blob: 926f5f15356a48222dcc76c18ed3fe8dad5cbe3b [file] [log] [blame]
package fse
import (
"errors"
"fmt"
)
const (
tablelogAbsoluteMax = 15
)
// Decompress a block of data.
// You can provide a scratch buffer to avoid allocations.
// If nil is provided a temporary one will be allocated.
// It is possible, but by no way guaranteed that corrupt data will
// return an error.
// It is up to the caller to verify integrity of the returned data.
// Use a predefined Scrach to set maximum acceptable output size.
func Decompress(b []byte, s *Scratch) ([]byte, error) {
s, err := s.prepare(b)
if err != nil {
return nil, err
}
s.Out = s.Out[:0]
err = s.readNCount()
if err != nil {
return nil, err
}
err = s.buildDtable()
if err != nil {
return nil, err
}
err = s.decompress()
if err != nil {
return nil, err
}
return s.Out, nil
}
// readNCount will read the symbol distribution so decoding tables can be constructed.
func (s *Scratch) readNCount() error {
var (
charnum uint16
previous0 bool
b = &s.br
)
iend := b.remain()
if iend < 4 {
return errors.New("input too small")
}
bitStream := b.Uint32()
nbBits := uint((bitStream & 0xF) + minTablelog) // extract tableLog
if nbBits > tablelogAbsoluteMax {
return errors.New("tableLog too large")
}
bitStream >>= 4
bitCount := uint(4)
s.actualTableLog = uint8(nbBits)
remaining := int32((1 << nbBits) + 1)
threshold := int32(1 << nbBits)
gotTotal := int32(0)
nbBits++
for remaining > 1 {
if previous0 {
n0 := charnum
for (bitStream & 0xFFFF) == 0xFFFF {
n0 += 24
if b.off < iend-5 {
b.advance(2)
bitStream = b.Uint32() >> bitCount
} else {
bitStream >>= 16
bitCount += 16
}
}
for (bitStream & 3) == 3 {
n0 += 3
bitStream >>= 2
bitCount += 2
}
n0 += uint16(bitStream & 3)
bitCount += 2
if n0 > maxSymbolValue {
return errors.New("maxSymbolValue too small")
}
for charnum < n0 {
s.norm[charnum&0xff] = 0
charnum++
}
if b.off <= iend-7 || b.off+int(bitCount>>3) <= iend-4 {
b.advance(bitCount >> 3)
bitCount &= 7
bitStream = b.Uint32() >> bitCount
} else {
bitStream >>= 2
}
}
max := (2*(threshold) - 1) - (remaining)
var count int32
if (int32(bitStream) & (threshold - 1)) < max {
count = int32(bitStream) & (threshold - 1)
bitCount += nbBits - 1
} else {
count = int32(bitStream) & (2*threshold - 1)
if count >= threshold {
count -= max
}
bitCount += nbBits
}
count-- // extra accuracy
if count < 0 {
// -1 means +1
remaining += count
gotTotal -= count
} else {
remaining -= count
gotTotal += count
}
s.norm[charnum&0xff] = int16(count)
charnum++
previous0 = count == 0
for remaining < threshold {
nbBits--
threshold >>= 1
}
if b.off <= iend-7 || b.off+int(bitCount>>3) <= iend-4 {
b.advance(bitCount >> 3)
bitCount &= 7
} else {
bitCount -= (uint)(8 * (len(b.b) - 4 - b.off))
b.off = len(b.b) - 4
}
bitStream = b.Uint32() >> (bitCount & 31)
}
s.symbolLen = charnum
if s.symbolLen <= 1 {
return fmt.Errorf("symbolLen (%d) too small", s.symbolLen)
}
if s.symbolLen > maxSymbolValue+1 {
return fmt.Errorf("symbolLen (%d) too big", s.symbolLen)
}
if remaining != 1 {
return fmt.Errorf("corruption detected (remaining %d != 1)", remaining)
}
if bitCount > 32 {
return fmt.Errorf("corruption detected (bitCount %d > 32)", bitCount)
}
if gotTotal != 1<<s.actualTableLog {
return fmt.Errorf("corruption detected (total %d != %d)", gotTotal, 1<<s.actualTableLog)
}
b.advance((bitCount + 7) >> 3)
return nil
}
// decSymbol contains information about a state entry,
// Including the state offset base, the output symbol and
// the number of bits to read for the low part of the destination state.
type decSymbol struct {
newState uint16
symbol uint8
nbBits uint8
}
// allocDtable will allocate decoding tables if they are not big enough.
func (s *Scratch) allocDtable() {
tableSize := 1 << s.actualTableLog
if cap(s.decTable) < tableSize {
s.decTable = make([]decSymbol, tableSize)
}
s.decTable = s.decTable[:tableSize]
if cap(s.ct.tableSymbol) < 256 {
s.ct.tableSymbol = make([]byte, 256)
}
s.ct.tableSymbol = s.ct.tableSymbol[:256]
if cap(s.ct.stateTable) < 256 {
s.ct.stateTable = make([]uint16, 256)
}
s.ct.stateTable = s.ct.stateTable[:256]
}
// buildDtable will build the decoding table.
func (s *Scratch) buildDtable() error {
tableSize := uint32(1 << s.actualTableLog)
highThreshold := tableSize - 1
s.allocDtable()
symbolNext := s.ct.stateTable[:256]
// Init, lay down lowprob symbols
s.zeroBits = false
{
largeLimit := int16(1 << (s.actualTableLog - 1))
for i, v := range s.norm[:s.symbolLen] {
if v == -1 {
s.decTable[highThreshold].symbol = uint8(i)
highThreshold--
symbolNext[i] = 1
} else {
if v >= largeLimit {
s.zeroBits = true
}
symbolNext[i] = uint16(v)
}
}
}
// Spread symbols
{
tableMask := tableSize - 1
step := tableStep(tableSize)
position := uint32(0)
for ss, v := range s.norm[:s.symbolLen] {
for i := 0; i < int(v); i++ {
s.decTable[position].symbol = uint8(ss)
position = (position + step) & tableMask
for position > highThreshold {
// lowprob area
position = (position + step) & tableMask
}
}
}
if position != 0 {
// position must reach all cells once, otherwise normalizedCounter is incorrect
return errors.New("corrupted input (position != 0)")
}
}
// Build Decoding table
{
tableSize := uint16(1 << s.actualTableLog)
for u, v := range s.decTable {
symbol := v.symbol
nextState := symbolNext[symbol]
symbolNext[symbol] = nextState + 1
nBits := s.actualTableLog - byte(highBits(uint32(nextState)))
s.decTable[u].nbBits = nBits
newState := (nextState << nBits) - tableSize
if newState >= tableSize {
return fmt.Errorf("newState (%d) outside table size (%d)", newState, tableSize)
}
if newState == uint16(u) && nBits == 0 {
// Seems weird that this is possible with nbits > 0.
return fmt.Errorf("newState (%d) == oldState (%d) and no bits", newState, u)
}
s.decTable[u].newState = newState
}
}
return nil
}
// decompress will decompress the bitstream.
// If the buffer is over-read an error is returned.
func (s *Scratch) decompress() error {
br := &s.bits
br.init(s.br.unread())
var s1, s2 decoder
// Initialize and decode first state and symbol.
s1.init(br, s.decTable, s.actualTableLog)
s2.init(br, s.decTable, s.actualTableLog)
// Use temp table to avoid bound checks/append penalty.
var tmp = s.ct.tableSymbol[:256]
var off uint8
// Main part
if !s.zeroBits {
for br.off >= 8 {
br.fillFast()
tmp[off+0] = s1.nextFast()
tmp[off+1] = s2.nextFast()
br.fillFast()
tmp[off+2] = s1.nextFast()
tmp[off+3] = s2.nextFast()
off += 4
// When off is 0, we have overflowed and should write.
if off == 0 {
s.Out = append(s.Out, tmp...)
if len(s.Out) >= s.DecompressLimit {
return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
}
}
}
} else {
for br.off >= 8 {
br.fillFast()
tmp[off+0] = s1.next()
tmp[off+1] = s2.next()
br.fillFast()
tmp[off+2] = s1.next()
tmp[off+3] = s2.next()
off += 4
if off == 0 {
s.Out = append(s.Out, tmp...)
// When off is 0, we have overflowed and should write.
if len(s.Out) >= s.DecompressLimit {
return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
}
}
}
}
s.Out = append(s.Out, tmp[:off]...)
// Final bits, a bit more expensive check
for {
if s1.finished() {
s.Out = append(s.Out, s1.final(), s2.final())
break
}
br.fill()
s.Out = append(s.Out, s1.next())
if s2.finished() {
s.Out = append(s.Out, s2.final(), s1.final())
break
}
s.Out = append(s.Out, s2.next())
if len(s.Out) >= s.DecompressLimit {
return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
}
}
return br.close()
}
// decoder keeps track of the current state and updates it from the bitstream.
type decoder struct {
state uint16
br *bitReader
dt []decSymbol
}
// init will initialize the decoder and read the first state from the stream.
func (d *decoder) init(in *bitReader, dt []decSymbol, tableLog uint8) {
d.dt = dt
d.br = in
d.state = in.getBits(tableLog)
}
// next returns the next symbol and sets the next state.
// At least tablelog bits must be available in the bit reader.
func (d *decoder) next() uint8 {
n := &d.dt[d.state]
lowBits := d.br.getBits(n.nbBits)
d.state = n.newState + lowBits
return n.symbol
}
// finished returns true if all bits have been read from the bitstream
// and the next state would require reading bits from the input.
func (d *decoder) finished() bool {
return d.br.finished() && d.dt[d.state].nbBits > 0
}
// final returns the current state symbol without decoding the next.
func (d *decoder) final() uint8 {
return d.dt[d.state].symbol
}
// nextFast returns the next symbol and sets the next state.
// This can only be used if no symbols are 0 bits.
// At least tablelog bits must be available in the bit reader.
func (d *decoder) nextFast() uint8 {
n := d.dt[d.state]
lowBits := d.br.getBitsFast(n.nbBits)
d.state = n.newState + lowBits
return n.symbol
}