VOL-1967 move api-server to separate repository

Current with voltha-go acf0adaf2d91ae72b55192cc8a939e0485918d16

Change-Id: I000ea6be0789e20c922bd671562b58a7120892ae
diff --git a/vendor/github.com/golang/snappy/decode_amd64.s b/vendor/github.com/golang/snappy/decode_amd64.s
new file mode 100644
index 0000000..e6179f6
--- /dev/null
+++ b/vendor/github.com/golang/snappy/decode_amd64.s
@@ -0,0 +1,490 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build !appengine
+// +build gc
+// +build !noasm
+
+#include "textflag.h"
+
+// The asm code generally follows the pure Go code in decode_other.go, except
+// where marked with a "!!!".
+
+// func decode(dst, src []byte) int
+//
+// All local variables fit into registers. The non-zero stack size is only to
+// spill registers and push args when issuing a CALL. The register allocation:
+//	- AX	scratch
+//	- BX	scratch
+//	- CX	length or x
+//	- DX	offset
+//	- SI	&src[s]
+//	- DI	&dst[d]
+//	+ R8	dst_base
+//	+ R9	dst_len
+//	+ R10	dst_base + dst_len
+//	+ R11	src_base
+//	+ R12	src_len
+//	+ R13	src_base + src_len
+//	- R14	used by doCopy
+//	- R15	used by doCopy
+//
+// The registers R8-R13 (marked with a "+") are set at the start of the
+// function, and after a CALL returns, and are not otherwise modified.
+//
+// The d variable is implicitly DI - R8,  and len(dst)-d is R10 - DI.
+// The s variable is implicitly SI - R11, and len(src)-s is R13 - SI.
+TEXT ·decode(SB), NOSPLIT, $48-56
+	// Initialize SI, DI and R8-R13.
+	MOVQ dst_base+0(FP), R8
+	MOVQ dst_len+8(FP), R9
+	MOVQ R8, DI
+	MOVQ R8, R10
+	ADDQ R9, R10
+	MOVQ src_base+24(FP), R11
+	MOVQ src_len+32(FP), R12
+	MOVQ R11, SI
+	MOVQ R11, R13
+	ADDQ R12, R13
+
+loop:
+	// for s < len(src)
+	CMPQ SI, R13
+	JEQ  end
+
+	// CX = uint32(src[s])
+	//
+	// switch src[s] & 0x03
+	MOVBLZX (SI), CX
+	MOVL    CX, BX
+	ANDL    $3, BX
+	CMPL    BX, $1
+	JAE     tagCopy
+
+	// ----------------------------------------
+	// The code below handles literal tags.
+
+	// case tagLiteral:
+	// x := uint32(src[s] >> 2)
+	// switch
+	SHRL $2, CX
+	CMPL CX, $60
+	JAE  tagLit60Plus
+
+	// case x < 60:
+	// s++
+	INCQ SI
+
+doLit:
+	// This is the end of the inner "switch", when we have a literal tag.
+	//
+	// We assume that CX == x and x fits in a uint32, where x is the variable
+	// used in the pure Go decode_other.go code.
+
+	// length = int(x) + 1
+	//
+	// Unlike the pure Go code, we don't need to check if length <= 0 because
+	// CX can hold 64 bits, so the increment cannot overflow.
+	INCQ CX
+
+	// Prepare to check if copying length bytes will run past the end of dst or
+	// src.
+	//
+	// AX = len(dst) - d
+	// BX = len(src) - s
+	MOVQ R10, AX
+	SUBQ DI, AX
+	MOVQ R13, BX
+	SUBQ SI, BX
+
+	// !!! Try a faster technique for short (16 or fewer bytes) copies.
+	//
+	// if length > 16 || len(dst)-d < 16 || len(src)-s < 16 {
+	//   goto callMemmove // Fall back on calling runtime·memmove.
+	// }
+	//
+	// The C++ snappy code calls this TryFastAppend. It also checks len(src)-s
+	// against 21 instead of 16, because it cannot assume that all of its input
+	// is contiguous in memory and so it needs to leave enough source bytes to
+	// read the next tag without refilling buffers, but Go's Decode assumes
+	// contiguousness (the src argument is a []byte).
+	CMPQ CX, $16
+	JGT  callMemmove
+	CMPQ AX, $16
+	JLT  callMemmove
+	CMPQ BX, $16
+	JLT  callMemmove
+
+	// !!! Implement the copy from src to dst as a 16-byte load and store.
+	// (Decode's documentation says that dst and src must not overlap.)
+	//
+	// This always copies 16 bytes, instead of only length bytes, but that's
+	// OK. If the input is a valid Snappy encoding then subsequent iterations
+	// will fix up the overrun. Otherwise, Decode returns a nil []byte (and a
+	// non-nil error), so the overrun will be ignored.
+	//
+	// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
+	// 16-byte loads and stores. This technique probably wouldn't be as
+	// effective on architectures that are fussier about alignment.
+	MOVOU 0(SI), X0
+	MOVOU X0, 0(DI)
+
+	// d += length
+	// s += length
+	ADDQ CX, DI
+	ADDQ CX, SI
+	JMP  loop
+
+callMemmove:
+	// if length > len(dst)-d || length > len(src)-s { etc }
+	CMPQ CX, AX
+	JGT  errCorrupt
+	CMPQ CX, BX
+	JGT  errCorrupt
+
+	// copy(dst[d:], src[s:s+length])
+	//
+	// This means calling runtime·memmove(&dst[d], &src[s], length), so we push
+	// DI, SI and CX as arguments. Coincidentally, we also need to spill those
+	// three registers to the stack, to save local variables across the CALL.
+	MOVQ DI, 0(SP)
+	MOVQ SI, 8(SP)
+	MOVQ CX, 16(SP)
+	MOVQ DI, 24(SP)
+	MOVQ SI, 32(SP)
+	MOVQ CX, 40(SP)
+	CALL runtime·memmove(SB)
+
+	// Restore local variables: unspill registers from the stack and
+	// re-calculate R8-R13.
+	MOVQ 24(SP), DI
+	MOVQ 32(SP), SI
+	MOVQ 40(SP), CX
+	MOVQ dst_base+0(FP), R8
+	MOVQ dst_len+8(FP), R9
+	MOVQ R8, R10
+	ADDQ R9, R10
+	MOVQ src_base+24(FP), R11
+	MOVQ src_len+32(FP), R12
+	MOVQ R11, R13
+	ADDQ R12, R13
+
+	// d += length
+	// s += length
+	ADDQ CX, DI
+	ADDQ CX, SI
+	JMP  loop
+
+tagLit60Plus:
+	// !!! This fragment does the
+	//
+	// s += x - 58; if uint(s) > uint(len(src)) { etc }
+	//
+	// checks. In the asm version, we code it once instead of once per switch case.
+	ADDQ CX, SI
+	SUBQ $58, SI
+	MOVQ SI, BX
+	SUBQ R11, BX
+	CMPQ BX, R12
+	JA   errCorrupt
+
+	// case x == 60:
+	CMPL CX, $61
+	JEQ  tagLit61
+	JA   tagLit62Plus
+
+	// x = uint32(src[s-1])
+	MOVBLZX -1(SI), CX
+	JMP     doLit
+
+tagLit61:
+	// case x == 61:
+	// x = uint32(src[s-2]) | uint32(src[s-1])<<8
+	MOVWLZX -2(SI), CX
+	JMP     doLit
+
+tagLit62Plus:
+	CMPL CX, $62
+	JA   tagLit63
+
+	// case x == 62:
+	// x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
+	MOVWLZX -3(SI), CX
+	MOVBLZX -1(SI), BX
+	SHLL    $16, BX
+	ORL     BX, CX
+	JMP     doLit
+
+tagLit63:
+	// case x == 63:
+	// x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
+	MOVL -4(SI), CX
+	JMP  doLit
+
+// The code above handles literal tags.
+// ----------------------------------------
+// The code below handles copy tags.
+
+tagCopy4:
+	// case tagCopy4:
+	// s += 5
+	ADDQ $5, SI
+
+	// if uint(s) > uint(len(src)) { etc }
+	MOVQ SI, BX
+	SUBQ R11, BX
+	CMPQ BX, R12
+	JA   errCorrupt
+
+	// length = 1 + int(src[s-5])>>2
+	SHRQ $2, CX
+	INCQ CX
+
+	// offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
+	MOVLQZX -4(SI), DX
+	JMP     doCopy
+
+tagCopy2:
+	// case tagCopy2:
+	// s += 3
+	ADDQ $3, SI
+
+	// if uint(s) > uint(len(src)) { etc }
+	MOVQ SI, BX
+	SUBQ R11, BX
+	CMPQ BX, R12
+	JA   errCorrupt
+
+	// length = 1 + int(src[s-3])>>2
+	SHRQ $2, CX
+	INCQ CX
+
+	// offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
+	MOVWQZX -2(SI), DX
+	JMP     doCopy
+
+tagCopy:
+	// We have a copy tag. We assume that:
+	//	- BX == src[s] & 0x03
+	//	- CX == src[s]
+	CMPQ BX, $2
+	JEQ  tagCopy2
+	JA   tagCopy4
+
+	// case tagCopy1:
+	// s += 2
+	ADDQ $2, SI
+
+	// if uint(s) > uint(len(src)) { etc }
+	MOVQ SI, BX
+	SUBQ R11, BX
+	CMPQ BX, R12
+	JA   errCorrupt
+
+	// offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
+	MOVQ    CX, DX
+	ANDQ    $0xe0, DX
+	SHLQ    $3, DX
+	MOVBQZX -1(SI), BX
+	ORQ     BX, DX
+
+	// length = 4 + int(src[s-2])>>2&0x7
+	SHRQ $2, CX
+	ANDQ $7, CX
+	ADDQ $4, CX
+
+doCopy:
+	// This is the end of the outer "switch", when we have a copy tag.
+	//
+	// We assume that:
+	//	- CX == length && CX > 0
+	//	- DX == offset
+
+	// if offset <= 0 { etc }
+	CMPQ DX, $0
+	JLE  errCorrupt
+
+	// if d < offset { etc }
+	MOVQ DI, BX
+	SUBQ R8, BX
+	CMPQ BX, DX
+	JLT  errCorrupt
+
+	// if length > len(dst)-d { etc }
+	MOVQ R10, BX
+	SUBQ DI, BX
+	CMPQ CX, BX
+	JGT  errCorrupt
+
+	// forwardCopy(dst[d:d+length], dst[d-offset:]); d += length
+	//
+	// Set:
+	//	- R14 = len(dst)-d
+	//	- R15 = &dst[d-offset]
+	MOVQ R10, R14
+	SUBQ DI, R14
+	MOVQ DI, R15
+	SUBQ DX, R15
+
+	// !!! Try a faster technique for short (16 or fewer bytes) forward copies.
+	//
+	// First, try using two 8-byte load/stores, similar to the doLit technique
+	// above. Even if dst[d:d+length] and dst[d-offset:] can overlap, this is
+	// still OK if offset >= 8. Note that this has to be two 8-byte load/stores
+	// and not one 16-byte load/store, and the first store has to be before the
+	// second load, due to the overlap if offset is in the range [8, 16).
+	//
+	// if length > 16 || offset < 8 || len(dst)-d < 16 {
+	//   goto slowForwardCopy
+	// }
+	// copy 16 bytes
+	// d += length
+	CMPQ CX, $16
+	JGT  slowForwardCopy
+	CMPQ DX, $8
+	JLT  slowForwardCopy
+	CMPQ R14, $16
+	JLT  slowForwardCopy
+	MOVQ 0(R15), AX
+	MOVQ AX, 0(DI)
+	MOVQ 8(R15), BX
+	MOVQ BX, 8(DI)
+	ADDQ CX, DI
+	JMP  loop
+
+slowForwardCopy:
+	// !!! If the forward copy is longer than 16 bytes, or if offset < 8, we
+	// can still try 8-byte load stores, provided we can overrun up to 10 extra
+	// bytes. As above, the overrun will be fixed up by subsequent iterations
+	// of the outermost loop.
+	//
+	// The C++ snappy code calls this technique IncrementalCopyFastPath. Its
+	// commentary says:
+	//
+	// ----
+	//
+	// The main part of this loop is a simple copy of eight bytes at a time
+	// until we've copied (at least) the requested amount of bytes.  However,
+	// if d and d-offset are less than eight bytes apart (indicating a
+	// repeating pattern of length < 8), we first need to expand the pattern in
+	// order to get the correct results. For instance, if the buffer looks like
+	// this, with the eight-byte <d-offset> and <d> patterns marked as
+	// intervals:
+	//
+	//    abxxxxxxxxxxxx
+	//    [------]           d-offset
+	//      [------]         d
+	//
+	// a single eight-byte copy from <d-offset> to <d> will repeat the pattern
+	// once, after which we can move <d> two bytes without moving <d-offset>:
+	//
+	//    ababxxxxxxxxxx
+	//    [------]           d-offset
+	//        [------]       d
+	//
+	// and repeat the exercise until the two no longer overlap.
+	//
+	// This allows us to do very well in the special case of one single byte
+	// repeated many times, without taking a big hit for more general cases.
+	//
+	// The worst case of extra writing past the end of the match occurs when
+	// offset == 1 and length == 1; the last copy will read from byte positions
+	// [0..7] and write to [4..11], whereas it was only supposed to write to
+	// position 1. Thus, ten excess bytes.
+	//
+	// ----
+	//
+	// That "10 byte overrun" worst case is confirmed by Go's
+	// TestSlowForwardCopyOverrun, which also tests the fixUpSlowForwardCopy
+	// and finishSlowForwardCopy algorithm.
+	//
+	// if length > len(dst)-d-10 {
+	//   goto verySlowForwardCopy
+	// }
+	SUBQ $10, R14
+	CMPQ CX, R14
+	JGT  verySlowForwardCopy
+
+makeOffsetAtLeast8:
+	// !!! As above, expand the pattern so that offset >= 8 and we can use
+	// 8-byte load/stores.
+	//
+	// for offset < 8 {
+	//   copy 8 bytes from dst[d-offset:] to dst[d:]
+	//   length -= offset
+	//   d      += offset
+	//   offset += offset
+	//   // The two previous lines together means that d-offset, and therefore
+	//   // R15, is unchanged.
+	// }
+	CMPQ DX, $8
+	JGE  fixUpSlowForwardCopy
+	MOVQ (R15), BX
+	MOVQ BX, (DI)
+	SUBQ DX, CX
+	ADDQ DX, DI
+	ADDQ DX, DX
+	JMP  makeOffsetAtLeast8
+
+fixUpSlowForwardCopy:
+	// !!! Add length (which might be negative now) to d (implied by DI being
+	// &dst[d]) so that d ends up at the right place when we jump back to the
+	// top of the loop. Before we do that, though, we save DI to AX so that, if
+	// length is positive, copying the remaining length bytes will write to the
+	// right place.
+	MOVQ DI, AX
+	ADDQ CX, DI
+
+finishSlowForwardCopy:
+	// !!! Repeat 8-byte load/stores until length <= 0. Ending with a negative
+	// length means that we overrun, but as above, that will be fixed up by
+	// subsequent iterations of the outermost loop.
+	CMPQ CX, $0
+	JLE  loop
+	MOVQ (R15), BX
+	MOVQ BX, (AX)
+	ADDQ $8, R15
+	ADDQ $8, AX
+	SUBQ $8, CX
+	JMP  finishSlowForwardCopy
+
+verySlowForwardCopy:
+	// verySlowForwardCopy is a simple implementation of forward copy. In C
+	// parlance, this is a do/while loop instead of a while loop, since we know
+	// that length > 0. In Go syntax:
+	//
+	// for {
+	//   dst[d] = dst[d - offset]
+	//   d++
+	//   length--
+	//   if length == 0 {
+	//     break
+	//   }
+	// }
+	MOVB (R15), BX
+	MOVB BX, (DI)
+	INCQ R15
+	INCQ DI
+	DECQ CX
+	JNZ  verySlowForwardCopy
+	JMP  loop
+
+// The code above handles copy tags.
+// ----------------------------------------
+
+end:
+	// This is the end of the "for s < len(src)".
+	//
+	// if d != len(dst) { etc }
+	CMPQ DI, R10
+	JNE  errCorrupt
+
+	// return 0
+	MOVQ $0, ret+48(FP)
+	RET
+
+errCorrupt:
+	// return decodeErrCodeCorrupt
+	MOVQ $1, ret+48(FP)
+	RET