Matteo Scandolo | 9a2772a | 2018-11-19 14:56:26 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * This source code is licensed under both the BSD-style license (found in the |
| 6 | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| 7 | * in the COPYING file in the root directory of this source tree). |
| 8 | * You may select, at your option, one of the above-listed licenses. |
| 9 | */ |
| 10 | |
| 11 | |
| 12 | /*-************************************** |
| 13 | * Tuning parameters |
| 14 | ****************************************/ |
| 15 | #define MINRATIO 4 /* minimum nb of apparition to be selected in dictionary */ |
| 16 | #define ZDICT_MAX_SAMPLES_SIZE (2000U << 20) |
| 17 | #define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO) |
| 18 | |
| 19 | |
| 20 | /*-************************************** |
| 21 | * Compiler Options |
| 22 | ****************************************/ |
| 23 | /* Unix Large Files support (>4GB) */ |
| 24 | #define _FILE_OFFSET_BITS 64 |
| 25 | #if (defined(__sun__) && (!defined(__LP64__))) /* Sun Solaris 32-bits requires specific definitions */ |
| 26 | # define _LARGEFILE_SOURCE |
| 27 | #elif ! defined(__LP64__) /* No point defining Large file for 64 bit */ |
| 28 | # define _LARGEFILE64_SOURCE |
| 29 | #endif |
| 30 | |
| 31 | |
| 32 | /*-************************************* |
| 33 | * Dependencies |
| 34 | ***************************************/ |
| 35 | #include <stdlib.h> /* malloc, free */ |
| 36 | #include <string.h> /* memset */ |
| 37 | #include <stdio.h> /* fprintf, fopen, ftello64 */ |
| 38 | #include <time.h> /* clock */ |
| 39 | |
| 40 | #include "mem.h" /* read */ |
| 41 | #include "fse.h" /* FSE_normalizeCount, FSE_writeNCount */ |
| 42 | #define HUF_STATIC_LINKING_ONLY |
| 43 | #include "huf.h" /* HUF_buildCTable, HUF_writeCTable */ |
| 44 | #include "zstd_internal.h" /* includes zstd.h */ |
| 45 | #include "xxhash.h" /* XXH64 */ |
| 46 | #include "divsufsort.h" |
| 47 | #ifndef ZDICT_STATIC_LINKING_ONLY |
| 48 | # define ZDICT_STATIC_LINKING_ONLY |
| 49 | #endif |
| 50 | #include "zdict.h" |
| 51 | |
| 52 | |
| 53 | /*-************************************* |
| 54 | * Constants |
| 55 | ***************************************/ |
| 56 | #define KB *(1 <<10) |
| 57 | #define MB *(1 <<20) |
| 58 | #define GB *(1U<<30) |
| 59 | |
| 60 | #define DICTLISTSIZE_DEFAULT 10000 |
| 61 | |
| 62 | #define NOISELENGTH 32 |
| 63 | |
| 64 | static const int g_compressionLevel_default = 3; |
| 65 | static const U32 g_selectivity_default = 9; |
| 66 | |
| 67 | |
| 68 | /*-************************************* |
| 69 | * Console display |
| 70 | ***************************************/ |
| 71 | #define DISPLAY(...) { fprintf(stderr, __VA_ARGS__); fflush( stderr ); } |
| 72 | #define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */ |
| 73 | |
| 74 | static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; } |
| 75 | |
| 76 | static void ZDICT_printHex(const void* ptr, size_t length) |
| 77 | { |
| 78 | const BYTE* const b = (const BYTE*)ptr; |
| 79 | size_t u; |
| 80 | for (u=0; u<length; u++) { |
| 81 | BYTE c = b[u]; |
| 82 | if (c<32 || c>126) c = '.'; /* non-printable char */ |
| 83 | DISPLAY("%c", c); |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | |
| 88 | /*-******************************************************** |
| 89 | * Helper functions |
| 90 | **********************************************************/ |
| 91 | unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); } |
| 92 | |
| 93 | const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); } |
| 94 | |
| 95 | unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize) |
| 96 | { |
| 97 | if (dictSize < 8) return 0; |
| 98 | if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0; |
| 99 | return MEM_readLE32((const char*)dictBuffer + 4); |
| 100 | } |
| 101 | |
| 102 | |
| 103 | /*-******************************************************** |
| 104 | * Dictionary training functions |
| 105 | **********************************************************/ |
| 106 | static unsigned ZDICT_NbCommonBytes (size_t val) |
| 107 | { |
| 108 | if (MEM_isLittleEndian()) { |
| 109 | if (MEM_64bits()) { |
| 110 | # if defined(_MSC_VER) && defined(_WIN64) |
| 111 | unsigned long r = 0; |
| 112 | _BitScanForward64( &r, (U64)val ); |
| 113 | return (unsigned)(r>>3); |
| 114 | # elif defined(__GNUC__) && (__GNUC__ >= 3) |
| 115 | return (__builtin_ctzll((U64)val) >> 3); |
| 116 | # else |
| 117 | static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 }; |
| 118 | return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58]; |
| 119 | # endif |
| 120 | } else { /* 32 bits */ |
| 121 | # if defined(_MSC_VER) |
| 122 | unsigned long r=0; |
| 123 | _BitScanForward( &r, (U32)val ); |
| 124 | return (unsigned)(r>>3); |
| 125 | # elif defined(__GNUC__) && (__GNUC__ >= 3) |
| 126 | return (__builtin_ctz((U32)val) >> 3); |
| 127 | # else |
| 128 | static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 }; |
| 129 | return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27]; |
| 130 | # endif |
| 131 | } |
| 132 | } else { /* Big Endian CPU */ |
| 133 | if (MEM_64bits()) { |
| 134 | # if defined(_MSC_VER) && defined(_WIN64) |
| 135 | unsigned long r = 0; |
| 136 | _BitScanReverse64( &r, val ); |
| 137 | return (unsigned)(r>>3); |
| 138 | # elif defined(__GNUC__) && (__GNUC__ >= 3) |
| 139 | return (__builtin_clzll(val) >> 3); |
| 140 | # else |
| 141 | unsigned r; |
| 142 | const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */ |
| 143 | if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; } |
| 144 | if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; } |
| 145 | r += (!val); |
| 146 | return r; |
| 147 | # endif |
| 148 | } else { /* 32 bits */ |
| 149 | # if defined(_MSC_VER) |
| 150 | unsigned long r = 0; |
| 151 | _BitScanReverse( &r, (unsigned long)val ); |
| 152 | return (unsigned)(r>>3); |
| 153 | # elif defined(__GNUC__) && (__GNUC__ >= 3) |
| 154 | return (__builtin_clz((U32)val) >> 3); |
| 155 | # else |
| 156 | unsigned r; |
| 157 | if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; } |
| 158 | r += (!val); |
| 159 | return r; |
| 160 | # endif |
| 161 | } } |
| 162 | } |
| 163 | |
| 164 | |
| 165 | /*! ZDICT_count() : |
| 166 | Count the nb of common bytes between 2 pointers. |
| 167 | Note : this function presumes end of buffer followed by noisy guard band. |
| 168 | */ |
| 169 | static size_t ZDICT_count(const void* pIn, const void* pMatch) |
| 170 | { |
| 171 | const char* const pStart = (const char*)pIn; |
| 172 | for (;;) { |
| 173 | size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); |
| 174 | if (!diff) { |
| 175 | pIn = (const char*)pIn+sizeof(size_t); |
| 176 | pMatch = (const char*)pMatch+sizeof(size_t); |
| 177 | continue; |
| 178 | } |
| 179 | pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff); |
| 180 | return (size_t)((const char*)pIn - pStart); |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | |
| 185 | typedef struct { |
| 186 | U32 pos; |
| 187 | U32 length; |
| 188 | U32 savings; |
| 189 | } dictItem; |
| 190 | |
| 191 | static void ZDICT_initDictItem(dictItem* d) |
| 192 | { |
| 193 | d->pos = 1; |
| 194 | d->length = 0; |
| 195 | d->savings = (U32)(-1); |
| 196 | } |
| 197 | |
| 198 | |
| 199 | #define LLIMIT 64 /* heuristic determined experimentally */ |
| 200 | #define MINMATCHLENGTH 7 /* heuristic determined experimentally */ |
| 201 | static dictItem ZDICT_analyzePos( |
| 202 | BYTE* doneMarks, |
| 203 | const int* suffix, U32 start, |
| 204 | const void* buffer, U32 minRatio, U32 notificationLevel) |
| 205 | { |
| 206 | U32 lengthList[LLIMIT] = {0}; |
| 207 | U32 cumulLength[LLIMIT] = {0}; |
| 208 | U32 savings[LLIMIT] = {0}; |
| 209 | const BYTE* b = (const BYTE*)buffer; |
| 210 | size_t maxLength = LLIMIT; |
| 211 | size_t pos = suffix[start]; |
| 212 | U32 end = start; |
| 213 | dictItem solution; |
| 214 | |
| 215 | /* init */ |
| 216 | memset(&solution, 0, sizeof(solution)); |
| 217 | doneMarks[pos] = 1; |
| 218 | |
| 219 | /* trivial repetition cases */ |
| 220 | if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2)) |
| 221 | ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3)) |
| 222 | ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) { |
| 223 | /* skip and mark segment */ |
| 224 | U16 const pattern16 = MEM_read16(b+pos+4); |
| 225 | U32 u, patternEnd = 6; |
| 226 | while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ; |
| 227 | if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++; |
| 228 | for (u=1; u<patternEnd; u++) |
| 229 | doneMarks[pos+u] = 1; |
| 230 | return solution; |
| 231 | } |
| 232 | |
| 233 | /* look forward */ |
| 234 | { size_t length; |
| 235 | do { |
| 236 | end++; |
| 237 | length = ZDICT_count(b + pos, b + suffix[end]); |
| 238 | } while (length >= MINMATCHLENGTH); |
| 239 | } |
| 240 | |
| 241 | /* look backward */ |
| 242 | { size_t length; |
| 243 | do { |
| 244 | length = ZDICT_count(b + pos, b + *(suffix+start-1)); |
| 245 | if (length >=MINMATCHLENGTH) start--; |
| 246 | } while(length >= MINMATCHLENGTH); |
| 247 | } |
| 248 | |
| 249 | /* exit if not found a minimum nb of repetitions */ |
| 250 | if (end-start < minRatio) { |
| 251 | U32 idx; |
| 252 | for(idx=start; idx<end; idx++) |
| 253 | doneMarks[suffix[idx]] = 1; |
| 254 | return solution; |
| 255 | } |
| 256 | |
| 257 | { int i; |
| 258 | U32 searchLength; |
| 259 | U32 refinedStart = start; |
| 260 | U32 refinedEnd = end; |
| 261 | |
| 262 | DISPLAYLEVEL(4, "\n"); |
| 263 | DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u ", (U32)(end-start), MINMATCHLENGTH, (U32)pos); |
| 264 | DISPLAYLEVEL(4, "\n"); |
| 265 | |
| 266 | for (searchLength = MINMATCHLENGTH ; ; searchLength++) { |
| 267 | BYTE currentChar = 0; |
| 268 | U32 currentCount = 0; |
| 269 | U32 currentID = refinedStart; |
| 270 | U32 id; |
| 271 | U32 selectedCount = 0; |
| 272 | U32 selectedID = currentID; |
| 273 | for (id =refinedStart; id < refinedEnd; id++) { |
| 274 | if (b[suffix[id] + searchLength] != currentChar) { |
| 275 | if (currentCount > selectedCount) { |
| 276 | selectedCount = currentCount; |
| 277 | selectedID = currentID; |
| 278 | } |
| 279 | currentID = id; |
| 280 | currentChar = b[ suffix[id] + searchLength]; |
| 281 | currentCount = 0; |
| 282 | } |
| 283 | currentCount ++; |
| 284 | } |
| 285 | if (currentCount > selectedCount) { /* for last */ |
| 286 | selectedCount = currentCount; |
| 287 | selectedID = currentID; |
| 288 | } |
| 289 | |
| 290 | if (selectedCount < minRatio) |
| 291 | break; |
| 292 | refinedStart = selectedID; |
| 293 | refinedEnd = refinedStart + selectedCount; |
| 294 | } |
| 295 | |
| 296 | /* evaluate gain based on new ref */ |
| 297 | start = refinedStart; |
| 298 | pos = suffix[refinedStart]; |
| 299 | end = start; |
| 300 | memset(lengthList, 0, sizeof(lengthList)); |
| 301 | |
| 302 | /* look forward */ |
| 303 | { size_t length; |
| 304 | do { |
| 305 | end++; |
| 306 | length = ZDICT_count(b + pos, b + suffix[end]); |
| 307 | if (length >= LLIMIT) length = LLIMIT-1; |
| 308 | lengthList[length]++; |
| 309 | } while (length >=MINMATCHLENGTH); |
| 310 | } |
| 311 | |
| 312 | /* look backward */ |
| 313 | { size_t length = MINMATCHLENGTH; |
| 314 | while ((length >= MINMATCHLENGTH) & (start > 0)) { |
| 315 | length = ZDICT_count(b + pos, b + suffix[start - 1]); |
| 316 | if (length >= LLIMIT) length = LLIMIT - 1; |
| 317 | lengthList[length]++; |
| 318 | if (length >= MINMATCHLENGTH) start--; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | /* largest useful length */ |
| 323 | memset(cumulLength, 0, sizeof(cumulLength)); |
| 324 | cumulLength[maxLength-1] = lengthList[maxLength-1]; |
| 325 | for (i=(int)(maxLength-2); i>=0; i--) |
| 326 | cumulLength[i] = cumulLength[i+1] + lengthList[i]; |
| 327 | |
| 328 | for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break; |
| 329 | maxLength = i; |
| 330 | |
| 331 | /* reduce maxLength in case of final into repetitive data */ |
| 332 | { U32 l = (U32)maxLength; |
| 333 | BYTE const c = b[pos + maxLength-1]; |
| 334 | while (b[pos+l-2]==c) l--; |
| 335 | maxLength = l; |
| 336 | } |
| 337 | if (maxLength < MINMATCHLENGTH) return solution; /* skip : no long-enough solution */ |
| 338 | |
| 339 | /* calculate savings */ |
| 340 | savings[5] = 0; |
| 341 | for (i=MINMATCHLENGTH; i<=(int)maxLength; i++) |
| 342 | savings[i] = savings[i-1] + (lengthList[i] * (i-3)); |
| 343 | |
| 344 | DISPLAYLEVEL(4, "Selected ref at position %u, of length %u : saves %u (ratio: %.2f) \n", |
| 345 | (U32)pos, (U32)maxLength, savings[maxLength], (double)savings[maxLength] / maxLength); |
| 346 | |
| 347 | solution.pos = (U32)pos; |
| 348 | solution.length = (U32)maxLength; |
| 349 | solution.savings = savings[maxLength]; |
| 350 | |
| 351 | /* mark positions done */ |
| 352 | { U32 id; |
| 353 | for (id=start; id<end; id++) { |
| 354 | U32 p, pEnd, length; |
| 355 | U32 const testedPos = suffix[id]; |
| 356 | if (testedPos == pos) |
| 357 | length = solution.length; |
| 358 | else { |
| 359 | length = (U32)ZDICT_count(b+pos, b+testedPos); |
| 360 | if (length > solution.length) length = solution.length; |
| 361 | } |
| 362 | pEnd = (U32)(testedPos + length); |
| 363 | for (p=testedPos; p<pEnd; p++) |
| 364 | doneMarks[p] = 1; |
| 365 | } } } |
| 366 | |
| 367 | return solution; |
| 368 | } |
| 369 | |
| 370 | |
| 371 | static int isIncluded(const void* in, const void* container, size_t length) |
| 372 | { |
| 373 | const char* const ip = (const char*) in; |
| 374 | const char* const into = (const char*) container; |
| 375 | size_t u; |
| 376 | |
| 377 | for (u=0; u<length; u++) { /* works because end of buffer is a noisy guard band */ |
| 378 | if (ip[u] != into[u]) break; |
| 379 | } |
| 380 | |
| 381 | return u==length; |
| 382 | } |
| 383 | |
| 384 | /*! ZDICT_tryMerge() : |
| 385 | check if dictItem can be merged, do it if possible |
| 386 | @return : id of destination elt, 0 if not merged |
| 387 | */ |
| 388 | static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer) |
| 389 | { |
| 390 | const U32 tableSize = table->pos; |
| 391 | const U32 eltEnd = elt.pos + elt.length; |
| 392 | const char* const buf = (const char*) buffer; |
| 393 | |
| 394 | /* tail overlap */ |
| 395 | U32 u; for (u=1; u<tableSize; u++) { |
| 396 | if (u==eltNbToSkip) continue; |
| 397 | if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) { /* overlap, existing > new */ |
| 398 | /* append */ |
| 399 | U32 const addedLength = table[u].pos - elt.pos; |
| 400 | table[u].length += addedLength; |
| 401 | table[u].pos = elt.pos; |
| 402 | table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */ |
| 403 | table[u].savings += elt.length / 8; /* rough approx bonus */ |
| 404 | elt = table[u]; |
| 405 | /* sort : improve rank */ |
| 406 | while ((u>1) && (table[u-1].savings < elt.savings)) |
| 407 | table[u] = table[u-1], u--; |
| 408 | table[u] = elt; |
| 409 | return u; |
| 410 | } } |
| 411 | |
| 412 | /* front overlap */ |
| 413 | for (u=1; u<tableSize; u++) { |
| 414 | if (u==eltNbToSkip) continue; |
| 415 | |
| 416 | if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) { /* overlap, existing < new */ |
| 417 | /* append */ |
| 418 | int const addedLength = (int)eltEnd - (table[u].pos + table[u].length); |
| 419 | table[u].savings += elt.length / 8; /* rough approx bonus */ |
| 420 | if (addedLength > 0) { /* otherwise, elt fully included into existing */ |
| 421 | table[u].length += addedLength; |
| 422 | table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */ |
| 423 | } |
| 424 | /* sort : improve rank */ |
| 425 | elt = table[u]; |
| 426 | while ((u>1) && (table[u-1].savings < elt.savings)) |
| 427 | table[u] = table[u-1], u--; |
| 428 | table[u] = elt; |
| 429 | return u; |
| 430 | } |
| 431 | |
| 432 | if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) { |
| 433 | if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) { |
| 434 | size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 ); |
| 435 | table[u].pos = elt.pos; |
| 436 | table[u].savings += (U32)(elt.savings * addedLength / elt.length); |
| 437 | table[u].length = MIN(elt.length, table[u].length + 1); |
| 438 | return u; |
| 439 | } |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | return 0; |
| 444 | } |
| 445 | |
| 446 | |
| 447 | static void ZDICT_removeDictItem(dictItem* table, U32 id) |
| 448 | { |
| 449 | /* convention : table[0].pos stores nb of elts */ |
| 450 | U32 const max = table[0].pos; |
| 451 | U32 u; |
| 452 | if (!id) return; /* protection, should never happen */ |
| 453 | for (u=id; u<max-1; u++) |
| 454 | table[u] = table[u+1]; |
| 455 | table->pos--; |
| 456 | } |
| 457 | |
| 458 | |
| 459 | static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer) |
| 460 | { |
| 461 | /* merge if possible */ |
| 462 | U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer); |
| 463 | if (mergeId) { |
| 464 | U32 newMerge = 1; |
| 465 | while (newMerge) { |
| 466 | newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer); |
| 467 | if (newMerge) ZDICT_removeDictItem(table, mergeId); |
| 468 | mergeId = newMerge; |
| 469 | } |
| 470 | return; |
| 471 | } |
| 472 | |
| 473 | /* insert */ |
| 474 | { U32 current; |
| 475 | U32 nextElt = table->pos; |
| 476 | if (nextElt >= maxSize) nextElt = maxSize-1; |
| 477 | current = nextElt-1; |
| 478 | while (table[current].savings < elt.savings) { |
| 479 | table[current+1] = table[current]; |
| 480 | current--; |
| 481 | } |
| 482 | table[current+1] = elt; |
| 483 | table->pos = nextElt+1; |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | |
| 488 | static U32 ZDICT_dictSize(const dictItem* dictList) |
| 489 | { |
| 490 | U32 u, dictSize = 0; |
| 491 | for (u=1; u<dictList[0].pos; u++) |
| 492 | dictSize += dictList[u].length; |
| 493 | return dictSize; |
| 494 | } |
| 495 | |
| 496 | |
| 497 | static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize, |
| 498 | const void* const buffer, size_t bufferSize, /* buffer must end with noisy guard band */ |
| 499 | const size_t* fileSizes, unsigned nbFiles, |
| 500 | U32 minRatio, U32 notificationLevel) |
| 501 | { |
| 502 | int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0)); |
| 503 | int* const suffix = suffix0+1; |
| 504 | U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix)); |
| 505 | BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks)); /* +16 for overflow security */ |
| 506 | U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos)); |
| 507 | size_t result = 0; |
| 508 | clock_t displayClock = 0; |
| 509 | clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10; |
| 510 | |
| 511 | # define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \ |
| 512 | if (ZDICT_clockSpan(displayClock) > refreshRate) \ |
| 513 | { displayClock = clock(); DISPLAY(__VA_ARGS__); \ |
| 514 | if (notificationLevel>=4) fflush(stderr); } } |
| 515 | |
| 516 | /* init */ |
| 517 | DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ |
| 518 | if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) { |
| 519 | result = ERROR(memory_allocation); |
| 520 | goto _cleanup; |
| 521 | } |
| 522 | if (minRatio < MINRATIO) minRatio = MINRATIO; |
| 523 | memset(doneMarks, 0, bufferSize+16); |
| 524 | |
| 525 | /* limit sample set size (divsufsort limitation)*/ |
| 526 | if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (U32)(ZDICT_MAX_SAMPLES_SIZE>>20)); |
| 527 | while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles]; |
| 528 | |
| 529 | /* sort */ |
| 530 | DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (U32)(bufferSize>>20)); |
| 531 | { int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0); |
| 532 | if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; } |
| 533 | } |
| 534 | suffix[bufferSize] = (int)bufferSize; /* leads into noise */ |
| 535 | suffix0[0] = (int)bufferSize; /* leads into noise */ |
| 536 | /* build reverse suffix sort */ |
| 537 | { size_t pos; |
| 538 | for (pos=0; pos < bufferSize; pos++) |
| 539 | reverseSuffix[suffix[pos]] = (U32)pos; |
| 540 | /* note filePos tracks borders between samples. |
| 541 | It's not used at this stage, but planned to become useful in a later update */ |
| 542 | filePos[0] = 0; |
| 543 | for (pos=1; pos<nbFiles; pos++) |
| 544 | filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]); |
| 545 | } |
| 546 | |
| 547 | DISPLAYLEVEL(2, "finding patterns ... \n"); |
| 548 | DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio); |
| 549 | |
| 550 | { U32 cursor; for (cursor=0; cursor < bufferSize; ) { |
| 551 | dictItem solution; |
| 552 | if (doneMarks[cursor]) { cursor++; continue; } |
| 553 | solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel); |
| 554 | if (solution.length==0) { cursor++; continue; } |
| 555 | ZDICT_insertDictItem(dictList, dictListSize, solution, buffer); |
| 556 | cursor += solution.length; |
| 557 | DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100); |
| 558 | } } |
| 559 | |
| 560 | _cleanup: |
| 561 | free(suffix0); |
| 562 | free(reverseSuffix); |
| 563 | free(doneMarks); |
| 564 | free(filePos); |
| 565 | return result; |
| 566 | } |
| 567 | |
| 568 | |
| 569 | static void ZDICT_fillNoise(void* buffer, size_t length) |
| 570 | { |
| 571 | unsigned const prime1 = 2654435761U; |
| 572 | unsigned const prime2 = 2246822519U; |
| 573 | unsigned acc = prime1; |
| 574 | size_t p=0;; |
| 575 | for (p=0; p<length; p++) { |
| 576 | acc *= prime2; |
| 577 | ((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21); |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | |
| 582 | typedef struct |
| 583 | { |
| 584 | ZSTD_CCtx* ref; /* contains reference to dictionary */ |
| 585 | ZSTD_CCtx* zc; /* working context */ |
| 586 | void* workPlace; /* must be ZSTD_BLOCKSIZE_MAX allocated */ |
| 587 | } EStats_ress_t; |
| 588 | |
| 589 | #define MAXREPOFFSET 1024 |
| 590 | |
| 591 | static void ZDICT_countEStats(EStats_ress_t esr, ZSTD_parameters params, |
| 592 | U32* countLit, U32* offsetcodeCount, U32* matchlengthCount, U32* litlengthCount, U32* repOffsets, |
| 593 | const void* src, size_t srcSize, |
| 594 | U32 notificationLevel) |
| 595 | { |
| 596 | size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params.cParams.windowLog); |
| 597 | size_t cSize; |
| 598 | |
| 599 | if (srcSize > blockSizeMax) srcSize = blockSizeMax; /* protection vs large samples */ |
| 600 | { size_t const errorCode = ZSTD_copyCCtx(esr.zc, esr.ref, 0); |
| 601 | if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_copyCCtx failed \n"); return; } |
| 602 | } |
| 603 | cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize); |
| 604 | if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (U32)srcSize); return; } |
| 605 | |
| 606 | if (cSize) { /* if == 0; block is not compressible */ |
| 607 | const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc); |
| 608 | |
| 609 | /* literals stats */ |
| 610 | { const BYTE* bytePtr; |
| 611 | for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++) |
| 612 | countLit[*bytePtr]++; |
| 613 | } |
| 614 | |
| 615 | /* seqStats */ |
| 616 | { U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); |
| 617 | ZSTD_seqToCodes(seqStorePtr); |
| 618 | |
| 619 | { const BYTE* codePtr = seqStorePtr->ofCode; |
| 620 | U32 u; |
| 621 | for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++; |
| 622 | } |
| 623 | |
| 624 | { const BYTE* codePtr = seqStorePtr->mlCode; |
| 625 | U32 u; |
| 626 | for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++; |
| 627 | } |
| 628 | |
| 629 | { const BYTE* codePtr = seqStorePtr->llCode; |
| 630 | U32 u; |
| 631 | for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++; |
| 632 | } |
| 633 | |
| 634 | if (nbSeq >= 2) { /* rep offsets */ |
| 635 | const seqDef* const seq = seqStorePtr->sequencesStart; |
| 636 | U32 offset1 = seq[0].offset - 3; |
| 637 | U32 offset2 = seq[1].offset - 3; |
| 638 | if (offset1 >= MAXREPOFFSET) offset1 = 0; |
| 639 | if (offset2 >= MAXREPOFFSET) offset2 = 0; |
| 640 | repOffsets[offset1] += 3; |
| 641 | repOffsets[offset2] += 1; |
| 642 | } } } |
| 643 | } |
| 644 | |
| 645 | static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles) |
| 646 | { |
| 647 | size_t total=0; |
| 648 | unsigned u; |
| 649 | for (u=0; u<nbFiles; u++) total += fileSizes[u]; |
| 650 | return total; |
| 651 | } |
| 652 | |
| 653 | typedef struct { U32 offset; U32 count; } offsetCount_t; |
| 654 | |
| 655 | static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count) |
| 656 | { |
| 657 | U32 u; |
| 658 | table[ZSTD_REP_NUM].offset = val; |
| 659 | table[ZSTD_REP_NUM].count = count; |
| 660 | for (u=ZSTD_REP_NUM; u>0; u--) { |
| 661 | offsetCount_t tmp; |
| 662 | if (table[u-1].count >= table[u].count) break; |
| 663 | tmp = table[u-1]; |
| 664 | table[u-1] = table[u]; |
| 665 | table[u] = tmp; |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | /* ZDICT_flatLit() : |
| 670 | * rewrite `countLit` to contain a mostly flat but still compressible distribution of literals. |
| 671 | * necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode. |
| 672 | */ |
| 673 | static void ZDICT_flatLit(U32* countLit) |
| 674 | { |
| 675 | int u; |
| 676 | for (u=1; u<256; u++) countLit[u] = 2; |
| 677 | countLit[0] = 4; |
| 678 | countLit[253] = 1; |
| 679 | countLit[254] = 1; |
| 680 | } |
| 681 | |
| 682 | #define OFFCODE_MAX 30 /* only applicable to first block */ |
| 683 | static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize, |
| 684 | unsigned compressionLevel, |
| 685 | const void* srcBuffer, const size_t* fileSizes, unsigned nbFiles, |
| 686 | const void* dictBuffer, size_t dictBufferSize, |
| 687 | unsigned notificationLevel) |
| 688 | { |
| 689 | U32 countLit[256]; |
| 690 | HUF_CREATE_STATIC_CTABLE(hufTable, 255); |
| 691 | U32 offcodeCount[OFFCODE_MAX+1]; |
| 692 | short offcodeNCount[OFFCODE_MAX+1]; |
| 693 | U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB)); |
| 694 | U32 matchLengthCount[MaxML+1]; |
| 695 | short matchLengthNCount[MaxML+1]; |
| 696 | U32 litLengthCount[MaxLL+1]; |
| 697 | short litLengthNCount[MaxLL+1]; |
| 698 | U32 repOffset[MAXREPOFFSET]; |
| 699 | offsetCount_t bestRepOffset[ZSTD_REP_NUM+1]; |
| 700 | EStats_ress_t esr; |
| 701 | ZSTD_parameters params; |
| 702 | U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total; |
| 703 | size_t pos = 0, errorCode; |
| 704 | size_t eSize = 0; |
| 705 | size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles); |
| 706 | size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles); |
| 707 | BYTE* dstPtr = (BYTE*)dstBuffer; |
| 708 | |
| 709 | /* init */ |
| 710 | DEBUGLOG(4, "ZDICT_analyzeEntropy"); |
| 711 | esr.ref = ZSTD_createCCtx(); |
| 712 | esr.zc = ZSTD_createCCtx(); |
| 713 | esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX); |
| 714 | if (!esr.ref || !esr.zc || !esr.workPlace) { |
| 715 | eSize = ERROR(memory_allocation); |
| 716 | DISPLAYLEVEL(1, "Not enough memory \n"); |
| 717 | goto _cleanup; |
| 718 | } |
| 719 | if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; } /* too large dictionary */ |
| 720 | for (u=0; u<256; u++) countLit[u] = 1; /* any character must be described */ |
| 721 | for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1; |
| 722 | for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1; |
| 723 | for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1; |
| 724 | memset(repOffset, 0, sizeof(repOffset)); |
| 725 | repOffset[1] = repOffset[4] = repOffset[8] = 1; |
| 726 | memset(bestRepOffset, 0, sizeof(bestRepOffset)); |
| 727 | if (compressionLevel<=0) compressionLevel = g_compressionLevel_default; |
| 728 | params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize); |
| 729 | { size_t const beginResult = ZSTD_compressBegin_advanced(esr.ref, dictBuffer, dictBufferSize, params, 0); |
| 730 | if (ZSTD_isError(beginResult)) { |
| 731 | DISPLAYLEVEL(1, "error : ZSTD_compressBegin_advanced() failed : %s \n", ZSTD_getErrorName(beginResult)); |
| 732 | eSize = ERROR(GENERIC); |
| 733 | goto _cleanup; |
| 734 | } } |
| 735 | |
| 736 | /* collect stats on all samples */ |
| 737 | for (u=0; u<nbFiles; u++) { |
| 738 | ZDICT_countEStats(esr, params, |
| 739 | countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset, |
| 740 | (const char*)srcBuffer + pos, fileSizes[u], |
| 741 | notificationLevel); |
| 742 | pos += fileSizes[u]; |
| 743 | } |
| 744 | |
| 745 | /* analyze, build stats, starting with literals */ |
| 746 | { size_t maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog); |
| 747 | if (HUF_isError(maxNbBits)) { |
| 748 | eSize = ERROR(GENERIC); |
| 749 | DISPLAYLEVEL(1, " HUF_buildCTable error \n"); |
| 750 | goto _cleanup; |
| 751 | } |
| 752 | if (maxNbBits==8) { /* not compressible : will fail on HUF_writeCTable() */ |
| 753 | DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n"); |
| 754 | ZDICT_flatLit(countLit); /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */ |
| 755 | maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog); |
| 756 | assert(maxNbBits==9); |
| 757 | } |
| 758 | huffLog = (U32)maxNbBits; |
| 759 | } |
| 760 | |
| 761 | /* looking for most common first offsets */ |
| 762 | { U32 offset; |
| 763 | for (offset=1; offset<MAXREPOFFSET; offset++) |
| 764 | ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]); |
| 765 | } |
| 766 | /* note : the result of this phase should be used to better appreciate the impact on statistics */ |
| 767 | |
| 768 | total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u]; |
| 769 | errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax); |
| 770 | if (FSE_isError(errorCode)) { |
| 771 | eSize = ERROR(GENERIC); |
| 772 | DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n"); |
| 773 | goto _cleanup; |
| 774 | } |
| 775 | Offlog = (U32)errorCode; |
| 776 | |
| 777 | total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u]; |
| 778 | errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML); |
| 779 | if (FSE_isError(errorCode)) { |
| 780 | eSize = ERROR(GENERIC); |
| 781 | DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n"); |
| 782 | goto _cleanup; |
| 783 | } |
| 784 | mlLog = (U32)errorCode; |
| 785 | |
| 786 | total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u]; |
| 787 | errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL); |
| 788 | if (FSE_isError(errorCode)) { |
| 789 | eSize = ERROR(GENERIC); |
| 790 | DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n"); |
| 791 | goto _cleanup; |
| 792 | } |
| 793 | llLog = (U32)errorCode; |
| 794 | |
| 795 | /* write result to buffer */ |
| 796 | { size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog); |
| 797 | if (HUF_isError(hhSize)) { |
| 798 | eSize = ERROR(GENERIC); |
| 799 | DISPLAYLEVEL(1, "HUF_writeCTable error \n"); |
| 800 | goto _cleanup; |
| 801 | } |
| 802 | dstPtr += hhSize; |
| 803 | maxDstSize -= hhSize; |
| 804 | eSize += hhSize; |
| 805 | } |
| 806 | |
| 807 | { size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog); |
| 808 | if (FSE_isError(ohSize)) { |
| 809 | eSize = ERROR(GENERIC); |
| 810 | DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n"); |
| 811 | goto _cleanup; |
| 812 | } |
| 813 | dstPtr += ohSize; |
| 814 | maxDstSize -= ohSize; |
| 815 | eSize += ohSize; |
| 816 | } |
| 817 | |
| 818 | { size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog); |
| 819 | if (FSE_isError(mhSize)) { |
| 820 | eSize = ERROR(GENERIC); |
| 821 | DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n"); |
| 822 | goto _cleanup; |
| 823 | } |
| 824 | dstPtr += mhSize; |
| 825 | maxDstSize -= mhSize; |
| 826 | eSize += mhSize; |
| 827 | } |
| 828 | |
| 829 | { size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog); |
| 830 | if (FSE_isError(lhSize)) { |
| 831 | eSize = ERROR(GENERIC); |
| 832 | DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n"); |
| 833 | goto _cleanup; |
| 834 | } |
| 835 | dstPtr += lhSize; |
| 836 | maxDstSize -= lhSize; |
| 837 | eSize += lhSize; |
| 838 | } |
| 839 | |
| 840 | if (maxDstSize<12) { |
| 841 | eSize = ERROR(GENERIC); |
| 842 | DISPLAYLEVEL(1, "not enough space to write RepOffsets \n"); |
| 843 | goto _cleanup; |
| 844 | } |
| 845 | # if 0 |
| 846 | MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset); |
| 847 | MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset); |
| 848 | MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset); |
| 849 | #else |
| 850 | /* at this stage, we don't use the result of "most common first offset", |
| 851 | as the impact of statistics is not properly evaluated */ |
| 852 | MEM_writeLE32(dstPtr+0, repStartValue[0]); |
| 853 | MEM_writeLE32(dstPtr+4, repStartValue[1]); |
| 854 | MEM_writeLE32(dstPtr+8, repStartValue[2]); |
| 855 | #endif |
| 856 | eSize += 12; |
| 857 | |
| 858 | _cleanup: |
| 859 | ZSTD_freeCCtx(esr.ref); |
| 860 | ZSTD_freeCCtx(esr.zc); |
| 861 | free(esr.workPlace); |
| 862 | |
| 863 | return eSize; |
| 864 | } |
| 865 | |
| 866 | |
| 867 | |
| 868 | size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity, |
| 869 | const void* customDictContent, size_t dictContentSize, |
| 870 | const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, |
| 871 | ZDICT_params_t params) |
| 872 | { |
| 873 | size_t hSize; |
| 874 | #define HBUFFSIZE 256 /* should prove large enough for all entropy headers */ |
| 875 | BYTE header[HBUFFSIZE]; |
| 876 | int const compressionLevel = (params.compressionLevel <= 0) ? g_compressionLevel_default : params.compressionLevel; |
| 877 | U32 const notificationLevel = params.notificationLevel; |
| 878 | |
| 879 | /* check conditions */ |
| 880 | DEBUGLOG(4, "ZDICT_finalizeDictionary"); |
| 881 | if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall); |
| 882 | if (dictContentSize < ZDICT_CONTENTSIZE_MIN) return ERROR(srcSize_wrong); |
| 883 | if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall); |
| 884 | |
| 885 | /* dictionary header */ |
| 886 | MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY); |
| 887 | { U64 const randomID = XXH64(customDictContent, dictContentSize, 0); |
| 888 | U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768; |
| 889 | U32 const dictID = params.dictID ? params.dictID : compliantID; |
| 890 | MEM_writeLE32(header+4, dictID); |
| 891 | } |
| 892 | hSize = 8; |
| 893 | |
| 894 | /* entropy tables */ |
| 895 | DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ |
| 896 | DISPLAYLEVEL(2, "statistics ... \n"); |
| 897 | { size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize, |
| 898 | compressionLevel, |
| 899 | samplesBuffer, samplesSizes, nbSamples, |
| 900 | customDictContent, dictContentSize, |
| 901 | notificationLevel); |
| 902 | if (ZDICT_isError(eSize)) return eSize; |
| 903 | hSize += eSize; |
| 904 | } |
| 905 | |
| 906 | /* copy elements in final buffer ; note : src and dst buffer can overlap */ |
| 907 | if (hSize + dictContentSize > dictBufferCapacity) dictContentSize = dictBufferCapacity - hSize; |
| 908 | { size_t const dictSize = hSize + dictContentSize; |
| 909 | char* dictEnd = (char*)dictBuffer + dictSize; |
| 910 | memmove(dictEnd - dictContentSize, customDictContent, dictContentSize); |
| 911 | memcpy(dictBuffer, header, hSize); |
| 912 | return dictSize; |
| 913 | } |
| 914 | } |
| 915 | |
| 916 | |
| 917 | size_t ZDICT_addEntropyTablesFromBuffer_advanced(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity, |
| 918 | const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, |
| 919 | ZDICT_params_t params) |
| 920 | { |
| 921 | int const compressionLevel = (params.compressionLevel <= 0) ? g_compressionLevel_default : params.compressionLevel; |
| 922 | U32 const notificationLevel = params.notificationLevel; |
| 923 | size_t hSize = 8; |
| 924 | |
| 925 | /* calculate entropy tables */ |
| 926 | DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ |
| 927 | DISPLAYLEVEL(2, "statistics ... \n"); |
| 928 | { size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize, |
| 929 | compressionLevel, |
| 930 | samplesBuffer, samplesSizes, nbSamples, |
| 931 | (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, |
| 932 | notificationLevel); |
| 933 | if (ZDICT_isError(eSize)) return eSize; |
| 934 | hSize += eSize; |
| 935 | } |
| 936 | |
| 937 | /* add dictionary header (after entropy tables) */ |
| 938 | MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY); |
| 939 | { U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0); |
| 940 | U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768; |
| 941 | U32 const dictID = params.dictID ? params.dictID : compliantID; |
| 942 | MEM_writeLE32((char*)dictBuffer+4, dictID); |
| 943 | } |
| 944 | |
| 945 | if (hSize + dictContentSize < dictBufferCapacity) |
| 946 | memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize); |
| 947 | return MIN(dictBufferCapacity, hSize+dictContentSize); |
| 948 | } |
| 949 | |
| 950 | |
| 951 | /*! ZDICT_trainFromBuffer_unsafe_legacy() : |
| 952 | * Warning : `samplesBuffer` must be followed by noisy guard band. |
| 953 | * @return : size of dictionary, or an error code which can be tested with ZDICT_isError() |
| 954 | */ |
| 955 | size_t ZDICT_trainFromBuffer_unsafe_legacy( |
| 956 | void* dictBuffer, size_t maxDictSize, |
| 957 | const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, |
| 958 | ZDICT_legacy_params_t params) |
| 959 | { |
| 960 | U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16)); |
| 961 | dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList)); |
| 962 | unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel; |
| 963 | unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity; |
| 964 | size_t const targetDictSize = maxDictSize; |
| 965 | size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples); |
| 966 | size_t dictSize = 0; |
| 967 | U32 const notificationLevel = params.zParams.notificationLevel; |
| 968 | |
| 969 | /* checks */ |
| 970 | if (!dictList) return ERROR(memory_allocation); |
| 971 | if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); } /* requested dictionary size is too small */ |
| 972 | if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); } /* not enough source to create dictionary */ |
| 973 | |
| 974 | /* init */ |
| 975 | ZDICT_initDictItem(dictList); |
| 976 | |
| 977 | /* build dictionary */ |
| 978 | ZDICT_trainBuffer_legacy(dictList, dictListSize, |
| 979 | samplesBuffer, samplesBuffSize, |
| 980 | samplesSizes, nbSamples, |
| 981 | minRep, notificationLevel); |
| 982 | |
| 983 | /* display best matches */ |
| 984 | if (params.zParams.notificationLevel>= 3) { |
| 985 | U32 const nb = MIN(25, dictList[0].pos); |
| 986 | U32 const dictContentSize = ZDICT_dictSize(dictList); |
| 987 | U32 u; |
| 988 | DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", dictList[0].pos-1, dictContentSize); |
| 989 | DISPLAYLEVEL(3, "list %u best segments \n", nb-1); |
| 990 | for (u=1; u<nb; u++) { |
| 991 | U32 const pos = dictList[u].pos; |
| 992 | U32 const length = dictList[u].length; |
| 993 | U32 const printedLength = MIN(40, length); |
| 994 | if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) |
| 995 | return ERROR(GENERIC); /* should never happen */ |
| 996 | DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |", |
| 997 | u, length, pos, dictList[u].savings); |
| 998 | ZDICT_printHex((const char*)samplesBuffer+pos, printedLength); |
| 999 | DISPLAYLEVEL(3, "| \n"); |
| 1000 | } } |
| 1001 | |
| 1002 | |
| 1003 | /* create dictionary */ |
| 1004 | { U32 dictContentSize = ZDICT_dictSize(dictList); |
| 1005 | if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); } /* dictionary content too small */ |
| 1006 | if (dictContentSize < targetDictSize/4) { |
| 1007 | DISPLAYLEVEL(2, "! warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (U32)maxDictSize); |
| 1008 | if (samplesBuffSize < 10 * targetDictSize) |
| 1009 | DISPLAYLEVEL(2, "! consider increasing the number of samples (total size : %u MB)\n", (U32)(samplesBuffSize>>20)); |
| 1010 | if (minRep > MINRATIO) { |
| 1011 | DISPLAYLEVEL(2, "! consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1); |
| 1012 | DISPLAYLEVEL(2, "! note : larger dictionaries are not necessarily better, test its efficiency on samples \n"); |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) { |
| 1017 | U32 proposedSelectivity = selectivity-1; |
| 1018 | while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; } |
| 1019 | DISPLAYLEVEL(2, "! note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (U32)maxDictSize); |
| 1020 | DISPLAYLEVEL(2, "! consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity); |
| 1021 | DISPLAYLEVEL(2, "! always test dictionary efficiency on real samples \n"); |
| 1022 | } |
| 1023 | |
| 1024 | /* limit dictionary size */ |
| 1025 | { U32 const max = dictList->pos; /* convention : nb of useful elts within dictList */ |
| 1026 | U32 currentSize = 0; |
| 1027 | U32 n; for (n=1; n<max; n++) { |
| 1028 | currentSize += dictList[n].length; |
| 1029 | if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; } |
| 1030 | } |
| 1031 | dictList->pos = n; |
| 1032 | dictContentSize = currentSize; |
| 1033 | } |
| 1034 | |
| 1035 | /* build dict content */ |
| 1036 | { U32 u; |
| 1037 | BYTE* ptr = (BYTE*)dictBuffer + maxDictSize; |
| 1038 | for (u=1; u<dictList->pos; u++) { |
| 1039 | U32 l = dictList[u].length; |
| 1040 | ptr -= l; |
| 1041 | if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); } /* should not happen */ |
| 1042 | memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l); |
| 1043 | } } |
| 1044 | |
| 1045 | dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize, |
| 1046 | samplesBuffer, samplesSizes, nbSamples, |
| 1047 | params.zParams); |
| 1048 | } |
| 1049 | |
| 1050 | /* clean up */ |
| 1051 | free(dictList); |
| 1052 | return dictSize; |
| 1053 | } |
| 1054 | |
| 1055 | |
| 1056 | /* ZDICT_trainFromBuffer_legacy() : |
| 1057 | * issue : samplesBuffer need to be followed by a noisy guard band. |
| 1058 | * work around : duplicate the buffer, and add the noise */ |
| 1059 | size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity, |
| 1060 | const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, |
| 1061 | ZDICT_legacy_params_t params) |
| 1062 | { |
| 1063 | size_t result; |
| 1064 | void* newBuff; |
| 1065 | size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples); |
| 1066 | if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0; /* not enough content => no dictionary */ |
| 1067 | |
| 1068 | newBuff = malloc(sBuffSize + NOISELENGTH); |
| 1069 | if (!newBuff) return ERROR(memory_allocation); |
| 1070 | |
| 1071 | memcpy(newBuff, samplesBuffer, sBuffSize); |
| 1072 | ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH); /* guard band, for end of buffer condition */ |
| 1073 | |
| 1074 | result = |
| 1075 | ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff, |
| 1076 | samplesSizes, nbSamples, params); |
| 1077 | free(newBuff); |
| 1078 | return result; |
| 1079 | } |
| 1080 | |
| 1081 | |
| 1082 | size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity, |
| 1083 | const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples) |
| 1084 | { |
| 1085 | ZDICT_cover_params_t params; |
| 1086 | DEBUGLOG(3, "ZDICT_trainFromBuffer"); |
| 1087 | memset(¶ms, 0, sizeof(params)); |
| 1088 | params.d = 8; |
| 1089 | params.steps = 4; |
| 1090 | /* Default to level 6 since no compression level information is available */ |
| 1091 | params.zParams.compressionLevel = 6; |
| 1092 | #if defined(ZSTD_DEBUG) && (ZSTD_DEBUG>=1) |
| 1093 | params.zParams.notificationLevel = ZSTD_DEBUG; |
| 1094 | #endif |
| 1095 | return ZDICT_optimizeTrainFromBuffer_cover(dictBuffer, dictBufferCapacity, |
| 1096 | samplesBuffer, samplesSizes, nbSamples, |
| 1097 | ¶ms); |
| 1098 | } |
| 1099 | |
| 1100 | size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity, |
| 1101 | const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples) |
| 1102 | { |
| 1103 | ZDICT_params_t params; |
| 1104 | memset(¶ms, 0, sizeof(params)); |
| 1105 | return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity, |
| 1106 | samplesBuffer, samplesSizes, nbSamples, |
| 1107 | params); |
| 1108 | } |