VOL-1967 move api-server to separate repository

Current with voltha-go acf0adaf2d91ae72b55192cc8a939e0485918d16

Change-Id: I000ea6be0789e20c922bd671562b58a7120892ae
diff --git a/vendor/sigs.k8s.io/yaml/fields.go b/vendor/sigs.k8s.io/yaml/fields.go
new file mode 100644
index 0000000..235b7f2
--- /dev/null
+++ b/vendor/sigs.k8s.io/yaml/fields.go
@@ -0,0 +1,502 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package yaml
+
+import (
+	"bytes"
+	"encoding"
+	"encoding/json"
+	"reflect"
+	"sort"
+	"strings"
+	"sync"
+	"unicode"
+	"unicode/utf8"
+)
+
+// indirect walks down v allocating pointers as needed,
+// until it gets to a non-pointer.
+// if it encounters an Unmarshaler, indirect stops and returns that.
+// if decodingNull is true, indirect stops at the last pointer so it can be set to nil.
+func indirect(v reflect.Value, decodingNull bool) (json.Unmarshaler, encoding.TextUnmarshaler, reflect.Value) {
+	// If v is a named type and is addressable,
+	// start with its address, so that if the type has pointer methods,
+	// we find them.
+	if v.Kind() != reflect.Ptr && v.Type().Name() != "" && v.CanAddr() {
+		v = v.Addr()
+	}
+	for {
+		// Load value from interface, but only if the result will be
+		// usefully addressable.
+		if v.Kind() == reflect.Interface && !v.IsNil() {
+			e := v.Elem()
+			if e.Kind() == reflect.Ptr && !e.IsNil() && (!decodingNull || e.Elem().Kind() == reflect.Ptr) {
+				v = e
+				continue
+			}
+		}
+
+		if v.Kind() != reflect.Ptr {
+			break
+		}
+
+		if v.Elem().Kind() != reflect.Ptr && decodingNull && v.CanSet() {
+			break
+		}
+		if v.IsNil() {
+			if v.CanSet() {
+				v.Set(reflect.New(v.Type().Elem()))
+			} else {
+				v = reflect.New(v.Type().Elem())
+			}
+		}
+		if v.Type().NumMethod() > 0 {
+			if u, ok := v.Interface().(json.Unmarshaler); ok {
+				return u, nil, reflect.Value{}
+			}
+			if u, ok := v.Interface().(encoding.TextUnmarshaler); ok {
+				return nil, u, reflect.Value{}
+			}
+		}
+		v = v.Elem()
+	}
+	return nil, nil, v
+}
+
+// A field represents a single field found in a struct.
+type field struct {
+	name      string
+	nameBytes []byte                 // []byte(name)
+	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
+
+	tag       bool
+	index     []int
+	typ       reflect.Type
+	omitEmpty bool
+	quoted    bool
+}
+
+func fillField(f field) field {
+	f.nameBytes = []byte(f.name)
+	f.equalFold = foldFunc(f.nameBytes)
+	return f
+}
+
+// byName sorts field by name, breaking ties with depth,
+// then breaking ties with "name came from json tag", then
+// breaking ties with index sequence.
+type byName []field
+
+func (x byName) Len() int { return len(x) }
+
+func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
+
+func (x byName) Less(i, j int) bool {
+	if x[i].name != x[j].name {
+		return x[i].name < x[j].name
+	}
+	if len(x[i].index) != len(x[j].index) {
+		return len(x[i].index) < len(x[j].index)
+	}
+	if x[i].tag != x[j].tag {
+		return x[i].tag
+	}
+	return byIndex(x).Less(i, j)
+}
+
+// byIndex sorts field by index sequence.
+type byIndex []field
+
+func (x byIndex) Len() int { return len(x) }
+
+func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
+
+func (x byIndex) Less(i, j int) bool {
+	for k, xik := range x[i].index {
+		if k >= len(x[j].index) {
+			return false
+		}
+		if xik != x[j].index[k] {
+			return xik < x[j].index[k]
+		}
+	}
+	return len(x[i].index) < len(x[j].index)
+}
+
+// typeFields returns a list of fields that JSON should recognize for the given type.
+// The algorithm is breadth-first search over the set of structs to include - the top struct
+// and then any reachable anonymous structs.
+func typeFields(t reflect.Type) []field {
+	// Anonymous fields to explore at the current level and the next.
+	current := []field{}
+	next := []field{{typ: t}}
+
+	// Count of queued names for current level and the next.
+	count := map[reflect.Type]int{}
+	nextCount := map[reflect.Type]int{}
+
+	// Types already visited at an earlier level.
+	visited := map[reflect.Type]bool{}
+
+	// Fields found.
+	var fields []field
+
+	for len(next) > 0 {
+		current, next = next, current[:0]
+		count, nextCount = nextCount, map[reflect.Type]int{}
+
+		for _, f := range current {
+			if visited[f.typ] {
+				continue
+			}
+			visited[f.typ] = true
+
+			// Scan f.typ for fields to include.
+			for i := 0; i < f.typ.NumField(); i++ {
+				sf := f.typ.Field(i)
+				if sf.PkgPath != "" { // unexported
+					continue
+				}
+				tag := sf.Tag.Get("json")
+				if tag == "-" {
+					continue
+				}
+				name, opts := parseTag(tag)
+				if !isValidTag(name) {
+					name = ""
+				}
+				index := make([]int, len(f.index)+1)
+				copy(index, f.index)
+				index[len(f.index)] = i
+
+				ft := sf.Type
+				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
+					// Follow pointer.
+					ft = ft.Elem()
+				}
+
+				// Record found field and index sequence.
+				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
+					tagged := name != ""
+					if name == "" {
+						name = sf.Name
+					}
+					fields = append(fields, fillField(field{
+						name:      name,
+						tag:       tagged,
+						index:     index,
+						typ:       ft,
+						omitEmpty: opts.Contains("omitempty"),
+						quoted:    opts.Contains("string"),
+					}))
+					if count[f.typ] > 1 {
+						// If there were multiple instances, add a second,
+						// so that the annihilation code will see a duplicate.
+						// It only cares about the distinction between 1 or 2,
+						// so don't bother generating any more copies.
+						fields = append(fields, fields[len(fields)-1])
+					}
+					continue
+				}
+
+				// Record new anonymous struct to explore in next round.
+				nextCount[ft]++
+				if nextCount[ft] == 1 {
+					next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
+				}
+			}
+		}
+	}
+
+	sort.Sort(byName(fields))
+
+	// Delete all fields that are hidden by the Go rules for embedded fields,
+	// except that fields with JSON tags are promoted.
+
+	// The fields are sorted in primary order of name, secondary order
+	// of field index length. Loop over names; for each name, delete
+	// hidden fields by choosing the one dominant field that survives.
+	out := fields[:0]
+	for advance, i := 0, 0; i < len(fields); i += advance {
+		// One iteration per name.
+		// Find the sequence of fields with the name of this first field.
+		fi := fields[i]
+		name := fi.name
+		for advance = 1; i+advance < len(fields); advance++ {
+			fj := fields[i+advance]
+			if fj.name != name {
+				break
+			}
+		}
+		if advance == 1 { // Only one field with this name
+			out = append(out, fi)
+			continue
+		}
+		dominant, ok := dominantField(fields[i : i+advance])
+		if ok {
+			out = append(out, dominant)
+		}
+	}
+
+	fields = out
+	sort.Sort(byIndex(fields))
+
+	return fields
+}
+
+// dominantField looks through the fields, all of which are known to
+// have the same name, to find the single field that dominates the
+// others using Go's embedding rules, modified by the presence of
+// JSON tags. If there are multiple top-level fields, the boolean
+// will be false: This condition is an error in Go and we skip all
+// the fields.
+func dominantField(fields []field) (field, bool) {
+	// The fields are sorted in increasing index-length order. The winner
+	// must therefore be one with the shortest index length. Drop all
+	// longer entries, which is easy: just truncate the slice.
+	length := len(fields[0].index)
+	tagged := -1 // Index of first tagged field.
+	for i, f := range fields {
+		if len(f.index) > length {
+			fields = fields[:i]
+			break
+		}
+		if f.tag {
+			if tagged >= 0 {
+				// Multiple tagged fields at the same level: conflict.
+				// Return no field.
+				return field{}, false
+			}
+			tagged = i
+		}
+	}
+	if tagged >= 0 {
+		return fields[tagged], true
+	}
+	// All remaining fields have the same length. If there's more than one,
+	// we have a conflict (two fields named "X" at the same level) and we
+	// return no field.
+	if len(fields) > 1 {
+		return field{}, false
+	}
+	return fields[0], true
+}
+
+var fieldCache struct {
+	sync.RWMutex
+	m map[reflect.Type][]field
+}
+
+// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
+func cachedTypeFields(t reflect.Type) []field {
+	fieldCache.RLock()
+	f := fieldCache.m[t]
+	fieldCache.RUnlock()
+	if f != nil {
+		return f
+	}
+
+	// Compute fields without lock.
+	// Might duplicate effort but won't hold other computations back.
+	f = typeFields(t)
+	if f == nil {
+		f = []field{}
+	}
+
+	fieldCache.Lock()
+	if fieldCache.m == nil {
+		fieldCache.m = map[reflect.Type][]field{}
+	}
+	fieldCache.m[t] = f
+	fieldCache.Unlock()
+	return f
+}
+
+func isValidTag(s string) bool {
+	if s == "" {
+		return false
+	}
+	for _, c := range s {
+		switch {
+		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
+			// Backslash and quote chars are reserved, but
+			// otherwise any punctuation chars are allowed
+			// in a tag name.
+		default:
+			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
+				return false
+			}
+		}
+	}
+	return true
+}
+
+const (
+	caseMask     = ^byte(0x20) // Mask to ignore case in ASCII.
+	kelvin       = '\u212a'
+	smallLongEss = '\u017f'
+)
+
+// foldFunc returns one of four different case folding equivalence
+// functions, from most general (and slow) to fastest:
+//
+// 1) bytes.EqualFold, if the key s contains any non-ASCII UTF-8
+// 2) equalFoldRight, if s contains special folding ASCII ('k', 'K', 's', 'S')
+// 3) asciiEqualFold, no special, but includes non-letters (including _)
+// 4) simpleLetterEqualFold, no specials, no non-letters.
+//
+// The letters S and K are special because they map to 3 runes, not just 2:
+//  * S maps to s and to U+017F 'ſ' Latin small letter long s
+//  * k maps to K and to U+212A 'K' Kelvin sign
+// See http://play.golang.org/p/tTxjOc0OGo
+//
+// The returned function is specialized for matching against s and
+// should only be given s. It's not curried for performance reasons.
+func foldFunc(s []byte) func(s, t []byte) bool {
+	nonLetter := false
+	special := false // special letter
+	for _, b := range s {
+		if b >= utf8.RuneSelf {
+			return bytes.EqualFold
+		}
+		upper := b & caseMask
+		if upper < 'A' || upper > 'Z' {
+			nonLetter = true
+		} else if upper == 'K' || upper == 'S' {
+			// See above for why these letters are special.
+			special = true
+		}
+	}
+	if special {
+		return equalFoldRight
+	}
+	if nonLetter {
+		return asciiEqualFold
+	}
+	return simpleLetterEqualFold
+}
+
+// equalFoldRight is a specialization of bytes.EqualFold when s is
+// known to be all ASCII (including punctuation), but contains an 's',
+// 'S', 'k', or 'K', requiring a Unicode fold on the bytes in t.
+// See comments on foldFunc.
+func equalFoldRight(s, t []byte) bool {
+	for _, sb := range s {
+		if len(t) == 0 {
+			return false
+		}
+		tb := t[0]
+		if tb < utf8.RuneSelf {
+			if sb != tb {
+				sbUpper := sb & caseMask
+				if 'A' <= sbUpper && sbUpper <= 'Z' {
+					if sbUpper != tb&caseMask {
+						return false
+					}
+				} else {
+					return false
+				}
+			}
+			t = t[1:]
+			continue
+		}
+		// sb is ASCII and t is not. t must be either kelvin
+		// sign or long s; sb must be s, S, k, or K.
+		tr, size := utf8.DecodeRune(t)
+		switch sb {
+		case 's', 'S':
+			if tr != smallLongEss {
+				return false
+			}
+		case 'k', 'K':
+			if tr != kelvin {
+				return false
+			}
+		default:
+			return false
+		}
+		t = t[size:]
+
+	}
+	if len(t) > 0 {
+		return false
+	}
+	return true
+}
+
+// asciiEqualFold is a specialization of bytes.EqualFold for use when
+// s is all ASCII (but may contain non-letters) and contains no
+// special-folding letters.
+// See comments on foldFunc.
+func asciiEqualFold(s, t []byte) bool {
+	if len(s) != len(t) {
+		return false
+	}
+	for i, sb := range s {
+		tb := t[i]
+		if sb == tb {
+			continue
+		}
+		if ('a' <= sb && sb <= 'z') || ('A' <= sb && sb <= 'Z') {
+			if sb&caseMask != tb&caseMask {
+				return false
+			}
+		} else {
+			return false
+		}
+	}
+	return true
+}
+
+// simpleLetterEqualFold is a specialization of bytes.EqualFold for
+// use when s is all ASCII letters (no underscores, etc) and also
+// doesn't contain 'k', 'K', 's', or 'S'.
+// See comments on foldFunc.
+func simpleLetterEqualFold(s, t []byte) bool {
+	if len(s) != len(t) {
+		return false
+	}
+	for i, b := range s {
+		if b&caseMask != t[i]&caseMask {
+			return false
+		}
+	}
+	return true
+}
+
+// tagOptions is the string following a comma in a struct field's "json"
+// tag, or the empty string. It does not include the leading comma.
+type tagOptions string
+
+// parseTag splits a struct field's json tag into its name and
+// comma-separated options.
+func parseTag(tag string) (string, tagOptions) {
+	if idx := strings.Index(tag, ","); idx != -1 {
+		return tag[:idx], tagOptions(tag[idx+1:])
+	}
+	return tag, tagOptions("")
+}
+
+// Contains reports whether a comma-separated list of options
+// contains a particular substr flag. substr must be surrounded by a
+// string boundary or commas.
+func (o tagOptions) Contains(optionName string) bool {
+	if len(o) == 0 {
+		return false
+	}
+	s := string(o)
+	for s != "" {
+		var next string
+		i := strings.Index(s, ",")
+		if i >= 0 {
+			s, next = s[:i], s[i+1:]
+		}
+		if s == optionName {
+			return true
+		}
+		s = next
+	}
+	return false
+}