to-port="1"/>
13520 <edge from-layer="623" from-port="2" to-layer="625" to-port="0"/>
13521 <edge from-layer="624" from-port="0" to-layer="625" to-port="1"/>
13522 <edge from-layer="625" from-port="2" to-layer="627" to-port="0"/>
13523 <edge from-layer="626" from-port="0" to-layer="627" to-port="1"/>
13524 <edge from-layer="627" from-port="2" to-layer="629" to-port="0"/>
13525 <edge from-layer="628" from-port="0" to-layer="629" to-port="1"/>
13526 <edge from-layer="629" from-port="2" to-layer="630" to-port="1"/>
13527 <edge from-layer="630" from-port="2" to-layer="632" to-port="0"/>
13528 <edge from-layer="631" from-port="0" to-layer="632" to-port="1"/>
13529 <edge from-layer="632" from-port="2" to-layer="649" to-port="0"/>
13530 <edge from-layer="632" from-port="2" to-layer="634" to-port="0"/>
13531 <edge from-layer="633" from-port="0" to-layer="634" to-port="1"/>
13532 <edge from-layer="634" from-port="2" to-layer="636" to-port="0"/>
13533 <edge from-layer="635" from-port="0" to-layer="636" to-port="1"/>
13534 <edge from-layer="636" from-port="2" to-layer="638" to-port="0"/>
13535 <edge from-layer="637" from-port="0" to-layer="638" to-port="1"/>
13536 <edge from-layer="638" from-port="2" to-layer="640" to-port="0"/>
13537 <edge from-layer="639" from-port="0" to-layer="640" to-port="1"/>
13538 <edge from-layer="640" from-port="2" to-layer="642" to-port="0"/>
13539 <edge from-layer="641" from-port="0" to-layer="642" to-port="1"/>
13540 <edge from-layer="642" from-port="2" to-layer="644" to-port="0"/>
13541 <edge from-layer="643" from-port="0" to-layer="644" to-port="1"/>
13542 <edge from-layer="644" from-port="2" to-layer="646" to-port="0"/>
13543 <edge from-layer="645" from-port="0" to-layer="646" to-port="1"/>
13544 <edge from-layer="646" from-port="2" to-layer="648" to-port="0"/>
13545 <edge from-layer="647" from-port="0" to-layer="648" to-port="1"/>
13546 <edge from-layer="648" from-port="2" to-layer="649" to-port="1"/>
13547 <edge from-layer="649" from-port="2" to-layer="651" to-port="0"/>
13548 <edge from-layer="650" from-port="0" to-layer="651" to-port="1"/>
13549 <edge from-layer="651" from-port="2" to-layer="653" to-port="0"/>
13550 <edge from-layer="651" from-port="2" to-layer="668" to-port="0"/>
13551 <edge from-layer="652" from-port="0" to-layer="653" to-port="1"/>
13552 <edge from-layer="653" from-port="2" to-layer="655" to-port="0"/>
13553 <edge from-layer="654" from-port="0" to-layer="655" to-port="1"/>
13554 <edge from-layer="655" from-port="2" to-layer="657" to-port="0"/>
13555 <edge from-layer="656" from-port="0" to-layer="657" to-port="1"/>
13556 <edge from-layer="657" from-port="2" to-layer="659" to-port="0"/>
13557 <edge from-layer="658" from-port="0" to-layer="659" to-port="1"/>
13558 <edge from-layer="659" from-port="2" to-layer="661" to-port="0"/>
13559 <edge from-layer="660" from-port="0" to-layer="661" to-port="1"/>
13560 <edge from-layer="661" from-port="2" to-layer="663" to-port="0"/>
13561 <edge from-layer="662" from-port="0" to-layer="663" to-port="1"/>
13562 <edge from-layer="663" from-port="2" to-layer="665" to-port="0"/>
13563 <edge from-layer="664" from-port="0" to-layer="665" to-port="1"/>
13564 <edge from-layer="665" from-port="2" to-layer="667" to-port="0"/>
13565 <edge from-layer="666" from-port="0" to-layer="667" to-port="1"/>
13566 <edge from-layer="667" from-port="2" to-layer="668" to-port="1"/>
13567 <edge from-layer="668" from-port="2" to-layer="670" to-port="0"/>
13568 <edge from-layer="669" from-port="0" to-layer="670" to-port="1"/>
13569 <edge from-layer="670" from-port="2" to-layer="672" to-port="0"/>
13570 <edge from-layer="670" from-port="2" to-layer="687" to-port="0"/>
13571 <edge from-layer="671" from-port="0" to-layer="672" to-port="1"/>
13572 <edge from-layer="672" from-port="2" to-layer="674" to-port="0"/>
13573 <edge from-layer="673" from-port="0" to-layer="674" to-port="1"/>
13574 <edge from-layer="674" from-port="2" to-layer="676" to-port="0"/>
13575 <edge from-layer="675" from-port="0" to-layer="676" to-port="1"/>
13576 <edge from-layer="676" from-port="2" to-layer="678" to-port="0"/>
13577 <edge from-layer="677" from-port="0" to-layer="678" to-port="1"/>
13578 <edge from-layer="678" from-port="2" to-layer="680" to-port="0"/>
13579 <edge from-layer="679" from-port="0" to-layer="680" to-port="1"/>
13580 <edge from-layer="680" from-port="2" to-layer="682" to-port="0"/>
13581 <edge from-layer="681" from-port="0" to-layer="682" to-port="1"/>
13582 <edge from-layer="682" from-port="2" to-layer="684" to-port="0"/>
13583 <edge from-layer="683" from-port="0" to-layer="684" to-port="1"/>
13584 <edge from-layer="684" from-port="2" to-layer="686" to-port="0"/>
13585 <edge from-layer="685" from-port="0" to-layer="686" to-port="1"/>
13586 <edge from-layer="686" from-port="2" to-layer="687" to-port="1"/>
13587 <edge from-layer="687" from-port="2" to-layer="689" to-port="0"/>
13588 <edge from-layer="688" from-port="0" to-layer="689" to-port="1"/>
13589 <edge from-layer="689" from-port="2" to-layer="706" to-port="0"/>
13590 <edge from-layer="689" from-port="2" to-layer="691" to-port="0"/>
13591 <edge from-layer="690" from-port="0" to-layer="691" to-port="1"/>
13592 <edge from-layer="691" from-port="2" to-layer="693" to-port="0"/>
13593 <edge from-layer="692" from-port="0" to-layer="693" to-port="1"/>
13594 <edge from-layer="693" from-port="2" to-layer="695" to-port="0"/>
13595 <edge from-layer="694" from-port="0" to-layer="695" to-port="1"/>
13596 <edge from-layer="695" from-port="2" to-layer="697" to-port="0"/>
13597 <edge from-layer="696" from-port="0" to-layer="697" to-port="1"/>
13598 <edge from-layer="697" from-port="2" to-layer="699" to-port="0"/>
13599 <edge from-layer="698" from-port="0" to-layer="699" to-port="1"/>
13600 <edge from-layer="699" from-port="2" to-layer="701" to-port="0"/>
13601 <edge from-layer="700" from-port="0" to-layer="701" to-port="1"/>
13602 <edge from-layer="701" from-port="2" to-layer="703" to-port="0"/>
13603 <edge from-layer="702" from-port="0" to-layer="703" to-port="1"/>
13604 <edge from-layer="703" from-port="2" to-layer="705" to-port="0"/>
13605 <edge from-layer="704" from-port="0" to-layer="705" to-port="1"/>
13606 <edge from-layer="705" from-port="2" to-layer="706" to-port="1"/>
13607 <edge from-layer="706" from-port="2" to-layer="708" to-port="0"/>
13608 <edge from-layer="707" from-port="0" to-layer="708" to-port="1"/>
13609 <edge from-layer="708" from-port="2" to-layer="730" to-port="0"/>
13610 <edge from-layer="708" from-port="2" to-layer="718" to-port="0"/>
13611 <edge from-layer="708" from-port="2" to-layer="710" to-port="0"/>
13612 <edge from-layer="709" from-port="0" to-layer="710" to-port="1"/>
13613 <edge from-layer="710" from-port="2" to-layer="712" to-port="0"/>
13614 <edge from-layer="711" from-port="0" to-layer="712" to-port="1"/>
13615 <edge from-layer="712" from-port="2" to-layer="714" to-port="0"/>
13616 <edge from-layer="713" from-port="0" to-layer="714" to-port="1"/>
13617 <edge from-layer="714" from-port="2" to-layer="716" to-port="0"/>
13618 <edge from-layer="715" from-port="0" to-layer="716" to-port="1"/>
13619 <edge from-layer="716" from-port="2" to-layer="743" to-port="0"/>
13620 <edge from-layer="717" from-port="0" to-layer="718" to-port="1"/>
13621 <edge from-layer="718" from-port="2" to-layer="720" to-port="0"/>
13622 <edge from-layer="719" from-port="0" to-layer="720" to-port="1"/>
13623 <edge from-layer="720" from-port="2" to-layer="722" to-port="0"/>
13624 <edge from-layer="721" from-port="0" to-layer="722" to-port="1"/>
13625 <edge from-layer="722" from-port="2" to-layer="724" to-port="0"/>
13626 <edge from-layer="723" from-port="0" to-layer="724" to-port="1"/>
13627 <edge from-layer="724" from-port="2" to-layer="726" to-port="0"/>
13628 <edge from-layer="725" from-port="0" to-layer="726" to-port="1"/>
13629 <edge from-layer="726" from-port="2" to-layer="727" to-port="0"/>
13630 <edge from-layer="727" from-port="1" to-layer="729" to-port="0"/>
13631 <edge from-layer="728" from-port="0" to-layer="729" to-port="1"/>
13632 <edge from-layer="729" from-port="2" to-layer="743" to-port="1"/>
13633 <edge from-layer="730" from-port="1" to-layer="734" to-port="0"/>
13634 <edge from-layer="731" from-port="0" to-layer="734" to-port="1"/>
13635 <edge from-layer="732" from-port="0" to-layer="734" to-port="2"/>
13636 <edge from-layer="733" from-port="0" to-layer="734" to-port="3"/>
13637 <edge from-layer="734" from-port="4" to-layer="740" to-port="0"/>
13638 <edge from-layer="735" from-port="1" to-layer="739" to-port="0"/>
13639 <edge from-layer="736" from-port="0" to-layer="739" to-port="1"/>
13640 <edge from-layer="737" from-port="0" to-layer="739" to-port="2"/>
13641 <edge from-layer="738" from-port="0" to-layer="739" to-port="3"/>
13642 <edge from-layer="739" from-port="4" to-layer="740" to-port="1"/>
13643 <edge from-layer="740" from-port="2" to-layer="742" to-port="0"/>
13644 <edge from-layer="741" from-port="0" to-layer="742" to-port="1"/>
13645 <edge from-layer="742" from-port="2" to-layer="743" to-port="2"/>
13646 <edge from-layer="743" from-port="3" to-layer="744" to-port="0"/>
13647 </edges>
13648 <meta_data>
13649 <MO_version value="2021.4.0-3827-c5b65f2cb1d-releases/2021/4"/>
13650 <cli_parameters>
13651 <caffe_parser_path value="DIR"/>
13652 <data_type value="FP32"/>
13653 <disable_nhwc_to_nchw value="False"/>
13654 <disable_omitting_optional value="False"/>
13655 <disable_resnet_optimization value="False"/>
13656 <disable_weights_compression value="False"/>
13657 <enable_concat_optimization value="False"/>
13658 <enable_flattening_nested_params value="False"/>
13659 <enable_ssd_gluoncv value="False"/>
13660 <extensions value="DIR"/>
13661 <framework value="caffe"/>
13662 <freeze_placeholder_with_value value="{}"/>
13663 <generate_deprecated_IR_V7 value="False"/>
13664 <input value="data"/>
13665 <input_model value="DIR/rmnet_lrelu_pd_ssd.caffemodel"/>
13666 <input_model_is_text value="False"/>
13667 <input_proto value="DIR/rmnet_lrelu_pd_ssd.prototxt"/>
13668 <input_shape value="[1,3,320,544]"/>
13669 <k value="DIR/CustomLayersMapping.xml"/>
13670 <keep_shape_ops value="True"/>
13671 <legacy_ir_generation value="False"/>
13672 <legacy_mxnet_model value="False"/>
13673 <log_level value="ERROR"/>
13674 <mean_scale_values value="{}"/>
13675 <mean_values value="()"/>
13676 <model_name value="person-detection-retail-0013"/>
13677 <output value="['detection_out']"/>
13678 <output_dir value="DIR"/>
13679 <placeholder_data_types value="{}"/>
13680 <placeholder_shapes value="{'data': array([ 1, 3, 320, 544])}"/>
13681 <progress value="False"/>
13682 <remove_memory value="False"/>
13683 <remove_output_softmax value="False"/>
13684 <reverse_input_channels value="False"/>
13685 <save_params_from_nd value="False"/>
13686 <scale_values value="()"/>
13687 <silent value="False"/>
13688 <static_shape value="False"/>
13689 <stream_output value="False"/>
13690 <transform value=""/>
13691 <unset unset_cli_parameters="batch, counts, disable_fusing, disable_gfusing, finegrain_fusing, input_checkpoint, input_meta_graph, input_symbol, mean_file, mean_file_offsets, move_to_preprocess, nd_prefix_name, pretrained_model_name, saved_model_dir, saved_model_tags, scale, tensorboard_logdir, tensorflow_custom_layer_libraries, tensorflow_custom_operations_config_update, tensorflow_object_detection_api_pipeline_config, tensorflow_use_custom_operations_config, transformations_config"/>
13692 </cli_parameters>
13693 </meta_data>
13694</net>