blob: 13011e26e4d7ea23cc4ffcdb6c5bf8d0ce41c9b8 [file] [log] [blame]
/*
* Routing Information Base header
* Copyright (C) 1997 Kunihiro Ishiguro
*
* This file is part of GNU Zebra.
*
* GNU Zebra is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* GNU Zebra is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Zebra; see the file COPYING. If not, write to the Free
* Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#ifndef _ZEBRA_RIB_H
#define _ZEBRA_RIB_H
#include "prefix.h"
#include "table.h"
#include "queue.h"
#define DISTANCE_INFINITY 255
/* Routing information base. */
union g_addr {
struct in_addr ipv4;
#ifdef HAVE_IPV6
struct in6_addr ipv6;
#endif /* HAVE_IPV6 */
};
struct rib
{
/* Link list. */
struct rib *next;
struct rib *prev;
/* Nexthop structure */
struct nexthop *nexthop;
/* Refrence count. */
unsigned long refcnt;
/* Uptime. */
time_t uptime;
/* Type fo this route. */
int type;
/* Which routing table */
int table;
/* Metric */
u_int32_t metric;
/* Distance. */
u_char distance;
/* Flags of this route.
* This flag's definition is in lib/zebra.h ZEBRA_FLAG_* and is exposed
* to clients via Zserv
*/
u_char flags;
/* RIB internal status */
u_char status;
#define RIB_ENTRY_REMOVED (1 << 0)
/* Nexthop information. */
u_char nexthop_num;
u_char nexthop_active_num;
u_char nexthop_fib_num;
};
/* meta-queue structure:
* sub-queue 0: connected, kernel
* sub-queue 1: static
* sub-queue 2: RIP, RIPng, OSPF, OSPF6, IS-IS
* sub-queue 3: iBGP, eBGP
* sub-queue 4: any other origin (if any)
*/
#define MQ_SIZE 5
struct meta_queue
{
struct list *subq[MQ_SIZE];
u_int32_t size; /* sum of lengths of all subqueues */
};
/*
* Structure that represents a single destination (prefix).
*/
typedef struct rib_dest_t_
{
/*
* Back pointer to the route node for this destination. This helps
* us get to the prefix that this structure is for.
*/
struct route_node *rnode;
/*
* Doubly-linked list of routes for this prefix.
*/
struct rib *routes;
/*
* Flags, see below.
*/
u_int32_t flags;
/*
* Linkage to put dest on the FPM processing queue.
*/
TAILQ_ENTRY(rib_dest_t_) fpm_q_entries;
} rib_dest_t;
#define RIB_ROUTE_QUEUED(x) (1 << (x))
/*
* The maximum qindex that can be used.
*/
#define ZEBRA_MAX_QINDEX (MQ_SIZE - 1)
/*
* This flag indicates that a given prefix has been 'advertised' to
* the FPM to be installed in the forwarding plane.
*/
#define RIB_DEST_SENT_TO_FPM (1 << (ZEBRA_MAX_QINDEX + 1))
/*
* This flag is set when we need to send an update to the FPM about a
* dest.
*/
#define RIB_DEST_UPDATE_FPM (1 << (ZEBRA_MAX_QINDEX + 2))
/*
* Macro to iterate over each route for a destination (prefix).
*/
#define RIB_DEST_FOREACH_ROUTE(dest, rib) \
for ((rib) = (dest) ? (dest)->routes : NULL; (rib); (rib) = (rib)->next)
/*
* Same as above, but allows the current node to be unlinked.
*/
#define RIB_DEST_FOREACH_ROUTE_SAFE(dest, rib, next) \
for ((rib) = (dest) ? (dest)->routes : NULL; \
(rib) && ((next) = (rib)->next, 1); \
(rib) = (next))
#define RNODE_FOREACH_RIB(rn, rib) \
RIB_DEST_FOREACH_ROUTE (rib_dest_from_rnode (rn), rib)
#define RNODE_FOREACH_RIB_SAFE(rn, rib, next) \
RIB_DEST_FOREACH_ROUTE_SAFE (rib_dest_from_rnode (rn), rib, next)
/* Static route information. */
struct static_ipv4
{
/* For linked list. */
struct static_ipv4 *prev;
struct static_ipv4 *next;
/* Administrative distance. */
u_char distance;
/* Flag for this static route's type. */
u_char type;
#define STATIC_IPV4_GATEWAY 1
#define STATIC_IPV4_IFNAME 2
#define STATIC_IPV4_BLACKHOLE 3
/* Nexthop value. */
union
{
struct in_addr ipv4;
char *ifname;
} gate;
/* bit flags */
u_char flags;
/*
see ZEBRA_FLAG_REJECT
ZEBRA_FLAG_BLACKHOLE
*/
};
#ifdef HAVE_IPV6
/* Static route information. */
struct static_ipv6
{
/* For linked list. */
struct static_ipv6 *prev;
struct static_ipv6 *next;
/* Administrative distance. */
u_char distance;
/* Flag for this static route's type. */
u_char type;
#define STATIC_IPV6_GATEWAY 1
#define STATIC_IPV6_GATEWAY_IFNAME 2
#define STATIC_IPV6_IFNAME 3
/* Nexthop value. */
struct in6_addr ipv6;
char *ifname;
/* bit flags */
u_char flags;
/*
see ZEBRA_FLAG_REJECT
ZEBRA_FLAG_BLACKHOLE
*/
};
#endif /* HAVE_IPV6 */
enum nexthop_types_t
{
NEXTHOP_TYPE_IFINDEX = 1, /* Directly connected. */
NEXTHOP_TYPE_IFNAME, /* Interface route. */
NEXTHOP_TYPE_IPV4, /* IPv4 nexthop. */
NEXTHOP_TYPE_IPV4_IFINDEX, /* IPv4 nexthop with ifindex. */
NEXTHOP_TYPE_IPV4_IFNAME, /* IPv4 nexthop with ifname. */
NEXTHOP_TYPE_IPV6, /* IPv6 nexthop. */
NEXTHOP_TYPE_IPV6_IFINDEX, /* IPv6 nexthop with ifindex. */
NEXTHOP_TYPE_IPV6_IFNAME, /* IPv6 nexthop with ifname. */
NEXTHOP_TYPE_BLACKHOLE, /* Null0 nexthop. */
};
/* Nexthop structure. */
struct nexthop
{
struct nexthop *next;
struct nexthop *prev;
/* Interface index. */
char *ifname;
unsigned int ifindex;
enum nexthop_types_t type;
u_char flags;
#define NEXTHOP_FLAG_ACTIVE (1 << 0) /* This nexthop is alive. */
#define NEXTHOP_FLAG_FIB (1 << 1) /* FIB nexthop. */
#define NEXTHOP_FLAG_RECURSIVE (1 << 2) /* Recursive nexthop. */
#define NEXTHOP_FLAG_ONLINK (1 << 3) /* Nexthop should be installed onlink. */
/* Nexthop address */
union g_addr gate;
union g_addr src;
/* Nexthops obtained by recursive resolution.
*
* If the nexthop struct needs to be resolved recursively,
* NEXTHOP_FLAG_RECURSIVE will be set in flags and the nexthops
* obtained by recursive resolution will be added to `resolved'.
* Only one level of recursive resolution is currently supported. */
struct nexthop *resolved;
};
/* The following for loop allows to iterate over the nexthop
* structure of routes.
*
* We have to maintain quite a bit of state:
*
* nexthop: The pointer to the current nexthop, either in the
* top-level chain or in the resolved chain of ni.
* tnexthop: The pointer to the current nexthop in the top-level
* nexthop chain.
* recursing: Information if nh currently is in the top-level chain
* (0) or in a resolved chain (1).
*
* Initialization: Set `nexthop' and `tnexthop' to the head of the
* top-level chain. As nexthop is in the top level chain, set recursing
* to 0.
*
* Iteration check: Check that the `nexthop' pointer is not NULL.
*
* Iteration step: This is the tricky part. Check if `nexthop' has
* NEXTHOP_FLAG_RECURSIVE set. If yes, this implies that `nexthop' is in
* the top level chain and has at least one nexthop attached to
* `nexthop->resolved'. As we want to descend into `nexthop->resolved',
* set `recursing' to 1 and set `nexthop' to `nexthop->resolved'.
* `tnexthop' is left alone in that case so we can remember which nexthop
* in the top level chain we are currently handling.
*
* If NEXTHOP_FLAG_RECURSIVE is not set, `nexthop' will progress in its
* current chain. If we are recursing, `nexthop' will be set to
* `nexthop->next' and `tnexthop' will be left alone. If we are not
* recursing, both `tnexthop' and `nexthop' will be set to `nexthop->next'
* as we are progressing in the top level chain.
* If we encounter `nexthop->next == NULL', we will clear the `recursing'
* flag as we arived either at the end of the resolved chain or at the end
* of the top level chain. In both cases, we set `tnexthop' and `nexthop'
* to `tnexthop->next', progressing to the next position in the top-level
* chain and possibly to its end marked by NULL.
*/
#define ALL_NEXTHOPS_RO(head, nexthop, tnexthop, recursing) \
(tnexthop) = (nexthop) = (head), (recursing) = 0; \
(nexthop); \
(nexthop) = CHECK_FLAG((nexthop)->flags, NEXTHOP_FLAG_RECURSIVE) \
? (((recursing) = 1), (nexthop)->resolved) \
: ((nexthop)->next ? ((recursing) ? (nexthop)->next \
: ((tnexthop) = (nexthop)->next)) \
: (((recursing) = 0),((tnexthop) = (tnexthop)->next)))
/* Routing table instance. */
struct vrf
{
/* Identifier. This is same as routing table vector index. */
u_int32_t id;
/* Routing table name. */
char *name;
/* Description. */
char *desc;
/* FIB identifier. */
u_char fib_id;
/* Routing table. */
struct route_table *table[AFI_MAX][SAFI_MAX];
/* Static route configuration. */
struct route_table *stable[AFI_MAX][SAFI_MAX];
};
/*
* rib_table_info_t
*
* Structure that is hung off of a route_table that holds information about
* the table.
*/
typedef struct rib_table_info_t_
{
/*
* Back pointer to vrf.
*/
struct vrf *vrf;
afi_t afi;
safi_t safi;
} rib_table_info_t;
typedef enum
{
RIB_TABLES_ITER_S_INIT,
RIB_TABLES_ITER_S_ITERATING,
RIB_TABLES_ITER_S_DONE
} rib_tables_iter_state_t;
/*
* Structure that holds state for iterating over all tables in the
* Routing Information Base.
*/
typedef struct rib_tables_iter_t_
{
uint32_t vrf_id;
int afi_safi_ix;
rib_tables_iter_state_t state;
} rib_tables_iter_t;
extern const char *nexthop_type_to_str (enum nexthop_types_t nh_type);
extern struct nexthop *nexthop_ifindex_add (struct rib *, unsigned int);
extern struct nexthop *nexthop_ifname_add (struct rib *, char *);
extern struct nexthop *nexthop_blackhole_add (struct rib *);
extern struct nexthop *nexthop_ipv4_add (struct rib *, struct in_addr *,
struct in_addr *);
extern struct nexthop *nexthop_ipv4_ifindex_add (struct rib *,
struct in_addr *,
struct in_addr *,
unsigned int);
extern int nexthop_has_fib_child(struct nexthop *);
extern void rib_lookup_and_dump (struct prefix_ipv4 *);
extern void rib_lookup_and_pushup (struct prefix_ipv4 *);
#define rib_dump(prefix ,rib) _rib_dump(__func__, prefix, rib)
extern void _rib_dump (const char *,
union prefix46constptr, const struct rib *);
extern int rib_lookup_ipv4_route (struct prefix_ipv4 *, union sockunion *);
#define ZEBRA_RIB_LOOKUP_ERROR -1
#define ZEBRA_RIB_FOUND_EXACT 0
#define ZEBRA_RIB_FOUND_NOGATE 1
#define ZEBRA_RIB_FOUND_CONNECTED 2
#define ZEBRA_RIB_NOTFOUND 3
#ifdef HAVE_IPV6
extern struct nexthop *nexthop_ipv6_add (struct rib *, struct in6_addr *);
#endif /* HAVE_IPV6 */
extern struct vrf *vrf_lookup (u_int32_t);
extern struct route_table *vrf_table (afi_t afi, safi_t safi, u_int32_t id);
extern struct route_table *vrf_static_table (afi_t afi, safi_t safi, u_int32_t id);
/* NOTE:
* All rib_add_ipv[46]* functions will not just add prefix into RIB, but
* also implicitly withdraw equal prefix of same type. */
extern int rib_add_ipv4 (int type, int flags, struct prefix_ipv4 *p,
struct in_addr *gate, struct in_addr *src,
unsigned int ifindex, u_int32_t vrf_id,
u_int32_t, u_char, safi_t);
extern int rib_add_ipv4_multipath (struct prefix_ipv4 *, struct rib *, safi_t);
extern int rib_delete_ipv4 (int type, int flags, struct prefix_ipv4 *p,
struct in_addr *gate, unsigned int ifindex,
u_int32_t, safi_t safi);
extern struct rib *rib_match_ipv4 (struct in_addr);
extern struct rib *rib_match_ipv4_safi (struct in_addr addr, safi_t safi);
extern struct rib *rib_lookup_ipv4 (struct prefix_ipv4 *);
extern void rib_update (void);
extern void rib_weed_tables (void);
extern void rib_sweep_route (void);
extern void rib_close (void);
extern void rib_init (void);
extern unsigned long rib_score_proto (u_char proto);
extern int
static_add_ipv4 (struct prefix *p, struct in_addr *gate, const char *ifname,
u_char flags, u_char distance, u_int32_t vrf_id);
extern int
static_delete_ipv4 (struct prefix *p, struct in_addr *gate, const char *ifname,
u_char distance, u_int32_t vrf_id);
#ifdef HAVE_IPV6
extern int
rib_add_ipv6 (int type, int flags, struct prefix_ipv6 *p,
struct in6_addr *gate, unsigned int ifindex, u_int32_t vrf_id,
u_int32_t metric, u_char distance, safi_t safi);
extern int
rib_delete_ipv6 (int type, int flags, struct prefix_ipv6 *p,
struct in6_addr *gate, unsigned int ifindex, u_int32_t vrf_id, safi_t safi);
extern struct rib *rib_lookup_ipv6 (struct in6_addr *);
extern struct rib *rib_match_ipv6 (struct in6_addr *);
extern struct route_table *rib_table_ipv6;
extern int
static_add_ipv6 (struct prefix *p, u_char type, struct in6_addr *gate,
const char *ifname, u_char flags, u_char distance,
u_int32_t vrf_id);
extern int
static_delete_ipv6 (struct prefix *p, u_char type, struct in6_addr *gate,
const char *ifname, u_char distance, u_int32_t vrf_id);
#endif /* HAVE_IPV6 */
extern int rib_gc_dest (struct route_node *rn);
extern struct route_table *rib_tables_iter_next (rib_tables_iter_t *iter);
/*
* Inline functions.
*/
/*
* rib_table_info
*/
static inline rib_table_info_t *
rib_table_info (struct route_table *table)
{
return (rib_table_info_t *) table->info;
}
/*
* rib_dest_from_rnode
*/
static inline rib_dest_t *
rib_dest_from_rnode (struct route_node *rn)
{
return (rib_dest_t *) rn->info;
}
/*
* rnode_to_ribs
*
* Returns a pointer to the list of routes corresponding to the given
* route_node.
*/
static inline struct rib *
rnode_to_ribs (struct route_node *rn)
{
rib_dest_t *dest;
dest = rib_dest_from_rnode (rn);
if (!dest)
return NULL;
return dest->routes;
}
/*
* rib_dest_prefix
*/
static inline struct prefix *
rib_dest_prefix (rib_dest_t *dest)
{
return &dest->rnode->p;
}
/*
* rib_dest_af
*
* Returns the address family that the destination is for.
*/
static inline u_char
rib_dest_af (rib_dest_t *dest)
{
return dest->rnode->p.family;
}
/*
* rib_dest_table
*/
static inline struct route_table *
rib_dest_table (rib_dest_t *dest)
{
return dest->rnode->table;
}
/*
* rib_dest_vrf
*/
static inline struct vrf *
rib_dest_vrf (rib_dest_t *dest)
{
return rib_table_info (rib_dest_table (dest))->vrf;
}
/*
* rib_tables_iter_init
*/
static inline void
rib_tables_iter_init (rib_tables_iter_t *iter)
{
memset (iter, 0, sizeof (*iter));
iter->state = RIB_TABLES_ITER_S_INIT;
}
/*
* rib_tables_iter_started
*
* Returns TRUE if this iterator has started iterating over the set of
* tables.
*/
static inline int
rib_tables_iter_started (rib_tables_iter_t *iter)
{
return iter->state != RIB_TABLES_ITER_S_INIT;
}
/*
* rib_tables_iter_cleanup
*/
static inline void
rib_tables_iter_cleanup (rib_tables_iter_t *iter)
{
iter->state = RIB_TABLES_ITER_S_DONE;
}
#endif /*_ZEBRA_RIB_H */