VOL-2017 voltha-lib moved from voltha-go;
release version 2.2.1
Based on voltha-go commit 5259f8e52b3e3f5c7ad422a4b0e506e1d07f6b36
Change-Id: I8bbecdf456e420714a4016120eafc0d237c80565
diff --git a/vendor/github.com/DataDog/zstd/.travis.yml b/vendor/github.com/DataDog/zstd/.travis.yml
new file mode 100644
index 0000000..629470c
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/.travis.yml
@@ -0,0 +1,31 @@
+dist: xenial
+language: go
+
+go:
+ - 1.10.x
+ - 1.11.x
+ - 1.12.x
+
+os:
+ - linux
+ - osx
+
+matrix:
+ include:
+ name: "Go 1.11.x CentOS 32bits"
+ language: go
+ go: 1.11.x
+ os: linux
+ services:
+ - docker
+ script:
+ # Please update Go version in travis_test_32 as needed
+ - "docker run -i -v \"${PWD}:/zstd\" toopher/centos-i386:centos6 /bin/bash -c \"linux32 --32bit i386 /zstd/travis_test_32.sh\""
+
+install:
+ - "wget https://github.com/DataDog/zstd/files/2246767/mr.zip"
+ - "unzip mr.zip"
+script:
+ - "go build"
+ - "PAYLOAD=`pwd`/mr go test -v"
+ - "PAYLOAD=`pwd`/mr go test -bench ."
diff --git a/vendor/github.com/DataDog/zstd/LICENSE b/vendor/github.com/DataDog/zstd/LICENSE
new file mode 100644
index 0000000..345c1eb
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/LICENSE
@@ -0,0 +1,27 @@
+Simplified BSD License
+
+Copyright (c) 2016, Datadog <info@datadoghq.com>
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+ * Neither the name of the copyright holder nor the names of its contributors
+ may be used to endorse or promote products derived from this software
+ without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/vendor/github.com/DataDog/zstd/README.md b/vendor/github.com/DataDog/zstd/README.md
new file mode 100644
index 0000000..b32c3e7
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/README.md
@@ -0,0 +1,120 @@
+# Zstd Go Wrapper
+
+[C Zstd Homepage](https://github.com/Cyan4973/zstd)
+
+The current headers and C files are from *v1.4.1* (Commit
+[52181f8](https://github.com/facebook/zstd/releases/tag/v1.4.1)).
+
+## Usage
+
+There are two main APIs:
+
+* simple Compress/Decompress
+* streaming API (io.Reader/io.Writer)
+
+The compress/decompress APIs mirror that of lz4, while the streaming API was
+designed to be a drop-in replacement for zlib.
+
+### Simple `Compress/Decompress`
+
+
+```go
+// Compress compresses the byte array given in src and writes it to dst.
+// If you already have a buffer allocated, you can pass it to prevent allocation
+// If not, you can pass nil as dst.
+// If the buffer is too small, it will be reallocated, resized, and returned bu the function
+// If dst is nil, this will allocate the worst case size (CompressBound(src))
+Compress(dst, src []byte) ([]byte, error)
+```
+
+```go
+// CompressLevel is the same as Compress but you can pass another compression level
+CompressLevel(dst, src []byte, level int) ([]byte, error)
+```
+
+```go
+// Decompress will decompress your payload into dst.
+// If you already have a buffer allocated, you can pass it to prevent allocation
+// If not, you can pass nil as dst (allocates a 4*src size as default).
+// If the buffer is too small, it will retry 3 times by doubling the dst size
+// After max retries, it will switch to the slower stream API to be sure to be able
+// to decompress. Currently switches if compression ratio > 4*2**3=32.
+Decompress(dst, src []byte) ([]byte, error)
+```
+
+### Stream API
+
+```go
+// NewWriter creates a new object that can optionally be initialized with
+// a precomputed dictionary. If dict is nil, compress without a dictionary.
+// The dictionary array should not be changed during the use of this object.
+// You MUST CALL Close() to write the last bytes of a zstd stream and free C objects.
+NewWriter(w io.Writer) *Writer
+NewWriterLevel(w io.Writer, level int) *Writer
+NewWriterLevelDict(w io.Writer, level int, dict []byte) *Writer
+
+// Write compresses the input data and write it to the underlying writer
+(w *Writer) Write(p []byte) (int, error)
+
+// Close flushes the buffer and frees C zstd objects
+(w *Writer) Close() error
+```
+
+```go
+// NewReader returns a new io.ReadCloser that will decompress data from the
+// underlying reader. If a dictionary is provided to NewReaderDict, it must
+// not be modified until Close is called. It is the caller's responsibility
+// to call Close, which frees up C objects.
+NewReader(r io.Reader) io.ReadCloser
+NewReaderDict(r io.Reader, dict []byte) io.ReadCloser
+```
+
+### Benchmarks (benchmarked with v0.5.0)
+
+The author of Zstd also wrote lz4. Zstd is intended to occupy a speed/ratio
+level similar to what zlib currently provides. In our tests, the can always
+be made to be better than zlib by chosing an appropriate level while still
+keeping compression and decompression time faster than zlib.
+
+You can run the benchmarks against your own payloads by using the Go benchmarks tool.
+Just export your payload filepath as the `PAYLOAD` environment variable and run the benchmarks:
+
+```go
+go test -bench .
+```
+
+Compression of a 7Mb pdf zstd (this wrapper) vs [czlib](https://github.com/DataDog/czlib):
+```
+BenchmarkCompression 5 221056624 ns/op 67.34 MB/s
+BenchmarkDecompression 100 18370416 ns/op 810.32 MB/s
+
+BenchmarkFzlibCompress 2 610156603 ns/op 24.40 MB/s
+BenchmarkFzlibDecompress 20 81195246 ns/op 183.33 MB/s
+```
+
+Ratio is also better by a margin of ~20%.
+Compression speed is always better than zlib on all the payloads we tested;
+However, [czlib](https://github.com/DataDog/czlib) has optimisations that make it
+faster at decompressiong small payloads:
+
+```
+Testing with size: 11... czlib: 8.97 MB/s, zstd: 3.26 MB/s
+Testing with size: 27... czlib: 23.3 MB/s, zstd: 8.22 MB/s
+Testing with size: 62... czlib: 31.6 MB/s, zstd: 19.49 MB/s
+Testing with size: 141... czlib: 74.54 MB/s, zstd: 42.55 MB/s
+Testing with size: 323... czlib: 155.14 MB/s, zstd: 99.39 MB/s
+Testing with size: 739... czlib: 235.9 MB/s, zstd: 216.45 MB/s
+Testing with size: 1689... czlib: 116.45 MB/s, zstd: 345.64 MB/s
+Testing with size: 3858... czlib: 176.39 MB/s, zstd: 617.56 MB/s
+Testing with size: 8811... czlib: 254.11 MB/s, zstd: 824.34 MB/s
+Testing with size: 20121... czlib: 197.43 MB/s, zstd: 1339.11 MB/s
+Testing with size: 45951... czlib: 201.62 MB/s, zstd: 1951.57 MB/s
+```
+
+zstd starts to shine with payloads > 1KB
+
+### Stability - Current state: STABLE
+
+The C library seems to be pretty stable and according to the author has been tested and fuzzed.
+
+For the Go wrapper, the test cover most usual cases and we have succesfully tested it on all staging and prod data.
diff --git a/vendor/github.com/DataDog/zstd/ZSTD_LICENSE b/vendor/github.com/DataDog/zstd/ZSTD_LICENSE
new file mode 100644
index 0000000..a793a80
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/ZSTD_LICENSE
@@ -0,0 +1,30 @@
+BSD License
+
+For Zstandard software
+
+Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+ * Neither the name Facebook nor the names of its contributors may be used to
+ endorse or promote products derived from this software without specific
+ prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
+ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/vendor/github.com/DataDog/zstd/bitstream.h b/vendor/github.com/DataDog/zstd/bitstream.h
new file mode 100644
index 0000000..d955bd6
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/bitstream.h
@@ -0,0 +1,455 @@
+/* ******************************************************************
+ bitstream
+ Part of FSE library
+ Copyright (C) 2013-present, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef BITSTREAM_H_MODULE
+#define BITSTREAM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/*
+* This API consists of small unitary functions, which must be inlined for best performance.
+* Since link-time-optimization is not available for all compilers,
+* these functions are defined into a .h to be included.
+*/
+
+/*-****************************************
+* Dependencies
+******************************************/
+#include "mem.h" /* unaligned access routines */
+#include "debug.h" /* assert(), DEBUGLOG(), RAWLOG() */
+#include "error_private.h" /* error codes and messages */
+
+
+/*=========================================
+* Target specific
+=========================================*/
+#if defined(__BMI__) && defined(__GNUC__)
+# include <immintrin.h> /* support for bextr (experimental) */
+#endif
+
+#define STREAM_ACCUMULATOR_MIN_32 25
+#define STREAM_ACCUMULATOR_MIN_64 57
+#define STREAM_ACCUMULATOR_MIN ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64))
+
+
+/*-******************************************
+* bitStream encoding API (write forward)
+********************************************/
+/* bitStream can mix input from multiple sources.
+ * A critical property of these streams is that they encode and decode in **reverse** direction.
+ * So the first bit sequence you add will be the last to be read, like a LIFO stack.
+ */
+typedef struct {
+ size_t bitContainer;
+ unsigned bitPos;
+ char* startPtr;
+ char* ptr;
+ char* endPtr;
+} BIT_CStream_t;
+
+MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity);
+MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
+MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC);
+MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
+
+/* Start with initCStream, providing the size of buffer to write into.
+* bitStream will never write outside of this buffer.
+* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
+*
+* bits are first added to a local register.
+* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
+* Writing data into memory is an explicit operation, performed by the flushBits function.
+* Hence keep track how many bits are potentially stored into local register to avoid register overflow.
+* After a flushBits, a maximum of 7 bits might still be stored into local register.
+*
+* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
+*
+* Last operation is to close the bitStream.
+* The function returns the final size of CStream in bytes.
+* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
+*/
+
+
+/*-********************************************
+* bitStream decoding API (read backward)
+**********************************************/
+typedef struct {
+ size_t bitContainer;
+ unsigned bitsConsumed;
+ const char* ptr;
+ const char* start;
+ const char* limitPtr;
+} BIT_DStream_t;
+
+typedef enum { BIT_DStream_unfinished = 0,
+ BIT_DStream_endOfBuffer = 1,
+ BIT_DStream_completed = 2,
+ BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
+ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
+
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
+MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
+
+
+/* Start by invoking BIT_initDStream().
+* A chunk of the bitStream is then stored into a local register.
+* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
+* You can then retrieve bitFields stored into the local register, **in reverse order**.
+* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
+* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
+* Otherwise, it can be less than that, so proceed accordingly.
+* Checking if DStream has reached its end can be performed with BIT_endOfDStream().
+*/
+
+
+/*-****************************************
+* unsafe API
+******************************************/
+MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
+/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */
+
+MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
+/* unsafe version; does not check buffer overflow */
+
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
+/* faster, but works only if nbBits >= 1 */
+
+
+
+/*-**************************************************************
+* Internal functions
+****************************************************************/
+MEM_STATIC unsigned BIT_highbit32 (U32 val)
+{
+ assert(val != 0);
+ {
+# if defined(_MSC_VER) /* Visual */
+ unsigned long r=0;
+ _BitScanReverse ( &r, val );
+ return (unsigned) r;
+# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
+ return 31 - __builtin_clz (val);
+# else /* Software version */
+ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29,
+ 11, 14, 16, 18, 22, 25, 3, 30,
+ 8, 12, 20, 28, 15, 17, 24, 7,
+ 19, 27, 23, 6, 26, 5, 4, 31 };
+ U32 v = val;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
+# endif
+ }
+}
+
+/*===== Local Constants =====*/
+static const unsigned BIT_mask[] = {
+ 0, 1, 3, 7, 0xF, 0x1F,
+ 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF,
+ 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF,
+ 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF,
+ 0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF, 0x1FFFFFFF,
+ 0x3FFFFFFF, 0x7FFFFFFF}; /* up to 31 bits */
+#define BIT_MASK_SIZE (sizeof(BIT_mask) / sizeof(BIT_mask[0]))
+
+/*-**************************************************************
+* bitStream encoding
+****************************************************************/
+/*! BIT_initCStream() :
+ * `dstCapacity` must be > sizeof(size_t)
+ * @return : 0 if success,
+ * otherwise an error code (can be tested using ERR_isError()) */
+MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC,
+ void* startPtr, size_t dstCapacity)
+{
+ bitC->bitContainer = 0;
+ bitC->bitPos = 0;
+ bitC->startPtr = (char*)startPtr;
+ bitC->ptr = bitC->startPtr;
+ bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer);
+ if (dstCapacity <= sizeof(bitC->bitContainer)) return ERROR(dstSize_tooSmall);
+ return 0;
+}
+
+/*! BIT_addBits() :
+ * can add up to 31 bits into `bitC`.
+ * Note : does not check for register overflow ! */
+MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC,
+ size_t value, unsigned nbBits)
+{
+ MEM_STATIC_ASSERT(BIT_MASK_SIZE == 32);
+ assert(nbBits < BIT_MASK_SIZE);
+ assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
+ bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos;
+ bitC->bitPos += nbBits;
+}
+
+/*! BIT_addBitsFast() :
+ * works only if `value` is _clean_,
+ * meaning all high bits above nbBits are 0 */
+MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC,
+ size_t value, unsigned nbBits)
+{
+ assert((value>>nbBits) == 0);
+ assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
+ bitC->bitContainer |= value << bitC->bitPos;
+ bitC->bitPos += nbBits;
+}
+
+/*! BIT_flushBitsFast() :
+ * assumption : bitContainer has not overflowed
+ * unsafe version; does not check buffer overflow */
+MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
+{
+ size_t const nbBytes = bitC->bitPos >> 3;
+ assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
+ MEM_writeLEST(bitC->ptr, bitC->bitContainer);
+ bitC->ptr += nbBytes;
+ assert(bitC->ptr <= bitC->endPtr);
+ bitC->bitPos &= 7;
+ bitC->bitContainer >>= nbBytes*8;
+}
+
+/*! BIT_flushBits() :
+ * assumption : bitContainer has not overflowed
+ * safe version; check for buffer overflow, and prevents it.
+ * note : does not signal buffer overflow.
+ * overflow will be revealed later on using BIT_closeCStream() */
+MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
+{
+ size_t const nbBytes = bitC->bitPos >> 3;
+ assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
+ MEM_writeLEST(bitC->ptr, bitC->bitContainer);
+ bitC->ptr += nbBytes;
+ if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
+ bitC->bitPos &= 7;
+ bitC->bitContainer >>= nbBytes*8;
+}
+
+/*! BIT_closeCStream() :
+ * @return : size of CStream, in bytes,
+ * or 0 if it could not fit into dstBuffer */
+MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC)
+{
+ BIT_addBitsFast(bitC, 1, 1); /* endMark */
+ BIT_flushBits(bitC);
+ if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
+ return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
+}
+
+
+/*-********************************************************
+* bitStream decoding
+**********************************************************/
+/*! BIT_initDStream() :
+ * Initialize a BIT_DStream_t.
+ * `bitD` : a pointer to an already allocated BIT_DStream_t structure.
+ * `srcSize` must be the *exact* size of the bitStream, in bytes.
+ * @return : size of stream (== srcSize), or an errorCode if a problem is detected
+ */
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
+{
+ if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
+
+ bitD->start = (const char*)srcBuffer;
+ bitD->limitPtr = bitD->start + sizeof(bitD->bitContainer);
+
+ if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
+ bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
+ bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */
+ if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
+ } else {
+ bitD->ptr = bitD->start;
+ bitD->bitContainer = *(const BYTE*)(bitD->start);
+ switch(srcSize)
+ {
+ case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
+ /* fall-through */
+
+ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
+ /* fall-through */
+
+ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
+ /* fall-through */
+
+ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24;
+ /* fall-through */
+
+ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16;
+ /* fall-through */
+
+ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8;
+ /* fall-through */
+
+ default: break;
+ }
+ { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
+ bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
+ if (lastByte == 0) return ERROR(corruption_detected); /* endMark not present */
+ }
+ bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
+ }
+
+ return srcSize;
+}
+
+MEM_STATIC size_t BIT_getUpperBits(size_t bitContainer, U32 const start)
+{
+ return bitContainer >> start;
+}
+
+MEM_STATIC size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits)
+{
+ U32 const regMask = sizeof(bitContainer)*8 - 1;
+ /* if start > regMask, bitstream is corrupted, and result is undefined */
+ assert(nbBits < BIT_MASK_SIZE);
+ return (bitContainer >> (start & regMask)) & BIT_mask[nbBits];
+}
+
+MEM_STATIC size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
+{
+ assert(nbBits < BIT_MASK_SIZE);
+ return bitContainer & BIT_mask[nbBits];
+}
+
+/*! BIT_lookBits() :
+ * Provides next n bits from local register.
+ * local register is not modified.
+ * On 32-bits, maxNbBits==24.
+ * On 64-bits, maxNbBits==56.
+ * @return : value extracted */
+MEM_STATIC size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
+{
+ /* arbitrate between double-shift and shift+mask */
+#if 1
+ /* if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8,
+ * bitstream is likely corrupted, and result is undefined */
+ return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits);
+#else
+ /* this code path is slower on my os-x laptop */
+ U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
+ return ((bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> 1) >> ((regMask-nbBits) & regMask);
+#endif
+}
+
+/*! BIT_lookBitsFast() :
+ * unsafe version; only works if nbBits >= 1 */
+MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
+{
+ U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
+ assert(nbBits >= 1);
+ return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask);
+}
+
+MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+ bitD->bitsConsumed += nbBits;
+}
+
+/*! BIT_readBits() :
+ * Read (consume) next n bits from local register and update.
+ * Pay attention to not read more than nbBits contained into local register.
+ * @return : extracted value. */
+MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits)
+{
+ size_t const value = BIT_lookBits(bitD, nbBits);
+ BIT_skipBits(bitD, nbBits);
+ return value;
+}
+
+/*! BIT_readBitsFast() :
+ * unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits)
+{
+ size_t const value = BIT_lookBitsFast(bitD, nbBits);
+ assert(nbBits >= 1);
+ BIT_skipBits(bitD, nbBits);
+ return value;
+}
+
+/*! BIT_reloadDStream() :
+ * Refill `bitD` from buffer previously set in BIT_initDStream() .
+ * This function is safe, it guarantees it will not read beyond src buffer.
+ * @return : status of `BIT_DStream_t` internal register.
+ * when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
+{
+ if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */
+ return BIT_DStream_overflow;
+
+ if (bitD->ptr >= bitD->limitPtr) {
+ bitD->ptr -= bitD->bitsConsumed >> 3;
+ bitD->bitsConsumed &= 7;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ return BIT_DStream_unfinished;
+ }
+ if (bitD->ptr == bitD->start) {
+ if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
+ return BIT_DStream_completed;
+ }
+ /* start < ptr < limitPtr */
+ { U32 nbBytes = bitD->bitsConsumed >> 3;
+ BIT_DStream_status result = BIT_DStream_unfinished;
+ if (bitD->ptr - nbBytes < bitD->start) {
+ nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
+ result = BIT_DStream_endOfBuffer;
+ }
+ bitD->ptr -= nbBytes;
+ bitD->bitsConsumed -= nbBytes*8;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD->bitContainer), otherwise bitD->ptr == bitD->start */
+ return result;
+ }
+}
+
+/*! BIT_endOfDStream() :
+ * @return : 1 if DStream has _exactly_ reached its end (all bits consumed).
+ */
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
+{
+ return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
+}
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* BITSTREAM_H_MODULE */
diff --git a/vendor/github.com/DataDog/zstd/compiler.h b/vendor/github.com/DataDog/zstd/compiler.h
new file mode 100644
index 0000000..87bf51a
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/compiler.h
@@ -0,0 +1,147 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_COMPILER_H
+#define ZSTD_COMPILER_H
+
+/*-*******************************************************
+* Compiler specifics
+*********************************************************/
+/* force inlining */
+
+#if !defined(ZSTD_NO_INLINE)
+#if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# define INLINE_KEYWORD inline
+#else
+# define INLINE_KEYWORD
+#endif
+
+#if defined(__GNUC__)
+# define FORCE_INLINE_ATTR __attribute__((always_inline))
+#elif defined(_MSC_VER)
+# define FORCE_INLINE_ATTR __forceinline
+#else
+# define FORCE_INLINE_ATTR
+#endif
+
+#else
+
+#define INLINE_KEYWORD
+#define FORCE_INLINE_ATTR
+
+#endif
+
+/**
+ * FORCE_INLINE_TEMPLATE is used to define C "templates", which take constant
+ * parameters. They must be inlined for the compiler to eliminate the constant
+ * branches.
+ */
+#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
+/**
+ * HINT_INLINE is used to help the compiler generate better code. It is *not*
+ * used for "templates", so it can be tweaked based on the compilers
+ * performance.
+ *
+ * gcc-4.8 and gcc-4.9 have been shown to benefit from leaving off the
+ * always_inline attribute.
+ *
+ * clang up to 5.0.0 (trunk) benefit tremendously from the always_inline
+ * attribute.
+ */
+#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8 && __GNUC__ < 5
+# define HINT_INLINE static INLINE_KEYWORD
+#else
+# define HINT_INLINE static INLINE_KEYWORD FORCE_INLINE_ATTR
+#endif
+
+/* force no inlining */
+#ifdef _MSC_VER
+# define FORCE_NOINLINE static __declspec(noinline)
+#else
+# ifdef __GNUC__
+# define FORCE_NOINLINE static __attribute__((__noinline__))
+# else
+# define FORCE_NOINLINE static
+# endif
+#endif
+
+/* target attribute */
+#ifndef __has_attribute
+ #define __has_attribute(x) 0 /* Compatibility with non-clang compilers. */
+#endif
+#if defined(__GNUC__)
+# define TARGET_ATTRIBUTE(target) __attribute__((__target__(target)))
+#else
+# define TARGET_ATTRIBUTE(target)
+#endif
+
+/* Enable runtime BMI2 dispatch based on the CPU.
+ * Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default.
+ */
+#ifndef DYNAMIC_BMI2
+ #if ((defined(__clang__) && __has_attribute(__target__)) \
+ || (defined(__GNUC__) \
+ && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \
+ && (defined(__x86_64__) || defined(_M_X86)) \
+ && !defined(__BMI2__)
+ # define DYNAMIC_BMI2 1
+ #else
+ # define DYNAMIC_BMI2 0
+ #endif
+#endif
+
+/* prefetch
+ * can be disabled, by declaring NO_PREFETCH build macro */
+#if defined(NO_PREFETCH)
+# define PREFETCH_L1(ptr) (void)(ptr) /* disabled */
+# define PREFETCH_L2(ptr) (void)(ptr) /* disabled */
+#else
+# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
+# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
+# define PREFETCH_L1(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
+# define PREFETCH_L2(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T1)
+# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
+# define PREFETCH_L1(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
+# define PREFETCH_L2(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 2 /* locality */)
+# else
+# define PREFETCH_L1(ptr) (void)(ptr) /* disabled */
+# define PREFETCH_L2(ptr) (void)(ptr) /* disabled */
+# endif
+#endif /* NO_PREFETCH */
+
+#define CACHELINE_SIZE 64
+
+#define PREFETCH_AREA(p, s) { \
+ const char* const _ptr = (const char*)(p); \
+ size_t const _size = (size_t)(s); \
+ size_t _pos; \
+ for (_pos=0; _pos<_size; _pos+=CACHELINE_SIZE) { \
+ PREFETCH_L2(_ptr + _pos); \
+ } \
+}
+
+/* vectorization */
+#if !defined(__clang__) && defined(__GNUC__)
+# define DONT_VECTORIZE __attribute__((optimize("no-tree-vectorize")))
+#else
+# define DONT_VECTORIZE
+#endif
+
+/* disable warnings */
+#ifdef _MSC_VER /* Visual Studio */
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4100) /* disable: C4100: unreferenced formal parameter */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
+# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
+# pragma warning(disable : 4324) /* disable: C4324: padded structure */
+#endif
+
+#endif /* ZSTD_COMPILER_H */
diff --git a/vendor/github.com/DataDog/zstd/cover.c b/vendor/github.com/DataDog/zstd/cover.c
new file mode 100644
index 0000000..6219967
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/cover.c
@@ -0,0 +1,1237 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/* *****************************************************************************
+ * Constructs a dictionary using a heuristic based on the following paper:
+ *
+ * Liao, Petri, Moffat, Wirth
+ * Effective Construction of Relative Lempel-Ziv Dictionaries
+ * Published in WWW 2016.
+ *
+ * Adapted from code originally written by @ot (Giuseppe Ottaviano).
+ ******************************************************************************/
+
+/*-*************************************
+* Dependencies
+***************************************/
+#include <stdio.h> /* fprintf */
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memset */
+#include <time.h> /* clock */
+
+#include "mem.h" /* read */
+#include "pool.h"
+#include "threading.h"
+#include "cover.h"
+#include "zstd_internal.h" /* includes zstd.h */
+#ifndef ZDICT_STATIC_LINKING_ONLY
+#define ZDICT_STATIC_LINKING_ONLY
+#endif
+#include "zdict.h"
+
+/*-*************************************
+* Constants
+***************************************/
+#define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
+#define DEFAULT_SPLITPOINT 1.0
+
+/*-*************************************
+* Console display
+***************************************/
+static int g_displayLevel = 2;
+#define DISPLAY(...) \
+ { \
+ fprintf(stderr, __VA_ARGS__); \
+ fflush(stderr); \
+ }
+#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
+ if (displayLevel >= l) { \
+ DISPLAY(__VA_ARGS__); \
+ } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
+#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
+
+#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
+ if (displayLevel >= l) { \
+ if ((clock() - g_time > refreshRate) || (displayLevel >= 4)) { \
+ g_time = clock(); \
+ DISPLAY(__VA_ARGS__); \
+ } \
+ }
+#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
+static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100;
+static clock_t g_time = 0;
+
+/*-*************************************
+* Hash table
+***************************************
+* A small specialized hash map for storing activeDmers.
+* The map does not resize, so if it becomes full it will loop forever.
+* Thus, the map must be large enough to store every value.
+* The map implements linear probing and keeps its load less than 0.5.
+*/
+
+#define MAP_EMPTY_VALUE ((U32)-1)
+typedef struct COVER_map_pair_t_s {
+ U32 key;
+ U32 value;
+} COVER_map_pair_t;
+
+typedef struct COVER_map_s {
+ COVER_map_pair_t *data;
+ U32 sizeLog;
+ U32 size;
+ U32 sizeMask;
+} COVER_map_t;
+
+/**
+ * Clear the map.
+ */
+static void COVER_map_clear(COVER_map_t *map) {
+ memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
+}
+
+/**
+ * Initializes a map of the given size.
+ * Returns 1 on success and 0 on failure.
+ * The map must be destroyed with COVER_map_destroy().
+ * The map is only guaranteed to be large enough to hold size elements.
+ */
+static int COVER_map_init(COVER_map_t *map, U32 size) {
+ map->sizeLog = ZSTD_highbit32(size) + 2;
+ map->size = (U32)1 << map->sizeLog;
+ map->sizeMask = map->size - 1;
+ map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
+ if (!map->data) {
+ map->sizeLog = 0;
+ map->size = 0;
+ return 0;
+ }
+ COVER_map_clear(map);
+ return 1;
+}
+
+/**
+ * Internal hash function
+ */
+static const U32 prime4bytes = 2654435761U;
+static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
+ return (key * prime4bytes) >> (32 - map->sizeLog);
+}
+
+/**
+ * Helper function that returns the index that a key should be placed into.
+ */
+static U32 COVER_map_index(COVER_map_t *map, U32 key) {
+ const U32 hash = COVER_map_hash(map, key);
+ U32 i;
+ for (i = hash;; i = (i + 1) & map->sizeMask) {
+ COVER_map_pair_t *pos = &map->data[i];
+ if (pos->value == MAP_EMPTY_VALUE) {
+ return i;
+ }
+ if (pos->key == key) {
+ return i;
+ }
+ }
+}
+
+/**
+ * Returns the pointer to the value for key.
+ * If key is not in the map, it is inserted and the value is set to 0.
+ * The map must not be full.
+ */
+static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
+ COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
+ if (pos->value == MAP_EMPTY_VALUE) {
+ pos->key = key;
+ pos->value = 0;
+ }
+ return &pos->value;
+}
+
+/**
+ * Deletes key from the map if present.
+ */
+static void COVER_map_remove(COVER_map_t *map, U32 key) {
+ U32 i = COVER_map_index(map, key);
+ COVER_map_pair_t *del = &map->data[i];
+ U32 shift = 1;
+ if (del->value == MAP_EMPTY_VALUE) {
+ return;
+ }
+ for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
+ COVER_map_pair_t *const pos = &map->data[i];
+ /* If the position is empty we are done */
+ if (pos->value == MAP_EMPTY_VALUE) {
+ del->value = MAP_EMPTY_VALUE;
+ return;
+ }
+ /* If pos can be moved to del do so */
+ if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
+ del->key = pos->key;
+ del->value = pos->value;
+ del = pos;
+ shift = 1;
+ } else {
+ ++shift;
+ }
+ }
+}
+
+/**
+ * Destroys a map that is inited with COVER_map_init().
+ */
+static void COVER_map_destroy(COVER_map_t *map) {
+ if (map->data) {
+ free(map->data);
+ }
+ map->data = NULL;
+ map->size = 0;
+}
+
+/*-*************************************
+* Context
+***************************************/
+
+typedef struct {
+ const BYTE *samples;
+ size_t *offsets;
+ const size_t *samplesSizes;
+ size_t nbSamples;
+ size_t nbTrainSamples;
+ size_t nbTestSamples;
+ U32 *suffix;
+ size_t suffixSize;
+ U32 *freqs;
+ U32 *dmerAt;
+ unsigned d;
+} COVER_ctx_t;
+
+/* We need a global context for qsort... */
+static COVER_ctx_t *g_ctx = NULL;
+
+/*-*************************************
+* Helper functions
+***************************************/
+
+/**
+ * Returns the sum of the sample sizes.
+ */
+size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
+ size_t sum = 0;
+ unsigned i;
+ for (i = 0; i < nbSamples; ++i) {
+ sum += samplesSizes[i];
+ }
+ return sum;
+}
+
+/**
+ * Returns -1 if the dmer at lp is less than the dmer at rp.
+ * Return 0 if the dmers at lp and rp are equal.
+ * Returns 1 if the dmer at lp is greater than the dmer at rp.
+ */
+static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
+ U32 const lhs = *(U32 const *)lp;
+ U32 const rhs = *(U32 const *)rp;
+ return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
+}
+/**
+ * Faster version for d <= 8.
+ */
+static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
+ U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
+ U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
+ U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
+ if (lhs < rhs) {
+ return -1;
+ }
+ return (lhs > rhs);
+}
+
+/**
+ * Same as COVER_cmp() except ties are broken by pointer value
+ * NOTE: g_ctx must be set to call this function. A global is required because
+ * qsort doesn't take an opaque pointer.
+ */
+static int COVER_strict_cmp(const void *lp, const void *rp) {
+ int result = COVER_cmp(g_ctx, lp, rp);
+ if (result == 0) {
+ result = lp < rp ? -1 : 1;
+ }
+ return result;
+}
+/**
+ * Faster version for d <= 8.
+ */
+static int COVER_strict_cmp8(const void *lp, const void *rp) {
+ int result = COVER_cmp8(g_ctx, lp, rp);
+ if (result == 0) {
+ result = lp < rp ? -1 : 1;
+ }
+ return result;
+}
+
+/**
+ * Returns the first pointer in [first, last) whose element does not compare
+ * less than value. If no such element exists it returns last.
+ */
+static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
+ size_t value) {
+ size_t count = last - first;
+ while (count != 0) {
+ size_t step = count / 2;
+ const size_t *ptr = first;
+ ptr += step;
+ if (*ptr < value) {
+ first = ++ptr;
+ count -= step + 1;
+ } else {
+ count = step;
+ }
+ }
+ return first;
+}
+
+/**
+ * Generic groupBy function.
+ * Groups an array sorted by cmp into groups with equivalent values.
+ * Calls grp for each group.
+ */
+static void
+COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
+ int (*cmp)(COVER_ctx_t *, const void *, const void *),
+ void (*grp)(COVER_ctx_t *, const void *, const void *)) {
+ const BYTE *ptr = (const BYTE *)data;
+ size_t num = 0;
+ while (num < count) {
+ const BYTE *grpEnd = ptr + size;
+ ++num;
+ while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
+ grpEnd += size;
+ ++num;
+ }
+ grp(ctx, ptr, grpEnd);
+ ptr = grpEnd;
+ }
+}
+
+/*-*************************************
+* Cover functions
+***************************************/
+
+/**
+ * Called on each group of positions with the same dmer.
+ * Counts the frequency of each dmer and saves it in the suffix array.
+ * Fills `ctx->dmerAt`.
+ */
+static void COVER_group(COVER_ctx_t *ctx, const void *group,
+ const void *groupEnd) {
+ /* The group consists of all the positions with the same first d bytes. */
+ const U32 *grpPtr = (const U32 *)group;
+ const U32 *grpEnd = (const U32 *)groupEnd;
+ /* The dmerId is how we will reference this dmer.
+ * This allows us to map the whole dmer space to a much smaller space, the
+ * size of the suffix array.
+ */
+ const U32 dmerId = (U32)(grpPtr - ctx->suffix);
+ /* Count the number of samples this dmer shows up in */
+ U32 freq = 0;
+ /* Details */
+ const size_t *curOffsetPtr = ctx->offsets;
+ const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
+ /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
+ * different sample than the last.
+ */
+ size_t curSampleEnd = ctx->offsets[0];
+ for (; grpPtr != grpEnd; ++grpPtr) {
+ /* Save the dmerId for this position so we can get back to it. */
+ ctx->dmerAt[*grpPtr] = dmerId;
+ /* Dictionaries only help for the first reference to the dmer.
+ * After that zstd can reference the match from the previous reference.
+ * So only count each dmer once for each sample it is in.
+ */
+ if (*grpPtr < curSampleEnd) {
+ continue;
+ }
+ freq += 1;
+ /* Binary search to find the end of the sample *grpPtr is in.
+ * In the common case that grpPtr + 1 == grpEnd we can skip the binary
+ * search because the loop is over.
+ */
+ if (grpPtr + 1 != grpEnd) {
+ const size_t *sampleEndPtr =
+ COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
+ curSampleEnd = *sampleEndPtr;
+ curOffsetPtr = sampleEndPtr + 1;
+ }
+ }
+ /* At this point we are never going to look at this segment of the suffix
+ * array again. We take advantage of this fact to save memory.
+ * We store the frequency of the dmer in the first position of the group,
+ * which is dmerId.
+ */
+ ctx->suffix[dmerId] = freq;
+}
+
+
+/**
+ * Selects the best segment in an epoch.
+ * Segments of are scored according to the function:
+ *
+ * Let F(d) be the frequency of dmer d.
+ * Let S_i be the dmer at position i of segment S which has length k.
+ *
+ * Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
+ *
+ * Once the dmer d is in the dictionary we set F(d) = 0.
+ */
+static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
+ COVER_map_t *activeDmers, U32 begin,
+ U32 end,
+ ZDICT_cover_params_t parameters) {
+ /* Constants */
+ const U32 k = parameters.k;
+ const U32 d = parameters.d;
+ const U32 dmersInK = k - d + 1;
+ /* Try each segment (activeSegment) and save the best (bestSegment) */
+ COVER_segment_t bestSegment = {0, 0, 0};
+ COVER_segment_t activeSegment;
+ /* Reset the activeDmers in the segment */
+ COVER_map_clear(activeDmers);
+ /* The activeSegment starts at the beginning of the epoch. */
+ activeSegment.begin = begin;
+ activeSegment.end = begin;
+ activeSegment.score = 0;
+ /* Slide the activeSegment through the whole epoch.
+ * Save the best segment in bestSegment.
+ */
+ while (activeSegment.end < end) {
+ /* The dmerId for the dmer at the next position */
+ U32 newDmer = ctx->dmerAt[activeSegment.end];
+ /* The entry in activeDmers for this dmerId */
+ U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
+ /* If the dmer isn't already present in the segment add its score. */
+ if (*newDmerOcc == 0) {
+ /* The paper suggest using the L-0.5 norm, but experiments show that it
+ * doesn't help.
+ */
+ activeSegment.score += freqs[newDmer];
+ }
+ /* Add the dmer to the segment */
+ activeSegment.end += 1;
+ *newDmerOcc += 1;
+
+ /* If the window is now too large, drop the first position */
+ if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
+ U32 delDmer = ctx->dmerAt[activeSegment.begin];
+ U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
+ activeSegment.begin += 1;
+ *delDmerOcc -= 1;
+ /* If this is the last occurrence of the dmer, subtract its score */
+ if (*delDmerOcc == 0) {
+ COVER_map_remove(activeDmers, delDmer);
+ activeSegment.score -= freqs[delDmer];
+ }
+ }
+
+ /* If this segment is the best so far save it */
+ if (activeSegment.score > bestSegment.score) {
+ bestSegment = activeSegment;
+ }
+ }
+ {
+ /* Trim off the zero frequency head and tail from the segment. */
+ U32 newBegin = bestSegment.end;
+ U32 newEnd = bestSegment.begin;
+ U32 pos;
+ for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
+ U32 freq = freqs[ctx->dmerAt[pos]];
+ if (freq != 0) {
+ newBegin = MIN(newBegin, pos);
+ newEnd = pos + 1;
+ }
+ }
+ bestSegment.begin = newBegin;
+ bestSegment.end = newEnd;
+ }
+ {
+ /* Zero out the frequency of each dmer covered by the chosen segment. */
+ U32 pos;
+ for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
+ freqs[ctx->dmerAt[pos]] = 0;
+ }
+ }
+ return bestSegment;
+}
+
+/**
+ * Check the validity of the parameters.
+ * Returns non-zero if the parameters are valid and 0 otherwise.
+ */
+static int COVER_checkParameters(ZDICT_cover_params_t parameters,
+ size_t maxDictSize) {
+ /* k and d are required parameters */
+ if (parameters.d == 0 || parameters.k == 0) {
+ return 0;
+ }
+ /* k <= maxDictSize */
+ if (parameters.k > maxDictSize) {
+ return 0;
+ }
+ /* d <= k */
+ if (parameters.d > parameters.k) {
+ return 0;
+ }
+ /* 0 < splitPoint <= 1 */
+ if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
+ return 0;
+ }
+ return 1;
+}
+
+/**
+ * Clean up a context initialized with `COVER_ctx_init()`.
+ */
+static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
+ if (!ctx) {
+ return;
+ }
+ if (ctx->suffix) {
+ free(ctx->suffix);
+ ctx->suffix = NULL;
+ }
+ if (ctx->freqs) {
+ free(ctx->freqs);
+ ctx->freqs = NULL;
+ }
+ if (ctx->dmerAt) {
+ free(ctx->dmerAt);
+ ctx->dmerAt = NULL;
+ }
+ if (ctx->offsets) {
+ free(ctx->offsets);
+ ctx->offsets = NULL;
+ }
+}
+
+/**
+ * Prepare a context for dictionary building.
+ * The context is only dependent on the parameter `d` and can used multiple
+ * times.
+ * Returns 0 on success or error code on error.
+ * The context must be destroyed with `COVER_ctx_destroy()`.
+ */
+static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
+ const size_t *samplesSizes, unsigned nbSamples,
+ unsigned d, double splitPoint) {
+ const BYTE *const samples = (const BYTE *)samplesBuffer;
+ const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
+ /* Split samples into testing and training sets */
+ const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
+ const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
+ const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
+ const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
+ /* Checks */
+ if (totalSamplesSize < MAX(d, sizeof(U64)) ||
+ totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
+ DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
+ (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
+ return ERROR(srcSize_wrong);
+ }
+ /* Check if there are at least 5 training samples */
+ if (nbTrainSamples < 5) {
+ DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
+ return ERROR(srcSize_wrong);
+ }
+ /* Check if there's testing sample */
+ if (nbTestSamples < 1) {
+ DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
+ return ERROR(srcSize_wrong);
+ }
+ /* Zero the context */
+ memset(ctx, 0, sizeof(*ctx));
+ DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
+ (unsigned)trainingSamplesSize);
+ DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
+ (unsigned)testSamplesSize);
+ ctx->samples = samples;
+ ctx->samplesSizes = samplesSizes;
+ ctx->nbSamples = nbSamples;
+ ctx->nbTrainSamples = nbTrainSamples;
+ ctx->nbTestSamples = nbTestSamples;
+ /* Partial suffix array */
+ ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
+ ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
+ /* Maps index to the dmerID */
+ ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
+ /* The offsets of each file */
+ ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
+ if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
+ DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
+ COVER_ctx_destroy(ctx);
+ return ERROR(memory_allocation);
+ }
+ ctx->freqs = NULL;
+ ctx->d = d;
+
+ /* Fill offsets from the samplesSizes */
+ {
+ U32 i;
+ ctx->offsets[0] = 0;
+ for (i = 1; i <= nbSamples; ++i) {
+ ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
+ }
+ }
+ DISPLAYLEVEL(2, "Constructing partial suffix array\n");
+ {
+ /* suffix is a partial suffix array.
+ * It only sorts suffixes by their first parameters.d bytes.
+ * The sort is stable, so each dmer group is sorted by position in input.
+ */
+ U32 i;
+ for (i = 0; i < ctx->suffixSize; ++i) {
+ ctx->suffix[i] = i;
+ }
+ /* qsort doesn't take an opaque pointer, so pass as a global.
+ * On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
+ */
+ g_ctx = ctx;
+#if defined(__OpenBSD__)
+ mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
+ (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
+#else
+ qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
+ (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
+#endif
+ }
+ DISPLAYLEVEL(2, "Computing frequencies\n");
+ /* For each dmer group (group of positions with the same first d bytes):
+ * 1. For each position we set dmerAt[position] = dmerID. The dmerID is
+ * (groupBeginPtr - suffix). This allows us to go from position to
+ * dmerID so we can look up values in freq.
+ * 2. We calculate how many samples the dmer occurs in and save it in
+ * freqs[dmerId].
+ */
+ COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
+ (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
+ ctx->freqs = ctx->suffix;
+ ctx->suffix = NULL;
+ return 0;
+}
+
+void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
+{
+ const double ratio = (double)nbDmers / maxDictSize;
+ if (ratio >= 10) {
+ return;
+ }
+ LOCALDISPLAYLEVEL(displayLevel, 1,
+ "WARNING: The maximum dictionary size %u is too large "
+ "compared to the source size %u! "
+ "size(source)/size(dictionary) = %f, but it should be >= "
+ "10! This may lead to a subpar dictionary! We recommend "
+ "training on sources at least 10x, and up to 100x the "
+ "size of the dictionary!\n", (U32)maxDictSize,
+ (U32)nbDmers, ratio);
+}
+
+COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
+ U32 nbDmers, U32 k, U32 passes)
+{
+ const U32 minEpochSize = k * 10;
+ COVER_epoch_info_t epochs;
+ epochs.num = MAX(1, maxDictSize / k / passes);
+ epochs.size = nbDmers / epochs.num;
+ if (epochs.size >= minEpochSize) {
+ assert(epochs.size * epochs.num <= nbDmers);
+ return epochs;
+ }
+ epochs.size = MIN(minEpochSize, nbDmers);
+ epochs.num = nbDmers / epochs.size;
+ assert(epochs.size * epochs.num <= nbDmers);
+ return epochs;
+}
+
+/**
+ * Given the prepared context build the dictionary.
+ */
+static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
+ COVER_map_t *activeDmers, void *dictBuffer,
+ size_t dictBufferCapacity,
+ ZDICT_cover_params_t parameters) {
+ BYTE *const dict = (BYTE *)dictBuffer;
+ size_t tail = dictBufferCapacity;
+ /* Divide the data into epochs. We will select one segment from each epoch. */
+ const COVER_epoch_info_t epochs = COVER_computeEpochs(
+ (U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
+ const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
+ size_t zeroScoreRun = 0;
+ size_t epoch;
+ DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
+ (U32)epochs.num, (U32)epochs.size);
+ /* Loop through the epochs until there are no more segments or the dictionary
+ * is full.
+ */
+ for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
+ const U32 epochBegin = (U32)(epoch * epochs.size);
+ const U32 epochEnd = epochBegin + epochs.size;
+ size_t segmentSize;
+ /* Select a segment */
+ COVER_segment_t segment = COVER_selectSegment(
+ ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
+ /* If the segment covers no dmers, then we are out of content.
+ * There may be new content in other epochs, for continue for some time.
+ */
+ if (segment.score == 0) {
+ if (++zeroScoreRun >= maxZeroScoreRun) {
+ break;
+ }
+ continue;
+ }
+ zeroScoreRun = 0;
+ /* Trim the segment if necessary and if it is too small then we are done */
+ segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
+ if (segmentSize < parameters.d) {
+ break;
+ }
+ /* We fill the dictionary from the back to allow the best segments to be
+ * referenced with the smallest offsets.
+ */
+ tail -= segmentSize;
+ memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
+ DISPLAYUPDATE(
+ 2, "\r%u%% ",
+ (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
+ }
+ DISPLAYLEVEL(2, "\r%79s\r", "");
+ return tail;
+}
+
+ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
+ void *dictBuffer, size_t dictBufferCapacity,
+ const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
+ ZDICT_cover_params_t parameters)
+{
+ BYTE* const dict = (BYTE*)dictBuffer;
+ COVER_ctx_t ctx;
+ COVER_map_t activeDmers;
+ parameters.splitPoint = 1.0;
+ /* Initialize global data */
+ g_displayLevel = parameters.zParams.notificationLevel;
+ /* Checks */
+ if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
+ DISPLAYLEVEL(1, "Cover parameters incorrect\n");
+ return ERROR(parameter_outOfBound);
+ }
+ if (nbSamples == 0) {
+ DISPLAYLEVEL(1, "Cover must have at least one input file\n");
+ return ERROR(srcSize_wrong);
+ }
+ if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
+ DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
+ ZDICT_DICTSIZE_MIN);
+ return ERROR(dstSize_tooSmall);
+ }
+ /* Initialize context and activeDmers */
+ {
+ size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
+ parameters.d, parameters.splitPoint);
+ if (ZSTD_isError(initVal)) {
+ return initVal;
+ }
+ }
+ COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
+ if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
+ DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
+ COVER_ctx_destroy(&ctx);
+ return ERROR(memory_allocation);
+ }
+
+ DISPLAYLEVEL(2, "Building dictionary\n");
+ {
+ const size_t tail =
+ COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
+ dictBufferCapacity, parameters);
+ const size_t dictionarySize = ZDICT_finalizeDictionary(
+ dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
+ samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
+ if (!ZSTD_isError(dictionarySize)) {
+ DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
+ (unsigned)dictionarySize);
+ }
+ COVER_ctx_destroy(&ctx);
+ COVER_map_destroy(&activeDmers);
+ return dictionarySize;
+ }
+}
+
+
+
+size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
+ const size_t *samplesSizes, const BYTE *samples,
+ size_t *offsets,
+ size_t nbTrainSamples, size_t nbSamples,
+ BYTE *const dict, size_t dictBufferCapacity) {
+ size_t totalCompressedSize = ERROR(GENERIC);
+ /* Pointers */
+ ZSTD_CCtx *cctx;
+ ZSTD_CDict *cdict;
+ void *dst;
+ /* Local variables */
+ size_t dstCapacity;
+ size_t i;
+ /* Allocate dst with enough space to compress the maximum sized sample */
+ {
+ size_t maxSampleSize = 0;
+ i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
+ for (; i < nbSamples; ++i) {
+ maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
+ }
+ dstCapacity = ZSTD_compressBound(maxSampleSize);
+ dst = malloc(dstCapacity);
+ }
+ /* Create the cctx and cdict */
+ cctx = ZSTD_createCCtx();
+ cdict = ZSTD_createCDict(dict, dictBufferCapacity,
+ parameters.zParams.compressionLevel);
+ if (!dst || !cctx || !cdict) {
+ goto _compressCleanup;
+ }
+ /* Compress each sample and sum their sizes (or error) */
+ totalCompressedSize = dictBufferCapacity;
+ i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
+ for (; i < nbSamples; ++i) {
+ const size_t size = ZSTD_compress_usingCDict(
+ cctx, dst, dstCapacity, samples + offsets[i],
+ samplesSizes[i], cdict);
+ if (ZSTD_isError(size)) {
+ totalCompressedSize = size;
+ goto _compressCleanup;
+ }
+ totalCompressedSize += size;
+ }
+_compressCleanup:
+ ZSTD_freeCCtx(cctx);
+ ZSTD_freeCDict(cdict);
+ if (dst) {
+ free(dst);
+ }
+ return totalCompressedSize;
+}
+
+
+/**
+ * Initialize the `COVER_best_t`.
+ */
+void COVER_best_init(COVER_best_t *best) {
+ if (best==NULL) return; /* compatible with init on NULL */
+ (void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
+ (void)ZSTD_pthread_cond_init(&best->cond, NULL);
+ best->liveJobs = 0;
+ best->dict = NULL;
+ best->dictSize = 0;
+ best->compressedSize = (size_t)-1;
+ memset(&best->parameters, 0, sizeof(best->parameters));
+}
+
+/**
+ * Wait until liveJobs == 0.
+ */
+void COVER_best_wait(COVER_best_t *best) {
+ if (!best) {
+ return;
+ }
+ ZSTD_pthread_mutex_lock(&best->mutex);
+ while (best->liveJobs != 0) {
+ ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
+ }
+ ZSTD_pthread_mutex_unlock(&best->mutex);
+}
+
+/**
+ * Call COVER_best_wait() and then destroy the COVER_best_t.
+ */
+void COVER_best_destroy(COVER_best_t *best) {
+ if (!best) {
+ return;
+ }
+ COVER_best_wait(best);
+ if (best->dict) {
+ free(best->dict);
+ }
+ ZSTD_pthread_mutex_destroy(&best->mutex);
+ ZSTD_pthread_cond_destroy(&best->cond);
+}
+
+/**
+ * Called when a thread is about to be launched.
+ * Increments liveJobs.
+ */
+void COVER_best_start(COVER_best_t *best) {
+ if (!best) {
+ return;
+ }
+ ZSTD_pthread_mutex_lock(&best->mutex);
+ ++best->liveJobs;
+ ZSTD_pthread_mutex_unlock(&best->mutex);
+}
+
+/**
+ * Called when a thread finishes executing, both on error or success.
+ * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
+ * If this dictionary is the best so far save it and its parameters.
+ */
+void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
+ COVER_dictSelection_t selection) {
+ void* dict = selection.dictContent;
+ size_t compressedSize = selection.totalCompressedSize;
+ size_t dictSize = selection.dictSize;
+ if (!best) {
+ return;
+ }
+ {
+ size_t liveJobs;
+ ZSTD_pthread_mutex_lock(&best->mutex);
+ --best->liveJobs;
+ liveJobs = best->liveJobs;
+ /* If the new dictionary is better */
+ if (compressedSize < best->compressedSize) {
+ /* Allocate space if necessary */
+ if (!best->dict || best->dictSize < dictSize) {
+ if (best->dict) {
+ free(best->dict);
+ }
+ best->dict = malloc(dictSize);
+ if (!best->dict) {
+ best->compressedSize = ERROR(GENERIC);
+ best->dictSize = 0;
+ ZSTD_pthread_cond_signal(&best->cond);
+ ZSTD_pthread_mutex_unlock(&best->mutex);
+ return;
+ }
+ }
+ /* Save the dictionary, parameters, and size */
+ if (!dict) {
+ return;
+ }
+ memcpy(best->dict, dict, dictSize);
+ best->dictSize = dictSize;
+ best->parameters = parameters;
+ best->compressedSize = compressedSize;
+ }
+ if (liveJobs == 0) {
+ ZSTD_pthread_cond_broadcast(&best->cond);
+ }
+ ZSTD_pthread_mutex_unlock(&best->mutex);
+ }
+}
+
+COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
+ COVER_dictSelection_t selection = { NULL, 0, error };
+ return selection;
+}
+
+unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
+ return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
+}
+
+void COVER_dictSelectionFree(COVER_dictSelection_t selection){
+ free(selection.dictContent);
+}
+
+COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent,
+ size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
+ size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
+
+ size_t largestDict = 0;
+ size_t largestCompressed = 0;
+ BYTE* customDictContentEnd = customDictContent + dictContentSize;
+
+ BYTE * largestDictbuffer = (BYTE *)malloc(dictContentSize);
+ BYTE * candidateDictBuffer = (BYTE *)malloc(dictContentSize);
+ double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
+
+ if (!largestDictbuffer || !candidateDictBuffer) {
+ free(largestDictbuffer);
+ free(candidateDictBuffer);
+ return COVER_dictSelectionError(dictContentSize);
+ }
+
+ /* Initial dictionary size and compressed size */
+ memcpy(largestDictbuffer, customDictContent, dictContentSize);
+ dictContentSize = ZDICT_finalizeDictionary(
+ largestDictbuffer, dictContentSize, customDictContent, dictContentSize,
+ samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
+
+ if (ZDICT_isError(dictContentSize)) {
+ free(largestDictbuffer);
+ free(candidateDictBuffer);
+ return COVER_dictSelectionError(dictContentSize);
+ }
+
+ totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
+ samplesBuffer, offsets,
+ nbCheckSamples, nbSamples,
+ largestDictbuffer, dictContentSize);
+
+ if (ZSTD_isError(totalCompressedSize)) {
+ free(largestDictbuffer);
+ free(candidateDictBuffer);
+ return COVER_dictSelectionError(totalCompressedSize);
+ }
+
+ if (params.shrinkDict == 0) {
+ COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
+ free(candidateDictBuffer);
+ return selection;
+ }
+
+ largestDict = dictContentSize;
+ largestCompressed = totalCompressedSize;
+ dictContentSize = ZDICT_DICTSIZE_MIN;
+
+ /* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
+ while (dictContentSize < largestDict) {
+ memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
+ dictContentSize = ZDICT_finalizeDictionary(
+ candidateDictBuffer, dictContentSize, customDictContentEnd - dictContentSize, dictContentSize,
+ samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
+
+ if (ZDICT_isError(dictContentSize)) {
+ free(largestDictbuffer);
+ free(candidateDictBuffer);
+ return COVER_dictSelectionError(dictContentSize);
+
+ }
+
+ totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
+ samplesBuffer, offsets,
+ nbCheckSamples, nbSamples,
+ candidateDictBuffer, dictContentSize);
+
+ if (ZSTD_isError(totalCompressedSize)) {
+ free(largestDictbuffer);
+ free(candidateDictBuffer);
+ return COVER_dictSelectionError(totalCompressedSize);
+ }
+
+ if (totalCompressedSize <= largestCompressed * regressionTolerance) {
+ COVER_dictSelection_t selection = { candidateDictBuffer, dictContentSize, totalCompressedSize };
+ free(largestDictbuffer);
+ return selection;
+ }
+ dictContentSize *= 2;
+ }
+ dictContentSize = largestDict;
+ totalCompressedSize = largestCompressed;
+ {
+ COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
+ free(candidateDictBuffer);
+ return selection;
+ }
+}
+
+/**
+ * Parameters for COVER_tryParameters().
+ */
+typedef struct COVER_tryParameters_data_s {
+ const COVER_ctx_t *ctx;
+ COVER_best_t *best;
+ size_t dictBufferCapacity;
+ ZDICT_cover_params_t parameters;
+} COVER_tryParameters_data_t;
+
+/**
+ * Tries a set of parameters and updates the COVER_best_t with the results.
+ * This function is thread safe if zstd is compiled with multithreaded support.
+ * It takes its parameters as an *OWNING* opaque pointer to support threading.
+ */
+static void COVER_tryParameters(void *opaque) {
+ /* Save parameters as local variables */
+ COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t *)opaque;
+ const COVER_ctx_t *const ctx = data->ctx;
+ const ZDICT_cover_params_t parameters = data->parameters;
+ size_t dictBufferCapacity = data->dictBufferCapacity;
+ size_t totalCompressedSize = ERROR(GENERIC);
+ /* Allocate space for hash table, dict, and freqs */
+ COVER_map_t activeDmers;
+ BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
+ COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
+ U32 *freqs = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
+ if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
+ DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
+ goto _cleanup;
+ }
+ if (!dict || !freqs) {
+ DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
+ goto _cleanup;
+ }
+ /* Copy the frequencies because we need to modify them */
+ memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
+ /* Build the dictionary */
+ {
+ const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
+ dictBufferCapacity, parameters);
+ selection = COVER_selectDict(dict + tail, dictBufferCapacity - tail,
+ ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
+ totalCompressedSize);
+
+ if (COVER_dictSelectionIsError(selection)) {
+ DISPLAYLEVEL(1, "Failed to select dictionary\n");
+ goto _cleanup;
+ }
+ }
+_cleanup:
+ free(dict);
+ COVER_best_finish(data->best, parameters, selection);
+ free(data);
+ COVER_map_destroy(&activeDmers);
+ COVER_dictSelectionFree(selection);
+ if (freqs) {
+ free(freqs);
+ }
+}
+
+ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
+ void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
+ const size_t *samplesSizes, unsigned nbSamples,
+ ZDICT_cover_params_t *parameters) {
+ /* constants */
+ const unsigned nbThreads = parameters->nbThreads;
+ const double splitPoint =
+ parameters->splitPoint <= 0.0 ? DEFAULT_SPLITPOINT : parameters->splitPoint;
+ const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
+ const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
+ const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
+ const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
+ const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
+ const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
+ const unsigned kIterations =
+ (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
+ const unsigned shrinkDict = 0;
+ /* Local variables */
+ const int displayLevel = parameters->zParams.notificationLevel;
+ unsigned iteration = 1;
+ unsigned d;
+ unsigned k;
+ COVER_best_t best;
+ POOL_ctx *pool = NULL;
+ int warned = 0;
+
+ /* Checks */
+ if (splitPoint <= 0 || splitPoint > 1) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
+ return ERROR(parameter_outOfBound);
+ }
+ if (kMinK < kMaxD || kMaxK < kMinK) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
+ return ERROR(parameter_outOfBound);
+ }
+ if (nbSamples == 0) {
+ DISPLAYLEVEL(1, "Cover must have at least one input file\n");
+ return ERROR(srcSize_wrong);
+ }
+ if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
+ DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
+ ZDICT_DICTSIZE_MIN);
+ return ERROR(dstSize_tooSmall);
+ }
+ if (nbThreads > 1) {
+ pool = POOL_create(nbThreads, 1);
+ if (!pool) {
+ return ERROR(memory_allocation);
+ }
+ }
+ /* Initialization */
+ COVER_best_init(&best);
+ /* Turn down global display level to clean up display at level 2 and below */
+ g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
+ /* Loop through d first because each new value needs a new context */
+ LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
+ kIterations);
+ for (d = kMinD; d <= kMaxD; d += 2) {
+ /* Initialize the context for this value of d */
+ COVER_ctx_t ctx;
+ LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
+ {
+ const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
+ if (ZSTD_isError(initVal)) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
+ COVER_best_destroy(&best);
+ POOL_free(pool);
+ return initVal;
+ }
+ }
+ if (!warned) {
+ COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
+ warned = 1;
+ }
+ /* Loop through k reusing the same context */
+ for (k = kMinK; k <= kMaxK; k += kStepSize) {
+ /* Prepare the arguments */
+ COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
+ sizeof(COVER_tryParameters_data_t));
+ LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
+ if (!data) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
+ COVER_best_destroy(&best);
+ COVER_ctx_destroy(&ctx);
+ POOL_free(pool);
+ return ERROR(memory_allocation);
+ }
+ data->ctx = &ctx;
+ data->best = &best;
+ data->dictBufferCapacity = dictBufferCapacity;
+ data->parameters = *parameters;
+ data->parameters.k = k;
+ data->parameters.d = d;
+ data->parameters.splitPoint = splitPoint;
+ data->parameters.steps = kSteps;
+ data->parameters.shrinkDict = shrinkDict;
+ data->parameters.zParams.notificationLevel = g_displayLevel;
+ /* Check the parameters */
+ if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
+ DISPLAYLEVEL(1, "Cover parameters incorrect\n");
+ free(data);
+ continue;
+ }
+ /* Call the function and pass ownership of data to it */
+ COVER_best_start(&best);
+ if (pool) {
+ POOL_add(pool, &COVER_tryParameters, data);
+ } else {
+ COVER_tryParameters(data);
+ }
+ /* Print status */
+ LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
+ (unsigned)((iteration * 100) / kIterations));
+ ++iteration;
+ }
+ COVER_best_wait(&best);
+ COVER_ctx_destroy(&ctx);
+ }
+ LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
+ /* Fill the output buffer and parameters with output of the best parameters */
+ {
+ const size_t dictSize = best.dictSize;
+ if (ZSTD_isError(best.compressedSize)) {
+ const size_t compressedSize = best.compressedSize;
+ COVER_best_destroy(&best);
+ POOL_free(pool);
+ return compressedSize;
+ }
+ *parameters = best.parameters;
+ memcpy(dictBuffer, best.dict, dictSize);
+ COVER_best_destroy(&best);
+ POOL_free(pool);
+ return dictSize;
+ }
+}
diff --git a/vendor/github.com/DataDog/zstd/cover.h b/vendor/github.com/DataDog/zstd/cover.h
new file mode 100644
index 0000000..d9e0636
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/cover.h
@@ -0,0 +1,147 @@
+#include <stdio.h> /* fprintf */
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memset */
+#include <time.h> /* clock */
+#include "mem.h" /* read */
+#include "pool.h"
+#include "threading.h"
+#include "zstd_internal.h" /* includes zstd.h */
+#ifndef ZDICT_STATIC_LINKING_ONLY
+#define ZDICT_STATIC_LINKING_ONLY
+#endif
+#include "zdict.h"
+
+/**
+ * COVER_best_t is used for two purposes:
+ * 1. Synchronizing threads.
+ * 2. Saving the best parameters and dictionary.
+ *
+ * All of the methods except COVER_best_init() are thread safe if zstd is
+ * compiled with multithreaded support.
+ */
+typedef struct COVER_best_s {
+ ZSTD_pthread_mutex_t mutex;
+ ZSTD_pthread_cond_t cond;
+ size_t liveJobs;
+ void *dict;
+ size_t dictSize;
+ ZDICT_cover_params_t parameters;
+ size_t compressedSize;
+} COVER_best_t;
+
+/**
+ * A segment is a range in the source as well as the score of the segment.
+ */
+typedef struct {
+ U32 begin;
+ U32 end;
+ U32 score;
+} COVER_segment_t;
+
+/**
+ *Number of epochs and size of each epoch.
+ */
+typedef struct {
+ U32 num;
+ U32 size;
+} COVER_epoch_info_t;
+
+/**
+ * Struct used for the dictionary selection function.
+ */
+typedef struct COVER_dictSelection {
+ BYTE* dictContent;
+ size_t dictSize;
+ size_t totalCompressedSize;
+} COVER_dictSelection_t;
+
+/**
+ * Computes the number of epochs and the size of each epoch.
+ * We will make sure that each epoch gets at least 10 * k bytes.
+ *
+ * The COVER algorithms divide the data up into epochs of equal size and
+ * select one segment from each epoch.
+ *
+ * @param maxDictSize The maximum allowed dictionary size.
+ * @param nbDmers The number of dmers we are training on.
+ * @param k The parameter k (segment size).
+ * @param passes The target number of passes over the dmer corpus.
+ * More passes means a better dictionary.
+ */
+COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize, U32 nbDmers,
+ U32 k, U32 passes);
+
+/**
+ * Warns the user when their corpus is too small.
+ */
+void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel);
+
+/**
+ * Checks total compressed size of a dictionary
+ */
+size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
+ const size_t *samplesSizes, const BYTE *samples,
+ size_t *offsets,
+ size_t nbTrainSamples, size_t nbSamples,
+ BYTE *const dict, size_t dictBufferCapacity);
+
+/**
+ * Returns the sum of the sample sizes.
+ */
+size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) ;
+
+/**
+ * Initialize the `COVER_best_t`.
+ */
+void COVER_best_init(COVER_best_t *best);
+
+/**
+ * Wait until liveJobs == 0.
+ */
+void COVER_best_wait(COVER_best_t *best);
+
+/**
+ * Call COVER_best_wait() and then destroy the COVER_best_t.
+ */
+void COVER_best_destroy(COVER_best_t *best);
+
+/**
+ * Called when a thread is about to be launched.
+ * Increments liveJobs.
+ */
+void COVER_best_start(COVER_best_t *best);
+
+/**
+ * Called when a thread finishes executing, both on error or success.
+ * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
+ * If this dictionary is the best so far save it and its parameters.
+ */
+void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
+ COVER_dictSelection_t selection);
+/**
+ * Error function for COVER_selectDict function. Checks if the return
+ * value is an error.
+ */
+unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection);
+
+ /**
+ * Error function for COVER_selectDict function. Returns a struct where
+ * return.totalCompressedSize is a ZSTD error.
+ */
+COVER_dictSelection_t COVER_dictSelectionError(size_t error);
+
+/**
+ * Always call after selectDict is called to free up used memory from
+ * newly created dictionary.
+ */
+void COVER_dictSelectionFree(COVER_dictSelection_t selection);
+
+/**
+ * Called to finalize the dictionary and select one based on whether or not
+ * the shrink-dict flag was enabled. If enabled the dictionary used is the
+ * smallest dictionary within a specified regression of the compressed size
+ * from the largest dictionary.
+ */
+ COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent,
+ size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
+ size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize);
diff --git a/vendor/github.com/DataDog/zstd/cpu.h b/vendor/github.com/DataDog/zstd/cpu.h
new file mode 100644
index 0000000..5f0923f
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/cpu.h
@@ -0,0 +1,215 @@
+/*
+ * Copyright (c) 2018-present, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_COMMON_CPU_H
+#define ZSTD_COMMON_CPU_H
+
+/**
+ * Implementation taken from folly/CpuId.h
+ * https://github.com/facebook/folly/blob/master/folly/CpuId.h
+ */
+
+#include <string.h>
+
+#include "mem.h"
+
+#ifdef _MSC_VER
+#include <intrin.h>
+#endif
+
+typedef struct {
+ U32 f1c;
+ U32 f1d;
+ U32 f7b;
+ U32 f7c;
+} ZSTD_cpuid_t;
+
+MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) {
+ U32 f1c = 0;
+ U32 f1d = 0;
+ U32 f7b = 0;
+ U32 f7c = 0;
+#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))
+ int reg[4];
+ __cpuid((int*)reg, 0);
+ {
+ int const n = reg[0];
+ if (n >= 1) {
+ __cpuid((int*)reg, 1);
+ f1c = (U32)reg[2];
+ f1d = (U32)reg[3];
+ }
+ if (n >= 7) {
+ __cpuidex((int*)reg, 7, 0);
+ f7b = (U32)reg[1];
+ f7c = (U32)reg[2];
+ }
+ }
+#elif defined(__i386__) && defined(__PIC__) && !defined(__clang__) && defined(__GNUC__)
+ /* The following block like the normal cpuid branch below, but gcc
+ * reserves ebx for use of its pic register so we must specially
+ * handle the save and restore to avoid clobbering the register
+ */
+ U32 n;
+ __asm__(
+ "pushl %%ebx\n\t"
+ "cpuid\n\t"
+ "popl %%ebx\n\t"
+ : "=a"(n)
+ : "a"(0)
+ : "ecx", "edx");
+ if (n >= 1) {
+ U32 f1a;
+ __asm__(
+ "pushl %%ebx\n\t"
+ "cpuid\n\t"
+ "popl %%ebx\n\t"
+ : "=a"(f1a), "=c"(f1c), "=d"(f1d)
+ : "a"(1));
+ }
+ if (n >= 7) {
+ __asm__(
+ "pushl %%ebx\n\t"
+ "cpuid\n\t"
+ "movl %%ebx, %%eax\n\t"
+ "popl %%ebx"
+ : "=a"(f7b), "=c"(f7c)
+ : "a"(7), "c"(0)
+ : "edx");
+ }
+#elif defined(__x86_64__) || defined(_M_X64) || defined(__i386__)
+ U32 n;
+ __asm__("cpuid" : "=a"(n) : "a"(0) : "ebx", "ecx", "edx");
+ if (n >= 1) {
+ U32 f1a;
+ __asm__("cpuid" : "=a"(f1a), "=c"(f1c), "=d"(f1d) : "a"(1) : "ebx");
+ }
+ if (n >= 7) {
+ U32 f7a;
+ __asm__("cpuid"
+ : "=a"(f7a), "=b"(f7b), "=c"(f7c)
+ : "a"(7), "c"(0)
+ : "edx");
+ }
+#endif
+ {
+ ZSTD_cpuid_t cpuid;
+ cpuid.f1c = f1c;
+ cpuid.f1d = f1d;
+ cpuid.f7b = f7b;
+ cpuid.f7c = f7c;
+ return cpuid;
+ }
+}
+
+#define X(name, r, bit) \
+ MEM_STATIC int ZSTD_cpuid_##name(ZSTD_cpuid_t const cpuid) { \
+ return ((cpuid.r) & (1U << bit)) != 0; \
+ }
+
+/* cpuid(1): Processor Info and Feature Bits. */
+#define C(name, bit) X(name, f1c, bit)
+ C(sse3, 0)
+ C(pclmuldq, 1)
+ C(dtes64, 2)
+ C(monitor, 3)
+ C(dscpl, 4)
+ C(vmx, 5)
+ C(smx, 6)
+ C(eist, 7)
+ C(tm2, 8)
+ C(ssse3, 9)
+ C(cnxtid, 10)
+ C(fma, 12)
+ C(cx16, 13)
+ C(xtpr, 14)
+ C(pdcm, 15)
+ C(pcid, 17)
+ C(dca, 18)
+ C(sse41, 19)
+ C(sse42, 20)
+ C(x2apic, 21)
+ C(movbe, 22)
+ C(popcnt, 23)
+ C(tscdeadline, 24)
+ C(aes, 25)
+ C(xsave, 26)
+ C(osxsave, 27)
+ C(avx, 28)
+ C(f16c, 29)
+ C(rdrand, 30)
+#undef C
+#define D(name, bit) X(name, f1d, bit)
+ D(fpu, 0)
+ D(vme, 1)
+ D(de, 2)
+ D(pse, 3)
+ D(tsc, 4)
+ D(msr, 5)
+ D(pae, 6)
+ D(mce, 7)
+ D(cx8, 8)
+ D(apic, 9)
+ D(sep, 11)
+ D(mtrr, 12)
+ D(pge, 13)
+ D(mca, 14)
+ D(cmov, 15)
+ D(pat, 16)
+ D(pse36, 17)
+ D(psn, 18)
+ D(clfsh, 19)
+ D(ds, 21)
+ D(acpi, 22)
+ D(mmx, 23)
+ D(fxsr, 24)
+ D(sse, 25)
+ D(sse2, 26)
+ D(ss, 27)
+ D(htt, 28)
+ D(tm, 29)
+ D(pbe, 31)
+#undef D
+
+/* cpuid(7): Extended Features. */
+#define B(name, bit) X(name, f7b, bit)
+ B(bmi1, 3)
+ B(hle, 4)
+ B(avx2, 5)
+ B(smep, 7)
+ B(bmi2, 8)
+ B(erms, 9)
+ B(invpcid, 10)
+ B(rtm, 11)
+ B(mpx, 14)
+ B(avx512f, 16)
+ B(avx512dq, 17)
+ B(rdseed, 18)
+ B(adx, 19)
+ B(smap, 20)
+ B(avx512ifma, 21)
+ B(pcommit, 22)
+ B(clflushopt, 23)
+ B(clwb, 24)
+ B(avx512pf, 26)
+ B(avx512er, 27)
+ B(avx512cd, 28)
+ B(sha, 29)
+ B(avx512bw, 30)
+ B(avx512vl, 31)
+#undef B
+#define C(name, bit) X(name, f7c, bit)
+ C(prefetchwt1, 0)
+ C(avx512vbmi, 1)
+#undef C
+
+#undef X
+
+#endif /* ZSTD_COMMON_CPU_H */
diff --git a/vendor/github.com/DataDog/zstd/debug.c b/vendor/github.com/DataDog/zstd/debug.c
new file mode 100644
index 0000000..3ebdd1c
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/debug.c
@@ -0,0 +1,44 @@
+/* ******************************************************************
+ debug
+ Part of FSE library
+ Copyright (C) 2013-present, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+
+
+/*
+ * This module only hosts one global variable
+ * which can be used to dynamically influence the verbosity of traces,
+ * such as DEBUGLOG and RAWLOG
+ */
+
+#include "debug.h"
+
+int g_debuglevel = DEBUGLEVEL;
diff --git a/vendor/github.com/DataDog/zstd/debug.h b/vendor/github.com/DataDog/zstd/debug.h
new file mode 100644
index 0000000..b4fc89d
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/debug.h
@@ -0,0 +1,134 @@
+/* ******************************************************************
+ debug
+ Part of FSE library
+ Copyright (C) 2013-present, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+
+
+/*
+ * The purpose of this header is to enable debug functions.
+ * They regroup assert(), DEBUGLOG() and RAWLOG() for run-time,
+ * and DEBUG_STATIC_ASSERT() for compile-time.
+ *
+ * By default, DEBUGLEVEL==0, which means run-time debug is disabled.
+ *
+ * Level 1 enables assert() only.
+ * Starting level 2, traces can be generated and pushed to stderr.
+ * The higher the level, the more verbose the traces.
+ *
+ * It's possible to dynamically adjust level using variable g_debug_level,
+ * which is only declared if DEBUGLEVEL>=2,
+ * and is a global variable, not multi-thread protected (use with care)
+ */
+
+#ifndef DEBUG_H_12987983217
+#define DEBUG_H_12987983217
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/* static assert is triggered at compile time, leaving no runtime artefact.
+ * static assert only works with compile-time constants.
+ * Also, this variant can only be used inside a function. */
+#define DEBUG_STATIC_ASSERT(c) (void)sizeof(char[(c) ? 1 : -1])
+
+
+/* DEBUGLEVEL is expected to be defined externally,
+ * typically through compiler command line.
+ * Value must be a number. */
+#ifndef DEBUGLEVEL
+# define DEBUGLEVEL 0
+#endif
+
+
+/* DEBUGFILE can be defined externally,
+ * typically through compiler command line.
+ * note : currently useless.
+ * Value must be stderr or stdout */
+#ifndef DEBUGFILE
+# define DEBUGFILE stderr
+#endif
+
+
+/* recommended values for DEBUGLEVEL :
+ * 0 : release mode, no debug, all run-time checks disabled
+ * 1 : enables assert() only, no display
+ * 2 : reserved, for currently active debug path
+ * 3 : events once per object lifetime (CCtx, CDict, etc.)
+ * 4 : events once per frame
+ * 5 : events once per block
+ * 6 : events once per sequence (verbose)
+ * 7+: events at every position (*very* verbose)
+ *
+ * It's generally inconvenient to output traces > 5.
+ * In which case, it's possible to selectively trigger high verbosity levels
+ * by modifying g_debug_level.
+ */
+
+#if (DEBUGLEVEL>=1)
+# include <assert.h>
+#else
+# ifndef assert /* assert may be already defined, due to prior #include <assert.h> */
+# define assert(condition) ((void)0) /* disable assert (default) */
+# endif
+#endif
+
+#if (DEBUGLEVEL>=2)
+# include <stdio.h>
+extern int g_debuglevel; /* the variable is only declared,
+ it actually lives in debug.c,
+ and is shared by the whole process.
+ It's not thread-safe.
+ It's useful when enabling very verbose levels
+ on selective conditions (such as position in src) */
+
+# define RAWLOG(l, ...) { \
+ if (l<=g_debuglevel) { \
+ fprintf(stderr, __VA_ARGS__); \
+ } }
+# define DEBUGLOG(l, ...) { \
+ if (l<=g_debuglevel) { \
+ fprintf(stderr, __FILE__ ": " __VA_ARGS__); \
+ fprintf(stderr, " \n"); \
+ } }
+#else
+# define RAWLOG(l, ...) {} /* disabled */
+# define DEBUGLOG(l, ...) {} /* disabled */
+#endif
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* DEBUG_H_12987983217 */
diff --git a/vendor/github.com/DataDog/zstd/divsufsort.c b/vendor/github.com/DataDog/zstd/divsufsort.c
new file mode 100644
index 0000000..ead9220
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/divsufsort.c
@@ -0,0 +1,1913 @@
+/*
+ * divsufsort.c for libdivsufsort-lite
+ * Copyright (c) 2003-2008 Yuta Mori All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person
+ * obtaining a copy of this software and associated documentation
+ * files (the "Software"), to deal in the Software without
+ * restriction, including without limitation the rights to use,
+ * copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following
+ * conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+ * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+ * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+ * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+/*- Compiler specifics -*/
+#ifdef __clang__
+#pragma clang diagnostic ignored "-Wshorten-64-to-32"
+#endif
+
+#if defined(_MSC_VER)
+# pragma warning(disable : 4244)
+# pragma warning(disable : 4127) /* C4127 : Condition expression is constant */
+#endif
+
+
+/*- Dependencies -*/
+#include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+#include "divsufsort.h"
+
+/*- Constants -*/
+#if defined(INLINE)
+# undef INLINE
+#endif
+#if !defined(INLINE)
+# define INLINE __inline
+#endif
+#if defined(ALPHABET_SIZE) && (ALPHABET_SIZE < 1)
+# undef ALPHABET_SIZE
+#endif
+#if !defined(ALPHABET_SIZE)
+# define ALPHABET_SIZE (256)
+#endif
+#define BUCKET_A_SIZE (ALPHABET_SIZE)
+#define BUCKET_B_SIZE (ALPHABET_SIZE * ALPHABET_SIZE)
+#if defined(SS_INSERTIONSORT_THRESHOLD)
+# if SS_INSERTIONSORT_THRESHOLD < 1
+# undef SS_INSERTIONSORT_THRESHOLD
+# define SS_INSERTIONSORT_THRESHOLD (1)
+# endif
+#else
+# define SS_INSERTIONSORT_THRESHOLD (8)
+#endif
+#if defined(SS_BLOCKSIZE)
+# if SS_BLOCKSIZE < 0
+# undef SS_BLOCKSIZE
+# define SS_BLOCKSIZE (0)
+# elif 32768 <= SS_BLOCKSIZE
+# undef SS_BLOCKSIZE
+# define SS_BLOCKSIZE (32767)
+# endif
+#else
+# define SS_BLOCKSIZE (1024)
+#endif
+/* minstacksize = log(SS_BLOCKSIZE) / log(3) * 2 */
+#if SS_BLOCKSIZE == 0
+# define SS_MISORT_STACKSIZE (96)
+#elif SS_BLOCKSIZE <= 4096
+# define SS_MISORT_STACKSIZE (16)
+#else
+# define SS_MISORT_STACKSIZE (24)
+#endif
+#define SS_SMERGE_STACKSIZE (32)
+#define TR_INSERTIONSORT_THRESHOLD (8)
+#define TR_STACKSIZE (64)
+
+
+/*- Macros -*/
+#ifndef SWAP
+# define SWAP(_a, _b) do { t = (_a); (_a) = (_b); (_b) = t; } while(0)
+#endif /* SWAP */
+#ifndef MIN
+# define MIN(_a, _b) (((_a) < (_b)) ? (_a) : (_b))
+#endif /* MIN */
+#ifndef MAX
+# define MAX(_a, _b) (((_a) > (_b)) ? (_a) : (_b))
+#endif /* MAX */
+#define STACK_PUSH(_a, _b, _c, _d)\
+ do {\
+ assert(ssize < STACK_SIZE);\
+ stack[ssize].a = (_a), stack[ssize].b = (_b),\
+ stack[ssize].c = (_c), stack[ssize++].d = (_d);\
+ } while(0)
+#define STACK_PUSH5(_a, _b, _c, _d, _e)\
+ do {\
+ assert(ssize < STACK_SIZE);\
+ stack[ssize].a = (_a), stack[ssize].b = (_b),\
+ stack[ssize].c = (_c), stack[ssize].d = (_d), stack[ssize++].e = (_e);\
+ } while(0)
+#define STACK_POP(_a, _b, _c, _d)\
+ do {\
+ assert(0 <= ssize);\
+ if(ssize == 0) { return; }\
+ (_a) = stack[--ssize].a, (_b) = stack[ssize].b,\
+ (_c) = stack[ssize].c, (_d) = stack[ssize].d;\
+ } while(0)
+#define STACK_POP5(_a, _b, _c, _d, _e)\
+ do {\
+ assert(0 <= ssize);\
+ if(ssize == 0) { return; }\
+ (_a) = stack[--ssize].a, (_b) = stack[ssize].b,\
+ (_c) = stack[ssize].c, (_d) = stack[ssize].d, (_e) = stack[ssize].e;\
+ } while(0)
+#define BUCKET_A(_c0) bucket_A[(_c0)]
+#if ALPHABET_SIZE == 256
+#define BUCKET_B(_c0, _c1) (bucket_B[((_c1) << 8) | (_c0)])
+#define BUCKET_BSTAR(_c0, _c1) (bucket_B[((_c0) << 8) | (_c1)])
+#else
+#define BUCKET_B(_c0, _c1) (bucket_B[(_c1) * ALPHABET_SIZE + (_c0)])
+#define BUCKET_BSTAR(_c0, _c1) (bucket_B[(_c0) * ALPHABET_SIZE + (_c1)])
+#endif
+
+
+/*- Private Functions -*/
+
+static const int lg_table[256]= {
+ -1,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
+ 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
+ 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
+ 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
+ 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
+ 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
+ 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
+ 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
+};
+
+#if (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE)
+
+static INLINE
+int
+ss_ilg(int n) {
+#if SS_BLOCKSIZE == 0
+ return (n & 0xffff0000) ?
+ ((n & 0xff000000) ?
+ 24 + lg_table[(n >> 24) & 0xff] :
+ 16 + lg_table[(n >> 16) & 0xff]) :
+ ((n & 0x0000ff00) ?
+ 8 + lg_table[(n >> 8) & 0xff] :
+ 0 + lg_table[(n >> 0) & 0xff]);
+#elif SS_BLOCKSIZE < 256
+ return lg_table[n];
+#else
+ return (n & 0xff00) ?
+ 8 + lg_table[(n >> 8) & 0xff] :
+ 0 + lg_table[(n >> 0) & 0xff];
+#endif
+}
+
+#endif /* (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) */
+
+#if SS_BLOCKSIZE != 0
+
+static const int sqq_table[256] = {
+ 0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53, 55, 57, 59, 61,
+ 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87, 89,
+ 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108, 109,
+110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
+128, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
+143, 144, 144, 145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155,
+156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168,
+169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178, 179, 180,
+181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188, 189, 189, 190, 191,
+192, 192, 193, 193, 194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201,
+202, 203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210, 211, 211,
+212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 219, 220, 221,
+221, 222, 222, 223, 224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230,
+230, 231, 231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238,
+239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247,
+247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255
+};
+
+static INLINE
+int
+ss_isqrt(int x) {
+ int y, e;
+
+ if(x >= (SS_BLOCKSIZE * SS_BLOCKSIZE)) { return SS_BLOCKSIZE; }
+ e = (x & 0xffff0000) ?
+ ((x & 0xff000000) ?
+ 24 + lg_table[(x >> 24) & 0xff] :
+ 16 + lg_table[(x >> 16) & 0xff]) :
+ ((x & 0x0000ff00) ?
+ 8 + lg_table[(x >> 8) & 0xff] :
+ 0 + lg_table[(x >> 0) & 0xff]);
+
+ if(e >= 16) {
+ y = sqq_table[x >> ((e - 6) - (e & 1))] << ((e >> 1) - 7);
+ if(e >= 24) { y = (y + 1 + x / y) >> 1; }
+ y = (y + 1 + x / y) >> 1;
+ } else if(e >= 8) {
+ y = (sqq_table[x >> ((e - 6) - (e & 1))] >> (7 - (e >> 1))) + 1;
+ } else {
+ return sqq_table[x] >> 4;
+ }
+
+ return (x < (y * y)) ? y - 1 : y;
+}
+
+#endif /* SS_BLOCKSIZE != 0 */
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Compares two suffixes. */
+static INLINE
+int
+ss_compare(const unsigned char *T,
+ const int *p1, const int *p2,
+ int depth) {
+ const unsigned char *U1, *U2, *U1n, *U2n;
+
+ for(U1 = T + depth + *p1,
+ U2 = T + depth + *p2,
+ U1n = T + *(p1 + 1) + 2,
+ U2n = T + *(p2 + 1) + 2;
+ (U1 < U1n) && (U2 < U2n) && (*U1 == *U2);
+ ++U1, ++U2) {
+ }
+
+ return U1 < U1n ?
+ (U2 < U2n ? *U1 - *U2 : 1) :
+ (U2 < U2n ? -1 : 0);
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+#if (SS_BLOCKSIZE != 1) && (SS_INSERTIONSORT_THRESHOLD != 1)
+
+/* Insertionsort for small size groups */
+static
+void
+ss_insertionsort(const unsigned char *T, const int *PA,
+ int *first, int *last, int depth) {
+ int *i, *j;
+ int t;
+ int r;
+
+ for(i = last - 2; first <= i; --i) {
+ for(t = *i, j = i + 1; 0 < (r = ss_compare(T, PA + t, PA + *j, depth));) {
+ do { *(j - 1) = *j; } while((++j < last) && (*j < 0));
+ if(last <= j) { break; }
+ }
+ if(r == 0) { *j = ~*j; }
+ *(j - 1) = t;
+ }
+}
+
+#endif /* (SS_BLOCKSIZE != 1) && (SS_INSERTIONSORT_THRESHOLD != 1) */
+
+
+/*---------------------------------------------------------------------------*/
+
+#if (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE)
+
+static INLINE
+void
+ss_fixdown(const unsigned char *Td, const int *PA,
+ int *SA, int i, int size) {
+ int j, k;
+ int v;
+ int c, d, e;
+
+ for(v = SA[i], c = Td[PA[v]]; (j = 2 * i + 1) < size; SA[i] = SA[k], i = k) {
+ d = Td[PA[SA[k = j++]]];
+ if(d < (e = Td[PA[SA[j]]])) { k = j; d = e; }
+ if(d <= c) { break; }
+ }
+ SA[i] = v;
+}
+
+/* Simple top-down heapsort. */
+static
+void
+ss_heapsort(const unsigned char *Td, const int *PA, int *SA, int size) {
+ int i, m;
+ int t;
+
+ m = size;
+ if((size % 2) == 0) {
+ m--;
+ if(Td[PA[SA[m / 2]]] < Td[PA[SA[m]]]) { SWAP(SA[m], SA[m / 2]); }
+ }
+
+ for(i = m / 2 - 1; 0 <= i; --i) { ss_fixdown(Td, PA, SA, i, m); }
+ if((size % 2) == 0) { SWAP(SA[0], SA[m]); ss_fixdown(Td, PA, SA, 0, m); }
+ for(i = m - 1; 0 < i; --i) {
+ t = SA[0], SA[0] = SA[i];
+ ss_fixdown(Td, PA, SA, 0, i);
+ SA[i] = t;
+ }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Returns the median of three elements. */
+static INLINE
+int *
+ss_median3(const unsigned char *Td, const int *PA,
+ int *v1, int *v2, int *v3) {
+ int *t;
+ if(Td[PA[*v1]] > Td[PA[*v2]]) { SWAP(v1, v2); }
+ if(Td[PA[*v2]] > Td[PA[*v3]]) {
+ if(Td[PA[*v1]] > Td[PA[*v3]]) { return v1; }
+ else { return v3; }
+ }
+ return v2;
+}
+
+/* Returns the median of five elements. */
+static INLINE
+int *
+ss_median5(const unsigned char *Td, const int *PA,
+ int *v1, int *v2, int *v3, int *v4, int *v5) {
+ int *t;
+ if(Td[PA[*v2]] > Td[PA[*v3]]) { SWAP(v2, v3); }
+ if(Td[PA[*v4]] > Td[PA[*v5]]) { SWAP(v4, v5); }
+ if(Td[PA[*v2]] > Td[PA[*v4]]) { SWAP(v2, v4); SWAP(v3, v5); }
+ if(Td[PA[*v1]] > Td[PA[*v3]]) { SWAP(v1, v3); }
+ if(Td[PA[*v1]] > Td[PA[*v4]]) { SWAP(v1, v4); SWAP(v3, v5); }
+ if(Td[PA[*v3]] > Td[PA[*v4]]) { return v4; }
+ return v3;
+}
+
+/* Returns the pivot element. */
+static INLINE
+int *
+ss_pivot(const unsigned char *Td, const int *PA, int *first, int *last) {
+ int *middle;
+ int t;
+
+ t = last - first;
+ middle = first + t / 2;
+
+ if(t <= 512) {
+ if(t <= 32) {
+ return ss_median3(Td, PA, first, middle, last - 1);
+ } else {
+ t >>= 2;
+ return ss_median5(Td, PA, first, first + t, middle, last - 1 - t, last - 1);
+ }
+ }
+ t >>= 3;
+ first = ss_median3(Td, PA, first, first + t, first + (t << 1));
+ middle = ss_median3(Td, PA, middle - t, middle, middle + t);
+ last = ss_median3(Td, PA, last - 1 - (t << 1), last - 1 - t, last - 1);
+ return ss_median3(Td, PA, first, middle, last);
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Binary partition for substrings. */
+static INLINE
+int *
+ss_partition(const int *PA,
+ int *first, int *last, int depth) {
+ int *a, *b;
+ int t;
+ for(a = first - 1, b = last;;) {
+ for(; (++a < b) && ((PA[*a] + depth) >= (PA[*a + 1] + 1));) { *a = ~*a; }
+ for(; (a < --b) && ((PA[*b] + depth) < (PA[*b + 1] + 1));) { }
+ if(b <= a) { break; }
+ t = ~*b;
+ *b = *a;
+ *a = t;
+ }
+ if(first < a) { *first = ~*first; }
+ return a;
+}
+
+/* Multikey introsort for medium size groups. */
+static
+void
+ss_mintrosort(const unsigned char *T, const int *PA,
+ int *first, int *last,
+ int depth) {
+#define STACK_SIZE SS_MISORT_STACKSIZE
+ struct { int *a, *b, c; int d; } stack[STACK_SIZE];
+ const unsigned char *Td;
+ int *a, *b, *c, *d, *e, *f;
+ int s, t;
+ int ssize;
+ int limit;
+ int v, x = 0;
+
+ for(ssize = 0, limit = ss_ilg(last - first);;) {
+
+ if((last - first) <= SS_INSERTIONSORT_THRESHOLD) {
+#if 1 < SS_INSERTIONSORT_THRESHOLD
+ if(1 < (last - first)) { ss_insertionsort(T, PA, first, last, depth); }
+#endif
+ STACK_POP(first, last, depth, limit);
+ continue;
+ }
+
+ Td = T + depth;
+ if(limit-- == 0) { ss_heapsort(Td, PA, first, last - first); }
+ if(limit < 0) {
+ for(a = first + 1, v = Td[PA[*first]]; a < last; ++a) {
+ if((x = Td[PA[*a]]) != v) {
+ if(1 < (a - first)) { break; }
+ v = x;
+ first = a;
+ }
+ }
+ if(Td[PA[*first] - 1] < v) {
+ first = ss_partition(PA, first, a, depth);
+ }
+ if((a - first) <= (last - a)) {
+ if(1 < (a - first)) {
+ STACK_PUSH(a, last, depth, -1);
+ last = a, depth += 1, limit = ss_ilg(a - first);
+ } else {
+ first = a, limit = -1;
+ }
+ } else {
+ if(1 < (last - a)) {
+ STACK_PUSH(first, a, depth + 1, ss_ilg(a - first));
+ first = a, limit = -1;
+ } else {
+ last = a, depth += 1, limit = ss_ilg(a - first);
+ }
+ }
+ continue;
+ }
+
+ /* choose pivot */
+ a = ss_pivot(Td, PA, first, last);
+ v = Td[PA[*a]];
+ SWAP(*first, *a);
+
+ /* partition */
+ for(b = first; (++b < last) && ((x = Td[PA[*b]]) == v);) { }
+ if(((a = b) < last) && (x < v)) {
+ for(; (++b < last) && ((x = Td[PA[*b]]) <= v);) {
+ if(x == v) { SWAP(*b, *a); ++a; }
+ }
+ }
+ for(c = last; (b < --c) && ((x = Td[PA[*c]]) == v);) { }
+ if((b < (d = c)) && (x > v)) {
+ for(; (b < --c) && ((x = Td[PA[*c]]) >= v);) {
+ if(x == v) { SWAP(*c, *d); --d; }
+ }
+ }
+ for(; b < c;) {
+ SWAP(*b, *c);
+ for(; (++b < c) && ((x = Td[PA[*b]]) <= v);) {
+ if(x == v) { SWAP(*b, *a); ++a; }
+ }
+ for(; (b < --c) && ((x = Td[PA[*c]]) >= v);) {
+ if(x == v) { SWAP(*c, *d); --d; }
+ }
+ }
+
+ if(a <= d) {
+ c = b - 1;
+
+ if((s = a - first) > (t = b - a)) { s = t; }
+ for(e = first, f = b - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); }
+ if((s = d - c) > (t = last - d - 1)) { s = t; }
+ for(e = b, f = last - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); }
+
+ a = first + (b - a), c = last - (d - c);
+ b = (v <= Td[PA[*a] - 1]) ? a : ss_partition(PA, a, c, depth);
+
+ if((a - first) <= (last - c)) {
+ if((last - c) <= (c - b)) {
+ STACK_PUSH(b, c, depth + 1, ss_ilg(c - b));
+ STACK_PUSH(c, last, depth, limit);
+ last = a;
+ } else if((a - first) <= (c - b)) {
+ STACK_PUSH(c, last, depth, limit);
+ STACK_PUSH(b, c, depth + 1, ss_ilg(c - b));
+ last = a;
+ } else {
+ STACK_PUSH(c, last, depth, limit);
+ STACK_PUSH(first, a, depth, limit);
+ first = b, last = c, depth += 1, limit = ss_ilg(c - b);
+ }
+ } else {
+ if((a - first) <= (c - b)) {
+ STACK_PUSH(b, c, depth + 1, ss_ilg(c - b));
+ STACK_PUSH(first, a, depth, limit);
+ first = c;
+ } else if((last - c) <= (c - b)) {
+ STACK_PUSH(first, a, depth, limit);
+ STACK_PUSH(b, c, depth + 1, ss_ilg(c - b));
+ first = c;
+ } else {
+ STACK_PUSH(first, a, depth, limit);
+ STACK_PUSH(c, last, depth, limit);
+ first = b, last = c, depth += 1, limit = ss_ilg(c - b);
+ }
+ }
+ } else {
+ limit += 1;
+ if(Td[PA[*first] - 1] < v) {
+ first = ss_partition(PA, first, last, depth);
+ limit = ss_ilg(last - first);
+ }
+ depth += 1;
+ }
+ }
+#undef STACK_SIZE
+}
+
+#endif /* (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) */
+
+
+/*---------------------------------------------------------------------------*/
+
+#if SS_BLOCKSIZE != 0
+
+static INLINE
+void
+ss_blockswap(int *a, int *b, int n) {
+ int t;
+ for(; 0 < n; --n, ++a, ++b) {
+ t = *a, *a = *b, *b = t;
+ }
+}
+
+static INLINE
+void
+ss_rotate(int *first, int *middle, int *last) {
+ int *a, *b, t;
+ int l, r;
+ l = middle - first, r = last - middle;
+ for(; (0 < l) && (0 < r);) {
+ if(l == r) { ss_blockswap(first, middle, l); break; }
+ if(l < r) {
+ a = last - 1, b = middle - 1;
+ t = *a;
+ do {
+ *a-- = *b, *b-- = *a;
+ if(b < first) {
+ *a = t;
+ last = a;
+ if((r -= l + 1) <= l) { break; }
+ a -= 1, b = middle - 1;
+ t = *a;
+ }
+ } while(1);
+ } else {
+ a = first, b = middle;
+ t = *a;
+ do {
+ *a++ = *b, *b++ = *a;
+ if(last <= b) {
+ *a = t;
+ first = a + 1;
+ if((l -= r + 1) <= r) { break; }
+ a += 1, b = middle;
+ t = *a;
+ }
+ } while(1);
+ }
+ }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+static
+void
+ss_inplacemerge(const unsigned char *T, const int *PA,
+ int *first, int *middle, int *last,
+ int depth) {
+ const int *p;
+ int *a, *b;
+ int len, half;
+ int q, r;
+ int x;
+
+ for(;;) {
+ if(*(last - 1) < 0) { x = 1; p = PA + ~*(last - 1); }
+ else { x = 0; p = PA + *(last - 1); }
+ for(a = first, len = middle - first, half = len >> 1, r = -1;
+ 0 < len;
+ len = half, half >>= 1) {
+ b = a + half;
+ q = ss_compare(T, PA + ((0 <= *b) ? *b : ~*b), p, depth);
+ if(q < 0) {
+ a = b + 1;
+ half -= (len & 1) ^ 1;
+ } else {
+ r = q;
+ }
+ }
+ if(a < middle) {
+ if(r == 0) { *a = ~*a; }
+ ss_rotate(a, middle, last);
+ last -= middle - a;
+ middle = a;
+ if(first == middle) { break; }
+ }
+ --last;
+ if(x != 0) { while(*--last < 0) { } }
+ if(middle == last) { break; }
+ }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Merge-forward with internal buffer. */
+static
+void
+ss_mergeforward(const unsigned char *T, const int *PA,
+ int *first, int *middle, int *last,
+ int *buf, int depth) {
+ int *a, *b, *c, *bufend;
+ int t;
+ int r;
+
+ bufend = buf + (middle - first) - 1;
+ ss_blockswap(buf, first, middle - first);
+
+ for(t = *(a = first), b = buf, c = middle;;) {
+ r = ss_compare(T, PA + *b, PA + *c, depth);
+ if(r < 0) {
+ do {
+ *a++ = *b;
+ if(bufend <= b) { *bufend = t; return; }
+ *b++ = *a;
+ } while(*b < 0);
+ } else if(r > 0) {
+ do {
+ *a++ = *c, *c++ = *a;
+ if(last <= c) {
+ while(b < bufend) { *a++ = *b, *b++ = *a; }
+ *a = *b, *b = t;
+ return;
+ }
+ } while(*c < 0);
+ } else {
+ *c = ~*c;
+ do {
+ *a++ = *b;
+ if(bufend <= b) { *bufend = t; return; }
+ *b++ = *a;
+ } while(*b < 0);
+
+ do {
+ *a++ = *c, *c++ = *a;
+ if(last <= c) {
+ while(b < bufend) { *a++ = *b, *b++ = *a; }
+ *a = *b, *b = t;
+ return;
+ }
+ } while(*c < 0);
+ }
+ }
+}
+
+/* Merge-backward with internal buffer. */
+static
+void
+ss_mergebackward(const unsigned char *T, const int *PA,
+ int *first, int *middle, int *last,
+ int *buf, int depth) {
+ const int *p1, *p2;
+ int *a, *b, *c, *bufend;
+ int t;
+ int r;
+ int x;
+
+ bufend = buf + (last - middle) - 1;
+ ss_blockswap(buf, middle, last - middle);
+
+ x = 0;
+ if(*bufend < 0) { p1 = PA + ~*bufend; x |= 1; }
+ else { p1 = PA + *bufend; }
+ if(*(middle - 1) < 0) { p2 = PA + ~*(middle - 1); x |= 2; }
+ else { p2 = PA + *(middle - 1); }
+ for(t = *(a = last - 1), b = bufend, c = middle - 1;;) {
+ r = ss_compare(T, p1, p2, depth);
+ if(0 < r) {
+ if(x & 1) { do { *a-- = *b, *b-- = *a; } while(*b < 0); x ^= 1; }
+ *a-- = *b;
+ if(b <= buf) { *buf = t; break; }
+ *b-- = *a;
+ if(*b < 0) { p1 = PA + ~*b; x |= 1; }
+ else { p1 = PA + *b; }
+ } else if(r < 0) {
+ if(x & 2) { do { *a-- = *c, *c-- = *a; } while(*c < 0); x ^= 2; }
+ *a-- = *c, *c-- = *a;
+ if(c < first) {
+ while(buf < b) { *a-- = *b, *b-- = *a; }
+ *a = *b, *b = t;
+ break;
+ }
+ if(*c < 0) { p2 = PA + ~*c; x |= 2; }
+ else { p2 = PA + *c; }
+ } else {
+ if(x & 1) { do { *a-- = *b, *b-- = *a; } while(*b < 0); x ^= 1; }
+ *a-- = ~*b;
+ if(b <= buf) { *buf = t; break; }
+ *b-- = *a;
+ if(x & 2) { do { *a-- = *c, *c-- = *a; } while(*c < 0); x ^= 2; }
+ *a-- = *c, *c-- = *a;
+ if(c < first) {
+ while(buf < b) { *a-- = *b, *b-- = *a; }
+ *a = *b, *b = t;
+ break;
+ }
+ if(*b < 0) { p1 = PA + ~*b; x |= 1; }
+ else { p1 = PA + *b; }
+ if(*c < 0) { p2 = PA + ~*c; x |= 2; }
+ else { p2 = PA + *c; }
+ }
+ }
+}
+
+/* D&C based merge. */
+static
+void
+ss_swapmerge(const unsigned char *T, const int *PA,
+ int *first, int *middle, int *last,
+ int *buf, int bufsize, int depth) {
+#define STACK_SIZE SS_SMERGE_STACKSIZE
+#define GETIDX(a) ((0 <= (a)) ? (a) : (~(a)))
+#define MERGE_CHECK(a, b, c)\
+ do {\
+ if(((c) & 1) ||\
+ (((c) & 2) && (ss_compare(T, PA + GETIDX(*((a) - 1)), PA + *(a), depth) == 0))) {\
+ *(a) = ~*(a);\
+ }\
+ if(((c) & 4) && ((ss_compare(T, PA + GETIDX(*((b) - 1)), PA + *(b), depth) == 0))) {\
+ *(b) = ~*(b);\
+ }\
+ } while(0)
+ struct { int *a, *b, *c; int d; } stack[STACK_SIZE];
+ int *l, *r, *lm, *rm;
+ int m, len, half;
+ int ssize;
+ int check, next;
+
+ for(check = 0, ssize = 0;;) {
+ if((last - middle) <= bufsize) {
+ if((first < middle) && (middle < last)) {
+ ss_mergebackward(T, PA, first, middle, last, buf, depth);
+ }
+ MERGE_CHECK(first, last, check);
+ STACK_POP(first, middle, last, check);
+ continue;
+ }
+
+ if((middle - first) <= bufsize) {
+ if(first < middle) {
+ ss_mergeforward(T, PA, first, middle, last, buf, depth);
+ }
+ MERGE_CHECK(first, last, check);
+ STACK_POP(first, middle, last, check);
+ continue;
+ }
+
+ for(m = 0, len = MIN(middle - first, last - middle), half = len >> 1;
+ 0 < len;
+ len = half, half >>= 1) {
+ if(ss_compare(T, PA + GETIDX(*(middle + m + half)),
+ PA + GETIDX(*(middle - m - half - 1)), depth) < 0) {
+ m += half + 1;
+ half -= (len & 1) ^ 1;
+ }
+ }
+
+ if(0 < m) {
+ lm = middle - m, rm = middle + m;
+ ss_blockswap(lm, middle, m);
+ l = r = middle, next = 0;
+ if(rm < last) {
+ if(*rm < 0) {
+ *rm = ~*rm;
+ if(first < lm) { for(; *--l < 0;) { } next |= 4; }
+ next |= 1;
+ } else if(first < lm) {
+ for(; *r < 0; ++r) { }
+ next |= 2;
+ }
+ }
+
+ if((l - first) <= (last - r)) {
+ STACK_PUSH(r, rm, last, (next & 3) | (check & 4));
+ middle = lm, last = l, check = (check & 3) | (next & 4);
+ } else {
+ if((next & 2) && (r == middle)) { next ^= 6; }
+ STACK_PUSH(first, lm, l, (check & 3) | (next & 4));
+ first = r, middle = rm, check = (next & 3) | (check & 4);
+ }
+ } else {
+ if(ss_compare(T, PA + GETIDX(*(middle - 1)), PA + *middle, depth) == 0) {
+ *middle = ~*middle;
+ }
+ MERGE_CHECK(first, last, check);
+ STACK_POP(first, middle, last, check);
+ }
+ }
+#undef STACK_SIZE
+}
+
+#endif /* SS_BLOCKSIZE != 0 */
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Substring sort */
+static
+void
+sssort(const unsigned char *T, const int *PA,
+ int *first, int *last,
+ int *buf, int bufsize,
+ int depth, int n, int lastsuffix) {
+ int *a;
+#if SS_BLOCKSIZE != 0
+ int *b, *middle, *curbuf;
+ int j, k, curbufsize, limit;
+#endif
+ int i;
+
+ if(lastsuffix != 0) { ++first; }
+
+#if SS_BLOCKSIZE == 0
+ ss_mintrosort(T, PA, first, last, depth);
+#else
+ if((bufsize < SS_BLOCKSIZE) &&
+ (bufsize < (last - first)) &&
+ (bufsize < (limit = ss_isqrt(last - first)))) {
+ if(SS_BLOCKSIZE < limit) { limit = SS_BLOCKSIZE; }
+ buf = middle = last - limit, bufsize = limit;
+ } else {
+ middle = last, limit = 0;
+ }
+ for(a = first, i = 0; SS_BLOCKSIZE < (middle - a); a += SS_BLOCKSIZE, ++i) {
+#if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE
+ ss_mintrosort(T, PA, a, a + SS_BLOCKSIZE, depth);
+#elif 1 < SS_BLOCKSIZE
+ ss_insertionsort(T, PA, a, a + SS_BLOCKSIZE, depth);
+#endif
+ curbufsize = last - (a + SS_BLOCKSIZE);
+ curbuf = a + SS_BLOCKSIZE;
+ if(curbufsize <= bufsize) { curbufsize = bufsize, curbuf = buf; }
+ for(b = a, k = SS_BLOCKSIZE, j = i; j & 1; b -= k, k <<= 1, j >>= 1) {
+ ss_swapmerge(T, PA, b - k, b, b + k, curbuf, curbufsize, depth);
+ }
+ }
+#if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE
+ ss_mintrosort(T, PA, a, middle, depth);
+#elif 1 < SS_BLOCKSIZE
+ ss_insertionsort(T, PA, a, middle, depth);
+#endif
+ for(k = SS_BLOCKSIZE; i != 0; k <<= 1, i >>= 1) {
+ if(i & 1) {
+ ss_swapmerge(T, PA, a - k, a, middle, buf, bufsize, depth);
+ a -= k;
+ }
+ }
+ if(limit != 0) {
+#if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE
+ ss_mintrosort(T, PA, middle, last, depth);
+#elif 1 < SS_BLOCKSIZE
+ ss_insertionsort(T, PA, middle, last, depth);
+#endif
+ ss_inplacemerge(T, PA, first, middle, last, depth);
+ }
+#endif
+
+ if(lastsuffix != 0) {
+ /* Insert last type B* suffix. */
+ int PAi[2]; PAi[0] = PA[*(first - 1)], PAi[1] = n - 2;
+ for(a = first, i = *(first - 1);
+ (a < last) && ((*a < 0) || (0 < ss_compare(T, &(PAi[0]), PA + *a, depth)));
+ ++a) {
+ *(a - 1) = *a;
+ }
+ *(a - 1) = i;
+ }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+static INLINE
+int
+tr_ilg(int n) {
+ return (n & 0xffff0000) ?
+ ((n & 0xff000000) ?
+ 24 + lg_table[(n >> 24) & 0xff] :
+ 16 + lg_table[(n >> 16) & 0xff]) :
+ ((n & 0x0000ff00) ?
+ 8 + lg_table[(n >> 8) & 0xff] :
+ 0 + lg_table[(n >> 0) & 0xff]);
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Simple insertionsort for small size groups. */
+static
+void
+tr_insertionsort(const int *ISAd, int *first, int *last) {
+ int *a, *b;
+ int t, r;
+
+ for(a = first + 1; a < last; ++a) {
+ for(t = *a, b = a - 1; 0 > (r = ISAd[t] - ISAd[*b]);) {
+ do { *(b + 1) = *b; } while((first <= --b) && (*b < 0));
+ if(b < first) { break; }
+ }
+ if(r == 0) { *b = ~*b; }
+ *(b + 1) = t;
+ }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+static INLINE
+void
+tr_fixdown(const int *ISAd, int *SA, int i, int size) {
+ int j, k;
+ int v;
+ int c, d, e;
+
+ for(v = SA[i], c = ISAd[v]; (j = 2 * i + 1) < size; SA[i] = SA[k], i = k) {
+ d = ISAd[SA[k = j++]];
+ if(d < (e = ISAd[SA[j]])) { k = j; d = e; }
+ if(d <= c) { break; }
+ }
+ SA[i] = v;
+}
+
+/* Simple top-down heapsort. */
+static
+void
+tr_heapsort(const int *ISAd, int *SA, int size) {
+ int i, m;
+ int t;
+
+ m = size;
+ if((size % 2) == 0) {
+ m--;
+ if(ISAd[SA[m / 2]] < ISAd[SA[m]]) { SWAP(SA[m], SA[m / 2]); }
+ }
+
+ for(i = m / 2 - 1; 0 <= i; --i) { tr_fixdown(ISAd, SA, i, m); }
+ if((size % 2) == 0) { SWAP(SA[0], SA[m]); tr_fixdown(ISAd, SA, 0, m); }
+ for(i = m - 1; 0 < i; --i) {
+ t = SA[0], SA[0] = SA[i];
+ tr_fixdown(ISAd, SA, 0, i);
+ SA[i] = t;
+ }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Returns the median of three elements. */
+static INLINE
+int *
+tr_median3(const int *ISAd, int *v1, int *v2, int *v3) {
+ int *t;
+ if(ISAd[*v1] > ISAd[*v2]) { SWAP(v1, v2); }
+ if(ISAd[*v2] > ISAd[*v3]) {
+ if(ISAd[*v1] > ISAd[*v3]) { return v1; }
+ else { return v3; }
+ }
+ return v2;
+}
+
+/* Returns the median of five elements. */
+static INLINE
+int *
+tr_median5(const int *ISAd,
+ int *v1, int *v2, int *v3, int *v4, int *v5) {
+ int *t;
+ if(ISAd[*v2] > ISAd[*v3]) { SWAP(v2, v3); }
+ if(ISAd[*v4] > ISAd[*v5]) { SWAP(v4, v5); }
+ if(ISAd[*v2] > ISAd[*v4]) { SWAP(v2, v4); SWAP(v3, v5); }
+ if(ISAd[*v1] > ISAd[*v3]) { SWAP(v1, v3); }
+ if(ISAd[*v1] > ISAd[*v4]) { SWAP(v1, v4); SWAP(v3, v5); }
+ if(ISAd[*v3] > ISAd[*v4]) { return v4; }
+ return v3;
+}
+
+/* Returns the pivot element. */
+static INLINE
+int *
+tr_pivot(const int *ISAd, int *first, int *last) {
+ int *middle;
+ int t;
+
+ t = last - first;
+ middle = first + t / 2;
+
+ if(t <= 512) {
+ if(t <= 32) {
+ return tr_median3(ISAd, first, middle, last - 1);
+ } else {
+ t >>= 2;
+ return tr_median5(ISAd, first, first + t, middle, last - 1 - t, last - 1);
+ }
+ }
+ t >>= 3;
+ first = tr_median3(ISAd, first, first + t, first + (t << 1));
+ middle = tr_median3(ISAd, middle - t, middle, middle + t);
+ last = tr_median3(ISAd, last - 1 - (t << 1), last - 1 - t, last - 1);
+ return tr_median3(ISAd, first, middle, last);
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+typedef struct _trbudget_t trbudget_t;
+struct _trbudget_t {
+ int chance;
+ int remain;
+ int incval;
+ int count;
+};
+
+static INLINE
+void
+trbudget_init(trbudget_t *budget, int chance, int incval) {
+ budget->chance = chance;
+ budget->remain = budget->incval = incval;
+}
+
+static INLINE
+int
+trbudget_check(trbudget_t *budget, int size) {
+ if(size <= budget->remain) { budget->remain -= size; return 1; }
+ if(budget->chance == 0) { budget->count += size; return 0; }
+ budget->remain += budget->incval - size;
+ budget->chance -= 1;
+ return 1;
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+static INLINE
+void
+tr_partition(const int *ISAd,
+ int *first, int *middle, int *last,
+ int **pa, int **pb, int v) {
+ int *a, *b, *c, *d, *e, *f;
+ int t, s;
+ int x = 0;
+
+ for(b = middle - 1; (++b < last) && ((x = ISAd[*b]) == v);) { }
+ if(((a = b) < last) && (x < v)) {
+ for(; (++b < last) && ((x = ISAd[*b]) <= v);) {
+ if(x == v) { SWAP(*b, *a); ++a; }
+ }
+ }
+ for(c = last; (b < --c) && ((x = ISAd[*c]) == v);) { }
+ if((b < (d = c)) && (x > v)) {
+ for(; (b < --c) && ((x = ISAd[*c]) >= v);) {
+ if(x == v) { SWAP(*c, *d); --d; }
+ }
+ }
+ for(; b < c;) {
+ SWAP(*b, *c);
+ for(; (++b < c) && ((x = ISAd[*b]) <= v);) {
+ if(x == v) { SWAP(*b, *a); ++a; }
+ }
+ for(; (b < --c) && ((x = ISAd[*c]) >= v);) {
+ if(x == v) { SWAP(*c, *d); --d; }
+ }
+ }
+
+ if(a <= d) {
+ c = b - 1;
+ if((s = a - first) > (t = b - a)) { s = t; }
+ for(e = first, f = b - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); }
+ if((s = d - c) > (t = last - d - 1)) { s = t; }
+ for(e = b, f = last - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); }
+ first += (b - a), last -= (d - c);
+ }
+ *pa = first, *pb = last;
+}
+
+static
+void
+tr_copy(int *ISA, const int *SA,
+ int *first, int *a, int *b, int *last,
+ int depth) {
+ /* sort suffixes of middle partition
+ by using sorted order of suffixes of left and right partition. */
+ int *c, *d, *e;
+ int s, v;
+
+ v = b - SA - 1;
+ for(c = first, d = a - 1; c <= d; ++c) {
+ if((0 <= (s = *c - depth)) && (ISA[s] == v)) {
+ *++d = s;
+ ISA[s] = d - SA;
+ }
+ }
+ for(c = last - 1, e = d + 1, d = b; e < d; --c) {
+ if((0 <= (s = *c - depth)) && (ISA[s] == v)) {
+ *--d = s;
+ ISA[s] = d - SA;
+ }
+ }
+}
+
+static
+void
+tr_partialcopy(int *ISA, const int *SA,
+ int *first, int *a, int *b, int *last,
+ int depth) {
+ int *c, *d, *e;
+ int s, v;
+ int rank, lastrank, newrank = -1;
+
+ v = b - SA - 1;
+ lastrank = -1;
+ for(c = first, d = a - 1; c <= d; ++c) {
+ if((0 <= (s = *c - depth)) && (ISA[s] == v)) {
+ *++d = s;
+ rank = ISA[s + depth];
+ if(lastrank != rank) { lastrank = rank; newrank = d - SA; }
+ ISA[s] = newrank;
+ }
+ }
+
+ lastrank = -1;
+ for(e = d; first <= e; --e) {
+ rank = ISA[*e];
+ if(lastrank != rank) { lastrank = rank; newrank = e - SA; }
+ if(newrank != rank) { ISA[*e] = newrank; }
+ }
+
+ lastrank = -1;
+ for(c = last - 1, e = d + 1, d = b; e < d; --c) {
+ if((0 <= (s = *c - depth)) && (ISA[s] == v)) {
+ *--d = s;
+ rank = ISA[s + depth];
+ if(lastrank != rank) { lastrank = rank; newrank = d - SA; }
+ ISA[s] = newrank;
+ }
+ }
+}
+
+static
+void
+tr_introsort(int *ISA, const int *ISAd,
+ int *SA, int *first, int *last,
+ trbudget_t *budget) {
+#define STACK_SIZE TR_STACKSIZE
+ struct { const int *a; int *b, *c; int d, e; }stack[STACK_SIZE];
+ int *a, *b, *c;
+ int t;
+ int v, x = 0;
+ int incr = ISAd - ISA;
+ int limit, next;
+ int ssize, trlink = -1;
+
+ for(ssize = 0, limit = tr_ilg(last - first);;) {
+
+ if(limit < 0) {
+ if(limit == -1) {
+ /* tandem repeat partition */
+ tr_partition(ISAd - incr, first, first, last, &a, &b, last - SA - 1);
+
+ /* update ranks */
+ if(a < last) {
+ for(c = first, v = a - SA - 1; c < a; ++c) { ISA[*c] = v; }
+ }
+ if(b < last) {
+ for(c = a, v = b - SA - 1; c < b; ++c) { ISA[*c] = v; }
+ }
+
+ /* push */
+ if(1 < (b - a)) {
+ STACK_PUSH5(NULL, a, b, 0, 0);
+ STACK_PUSH5(ISAd - incr, first, last, -2, trlink);
+ trlink = ssize - 2;
+ }
+ if((a - first) <= (last - b)) {
+ if(1 < (a - first)) {
+ STACK_PUSH5(ISAd, b, last, tr_ilg(last - b), trlink);
+ last = a, limit = tr_ilg(a - first);
+ } else if(1 < (last - b)) {
+ first = b, limit = tr_ilg(last - b);
+ } else {
+ STACK_POP5(ISAd, first, last, limit, trlink);
+ }
+ } else {
+ if(1 < (last - b)) {
+ STACK_PUSH5(ISAd, first, a, tr_ilg(a - first), trlink);
+ first = b, limit = tr_ilg(last - b);
+ } else if(1 < (a - first)) {
+ last = a, limit = tr_ilg(a - first);
+ } else {
+ STACK_POP5(ISAd, first, last, limit, trlink);
+ }
+ }
+ } else if(limit == -2) {
+ /* tandem repeat copy */
+ a = stack[--ssize].b, b = stack[ssize].c;
+ if(stack[ssize].d == 0) {
+ tr_copy(ISA, SA, first, a, b, last, ISAd - ISA);
+ } else {
+ if(0 <= trlink) { stack[trlink].d = -1; }
+ tr_partialcopy(ISA, SA, first, a, b, last, ISAd - ISA);
+ }
+ STACK_POP5(ISAd, first, last, limit, trlink);
+ } else {
+ /* sorted partition */
+ if(0 <= *first) {
+ a = first;
+ do { ISA[*a] = a - SA; } while((++a < last) && (0 <= *a));
+ first = a;
+ }
+ if(first < last) {
+ a = first; do { *a = ~*a; } while(*++a < 0);
+ next = (ISA[*a] != ISAd[*a]) ? tr_ilg(a - first + 1) : -1;
+ if(++a < last) { for(b = first, v = a - SA - 1; b < a; ++b) { ISA[*b] = v; } }
+
+ /* push */
+ if(trbudget_check(budget, a - first)) {
+ if((a - first) <= (last - a)) {
+ STACK_PUSH5(ISAd, a, last, -3, trlink);
+ ISAd += incr, last = a, limit = next;
+ } else {
+ if(1 < (last - a)) {
+ STACK_PUSH5(ISAd + incr, first, a, next, trlink);
+ first = a, limit = -3;
+ } else {
+ ISAd += incr, last = a, limit = next;
+ }
+ }
+ } else {
+ if(0 <= trlink) { stack[trlink].d = -1; }
+ if(1 < (last - a)) {
+ first = a, limit = -3;
+ } else {
+ STACK_POP5(ISAd, first, last, limit, trlink);
+ }
+ }
+ } else {
+ STACK_POP5(ISAd, first, last, limit, trlink);
+ }
+ }
+ continue;
+ }
+
+ if((last - first) <= TR_INSERTIONSORT_THRESHOLD) {
+ tr_insertionsort(ISAd, first, last);
+ limit = -3;
+ continue;
+ }
+
+ if(limit-- == 0) {
+ tr_heapsort(ISAd, first, last - first);
+ for(a = last - 1; first < a; a = b) {
+ for(x = ISAd[*a], b = a - 1; (first <= b) && (ISAd[*b] == x); --b) { *b = ~*b; }
+ }
+ limit = -3;
+ continue;
+ }
+
+ /* choose pivot */
+ a = tr_pivot(ISAd, first, last);
+ SWAP(*first, *a);
+ v = ISAd[*first];
+
+ /* partition */
+ tr_partition(ISAd, first, first + 1, last, &a, &b, v);
+ if((last - first) != (b - a)) {
+ next = (ISA[*a] != v) ? tr_ilg(b - a) : -1;
+
+ /* update ranks */
+ for(c = first, v = a - SA - 1; c < a; ++c) { ISA[*c] = v; }
+ if(b < last) { for(c = a, v = b - SA - 1; c < b; ++c) { ISA[*c] = v; } }
+
+ /* push */
+ if((1 < (b - a)) && (trbudget_check(budget, b - a))) {
+ if((a - first) <= (last - b)) {
+ if((last - b) <= (b - a)) {
+ if(1 < (a - first)) {
+ STACK_PUSH5(ISAd + incr, a, b, next, trlink);
+ STACK_PUSH5(ISAd, b, last, limit, trlink);
+ last = a;
+ } else if(1 < (last - b)) {
+ STACK_PUSH5(ISAd + incr, a, b, next, trlink);
+ first = b;
+ } else {
+ ISAd += incr, first = a, last = b, limit = next;
+ }
+ } else if((a - first) <= (b - a)) {
+ if(1 < (a - first)) {
+ STACK_PUSH5(ISAd, b, last, limit, trlink);
+ STACK_PUSH5(ISAd + incr, a, b, next, trlink);
+ last = a;
+ } else {
+ STACK_PUSH5(ISAd, b, last, limit, trlink);
+ ISAd += incr, first = a, last = b, limit = next;
+ }
+ } else {
+ STACK_PUSH5(ISAd, b, last, limit, trlink);
+ STACK_PUSH5(ISAd, first, a, limit, trlink);
+ ISAd += incr, first = a, last = b, limit = next;
+ }
+ } else {
+ if((a - first) <= (b - a)) {
+ if(1 < (last - b)) {
+ STACK_PUSH5(ISAd + incr, a, b, next, trlink);
+ STACK_PUSH5(ISAd, first, a, limit, trlink);
+ first = b;
+ } else if(1 < (a - first)) {
+ STACK_PUSH5(ISAd + incr, a, b, next, trlink);
+ last = a;
+ } else {
+ ISAd += incr, first = a, last = b, limit = next;
+ }
+ } else if((last - b) <= (b - a)) {
+ if(1 < (last - b)) {
+ STACK_PUSH5(ISAd, first, a, limit, trlink);
+ STACK_PUSH5(ISAd + incr, a, b, next, trlink);
+ first = b;
+ } else {
+ STACK_PUSH5(ISAd, first, a, limit, trlink);
+ ISAd += incr, first = a, last = b, limit = next;
+ }
+ } else {
+ STACK_PUSH5(ISAd, first, a, limit, trlink);
+ STACK_PUSH5(ISAd, b, last, limit, trlink);
+ ISAd += incr, first = a, last = b, limit = next;
+ }
+ }
+ } else {
+ if((1 < (b - a)) && (0 <= trlink)) { stack[trlink].d = -1; }
+ if((a - first) <= (last - b)) {
+ if(1 < (a - first)) {
+ STACK_PUSH5(ISAd, b, last, limit, trlink);
+ last = a;
+ } else if(1 < (last - b)) {
+ first = b;
+ } else {
+ STACK_POP5(ISAd, first, last, limit, trlink);
+ }
+ } else {
+ if(1 < (last - b)) {
+ STACK_PUSH5(ISAd, first, a, limit, trlink);
+ first = b;
+ } else if(1 < (a - first)) {
+ last = a;
+ } else {
+ STACK_POP5(ISAd, first, last, limit, trlink);
+ }
+ }
+ }
+ } else {
+ if(trbudget_check(budget, last - first)) {
+ limit = tr_ilg(last - first), ISAd += incr;
+ } else {
+ if(0 <= trlink) { stack[trlink].d = -1; }
+ STACK_POP5(ISAd, first, last, limit, trlink);
+ }
+ }
+ }
+#undef STACK_SIZE
+}
+
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Tandem repeat sort */
+static
+void
+trsort(int *ISA, int *SA, int n, int depth) {
+ int *ISAd;
+ int *first, *last;
+ trbudget_t budget;
+ int t, skip, unsorted;
+
+ trbudget_init(&budget, tr_ilg(n) * 2 / 3, n);
+/* trbudget_init(&budget, tr_ilg(n) * 3 / 4, n); */
+ for(ISAd = ISA + depth; -n < *SA; ISAd += ISAd - ISA) {
+ first = SA;
+ skip = 0;
+ unsorted = 0;
+ do {
+ if((t = *first) < 0) { first -= t; skip += t; }
+ else {
+ if(skip != 0) { *(first + skip) = skip; skip = 0; }
+ last = SA + ISA[t] + 1;
+ if(1 < (last - first)) {
+ budget.count = 0;
+ tr_introsort(ISA, ISAd, SA, first, last, &budget);
+ if(budget.count != 0) { unsorted += budget.count; }
+ else { skip = first - last; }
+ } else if((last - first) == 1) {
+ skip = -1;
+ }
+ first = last;
+ }
+ } while(first < (SA + n));
+ if(skip != 0) { *(first + skip) = skip; }
+ if(unsorted == 0) { break; }
+ }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Sorts suffixes of type B*. */
+static
+int
+sort_typeBstar(const unsigned char *T, int *SA,
+ int *bucket_A, int *bucket_B,
+ int n, int openMP) {
+ int *PAb, *ISAb, *buf;
+#ifdef LIBBSC_OPENMP
+ int *curbuf;
+ int l;
+#endif
+ int i, j, k, t, m, bufsize;
+ int c0, c1;
+#ifdef LIBBSC_OPENMP
+ int d0, d1;
+#endif
+ (void)openMP;
+
+ /* Initialize bucket arrays. */
+ for(i = 0; i < BUCKET_A_SIZE; ++i) { bucket_A[i] = 0; }
+ for(i = 0; i < BUCKET_B_SIZE; ++i) { bucket_B[i] = 0; }
+
+ /* Count the number of occurrences of the first one or two characters of each
+ type A, B and B* suffix. Moreover, store the beginning position of all
+ type B* suffixes into the array SA. */
+ for(i = n - 1, m = n, c0 = T[n - 1]; 0 <= i;) {
+ /* type A suffix. */
+ do { ++BUCKET_A(c1 = c0); } while((0 <= --i) && ((c0 = T[i]) >= c1));
+ if(0 <= i) {
+ /* type B* suffix. */
+ ++BUCKET_BSTAR(c0, c1);
+ SA[--m] = i;
+ /* type B suffix. */
+ for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) <= c1); --i, c1 = c0) {
+ ++BUCKET_B(c0, c1);
+ }
+ }
+ }
+ m = n - m;
+/*
+note:
+ A type B* suffix is lexicographically smaller than a type B suffix that
+ begins with the same first two characters.
+*/
+
+ /* Calculate the index of start/end point of each bucket. */
+ for(c0 = 0, i = 0, j = 0; c0 < ALPHABET_SIZE; ++c0) {
+ t = i + BUCKET_A(c0);
+ BUCKET_A(c0) = i + j; /* start point */
+ i = t + BUCKET_B(c0, c0);
+ for(c1 = c0 + 1; c1 < ALPHABET_SIZE; ++c1) {
+ j += BUCKET_BSTAR(c0, c1);
+ BUCKET_BSTAR(c0, c1) = j; /* end point */
+ i += BUCKET_B(c0, c1);
+ }
+ }
+
+ if(0 < m) {
+ /* Sort the type B* suffixes by their first two characters. */
+ PAb = SA + n - m; ISAb = SA + m;
+ for(i = m - 2; 0 <= i; --i) {
+ t = PAb[i], c0 = T[t], c1 = T[t + 1];
+ SA[--BUCKET_BSTAR(c0, c1)] = i;
+ }
+ t = PAb[m - 1], c0 = T[t], c1 = T[t + 1];
+ SA[--BUCKET_BSTAR(c0, c1)] = m - 1;
+
+ /* Sort the type B* substrings using sssort. */
+#ifdef LIBBSC_OPENMP
+ if (openMP)
+ {
+ buf = SA + m;
+ c0 = ALPHABET_SIZE - 2, c1 = ALPHABET_SIZE - 1, j = m;
+#pragma omp parallel default(shared) private(bufsize, curbuf, k, l, d0, d1)
+ {
+ bufsize = (n - (2 * m)) / omp_get_num_threads();
+ curbuf = buf + omp_get_thread_num() * bufsize;
+ k = 0;
+ for(;;) {
+ #pragma omp critical(sssort_lock)
+ {
+ if(0 < (l = j)) {
+ d0 = c0, d1 = c1;
+ do {
+ k = BUCKET_BSTAR(d0, d1);
+ if(--d1 <= d0) {
+ d1 = ALPHABET_SIZE - 1;
+ if(--d0 < 0) { break; }
+ }
+ } while(((l - k) <= 1) && (0 < (l = k)));
+ c0 = d0, c1 = d1, j = k;
+ }
+ }
+ if(l == 0) { break; }
+ sssort(T, PAb, SA + k, SA + l,
+ curbuf, bufsize, 2, n, *(SA + k) == (m - 1));
+ }
+ }
+ }
+ else
+ {
+ buf = SA + m, bufsize = n - (2 * m);
+ for(c0 = ALPHABET_SIZE - 2, j = m; 0 < j; --c0) {
+ for(c1 = ALPHABET_SIZE - 1; c0 < c1; j = i, --c1) {
+ i = BUCKET_BSTAR(c0, c1);
+ if(1 < (j - i)) {
+ sssort(T, PAb, SA + i, SA + j,
+ buf, bufsize, 2, n, *(SA + i) == (m - 1));
+ }
+ }
+ }
+ }
+#else
+ buf = SA + m, bufsize = n - (2 * m);
+ for(c0 = ALPHABET_SIZE - 2, j = m; 0 < j; --c0) {
+ for(c1 = ALPHABET_SIZE - 1; c0 < c1; j = i, --c1) {
+ i = BUCKET_BSTAR(c0, c1);
+ if(1 < (j - i)) {
+ sssort(T, PAb, SA + i, SA + j,
+ buf, bufsize, 2, n, *(SA + i) == (m - 1));
+ }
+ }
+ }
+#endif
+
+ /* Compute ranks of type B* substrings. */
+ for(i = m - 1; 0 <= i; --i) {
+ if(0 <= SA[i]) {
+ j = i;
+ do { ISAb[SA[i]] = i; } while((0 <= --i) && (0 <= SA[i]));
+ SA[i + 1] = i - j;
+ if(i <= 0) { break; }
+ }
+ j = i;
+ do { ISAb[SA[i] = ~SA[i]] = j; } while(SA[--i] < 0);
+ ISAb[SA[i]] = j;
+ }
+
+ /* Construct the inverse suffix array of type B* suffixes using trsort. */
+ trsort(ISAb, SA, m, 1);
+
+ /* Set the sorted order of tyoe B* suffixes. */
+ for(i = n - 1, j = m, c0 = T[n - 1]; 0 <= i;) {
+ for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) >= c1); --i, c1 = c0) { }
+ if(0 <= i) {
+ t = i;
+ for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) <= c1); --i, c1 = c0) { }
+ SA[ISAb[--j]] = ((t == 0) || (1 < (t - i))) ? t : ~t;
+ }
+ }
+
+ /* Calculate the index of start/end point of each bucket. */
+ BUCKET_B(ALPHABET_SIZE - 1, ALPHABET_SIZE - 1) = n; /* end point */
+ for(c0 = ALPHABET_SIZE - 2, k = m - 1; 0 <= c0; --c0) {
+ i = BUCKET_A(c0 + 1) - 1;
+ for(c1 = ALPHABET_SIZE - 1; c0 < c1; --c1) {
+ t = i - BUCKET_B(c0, c1);
+ BUCKET_B(c0, c1) = i; /* end point */
+
+ /* Move all type B* suffixes to the correct position. */
+ for(i = t, j = BUCKET_BSTAR(c0, c1);
+ j <= k;
+ --i, --k) { SA[i] = SA[k]; }
+ }
+ BUCKET_BSTAR(c0, c0 + 1) = i - BUCKET_B(c0, c0) + 1; /* start point */
+ BUCKET_B(c0, c0) = i; /* end point */
+ }
+ }
+
+ return m;
+}
+
+/* Constructs the suffix array by using the sorted order of type B* suffixes. */
+static
+void
+construct_SA(const unsigned char *T, int *SA,
+ int *bucket_A, int *bucket_B,
+ int n, int m) {
+ int *i, *j, *k;
+ int s;
+ int c0, c1, c2;
+
+ if(0 < m) {
+ /* Construct the sorted order of type B suffixes by using
+ the sorted order of type B* suffixes. */
+ for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) {
+ /* Scan the suffix array from right to left. */
+ for(i = SA + BUCKET_BSTAR(c1, c1 + 1),
+ j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1;
+ i <= j;
+ --j) {
+ if(0 < (s = *j)) {
+ assert(T[s] == c1);
+ assert(((s + 1) < n) && (T[s] <= T[s + 1]));
+ assert(T[s - 1] <= T[s]);
+ *j = ~s;
+ c0 = T[--s];
+ if((0 < s) && (T[s - 1] > c0)) { s = ~s; }
+ if(c0 != c2) {
+ if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; }
+ k = SA + BUCKET_B(c2 = c0, c1);
+ }
+ assert(k < j); assert(k != NULL);
+ *k-- = s;
+ } else {
+ assert(((s == 0) && (T[s] == c1)) || (s < 0));
+ *j = ~s;
+ }
+ }
+ }
+ }
+
+ /* Construct the suffix array by using
+ the sorted order of type B suffixes. */
+ k = SA + BUCKET_A(c2 = T[n - 1]);
+ *k++ = (T[n - 2] < c2) ? ~(n - 1) : (n - 1);
+ /* Scan the suffix array from left to right. */
+ for(i = SA, j = SA + n; i < j; ++i) {
+ if(0 < (s = *i)) {
+ assert(T[s - 1] >= T[s]);
+ c0 = T[--s];
+ if((s == 0) || (T[s - 1] < c0)) { s = ~s; }
+ if(c0 != c2) {
+ BUCKET_A(c2) = k - SA;
+ k = SA + BUCKET_A(c2 = c0);
+ }
+ assert(i < k);
+ *k++ = s;
+ } else {
+ assert(s < 0);
+ *i = ~s;
+ }
+ }
+}
+
+/* Constructs the burrows-wheeler transformed string directly
+ by using the sorted order of type B* suffixes. */
+static
+int
+construct_BWT(const unsigned char *T, int *SA,
+ int *bucket_A, int *bucket_B,
+ int n, int m) {
+ int *i, *j, *k, *orig;
+ int s;
+ int c0, c1, c2;
+
+ if(0 < m) {
+ /* Construct the sorted order of type B suffixes by using
+ the sorted order of type B* suffixes. */
+ for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) {
+ /* Scan the suffix array from right to left. */
+ for(i = SA + BUCKET_BSTAR(c1, c1 + 1),
+ j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1;
+ i <= j;
+ --j) {
+ if(0 < (s = *j)) {
+ assert(T[s] == c1);
+ assert(((s + 1) < n) && (T[s] <= T[s + 1]));
+ assert(T[s - 1] <= T[s]);
+ c0 = T[--s];
+ *j = ~((int)c0);
+ if((0 < s) && (T[s - 1] > c0)) { s = ~s; }
+ if(c0 != c2) {
+ if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; }
+ k = SA + BUCKET_B(c2 = c0, c1);
+ }
+ assert(k < j); assert(k != NULL);
+ *k-- = s;
+ } else if(s != 0) {
+ *j = ~s;
+#ifndef NDEBUG
+ } else {
+ assert(T[s] == c1);
+#endif
+ }
+ }
+ }
+ }
+
+ /* Construct the BWTed string by using
+ the sorted order of type B suffixes. */
+ k = SA + BUCKET_A(c2 = T[n - 1]);
+ *k++ = (T[n - 2] < c2) ? ~((int)T[n - 2]) : (n - 1);
+ /* Scan the suffix array from left to right. */
+ for(i = SA, j = SA + n, orig = SA; i < j; ++i) {
+ if(0 < (s = *i)) {
+ assert(T[s - 1] >= T[s]);
+ c0 = T[--s];
+ *i = c0;
+ if((0 < s) && (T[s - 1] < c0)) { s = ~((int)T[s - 1]); }
+ if(c0 != c2) {
+ BUCKET_A(c2) = k - SA;
+ k = SA + BUCKET_A(c2 = c0);
+ }
+ assert(i < k);
+ *k++ = s;
+ } else if(s != 0) {
+ *i = ~s;
+ } else {
+ orig = i;
+ }
+ }
+
+ return orig - SA;
+}
+
+/* Constructs the burrows-wheeler transformed string directly
+ by using the sorted order of type B* suffixes. */
+static
+int
+construct_BWT_indexes(const unsigned char *T, int *SA,
+ int *bucket_A, int *bucket_B,
+ int n, int m,
+ unsigned char * num_indexes, int * indexes) {
+ int *i, *j, *k, *orig;
+ int s;
+ int c0, c1, c2;
+
+ int mod = n / 8;
+ {
+ mod |= mod >> 1; mod |= mod >> 2;
+ mod |= mod >> 4; mod |= mod >> 8;
+ mod |= mod >> 16; mod >>= 1;
+
+ *num_indexes = (unsigned char)((n - 1) / (mod + 1));
+ }
+
+ if(0 < m) {
+ /* Construct the sorted order of type B suffixes by using
+ the sorted order of type B* suffixes. */
+ for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) {
+ /* Scan the suffix array from right to left. */
+ for(i = SA + BUCKET_BSTAR(c1, c1 + 1),
+ j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1;
+ i <= j;
+ --j) {
+ if(0 < (s = *j)) {
+ assert(T[s] == c1);
+ assert(((s + 1) < n) && (T[s] <= T[s + 1]));
+ assert(T[s - 1] <= T[s]);
+
+ if ((s & mod) == 0) indexes[s / (mod + 1) - 1] = j - SA;
+
+ c0 = T[--s];
+ *j = ~((int)c0);
+ if((0 < s) && (T[s - 1] > c0)) { s = ~s; }
+ if(c0 != c2) {
+ if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; }
+ k = SA + BUCKET_B(c2 = c0, c1);
+ }
+ assert(k < j); assert(k != NULL);
+ *k-- = s;
+ } else if(s != 0) {
+ *j = ~s;
+#ifndef NDEBUG
+ } else {
+ assert(T[s] == c1);
+#endif
+ }
+ }
+ }
+ }
+
+ /* Construct the BWTed string by using
+ the sorted order of type B suffixes. */
+ k = SA + BUCKET_A(c2 = T[n - 1]);
+ if (T[n - 2] < c2) {
+ if (((n - 1) & mod) == 0) indexes[(n - 1) / (mod + 1) - 1] = k - SA;
+ *k++ = ~((int)T[n - 2]);
+ }
+ else {
+ *k++ = n - 1;
+ }
+
+ /* Scan the suffix array from left to right. */
+ for(i = SA, j = SA + n, orig = SA; i < j; ++i) {
+ if(0 < (s = *i)) {
+ assert(T[s - 1] >= T[s]);
+
+ if ((s & mod) == 0) indexes[s / (mod + 1) - 1] = i - SA;
+
+ c0 = T[--s];
+ *i = c0;
+ if(c0 != c2) {
+ BUCKET_A(c2) = k - SA;
+ k = SA + BUCKET_A(c2 = c0);
+ }
+ assert(i < k);
+ if((0 < s) && (T[s - 1] < c0)) {
+ if ((s & mod) == 0) indexes[s / (mod + 1) - 1] = k - SA;
+ *k++ = ~((int)T[s - 1]);
+ } else
+ *k++ = s;
+ } else if(s != 0) {
+ *i = ~s;
+ } else {
+ orig = i;
+ }
+ }
+
+ return orig - SA;
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/*- Function -*/
+
+int
+divsufsort(const unsigned char *T, int *SA, int n, int openMP) {
+ int *bucket_A, *bucket_B;
+ int m;
+ int err = 0;
+
+ /* Check arguments. */
+ if((T == NULL) || (SA == NULL) || (n < 0)) { return -1; }
+ else if(n == 0) { return 0; }
+ else if(n == 1) { SA[0] = 0; return 0; }
+ else if(n == 2) { m = (T[0] < T[1]); SA[m ^ 1] = 0, SA[m] = 1; return 0; }
+
+ bucket_A = (int *)malloc(BUCKET_A_SIZE * sizeof(int));
+ bucket_B = (int *)malloc(BUCKET_B_SIZE * sizeof(int));
+
+ /* Suffixsort. */
+ if((bucket_A != NULL) && (bucket_B != NULL)) {
+ m = sort_typeBstar(T, SA, bucket_A, bucket_B, n, openMP);
+ construct_SA(T, SA, bucket_A, bucket_B, n, m);
+ } else {
+ err = -2;
+ }
+
+ free(bucket_B);
+ free(bucket_A);
+
+ return err;
+}
+
+int
+divbwt(const unsigned char *T, unsigned char *U, int *A, int n, unsigned char * num_indexes, int * indexes, int openMP) {
+ int *B;
+ int *bucket_A, *bucket_B;
+ int m, pidx, i;
+
+ /* Check arguments. */
+ if((T == NULL) || (U == NULL) || (n < 0)) { return -1; }
+ else if(n <= 1) { if(n == 1) { U[0] = T[0]; } return n; }
+
+ if((B = A) == NULL) { B = (int *)malloc((size_t)(n + 1) * sizeof(int)); }
+ bucket_A = (int *)malloc(BUCKET_A_SIZE * sizeof(int));
+ bucket_B = (int *)malloc(BUCKET_B_SIZE * sizeof(int));
+
+ /* Burrows-Wheeler Transform. */
+ if((B != NULL) && (bucket_A != NULL) && (bucket_B != NULL)) {
+ m = sort_typeBstar(T, B, bucket_A, bucket_B, n, openMP);
+
+ if (num_indexes == NULL || indexes == NULL) {
+ pidx = construct_BWT(T, B, bucket_A, bucket_B, n, m);
+ } else {
+ pidx = construct_BWT_indexes(T, B, bucket_A, bucket_B, n, m, num_indexes, indexes);
+ }
+
+ /* Copy to output string. */
+ U[0] = T[n - 1];
+ for(i = 0; i < pidx; ++i) { U[i + 1] = (unsigned char)B[i]; }
+ for(i += 1; i < n; ++i) { U[i] = (unsigned char)B[i]; }
+ pidx += 1;
+ } else {
+ pidx = -2;
+ }
+
+ free(bucket_B);
+ free(bucket_A);
+ if(A == NULL) { free(B); }
+
+ return pidx;
+}
diff --git a/vendor/github.com/DataDog/zstd/divsufsort.h b/vendor/github.com/DataDog/zstd/divsufsort.h
new file mode 100644
index 0000000..5440994
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/divsufsort.h
@@ -0,0 +1,67 @@
+/*
+ * divsufsort.h for libdivsufsort-lite
+ * Copyright (c) 2003-2008 Yuta Mori All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person
+ * obtaining a copy of this software and associated documentation
+ * files (the "Software"), to deal in the Software without
+ * restriction, including without limitation the rights to use,
+ * copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following
+ * conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+ * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+ * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+ * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+#ifndef _DIVSUFSORT_H
+#define _DIVSUFSORT_H 1
+
+#ifdef __cplusplus
+extern "C" {
+#endif /* __cplusplus */
+
+
+/*- Prototypes -*/
+
+/**
+ * Constructs the suffix array of a given string.
+ * @param T [0..n-1] The input string.
+ * @param SA [0..n-1] The output array of suffixes.
+ * @param n The length of the given string.
+ * @param openMP enables OpenMP optimization.
+ * @return 0 if no error occurred, -1 or -2 otherwise.
+ */
+int
+divsufsort(const unsigned char *T, int *SA, int n, int openMP);
+
+/**
+ * Constructs the burrows-wheeler transformed string of a given string.
+ * @param T [0..n-1] The input string.
+ * @param U [0..n-1] The output string. (can be T)
+ * @param A [0..n-1] The temporary array. (can be NULL)
+ * @param n The length of the given string.
+ * @param num_indexes The length of secondary indexes array. (can be NULL)
+ * @param indexes The secondary indexes array. (can be NULL)
+ * @param openMP enables OpenMP optimization.
+ * @return The primary index if no error occurred, -1 or -2 otherwise.
+ */
+int
+divbwt(const unsigned char *T, unsigned char *U, int *A, int n, unsigned char * num_indexes, int * indexes, int openMP);
+
+
+#ifdef __cplusplus
+} /* extern "C" */
+#endif /* __cplusplus */
+
+#endif /* _DIVSUFSORT_H */
diff --git a/vendor/github.com/DataDog/zstd/entropy_common.c b/vendor/github.com/DataDog/zstd/entropy_common.c
new file mode 100644
index 0000000..b12944e
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/entropy_common.c
@@ -0,0 +1,236 @@
+/*
+ Common functions of New Generation Entropy library
+ Copyright (C) 2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+*************************************************************************** */
+
+/* *************************************
+* Dependencies
+***************************************/
+#include "mem.h"
+#include "error_private.h" /* ERR_*, ERROR */
+#define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */
+#include "fse.h"
+#define HUF_STATIC_LINKING_ONLY /* HUF_TABLELOG_ABSOLUTEMAX */
+#include "huf.h"
+
+
+/*=== Version ===*/
+unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; }
+
+
+/*=== Error Management ===*/
+unsigned FSE_isError(size_t code) { return ERR_isError(code); }
+const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+unsigned HUF_isError(size_t code) { return ERR_isError(code); }
+const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+
+/*-**************************************************************
+* FSE NCount encoding-decoding
+****************************************************************/
+size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize)
+{
+ const BYTE* const istart = (const BYTE*) headerBuffer;
+ const BYTE* const iend = istart + hbSize;
+ const BYTE* ip = istart;
+ int nbBits;
+ int remaining;
+ int threshold;
+ U32 bitStream;
+ int bitCount;
+ unsigned charnum = 0;
+ int previous0 = 0;
+
+ if (hbSize < 4) {
+ /* This function only works when hbSize >= 4 */
+ char buffer[4];
+ memset(buffer, 0, sizeof(buffer));
+ memcpy(buffer, headerBuffer, hbSize);
+ { size_t const countSize = FSE_readNCount(normalizedCounter, maxSVPtr, tableLogPtr,
+ buffer, sizeof(buffer));
+ if (FSE_isError(countSize)) return countSize;
+ if (countSize > hbSize) return ERROR(corruption_detected);
+ return countSize;
+ } }
+ assert(hbSize >= 4);
+
+ /* init */
+ memset(normalizedCounter, 0, (*maxSVPtr+1) * sizeof(normalizedCounter[0])); /* all symbols not present in NCount have a frequency of 0 */
+ bitStream = MEM_readLE32(ip);
+ nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
+ if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
+ bitStream >>= 4;
+ bitCount = 4;
+ *tableLogPtr = nbBits;
+ remaining = (1<<nbBits)+1;
+ threshold = 1<<nbBits;
+ nbBits++;
+
+ while ((remaining>1) & (charnum<=*maxSVPtr)) {
+ if (previous0) {
+ unsigned n0 = charnum;
+ while ((bitStream & 0xFFFF) == 0xFFFF) {
+ n0 += 24;
+ if (ip < iend-5) {
+ ip += 2;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ } else {
+ bitStream >>= 16;
+ bitCount += 16;
+ } }
+ while ((bitStream & 3) == 3) {
+ n0 += 3;
+ bitStream >>= 2;
+ bitCount += 2;
+ }
+ n0 += bitStream & 3;
+ bitCount += 2;
+ if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
+ while (charnum < n0) normalizedCounter[charnum++] = 0;
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
+ assert((bitCount >> 3) <= 3); /* For first condition to work */
+ ip += bitCount>>3;
+ bitCount &= 7;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ } else {
+ bitStream >>= 2;
+ } }
+ { int const max = (2*threshold-1) - remaining;
+ int count;
+
+ if ((bitStream & (threshold-1)) < (U32)max) {
+ count = bitStream & (threshold-1);
+ bitCount += nbBits-1;
+ } else {
+ count = bitStream & (2*threshold-1);
+ if (count >= threshold) count -= max;
+ bitCount += nbBits;
+ }
+
+ count--; /* extra accuracy */
+ remaining -= count < 0 ? -count : count; /* -1 means +1 */
+ normalizedCounter[charnum++] = (short)count;
+ previous0 = !count;
+ while (remaining < threshold) {
+ nbBits--;
+ threshold >>= 1;
+ }
+
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ } else {
+ bitCount -= (int)(8 * (iend - 4 - ip));
+ ip = iend - 4;
+ }
+ bitStream = MEM_readLE32(ip) >> (bitCount & 31);
+ } } /* while ((remaining>1) & (charnum<=*maxSVPtr)) */
+ if (remaining != 1) return ERROR(corruption_detected);
+ if (bitCount > 32) return ERROR(corruption_detected);
+ *maxSVPtr = charnum-1;
+
+ ip += (bitCount+7)>>3;
+ return ip-istart;
+}
+
+
+/*! HUF_readStats() :
+ Read compact Huffman tree, saved by HUF_writeCTable().
+ `huffWeight` is destination buffer.
+ `rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32.
+ @return : size read from `src` , or an error Code .
+ Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
+*/
+size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize)
+{
+ U32 weightTotal;
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize;
+ size_t oSize;
+
+ if (!srcSize) return ERROR(srcSize_wrong);
+ iSize = ip[0];
+ /* memset(huffWeight, 0, hwSize); *//* is not necessary, even though some analyzer complain ... */
+
+ if (iSize >= 128) { /* special header */
+ oSize = iSize - 127;
+ iSize = ((oSize+1)/2);
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ if (oSize >= hwSize) return ERROR(corruption_detected);
+ ip += 1;
+ { U32 n;
+ for (n=0; n<oSize; n+=2) {
+ huffWeight[n] = ip[n/2] >> 4;
+ huffWeight[n+1] = ip[n/2] & 15;
+ } } }
+ else { /* header compressed with FSE (normal case) */
+ FSE_DTable fseWorkspace[FSE_DTABLE_SIZE_U32(6)]; /* 6 is max possible tableLog for HUF header (maybe even 5, to be tested) */
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ oSize = FSE_decompress_wksp(huffWeight, hwSize-1, ip+1, iSize, fseWorkspace, 6); /* max (hwSize-1) values decoded, as last one is implied */
+ if (FSE_isError(oSize)) return oSize;
+ }
+
+ /* collect weight stats */
+ memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32));
+ weightTotal = 0;
+ { U32 n; for (n=0; n<oSize; n++) {
+ if (huffWeight[n] >= HUF_TABLELOG_MAX) return ERROR(corruption_detected);
+ rankStats[huffWeight[n]]++;
+ weightTotal += (1 << huffWeight[n]) >> 1;
+ } }
+ if (weightTotal == 0) return ERROR(corruption_detected);
+
+ /* get last non-null symbol weight (implied, total must be 2^n) */
+ { U32 const tableLog = BIT_highbit32(weightTotal) + 1;
+ if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
+ *tableLogPtr = tableLog;
+ /* determine last weight */
+ { U32 const total = 1 << tableLog;
+ U32 const rest = total - weightTotal;
+ U32 const verif = 1 << BIT_highbit32(rest);
+ U32 const lastWeight = BIT_highbit32(rest) + 1;
+ if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
+ huffWeight[oSize] = (BYTE)lastWeight;
+ rankStats[lastWeight]++;
+ } }
+
+ /* check tree construction validity */
+ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
+
+ /* results */
+ *nbSymbolsPtr = (U32)(oSize+1);
+ return iSize+1;
+}
diff --git a/vendor/github.com/DataDog/zstd/error_private.c b/vendor/github.com/DataDog/zstd/error_private.c
new file mode 100644
index 0000000..7c1bb67
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/error_private.c
@@ -0,0 +1,54 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/* The purpose of this file is to have a single list of error strings embedded in binary */
+
+#include "error_private.h"
+
+const char* ERR_getErrorString(ERR_enum code)
+{
+#ifdef ZSTD_STRIP_ERROR_STRINGS
+ (void)code;
+ return "Error strings stripped";
+#else
+ static const char* const notErrorCode = "Unspecified error code";
+ switch( code )
+ {
+ case PREFIX(no_error): return "No error detected";
+ case PREFIX(GENERIC): return "Error (generic)";
+ case PREFIX(prefix_unknown): return "Unknown frame descriptor";
+ case PREFIX(version_unsupported): return "Version not supported";
+ case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter";
+ case PREFIX(frameParameter_windowTooLarge): return "Frame requires too much memory for decoding";
+ case PREFIX(corruption_detected): return "Corrupted block detected";
+ case PREFIX(checksum_wrong): return "Restored data doesn't match checksum";
+ case PREFIX(parameter_unsupported): return "Unsupported parameter";
+ case PREFIX(parameter_outOfBound): return "Parameter is out of bound";
+ case PREFIX(init_missing): return "Context should be init first";
+ case PREFIX(memory_allocation): return "Allocation error : not enough memory";
+ case PREFIX(workSpace_tooSmall): return "workSpace buffer is not large enough";
+ case PREFIX(stage_wrong): return "Operation not authorized at current processing stage";
+ case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported";
+ case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large";
+ case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small";
+ case PREFIX(dictionary_corrupted): return "Dictionary is corrupted";
+ case PREFIX(dictionary_wrong): return "Dictionary mismatch";
+ case PREFIX(dictionaryCreation_failed): return "Cannot create Dictionary from provided samples";
+ case PREFIX(dstSize_tooSmall): return "Destination buffer is too small";
+ case PREFIX(srcSize_wrong): return "Src size is incorrect";
+ case PREFIX(dstBuffer_null): return "Operation on NULL destination buffer";
+ /* following error codes are not stable and may be removed or changed in a future version */
+ case PREFIX(frameIndex_tooLarge): return "Frame index is too large";
+ case PREFIX(seekableIO): return "An I/O error occurred when reading/seeking";
+ case PREFIX(maxCode):
+ default: return notErrorCode;
+ }
+#endif
+}
diff --git a/vendor/github.com/DataDog/zstd/error_private.h b/vendor/github.com/DataDog/zstd/error_private.h
new file mode 100644
index 0000000..0d2fa7e
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/error_private.h
@@ -0,0 +1,76 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/* Note : this module is expected to remain private, do not expose it */
+
+#ifndef ERROR_H_MODULE
+#define ERROR_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/* ****************************************
+* Dependencies
+******************************************/
+#include <stddef.h> /* size_t */
+#include "zstd_errors.h" /* enum list */
+
+
+/* ****************************************
+* Compiler-specific
+******************************************/
+#if defined(__GNUC__)
+# define ERR_STATIC static __attribute__((unused))
+#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define ERR_STATIC static inline
+#elif defined(_MSC_VER)
+# define ERR_STATIC static __inline
+#else
+# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
+
+
+/*-****************************************
+* Customization (error_public.h)
+******************************************/
+typedef ZSTD_ErrorCode ERR_enum;
+#define PREFIX(name) ZSTD_error_##name
+
+
+/*-****************************************
+* Error codes handling
+******************************************/
+#undef ERROR /* reported already defined on VS 2015 (Rich Geldreich) */
+#define ERROR(name) ZSTD_ERROR(name)
+#define ZSTD_ERROR(name) ((size_t)-PREFIX(name))
+
+ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
+
+ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); }
+
+
+/*-****************************************
+* Error Strings
+******************************************/
+
+const char* ERR_getErrorString(ERR_enum code); /* error_private.c */
+
+ERR_STATIC const char* ERR_getErrorName(size_t code)
+{
+ return ERR_getErrorString(ERR_getErrorCode(code));
+}
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ERROR_H_MODULE */
diff --git a/vendor/github.com/DataDog/zstd/errors.go b/vendor/github.com/DataDog/zstd/errors.go
new file mode 100644
index 0000000..38db0d5
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/errors.go
@@ -0,0 +1,35 @@
+package zstd
+
+/*
+#define ZSTD_STATIC_LINKING_ONLY
+#include "zstd.h"
+*/
+import "C"
+
+// ErrorCode is an error returned by the zstd library.
+type ErrorCode int
+
+// Error returns the error string given by zstd
+func (e ErrorCode) Error() string {
+ return C.GoString(C.ZSTD_getErrorName(C.size_t(e)))
+}
+
+func cIsError(code int) bool {
+ return int(C.ZSTD_isError(C.size_t(code))) != 0
+}
+
+// getError returns an error for the return code, or nil if it's not an error
+func getError(code int) error {
+ if code < 0 && cIsError(code) {
+ return ErrorCode(code)
+ }
+ return nil
+}
+
+// IsDstSizeTooSmallError returns whether the error correspond to zstd standard sDstSizeTooSmall error
+func IsDstSizeTooSmallError(e error) bool {
+ if e != nil && e.Error() == "Destination buffer is too small" {
+ return true
+ }
+ return false
+}
diff --git a/vendor/github.com/DataDog/zstd/fastcover.c b/vendor/github.com/DataDog/zstd/fastcover.c
new file mode 100644
index 0000000..941bb5a
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/fastcover.c
@@ -0,0 +1,747 @@
+/*-*************************************
+* Dependencies
+***************************************/
+#include <stdio.h> /* fprintf */
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memset */
+#include <time.h> /* clock */
+
+#include "mem.h" /* read */
+#include "pool.h"
+#include "threading.h"
+#include "cover.h"
+#include "zstd_internal.h" /* includes zstd.h */
+#ifndef ZDICT_STATIC_LINKING_ONLY
+#define ZDICT_STATIC_LINKING_ONLY
+#endif
+#include "zdict.h"
+
+
+/*-*************************************
+* Constants
+***************************************/
+#define FASTCOVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
+#define FASTCOVER_MAX_F 31
+#define FASTCOVER_MAX_ACCEL 10
+#define DEFAULT_SPLITPOINT 0.75
+#define DEFAULT_F 20
+#define DEFAULT_ACCEL 1
+
+
+/*-*************************************
+* Console display
+***************************************/
+static int g_displayLevel = 2;
+#define DISPLAY(...) \
+ { \
+ fprintf(stderr, __VA_ARGS__); \
+ fflush(stderr); \
+ }
+#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
+ if (displayLevel >= l) { \
+ DISPLAY(__VA_ARGS__); \
+ } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
+#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
+
+#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
+ if (displayLevel >= l) { \
+ if ((clock() - g_time > refreshRate) || (displayLevel >= 4)) { \
+ g_time = clock(); \
+ DISPLAY(__VA_ARGS__); \
+ } \
+ }
+#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
+static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100;
+static clock_t g_time = 0;
+
+
+/*-*************************************
+* Hash Functions
+***************************************/
+static const U64 prime6bytes = 227718039650203ULL;
+static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
+static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
+
+static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
+static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
+static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
+
+
+/**
+ * Hash the d-byte value pointed to by p and mod 2^f
+ */
+static size_t FASTCOVER_hashPtrToIndex(const void* p, U32 h, unsigned d) {
+ if (d == 6) {
+ return ZSTD_hash6Ptr(p, h) & ((1 << h) - 1);
+ }
+ return ZSTD_hash8Ptr(p, h) & ((1 << h) - 1);
+}
+
+
+/*-*************************************
+* Acceleration
+***************************************/
+typedef struct {
+ unsigned finalize; /* Percentage of training samples used for ZDICT_finalizeDictionary */
+ unsigned skip; /* Number of dmer skipped between each dmer counted in computeFrequency */
+} FASTCOVER_accel_t;
+
+
+static const FASTCOVER_accel_t FASTCOVER_defaultAccelParameters[FASTCOVER_MAX_ACCEL+1] = {
+ { 100, 0 }, /* accel = 0, should not happen because accel = 0 defaults to accel = 1 */
+ { 100, 0 }, /* accel = 1 */
+ { 50, 1 }, /* accel = 2 */
+ { 34, 2 }, /* accel = 3 */
+ { 25, 3 }, /* accel = 4 */
+ { 20, 4 }, /* accel = 5 */
+ { 17, 5 }, /* accel = 6 */
+ { 14, 6 }, /* accel = 7 */
+ { 13, 7 }, /* accel = 8 */
+ { 11, 8 }, /* accel = 9 */
+ { 10, 9 }, /* accel = 10 */
+};
+
+
+/*-*************************************
+* Context
+***************************************/
+typedef struct {
+ const BYTE *samples;
+ size_t *offsets;
+ const size_t *samplesSizes;
+ size_t nbSamples;
+ size_t nbTrainSamples;
+ size_t nbTestSamples;
+ size_t nbDmers;
+ U32 *freqs;
+ unsigned d;
+ unsigned f;
+ FASTCOVER_accel_t accelParams;
+} FASTCOVER_ctx_t;
+
+
+/*-*************************************
+* Helper functions
+***************************************/
+/**
+ * Selects the best segment in an epoch.
+ * Segments of are scored according to the function:
+ *
+ * Let F(d) be the frequency of all dmers with hash value d.
+ * Let S_i be hash value of the dmer at position i of segment S which has length k.
+ *
+ * Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
+ *
+ * Once the dmer with hash value d is in the dictionary we set F(d) = 0.
+ */
+static COVER_segment_t FASTCOVER_selectSegment(const FASTCOVER_ctx_t *ctx,
+ U32 *freqs, U32 begin, U32 end,
+ ZDICT_cover_params_t parameters,
+ U16* segmentFreqs) {
+ /* Constants */
+ const U32 k = parameters.k;
+ const U32 d = parameters.d;
+ const U32 f = ctx->f;
+ const U32 dmersInK = k - d + 1;
+
+ /* Try each segment (activeSegment) and save the best (bestSegment) */
+ COVER_segment_t bestSegment = {0, 0, 0};
+ COVER_segment_t activeSegment;
+
+ /* Reset the activeDmers in the segment */
+ /* The activeSegment starts at the beginning of the epoch. */
+ activeSegment.begin = begin;
+ activeSegment.end = begin;
+ activeSegment.score = 0;
+
+ /* Slide the activeSegment through the whole epoch.
+ * Save the best segment in bestSegment.
+ */
+ while (activeSegment.end < end) {
+ /* Get hash value of current dmer */
+ const size_t idx = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.end, f, d);
+
+ /* Add frequency of this index to score if this is the first occurrence of index in active segment */
+ if (segmentFreqs[idx] == 0) {
+ activeSegment.score += freqs[idx];
+ }
+ /* Increment end of segment and segmentFreqs*/
+ activeSegment.end += 1;
+ segmentFreqs[idx] += 1;
+ /* If the window is now too large, drop the first position */
+ if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
+ /* Get hash value of the dmer to be eliminated from active segment */
+ const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, f, d);
+ segmentFreqs[delIndex] -= 1;
+ /* Subtract frequency of this index from score if this is the last occurrence of this index in active segment */
+ if (segmentFreqs[delIndex] == 0) {
+ activeSegment.score -= freqs[delIndex];
+ }
+ /* Increment start of segment */
+ activeSegment.begin += 1;
+ }
+
+ /* If this segment is the best so far save it */
+ if (activeSegment.score > bestSegment.score) {
+ bestSegment = activeSegment;
+ }
+ }
+
+ /* Zero out rest of segmentFreqs array */
+ while (activeSegment.begin < end) {
+ const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, f, d);
+ segmentFreqs[delIndex] -= 1;
+ activeSegment.begin += 1;
+ }
+
+ {
+ /* Zero the frequency of hash value of each dmer covered by the chosen segment. */
+ U32 pos;
+ for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
+ const size_t i = FASTCOVER_hashPtrToIndex(ctx->samples + pos, f, d);
+ freqs[i] = 0;
+ }
+ }
+
+ return bestSegment;
+}
+
+
+static int FASTCOVER_checkParameters(ZDICT_cover_params_t parameters,
+ size_t maxDictSize, unsigned f,
+ unsigned accel) {
+ /* k, d, and f are required parameters */
+ if (parameters.d == 0 || parameters.k == 0) {
+ return 0;
+ }
+ /* d has to be 6 or 8 */
+ if (parameters.d != 6 && parameters.d != 8) {
+ return 0;
+ }
+ /* k <= maxDictSize */
+ if (parameters.k > maxDictSize) {
+ return 0;
+ }
+ /* d <= k */
+ if (parameters.d > parameters.k) {
+ return 0;
+ }
+ /* 0 < f <= FASTCOVER_MAX_F*/
+ if (f > FASTCOVER_MAX_F || f == 0) {
+ return 0;
+ }
+ /* 0 < splitPoint <= 1 */
+ if (parameters.splitPoint <= 0 || parameters.splitPoint > 1) {
+ return 0;
+ }
+ /* 0 < accel <= 10 */
+ if (accel > 10 || accel == 0) {
+ return 0;
+ }
+ return 1;
+}
+
+
+/**
+ * Clean up a context initialized with `FASTCOVER_ctx_init()`.
+ */
+static void
+FASTCOVER_ctx_destroy(FASTCOVER_ctx_t* ctx)
+{
+ if (!ctx) return;
+
+ free(ctx->freqs);
+ ctx->freqs = NULL;
+
+ free(ctx->offsets);
+ ctx->offsets = NULL;
+}
+
+
+/**
+ * Calculate for frequency of hash value of each dmer in ctx->samples
+ */
+static void
+FASTCOVER_computeFrequency(U32* freqs, const FASTCOVER_ctx_t* ctx)
+{
+ const unsigned f = ctx->f;
+ const unsigned d = ctx->d;
+ const unsigned skip = ctx->accelParams.skip;
+ const unsigned readLength = MAX(d, 8);
+ size_t i;
+ assert(ctx->nbTrainSamples >= 5);
+ assert(ctx->nbTrainSamples <= ctx->nbSamples);
+ for (i = 0; i < ctx->nbTrainSamples; i++) {
+ size_t start = ctx->offsets[i]; /* start of current dmer */
+ size_t const currSampleEnd = ctx->offsets[i+1];
+ while (start + readLength <= currSampleEnd) {
+ const size_t dmerIndex = FASTCOVER_hashPtrToIndex(ctx->samples + start, f, d);
+ freqs[dmerIndex]++;
+ start = start + skip + 1;
+ }
+ }
+}
+
+
+/**
+ * Prepare a context for dictionary building.
+ * The context is only dependent on the parameter `d` and can used multiple
+ * times.
+ * Returns 0 on success or error code on error.
+ * The context must be destroyed with `FASTCOVER_ctx_destroy()`.
+ */
+static size_t
+FASTCOVER_ctx_init(FASTCOVER_ctx_t* ctx,
+ const void* samplesBuffer,
+ const size_t* samplesSizes, unsigned nbSamples,
+ unsigned d, double splitPoint, unsigned f,
+ FASTCOVER_accel_t accelParams)
+{
+ const BYTE* const samples = (const BYTE*)samplesBuffer;
+ const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
+ /* Split samples into testing and training sets */
+ const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
+ const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
+ const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
+ const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
+
+ /* Checks */
+ if (totalSamplesSize < MAX(d, sizeof(U64)) ||
+ totalSamplesSize >= (size_t)FASTCOVER_MAX_SAMPLES_SIZE) {
+ DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
+ (unsigned)(totalSamplesSize >> 20), (FASTCOVER_MAX_SAMPLES_SIZE >> 20));
+ return ERROR(srcSize_wrong);
+ }
+
+ /* Check if there are at least 5 training samples */
+ if (nbTrainSamples < 5) {
+ DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid\n", nbTrainSamples);
+ return ERROR(srcSize_wrong);
+ }
+
+ /* Check if there's testing sample */
+ if (nbTestSamples < 1) {
+ DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.\n", nbTestSamples);
+ return ERROR(srcSize_wrong);
+ }
+
+ /* Zero the context */
+ memset(ctx, 0, sizeof(*ctx));
+ DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
+ (unsigned)trainingSamplesSize);
+ DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
+ (unsigned)testSamplesSize);
+
+ ctx->samples = samples;
+ ctx->samplesSizes = samplesSizes;
+ ctx->nbSamples = nbSamples;
+ ctx->nbTrainSamples = nbTrainSamples;
+ ctx->nbTestSamples = nbTestSamples;
+ ctx->nbDmers = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
+ ctx->d = d;
+ ctx->f = f;
+ ctx->accelParams = accelParams;
+
+ /* The offsets of each file */
+ ctx->offsets = (size_t*)calloc((nbSamples + 1), sizeof(size_t));
+ if (ctx->offsets == NULL) {
+ DISPLAYLEVEL(1, "Failed to allocate scratch buffers \n");
+ FASTCOVER_ctx_destroy(ctx);
+ return ERROR(memory_allocation);
+ }
+
+ /* Fill offsets from the samplesSizes */
+ { U32 i;
+ ctx->offsets[0] = 0;
+ assert(nbSamples >= 5);
+ for (i = 1; i <= nbSamples; ++i) {
+ ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
+ }
+ }
+
+ /* Initialize frequency array of size 2^f */
+ ctx->freqs = (U32*)calloc(((U64)1 << f), sizeof(U32));
+ if (ctx->freqs == NULL) {
+ DISPLAYLEVEL(1, "Failed to allocate frequency table \n");
+ FASTCOVER_ctx_destroy(ctx);
+ return ERROR(memory_allocation);
+ }
+
+ DISPLAYLEVEL(2, "Computing frequencies\n");
+ FASTCOVER_computeFrequency(ctx->freqs, ctx);
+
+ return 0;
+}
+
+
+/**
+ * Given the prepared context build the dictionary.
+ */
+static size_t
+FASTCOVER_buildDictionary(const FASTCOVER_ctx_t* ctx,
+ U32* freqs,
+ void* dictBuffer, size_t dictBufferCapacity,
+ ZDICT_cover_params_t parameters,
+ U16* segmentFreqs)
+{
+ BYTE *const dict = (BYTE *)dictBuffer;
+ size_t tail = dictBufferCapacity;
+ /* Divide the data into epochs. We will select one segment from each epoch. */
+ const COVER_epoch_info_t epochs = COVER_computeEpochs(
+ (U32)dictBufferCapacity, (U32)ctx->nbDmers, parameters.k, 1);
+ const size_t maxZeroScoreRun = 10;
+ size_t zeroScoreRun = 0;
+ size_t epoch;
+ DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
+ (U32)epochs.num, (U32)epochs.size);
+ /* Loop through the epochs until there are no more segments or the dictionary
+ * is full.
+ */
+ for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
+ const U32 epochBegin = (U32)(epoch * epochs.size);
+ const U32 epochEnd = epochBegin + epochs.size;
+ size_t segmentSize;
+ /* Select a segment */
+ COVER_segment_t segment = FASTCOVER_selectSegment(
+ ctx, freqs, epochBegin, epochEnd, parameters, segmentFreqs);
+
+ /* If the segment covers no dmers, then we are out of content.
+ * There may be new content in other epochs, for continue for some time.
+ */
+ if (segment.score == 0) {
+ if (++zeroScoreRun >= maxZeroScoreRun) {
+ break;
+ }
+ continue;
+ }
+ zeroScoreRun = 0;
+
+ /* Trim the segment if necessary and if it is too small then we are done */
+ segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
+ if (segmentSize < parameters.d) {
+ break;
+ }
+
+ /* We fill the dictionary from the back to allow the best segments to be
+ * referenced with the smallest offsets.
+ */
+ tail -= segmentSize;
+ memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
+ DISPLAYUPDATE(
+ 2, "\r%u%% ",
+ (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
+ }
+ DISPLAYLEVEL(2, "\r%79s\r", "");
+ return tail;
+}
+
+/**
+ * Parameters for FASTCOVER_tryParameters().
+ */
+typedef struct FASTCOVER_tryParameters_data_s {
+ const FASTCOVER_ctx_t* ctx;
+ COVER_best_t* best;
+ size_t dictBufferCapacity;
+ ZDICT_cover_params_t parameters;
+} FASTCOVER_tryParameters_data_t;
+
+
+/**
+ * Tries a set of parameters and updates the COVER_best_t with the results.
+ * This function is thread safe if zstd is compiled with multithreaded support.
+ * It takes its parameters as an *OWNING* opaque pointer to support threading.
+ */
+static void FASTCOVER_tryParameters(void *opaque)
+{
+ /* Save parameters as local variables */
+ FASTCOVER_tryParameters_data_t *const data = (FASTCOVER_tryParameters_data_t *)opaque;
+ const FASTCOVER_ctx_t *const ctx = data->ctx;
+ const ZDICT_cover_params_t parameters = data->parameters;
+ size_t dictBufferCapacity = data->dictBufferCapacity;
+ size_t totalCompressedSize = ERROR(GENERIC);
+ /* Initialize array to keep track of frequency of dmer within activeSegment */
+ U16* segmentFreqs = (U16 *)calloc(((U64)1 << ctx->f), sizeof(U16));
+ /* Allocate space for hash table, dict, and freqs */
+ BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
+ COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
+ U32 *freqs = (U32*) malloc(((U64)1 << ctx->f) * sizeof(U32));
+ if (!segmentFreqs || !dict || !freqs) {
+ DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
+ goto _cleanup;
+ }
+ /* Copy the frequencies because we need to modify them */
+ memcpy(freqs, ctx->freqs, ((U64)1 << ctx->f) * sizeof(U32));
+ /* Build the dictionary */
+ { const size_t tail = FASTCOVER_buildDictionary(ctx, freqs, dict, dictBufferCapacity,
+ parameters, segmentFreqs);
+
+ const unsigned nbFinalizeSamples = (unsigned)(ctx->nbTrainSamples * ctx->accelParams.finalize / 100);
+ selection = COVER_selectDict(dict + tail, dictBufferCapacity - tail,
+ ctx->samples, ctx->samplesSizes, nbFinalizeSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
+ totalCompressedSize);
+
+ if (COVER_dictSelectionIsError(selection)) {
+ DISPLAYLEVEL(1, "Failed to select dictionary\n");
+ goto _cleanup;
+ }
+ }
+_cleanup:
+ free(dict);
+ COVER_best_finish(data->best, parameters, selection);
+ free(data);
+ free(segmentFreqs);
+ COVER_dictSelectionFree(selection);
+ free(freqs);
+}
+
+
+static void
+FASTCOVER_convertToCoverParams(ZDICT_fastCover_params_t fastCoverParams,
+ ZDICT_cover_params_t* coverParams)
+{
+ coverParams->k = fastCoverParams.k;
+ coverParams->d = fastCoverParams.d;
+ coverParams->steps = fastCoverParams.steps;
+ coverParams->nbThreads = fastCoverParams.nbThreads;
+ coverParams->splitPoint = fastCoverParams.splitPoint;
+ coverParams->zParams = fastCoverParams.zParams;
+ coverParams->shrinkDict = fastCoverParams.shrinkDict;
+}
+
+
+static void
+FASTCOVER_convertToFastCoverParams(ZDICT_cover_params_t coverParams,
+ ZDICT_fastCover_params_t* fastCoverParams,
+ unsigned f, unsigned accel)
+{
+ fastCoverParams->k = coverParams.k;
+ fastCoverParams->d = coverParams.d;
+ fastCoverParams->steps = coverParams.steps;
+ fastCoverParams->nbThreads = coverParams.nbThreads;
+ fastCoverParams->splitPoint = coverParams.splitPoint;
+ fastCoverParams->f = f;
+ fastCoverParams->accel = accel;
+ fastCoverParams->zParams = coverParams.zParams;
+ fastCoverParams->shrinkDict = coverParams.shrinkDict;
+}
+
+
+ZDICTLIB_API size_t
+ZDICT_trainFromBuffer_fastCover(void* dictBuffer, size_t dictBufferCapacity,
+ const void* samplesBuffer,
+ const size_t* samplesSizes, unsigned nbSamples,
+ ZDICT_fastCover_params_t parameters)
+{
+ BYTE* const dict = (BYTE*)dictBuffer;
+ FASTCOVER_ctx_t ctx;
+ ZDICT_cover_params_t coverParams;
+ FASTCOVER_accel_t accelParams;
+ /* Initialize global data */
+ g_displayLevel = parameters.zParams.notificationLevel;
+ /* Assign splitPoint and f if not provided */
+ parameters.splitPoint = 1.0;
+ parameters.f = parameters.f == 0 ? DEFAULT_F : parameters.f;
+ parameters.accel = parameters.accel == 0 ? DEFAULT_ACCEL : parameters.accel;
+ /* Convert to cover parameter */
+ memset(&coverParams, 0 , sizeof(coverParams));
+ FASTCOVER_convertToCoverParams(parameters, &coverParams);
+ /* Checks */
+ if (!FASTCOVER_checkParameters(coverParams, dictBufferCapacity, parameters.f,
+ parameters.accel)) {
+ DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n");
+ return ERROR(parameter_outOfBound);
+ }
+ if (nbSamples == 0) {
+ DISPLAYLEVEL(1, "FASTCOVER must have at least one input file\n");
+ return ERROR(srcSize_wrong);
+ }
+ if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
+ DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
+ ZDICT_DICTSIZE_MIN);
+ return ERROR(dstSize_tooSmall);
+ }
+ /* Assign corresponding FASTCOVER_accel_t to accelParams*/
+ accelParams = FASTCOVER_defaultAccelParameters[parameters.accel];
+ /* Initialize context */
+ {
+ size_t const initVal = FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
+ coverParams.d, parameters.splitPoint, parameters.f,
+ accelParams);
+ if (ZSTD_isError(initVal)) {
+ DISPLAYLEVEL(1, "Failed to initialize context\n");
+ return initVal;
+ }
+ }
+ COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, g_displayLevel);
+ /* Build the dictionary */
+ DISPLAYLEVEL(2, "Building dictionary\n");
+ {
+ /* Initialize array to keep track of frequency of dmer within activeSegment */
+ U16* segmentFreqs = (U16 *)calloc(((U64)1 << parameters.f), sizeof(U16));
+ const size_t tail = FASTCOVER_buildDictionary(&ctx, ctx.freqs, dictBuffer,
+ dictBufferCapacity, coverParams, segmentFreqs);
+ const unsigned nbFinalizeSamples = (unsigned)(ctx.nbTrainSamples * ctx.accelParams.finalize / 100);
+ const size_t dictionarySize = ZDICT_finalizeDictionary(
+ dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
+ samplesBuffer, samplesSizes, nbFinalizeSamples, coverParams.zParams);
+ if (!ZSTD_isError(dictionarySize)) {
+ DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
+ (unsigned)dictionarySize);
+ }
+ FASTCOVER_ctx_destroy(&ctx);
+ free(segmentFreqs);
+ return dictionarySize;
+ }
+}
+
+
+ZDICTLIB_API size_t
+ZDICT_optimizeTrainFromBuffer_fastCover(
+ void* dictBuffer, size_t dictBufferCapacity,
+ const void* samplesBuffer,
+ const size_t* samplesSizes, unsigned nbSamples,
+ ZDICT_fastCover_params_t* parameters)
+{
+ ZDICT_cover_params_t coverParams;
+ FASTCOVER_accel_t accelParams;
+ /* constants */
+ const unsigned nbThreads = parameters->nbThreads;
+ const double splitPoint =
+ parameters->splitPoint <= 0.0 ? DEFAULT_SPLITPOINT : parameters->splitPoint;
+ const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
+ const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
+ const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
+ const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
+ const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
+ const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
+ const unsigned kIterations =
+ (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
+ const unsigned f = parameters->f == 0 ? DEFAULT_F : parameters->f;
+ const unsigned accel = parameters->accel == 0 ? DEFAULT_ACCEL : parameters->accel;
+ const unsigned shrinkDict = 0;
+ /* Local variables */
+ const int displayLevel = parameters->zParams.notificationLevel;
+ unsigned iteration = 1;
+ unsigned d;
+ unsigned k;
+ COVER_best_t best;
+ POOL_ctx *pool = NULL;
+ int warned = 0;
+ /* Checks */
+ if (splitPoint <= 0 || splitPoint > 1) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect splitPoint\n");
+ return ERROR(parameter_outOfBound);
+ }
+ if (accel == 0 || accel > FASTCOVER_MAX_ACCEL) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect accel\n");
+ return ERROR(parameter_outOfBound);
+ }
+ if (kMinK < kMaxD || kMaxK < kMinK) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect k\n");
+ return ERROR(parameter_outOfBound);
+ }
+ if (nbSamples == 0) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "FASTCOVER must have at least one input file\n");
+ return ERROR(srcSize_wrong);
+ }
+ if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "dictBufferCapacity must be at least %u\n",
+ ZDICT_DICTSIZE_MIN);
+ return ERROR(dstSize_tooSmall);
+ }
+ if (nbThreads > 1) {
+ pool = POOL_create(nbThreads, 1);
+ if (!pool) {
+ return ERROR(memory_allocation);
+ }
+ }
+ /* Initialization */
+ COVER_best_init(&best);
+ memset(&coverParams, 0 , sizeof(coverParams));
+ FASTCOVER_convertToCoverParams(*parameters, &coverParams);
+ accelParams = FASTCOVER_defaultAccelParameters[accel];
+ /* Turn down global display level to clean up display at level 2 and below */
+ g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
+ /* Loop through d first because each new value needs a new context */
+ LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
+ kIterations);
+ for (d = kMinD; d <= kMaxD; d += 2) {
+ /* Initialize the context for this value of d */
+ FASTCOVER_ctx_t ctx;
+ LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
+ {
+ size_t const initVal = FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint, f, accelParams);
+ if (ZSTD_isError(initVal)) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
+ COVER_best_destroy(&best);
+ POOL_free(pool);
+ return initVal;
+ }
+ }
+ if (!warned) {
+ COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, displayLevel);
+ warned = 1;
+ }
+ /* Loop through k reusing the same context */
+ for (k = kMinK; k <= kMaxK; k += kStepSize) {
+ /* Prepare the arguments */
+ FASTCOVER_tryParameters_data_t *data = (FASTCOVER_tryParameters_data_t *)malloc(
+ sizeof(FASTCOVER_tryParameters_data_t));
+ LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
+ if (!data) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
+ COVER_best_destroy(&best);
+ FASTCOVER_ctx_destroy(&ctx);
+ POOL_free(pool);
+ return ERROR(memory_allocation);
+ }
+ data->ctx = &ctx;
+ data->best = &best;
+ data->dictBufferCapacity = dictBufferCapacity;
+ data->parameters = coverParams;
+ data->parameters.k = k;
+ data->parameters.d = d;
+ data->parameters.splitPoint = splitPoint;
+ data->parameters.steps = kSteps;
+ data->parameters.shrinkDict = shrinkDict;
+ data->parameters.zParams.notificationLevel = g_displayLevel;
+ /* Check the parameters */
+ if (!FASTCOVER_checkParameters(data->parameters, dictBufferCapacity,
+ data->ctx->f, accel)) {
+ DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n");
+ free(data);
+ continue;
+ }
+ /* Call the function and pass ownership of data to it */
+ COVER_best_start(&best);
+ if (pool) {
+ POOL_add(pool, &FASTCOVER_tryParameters, data);
+ } else {
+ FASTCOVER_tryParameters(data);
+ }
+ /* Print status */
+ LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
+ (unsigned)((iteration * 100) / kIterations));
+ ++iteration;
+ }
+ COVER_best_wait(&best);
+ FASTCOVER_ctx_destroy(&ctx);
+ }
+ LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
+ /* Fill the output buffer and parameters with output of the best parameters */
+ {
+ const size_t dictSize = best.dictSize;
+ if (ZSTD_isError(best.compressedSize)) {
+ const size_t compressedSize = best.compressedSize;
+ COVER_best_destroy(&best);
+ POOL_free(pool);
+ return compressedSize;
+ }
+ FASTCOVER_convertToFastCoverParams(best.parameters, parameters, f, accel);
+ memcpy(dictBuffer, best.dict, dictSize);
+ COVER_best_destroy(&best);
+ POOL_free(pool);
+ return dictSize;
+ }
+
+}
diff --git a/vendor/github.com/DataDog/zstd/fse.h b/vendor/github.com/DataDog/zstd/fse.h
new file mode 100644
index 0000000..811c670
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/fse.h
@@ -0,0 +1,708 @@
+/* ******************************************************************
+ FSE : Finite State Entropy codec
+ Public Prototypes declaration
+ Copyright (C) 2013-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#ifndef FSE_H
+#define FSE_H
+
+
+/*-*****************************************
+* Dependencies
+******************************************/
+#include <stddef.h> /* size_t, ptrdiff_t */
+
+
+/*-*****************************************
+* FSE_PUBLIC_API : control library symbols visibility
+******************************************/
+#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
+# define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
+#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
+# define FSE_PUBLIC_API __declspec(dllexport)
+#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
+# define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
+#else
+# define FSE_PUBLIC_API
+#endif
+
+/*------ Version ------*/
+#define FSE_VERSION_MAJOR 0
+#define FSE_VERSION_MINOR 9
+#define FSE_VERSION_RELEASE 0
+
+#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
+#define FSE_QUOTE(str) #str
+#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
+#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
+
+#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
+FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
+
+
+/*-****************************************
+* FSE simple functions
+******************************************/
+/*! FSE_compress() :
+ Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
+ 'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
+ @return : size of compressed data (<= dstCapacity).
+ Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
+ if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
+ if FSE_isError(return), compression failed (more details using FSE_getErrorName())
+*/
+FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize);
+
+/*! FSE_decompress():
+ Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
+ into already allocated destination buffer 'dst', of size 'dstCapacity'.
+ @return : size of regenerated data (<= maxDstSize),
+ or an error code, which can be tested using FSE_isError() .
+
+ ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
+ Why ? : making this distinction requires a header.
+ Header management is intentionally delegated to the user layer, which can better manage special cases.
+*/
+FSE_PUBLIC_API size_t FSE_decompress(void* dst, size_t dstCapacity,
+ const void* cSrc, size_t cSrcSize);
+
+
+/*-*****************************************
+* Tool functions
+******************************************/
+FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */
+
+/* Error Management */
+FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
+FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */
+
+
+/*-*****************************************
+* FSE advanced functions
+******************************************/
+/*! FSE_compress2() :
+ Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
+ Both parameters can be defined as '0' to mean : use default value
+ @return : size of compressed data
+ Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
+ if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
+ if FSE_isError(return), it's an error code.
+*/
+FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
+
+
+/*-*****************************************
+* FSE detailed API
+******************************************/
+/*!
+FSE_compress() does the following:
+1. count symbol occurrence from source[] into table count[] (see hist.h)
+2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
+3. save normalized counters to memory buffer using writeNCount()
+4. build encoding table 'CTable' from normalized counters
+5. encode the data stream using encoding table 'CTable'
+
+FSE_decompress() does the following:
+1. read normalized counters with readNCount()
+2. build decoding table 'DTable' from normalized counters
+3. decode the data stream using decoding table 'DTable'
+
+The following API allows targeting specific sub-functions for advanced tasks.
+For example, it's possible to compress several blocks using the same 'CTable',
+or to save and provide normalized distribution using external method.
+*/
+
+/* *** COMPRESSION *** */
+
+/*! FSE_optimalTableLog():
+ dynamically downsize 'tableLog' when conditions are met.
+ It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
+ @return : recommended tableLog (necessarily <= 'maxTableLog') */
+FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
+
+/*! FSE_normalizeCount():
+ normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
+ 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
+ @return : tableLog,
+ or an errorCode, which can be tested using FSE_isError() */
+FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
+ const unsigned* count, size_t srcSize, unsigned maxSymbolValue);
+
+/*! FSE_NCountWriteBound():
+ Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
+ Typically useful for allocation purpose. */
+FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
+
+/*! FSE_writeNCount():
+ Compactly save 'normalizedCounter' into 'buffer'.
+ @return : size of the compressed table,
+ or an errorCode, which can be tested using FSE_isError(). */
+FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
+ const short* normalizedCounter,
+ unsigned maxSymbolValue, unsigned tableLog);
+
+/*! Constructor and Destructor of FSE_CTable.
+ Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
+typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
+FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog);
+FSE_PUBLIC_API void FSE_freeCTable (FSE_CTable* ct);
+
+/*! FSE_buildCTable():
+ Builds `ct`, which must be already allocated, using FSE_createCTable().
+ @return : 0, or an errorCode, which can be tested using FSE_isError() */
+FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
+
+/*! FSE_compress_usingCTable():
+ Compress `src` using `ct` into `dst` which must be already allocated.
+ @return : size of compressed data (<= `dstCapacity`),
+ or 0 if compressed data could not fit into `dst`,
+ or an errorCode, which can be tested using FSE_isError() */
+FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
+
+/*!
+Tutorial :
+----------
+The first step is to count all symbols. FSE_count() does this job very fast.
+Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
+'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
+maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
+FSE_count() will return the number of occurrence of the most frequent symbol.
+This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
+If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
+
+The next step is to normalize the frequencies.
+FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
+It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
+You can use 'tableLog'==0 to mean "use default tableLog value".
+If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
+which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
+
+The result of FSE_normalizeCount() will be saved into a table,
+called 'normalizedCounter', which is a table of signed short.
+'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
+The return value is tableLog if everything proceeded as expected.
+It is 0 if there is a single symbol within distribution.
+If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
+
+'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
+'buffer' must be already allocated.
+For guaranteed success, buffer size must be at least FSE_headerBound().
+The result of the function is the number of bytes written into 'buffer'.
+If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
+
+'normalizedCounter' can then be used to create the compression table 'CTable'.
+The space required by 'CTable' must be already allocated, using FSE_createCTable().
+You can then use FSE_buildCTable() to fill 'CTable'.
+If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
+
+'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
+Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
+The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
+If it returns '0', compressed data could not fit into 'dst'.
+If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
+*/
+
+
+/* *** DECOMPRESSION *** */
+
+/*! FSE_readNCount():
+ Read compactly saved 'normalizedCounter' from 'rBuffer'.
+ @return : size read from 'rBuffer',
+ or an errorCode, which can be tested using FSE_isError().
+ maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
+FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
+ unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
+ const void* rBuffer, size_t rBuffSize);
+
+/*! Constructor and Destructor of FSE_DTable.
+ Note that its size depends on 'tableLog' */
+typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
+FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog);
+FSE_PUBLIC_API void FSE_freeDTable(FSE_DTable* dt);
+
+/*! FSE_buildDTable():
+ Builds 'dt', which must be already allocated, using FSE_createDTable().
+ return : 0, or an errorCode, which can be tested using FSE_isError() */
+FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
+
+/*! FSE_decompress_usingDTable():
+ Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
+ into `dst` which must be already allocated.
+ @return : size of regenerated data (necessarily <= `dstCapacity`),
+ or an errorCode, which can be tested using FSE_isError() */
+FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
+
+/*!
+Tutorial :
+----------
+(Note : these functions only decompress FSE-compressed blocks.
+ If block is uncompressed, use memcpy() instead
+ If block is a single repeated byte, use memset() instead )
+
+The first step is to obtain the normalized frequencies of symbols.
+This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
+'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
+In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
+or size the table to handle worst case situations (typically 256).
+FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
+The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
+Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
+If there is an error, the function will return an error code, which can be tested using FSE_isError().
+
+The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
+This is performed by the function FSE_buildDTable().
+The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
+If there is an error, the function will return an error code, which can be tested using FSE_isError().
+
+`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
+`cSrcSize` must be strictly correct, otherwise decompression will fail.
+FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
+If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
+*/
+
+#endif /* FSE_H */
+
+#if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
+#define FSE_H_FSE_STATIC_LINKING_ONLY
+
+/* *** Dependency *** */
+#include "bitstream.h"
+
+
+/* *****************************************
+* Static allocation
+*******************************************/
+/* FSE buffer bounds */
+#define FSE_NCOUNTBOUND 512
+#define FSE_BLOCKBOUND(size) (size + (size>>7))
+#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
+
+/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
+#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
+#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
+
+/* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
+#define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
+#define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
+
+
+/* *****************************************
+ * FSE advanced API
+ ***************************************** */
+
+unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
+/**< same as FSE_optimalTableLog(), which used `minus==2` */
+
+/* FSE_compress_wksp() :
+ * Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
+ * FSE_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable.
+ */
+#define FSE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) )
+size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
+
+size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
+/**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
+
+size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
+/**< build a fake FSE_CTable, designed to compress always the same symbolValue */
+
+/* FSE_buildCTable_wksp() :
+ * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
+ * `wkspSize` must be >= `(1<<tableLog)`.
+ */
+size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
+
+size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
+/**< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
+
+size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
+/**< build a fake FSE_DTable, designed to always generate the same symbolValue */
+
+size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, FSE_DTable* workSpace, unsigned maxLog);
+/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DTABLE_SIZE_U32(maxLog)` */
+
+typedef enum {
+ FSE_repeat_none, /**< Cannot use the previous table */
+ FSE_repeat_check, /**< Can use the previous table but it must be checked */
+ FSE_repeat_valid /**< Can use the previous table and it is assumed to be valid */
+ } FSE_repeat;
+
+/* *****************************************
+* FSE symbol compression API
+*******************************************/
+/*!
+ This API consists of small unitary functions, which highly benefit from being inlined.
+ Hence their body are included in next section.
+*/
+typedef struct {
+ ptrdiff_t value;
+ const void* stateTable;
+ const void* symbolTT;
+ unsigned stateLog;
+} FSE_CState_t;
+
+static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
+
+static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
+
+static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
+
+/**<
+These functions are inner components of FSE_compress_usingCTable().
+They allow the creation of custom streams, mixing multiple tables and bit sources.
+
+A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
+So the first symbol you will encode is the last you will decode, like a LIFO stack.
+
+You will need a few variables to track your CStream. They are :
+
+FSE_CTable ct; // Provided by FSE_buildCTable()
+BIT_CStream_t bitStream; // bitStream tracking structure
+FSE_CState_t state; // State tracking structure (can have several)
+
+
+The first thing to do is to init bitStream and state.
+ size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
+ FSE_initCState(&state, ct);
+
+Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
+You can then encode your input data, byte after byte.
+FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
+Remember decoding will be done in reverse direction.
+ FSE_encodeByte(&bitStream, &state, symbol);
+
+At any time, you can also add any bit sequence.
+Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
+ BIT_addBits(&bitStream, bitField, nbBits);
+
+The above methods don't commit data to memory, they just store it into local register, for speed.
+Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
+Writing data to memory is a manual operation, performed by the flushBits function.
+ BIT_flushBits(&bitStream);
+
+Your last FSE encoding operation shall be to flush your last state value(s).
+ FSE_flushState(&bitStream, &state);
+
+Finally, you must close the bitStream.
+The function returns the size of CStream in bytes.
+If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
+If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
+ size_t size = BIT_closeCStream(&bitStream);
+*/
+
+
+/* *****************************************
+* FSE symbol decompression API
+*******************************************/
+typedef struct {
+ size_t state;
+ const void* table; /* precise table may vary, depending on U16 */
+} FSE_DState_t;
+
+
+static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
+
+static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
+
+static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
+
+/**<
+Let's now decompose FSE_decompress_usingDTable() into its unitary components.
+You will decode FSE-encoded symbols from the bitStream,
+and also any other bitFields you put in, **in reverse order**.
+
+You will need a few variables to track your bitStream. They are :
+
+BIT_DStream_t DStream; // Stream context
+FSE_DState_t DState; // State context. Multiple ones are possible
+FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
+
+The first thing to do is to init the bitStream.
+ errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
+
+You should then retrieve your initial state(s)
+(in reverse flushing order if you have several ones) :
+ errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
+
+You can then decode your data, symbol after symbol.
+For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
+Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
+ unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
+
+You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
+Note : maximum allowed nbBits is 25, for 32-bits compatibility
+ size_t bitField = BIT_readBits(&DStream, nbBits);
+
+All above operations only read from local register (which size depends on size_t).
+Refueling the register from memory is manually performed by the reload method.
+ endSignal = FSE_reloadDStream(&DStream);
+
+BIT_reloadDStream() result tells if there is still some more data to read from DStream.
+BIT_DStream_unfinished : there is still some data left into the DStream.
+BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
+BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
+BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
+
+When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
+to properly detect the exact end of stream.
+After each decoded symbol, check if DStream is fully consumed using this simple test :
+ BIT_reloadDStream(&DStream) >= BIT_DStream_completed
+
+When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
+Checking if DStream has reached its end is performed by :
+ BIT_endOfDStream(&DStream);
+Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
+ FSE_endOfDState(&DState);
+*/
+
+
+/* *****************************************
+* FSE unsafe API
+*******************************************/
+static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
+/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
+
+
+/* *****************************************
+* Implementation of inlined functions
+*******************************************/
+typedef struct {
+ int deltaFindState;
+ U32 deltaNbBits;
+} FSE_symbolCompressionTransform; /* total 8 bytes */
+
+MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
+{
+ const void* ptr = ct;
+ const U16* u16ptr = (const U16*) ptr;
+ const U32 tableLog = MEM_read16(ptr);
+ statePtr->value = (ptrdiff_t)1<<tableLog;
+ statePtr->stateTable = u16ptr+2;
+ statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1);
+ statePtr->stateLog = tableLog;
+}
+
+
+/*! FSE_initCState2() :
+* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
+* uses the smallest state value possible, saving the cost of this symbol */
+MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
+{
+ FSE_initCState(statePtr, ct);
+ { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
+ const U16* stateTable = (const U16*)(statePtr->stateTable);
+ U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
+ statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
+ statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
+ }
+}
+
+MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol)
+{
+ FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
+ const U16* const stateTable = (const U16*)(statePtr->stateTable);
+ U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
+ BIT_addBits(bitC, statePtr->value, nbBitsOut);
+ statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
+}
+
+MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
+{
+ BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
+ BIT_flushBits(bitC);
+}
+
+
+/* FSE_getMaxNbBits() :
+ * Approximate maximum cost of a symbol, in bits.
+ * Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
+ * note 1 : assume symbolValue is valid (<= maxSymbolValue)
+ * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
+MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
+{
+ const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
+ return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
+}
+
+/* FSE_bitCost() :
+ * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
+ * note 1 : assume symbolValue is valid (<= maxSymbolValue)
+ * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
+MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
+{
+ const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
+ U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
+ U32 const threshold = (minNbBits+1) << 16;
+ assert(tableLog < 16);
+ assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */
+ { U32 const tableSize = 1 << tableLog;
+ U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
+ U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */
+ U32 const bitMultiplier = 1 << accuracyLog;
+ assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
+ assert(normalizedDeltaFromThreshold <= bitMultiplier);
+ return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
+ }
+}
+
+
+/* ====== Decompression ====== */
+
+typedef struct {
+ U16 tableLog;
+ U16 fastMode;
+} FSE_DTableHeader; /* sizeof U32 */
+
+typedef struct
+{
+ unsigned short newState;
+ unsigned char symbol;
+ unsigned char nbBits;
+} FSE_decode_t; /* size == U32 */
+
+MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
+{
+ const void* ptr = dt;
+ const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
+ DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
+ BIT_reloadDStream(bitD);
+ DStatePtr->table = dt + 1;
+}
+
+MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
+{
+ FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ return DInfo.symbol;
+}
+
+MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+ FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ size_t const lowBits = BIT_readBits(bitD, nbBits);
+ DStatePtr->state = DInfo.newState + lowBits;
+}
+
+MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+ FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ BYTE const symbol = DInfo.symbol;
+ size_t const lowBits = BIT_readBits(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+/*! FSE_decodeSymbolFast() :
+ unsafe, only works if no symbol has a probability > 50% */
+MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+ FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ BYTE const symbol = DInfo.symbol;
+ size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
+{
+ return DStatePtr->state == 0;
+}
+
+
+
+#ifndef FSE_COMMONDEFS_ONLY
+
+/* **************************************************************
+* Tuning parameters
+****************************************************************/
+/*!MEMORY_USAGE :
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+* Increasing memory usage improves compression ratio
+* Reduced memory usage can improve speed, due to cache effect
+* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
+#ifndef FSE_MAX_MEMORY_USAGE
+# define FSE_MAX_MEMORY_USAGE 14
+#endif
+#ifndef FSE_DEFAULT_MEMORY_USAGE
+# define FSE_DEFAULT_MEMORY_USAGE 13
+#endif
+
+/*!FSE_MAX_SYMBOL_VALUE :
+* Maximum symbol value authorized.
+* Required for proper stack allocation */
+#ifndef FSE_MAX_SYMBOL_VALUE
+# define FSE_MAX_SYMBOL_VALUE 255
+#endif
+
+/* **************************************************************
+* template functions type & suffix
+****************************************************************/
+#define FSE_FUNCTION_TYPE BYTE
+#define FSE_FUNCTION_EXTENSION
+#define FSE_DECODE_TYPE FSE_decode_t
+
+
+#endif /* !FSE_COMMONDEFS_ONLY */
+
+
+/* ***************************************************************
+* Constants
+*****************************************************************/
+#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
+#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
+#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
+#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
+#define FSE_MIN_TABLELOG 5
+
+#define FSE_TABLELOG_ABSOLUTE_MAX 15
+#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
+# error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
+#endif
+
+#define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
+
+
+#endif /* FSE_STATIC_LINKING_ONLY */
+
+
+#if defined (__cplusplus)
+}
+#endif
diff --git a/vendor/github.com/DataDog/zstd/fse_compress.c b/vendor/github.com/DataDog/zstd/fse_compress.c
new file mode 100644
index 0000000..68b47e1
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/fse_compress.c
@@ -0,0 +1,721 @@
+/* ******************************************************************
+ FSE : Finite State Entropy encoder
+ Copyright (C) 2013-present, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+/* **************************************************************
+* Includes
+****************************************************************/
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memcpy, memset */
+#include "compiler.h"
+#include "mem.h" /* U32, U16, etc. */
+#include "debug.h" /* assert, DEBUGLOG */
+#include "hist.h" /* HIST_count_wksp */
+#include "bitstream.h"
+#define FSE_STATIC_LINKING_ONLY
+#include "fse.h"
+#include "error_private.h"
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define FSE_isError ERR_isError
+
+
+/* **************************************************************
+* Templates
+****************************************************************/
+/*
+ designed to be included
+ for type-specific functions (template emulation in C)
+ Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSE_FUNCTION_EXTENSION
+# error "FSE_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSE_FUNCTION_TYPE
+# error "FSE_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSE_CAT(X,Y) X##Y
+#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
+#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
+
+
+/* Function templates */
+
+/* FSE_buildCTable_wksp() :
+ * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
+ * wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)`
+ * workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements
+ */
+size_t FSE_buildCTable_wksp(FSE_CTable* ct,
+ const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
+ void* workSpace, size_t wkspSize)
+{
+ U32 const tableSize = 1 << tableLog;
+ U32 const tableMask = tableSize - 1;
+ void* const ptr = ct;
+ U16* const tableU16 = ( (U16*) ptr) + 2;
+ void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableLog ? tableSize>>1 : 1) ;
+ FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
+ U32 const step = FSE_TABLESTEP(tableSize);
+ U32 cumul[FSE_MAX_SYMBOL_VALUE+2];
+
+ FSE_FUNCTION_TYPE* const tableSymbol = (FSE_FUNCTION_TYPE*)workSpace;
+ U32 highThreshold = tableSize-1;
+
+ /* CTable header */
+ if (((size_t)1 << tableLog) * sizeof(FSE_FUNCTION_TYPE) > wkspSize) return ERROR(tableLog_tooLarge);
+ tableU16[-2] = (U16) tableLog;
+ tableU16[-1] = (U16) maxSymbolValue;
+ assert(tableLog < 16); /* required for threshold strategy to work */
+
+ /* For explanations on how to distribute symbol values over the table :
+ * http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
+
+ #ifdef __clang_analyzer__
+ memset(tableSymbol, 0, sizeof(*tableSymbol) * tableSize); /* useless initialization, just to keep scan-build happy */
+ #endif
+
+ /* symbol start positions */
+ { U32 u;
+ cumul[0] = 0;
+ for (u=1; u <= maxSymbolValue+1; u++) {
+ if (normalizedCounter[u-1]==-1) { /* Low proba symbol */
+ cumul[u] = cumul[u-1] + 1;
+ tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1);
+ } else {
+ cumul[u] = cumul[u-1] + normalizedCounter[u-1];
+ } }
+ cumul[maxSymbolValue+1] = tableSize+1;
+ }
+
+ /* Spread symbols */
+ { U32 position = 0;
+ U32 symbol;
+ for (symbol=0; symbol<=maxSymbolValue; symbol++) {
+ int nbOccurrences;
+ int const freq = normalizedCounter[symbol];
+ for (nbOccurrences=0; nbOccurrences<freq; nbOccurrences++) {
+ tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
+ position = (position + step) & tableMask;
+ while (position > highThreshold)
+ position = (position + step) & tableMask; /* Low proba area */
+ } }
+
+ assert(position==0); /* Must have initialized all positions */
+ }
+
+ /* Build table */
+ { U32 u; for (u=0; u<tableSize; u++) {
+ FSE_FUNCTION_TYPE s = tableSymbol[u]; /* note : static analyzer may not understand tableSymbol is properly initialized */
+ tableU16[cumul[s]++] = (U16) (tableSize+u); /* TableU16 : sorted by symbol order; gives next state value */
+ } }
+
+ /* Build Symbol Transformation Table */
+ { unsigned total = 0;
+ unsigned s;
+ for (s=0; s<=maxSymbolValue; s++) {
+ switch (normalizedCounter[s])
+ {
+ case 0:
+ /* filling nonetheless, for compatibility with FSE_getMaxNbBits() */
+ symbolTT[s].deltaNbBits = ((tableLog+1) << 16) - (1<<tableLog);
+ break;
+
+ case -1:
+ case 1:
+ symbolTT[s].deltaNbBits = (tableLog << 16) - (1<<tableLog);
+ symbolTT[s].deltaFindState = total - 1;
+ total ++;
+ break;
+ default :
+ {
+ U32 const maxBitsOut = tableLog - BIT_highbit32 (normalizedCounter[s]-1);
+ U32 const minStatePlus = normalizedCounter[s] << maxBitsOut;
+ symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
+ symbolTT[s].deltaFindState = total - normalizedCounter[s];
+ total += normalizedCounter[s];
+ } } } }
+
+#if 0 /* debug : symbol costs */
+ DEBUGLOG(5, "\n --- table statistics : ");
+ { U32 symbol;
+ for (symbol=0; symbol<=maxSymbolValue; symbol++) {
+ DEBUGLOG(5, "%3u: w=%3i, maxBits=%u, fracBits=%.2f",
+ symbol, normalizedCounter[symbol],
+ FSE_getMaxNbBits(symbolTT, symbol),
+ (double)FSE_bitCost(symbolTT, tableLog, symbol, 8) / 256);
+ }
+ }
+#endif
+
+ return 0;
+}
+
+
+size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+ FSE_FUNCTION_TYPE tableSymbol[FSE_MAX_TABLESIZE]; /* memset() is not necessary, even if static analyzer complain about it */
+ return FSE_buildCTable_wksp(ct, normalizedCounter, maxSymbolValue, tableLog, tableSymbol, sizeof(tableSymbol));
+}
+
+
+
+#ifndef FSE_COMMONDEFS_ONLY
+
+
+/*-**************************************************************
+* FSE NCount encoding
+****************************************************************/
+size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
+{
+ size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog) >> 3) + 3;
+ return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
+}
+
+static size_t
+FSE_writeNCount_generic (void* header, size_t headerBufferSize,
+ const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
+ unsigned writeIsSafe)
+{
+ BYTE* const ostart = (BYTE*) header;
+ BYTE* out = ostart;
+ BYTE* const oend = ostart + headerBufferSize;
+ int nbBits;
+ const int tableSize = 1 << tableLog;
+ int remaining;
+ int threshold;
+ U32 bitStream = 0;
+ int bitCount = 0;
+ unsigned symbol = 0;
+ unsigned const alphabetSize = maxSymbolValue + 1;
+ int previousIs0 = 0;
+
+ /* Table Size */
+ bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount;
+ bitCount += 4;
+
+ /* Init */
+ remaining = tableSize+1; /* +1 for extra accuracy */
+ threshold = tableSize;
+ nbBits = tableLog+1;
+
+ while ((symbol < alphabetSize) && (remaining>1)) { /* stops at 1 */
+ if (previousIs0) {
+ unsigned start = symbol;
+ while ((symbol < alphabetSize) && !normalizedCounter[symbol]) symbol++;
+ if (symbol == alphabetSize) break; /* incorrect distribution */
+ while (symbol >= start+24) {
+ start+=24;
+ bitStream += 0xFFFFU << bitCount;
+ if ((!writeIsSafe) && (out > oend-2))
+ return ERROR(dstSize_tooSmall); /* Buffer overflow */
+ out[0] = (BYTE) bitStream;
+ out[1] = (BYTE)(bitStream>>8);
+ out+=2;
+ bitStream>>=16;
+ }
+ while (symbol >= start+3) {
+ start+=3;
+ bitStream += 3 << bitCount;
+ bitCount += 2;
+ }
+ bitStream += (symbol-start) << bitCount;
+ bitCount += 2;
+ if (bitCount>16) {
+ if ((!writeIsSafe) && (out > oend - 2))
+ return ERROR(dstSize_tooSmall); /* Buffer overflow */
+ out[0] = (BYTE)bitStream;
+ out[1] = (BYTE)(bitStream>>8);
+ out += 2;
+ bitStream >>= 16;
+ bitCount -= 16;
+ } }
+ { int count = normalizedCounter[symbol++];
+ int const max = (2*threshold-1) - remaining;
+ remaining -= count < 0 ? -count : count;
+ count++; /* +1 for extra accuracy */
+ if (count>=threshold)
+ count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
+ bitStream += count << bitCount;
+ bitCount += nbBits;
+ bitCount -= (count<max);
+ previousIs0 = (count==1);
+ if (remaining<1) return ERROR(GENERIC);
+ while (remaining<threshold) { nbBits--; threshold>>=1; }
+ }
+ if (bitCount>16) {
+ if ((!writeIsSafe) && (out > oend - 2))
+ return ERROR(dstSize_tooSmall); /* Buffer overflow */
+ out[0] = (BYTE)bitStream;
+ out[1] = (BYTE)(bitStream>>8);
+ out += 2;
+ bitStream >>= 16;
+ bitCount -= 16;
+ } }
+
+ if (remaining != 1)
+ return ERROR(GENERIC); /* incorrect normalized distribution */
+ assert(symbol <= alphabetSize);
+
+ /* flush remaining bitStream */
+ if ((!writeIsSafe) && (out > oend - 2))
+ return ERROR(dstSize_tooSmall); /* Buffer overflow */
+ out[0] = (BYTE)bitStream;
+ out[1] = (BYTE)(bitStream>>8);
+ out+= (bitCount+7) /8;
+
+ return (out-ostart);
+}
+
+
+size_t FSE_writeNCount (void* buffer, size_t bufferSize,
+ const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported */
+ if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */
+
+ if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
+ return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
+
+ return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1 /* write in buffer is safe */);
+}
+
+
+/*-**************************************************************
+* FSE Compression Code
+****************************************************************/
+
+FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog)
+{
+ size_t size;
+ if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
+ size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
+ return (FSE_CTable*)malloc(size);
+}
+
+void FSE_freeCTable (FSE_CTable* ct) { free(ct); }
+
+/* provides the minimum logSize to safely represent a distribution */
+static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
+{
+ U32 minBitsSrc = BIT_highbit32((U32)(srcSize)) + 1;
+ U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2;
+ U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
+ assert(srcSize > 1); /* Not supported, RLE should be used instead */
+ return minBits;
+}
+
+unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
+{
+ U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus;
+ U32 tableLog = maxTableLog;
+ U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
+ assert(srcSize > 1); /* Not supported, RLE should be used instead */
+ if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
+ if (maxBitsSrc < tableLog) tableLog = maxBitsSrc; /* Accuracy can be reduced */
+ if (minBits > tableLog) tableLog = minBits; /* Need a minimum to safely represent all symbol values */
+ if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG;
+ if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG;
+ return tableLog;
+}
+
+unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
+{
+ return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2);
+}
+
+
+/* Secondary normalization method.
+ To be used when primary method fails. */
+
+static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue)
+{
+ short const NOT_YET_ASSIGNED = -2;
+ U32 s;
+ U32 distributed = 0;
+ U32 ToDistribute;
+
+ /* Init */
+ U32 const lowThreshold = (U32)(total >> tableLog);
+ U32 lowOne = (U32)((total * 3) >> (tableLog + 1));
+
+ for (s=0; s<=maxSymbolValue; s++) {
+ if (count[s] == 0) {
+ norm[s]=0;
+ continue;
+ }
+ if (count[s] <= lowThreshold) {
+ norm[s] = -1;
+ distributed++;
+ total -= count[s];
+ continue;
+ }
+ if (count[s] <= lowOne) {
+ norm[s] = 1;
+ distributed++;
+ total -= count[s];
+ continue;
+ }
+
+ norm[s]=NOT_YET_ASSIGNED;
+ }
+ ToDistribute = (1 << tableLog) - distributed;
+
+ if (ToDistribute == 0)
+ return 0;
+
+ if ((total / ToDistribute) > lowOne) {
+ /* risk of rounding to zero */
+ lowOne = (U32)((total * 3) / (ToDistribute * 2));
+ for (s=0; s<=maxSymbolValue; s++) {
+ if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) {
+ norm[s] = 1;
+ distributed++;
+ total -= count[s];
+ continue;
+ } }
+ ToDistribute = (1 << tableLog) - distributed;
+ }
+
+ if (distributed == maxSymbolValue+1) {
+ /* all values are pretty poor;
+ probably incompressible data (should have already been detected);
+ find max, then give all remaining points to max */
+ U32 maxV = 0, maxC = 0;
+ for (s=0; s<=maxSymbolValue; s++)
+ if (count[s] > maxC) { maxV=s; maxC=count[s]; }
+ norm[maxV] += (short)ToDistribute;
+ return 0;
+ }
+
+ if (total == 0) {
+ /* all of the symbols were low enough for the lowOne or lowThreshold */
+ for (s=0; ToDistribute > 0; s = (s+1)%(maxSymbolValue+1))
+ if (norm[s] > 0) { ToDistribute--; norm[s]++; }
+ return 0;
+ }
+
+ { U64 const vStepLog = 62 - tableLog;
+ U64 const mid = (1ULL << (vStepLog-1)) - 1;
+ U64 const rStep = ((((U64)1<<vStepLog) * ToDistribute) + mid) / total; /* scale on remaining */
+ U64 tmpTotal = mid;
+ for (s=0; s<=maxSymbolValue; s++) {
+ if (norm[s]==NOT_YET_ASSIGNED) {
+ U64 const end = tmpTotal + (count[s] * rStep);
+ U32 const sStart = (U32)(tmpTotal >> vStepLog);
+ U32 const sEnd = (U32)(end >> vStepLog);
+ U32 const weight = sEnd - sStart;
+ if (weight < 1)
+ return ERROR(GENERIC);
+ norm[s] = (short)weight;
+ tmpTotal = end;
+ } } }
+
+ return 0;
+}
+
+
+size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
+ const unsigned* count, size_t total,
+ unsigned maxSymbolValue)
+{
+ /* Sanity checks */
+ if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
+ if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported size */
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported size */
+ if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */
+
+ { static U32 const rtbTable[] = { 0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 };
+ U64 const scale = 62 - tableLog;
+ U64 const step = ((U64)1<<62) / total; /* <== here, one division ! */
+ U64 const vStep = 1ULL<<(scale-20);
+ int stillToDistribute = 1<<tableLog;
+ unsigned s;
+ unsigned largest=0;
+ short largestP=0;
+ U32 lowThreshold = (U32)(total >> tableLog);
+
+ for (s=0; s<=maxSymbolValue; s++) {
+ if (count[s] == total) return 0; /* rle special case */
+ if (count[s] == 0) { normalizedCounter[s]=0; continue; }
+ if (count[s] <= lowThreshold) {
+ normalizedCounter[s] = -1;
+ stillToDistribute--;
+ } else {
+ short proba = (short)((count[s]*step) >> scale);
+ if (proba<8) {
+ U64 restToBeat = vStep * rtbTable[proba];
+ proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
+ }
+ if (proba > largestP) { largestP=proba; largest=s; }
+ normalizedCounter[s] = proba;
+ stillToDistribute -= proba;
+ } }
+ if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) {
+ /* corner case, need another normalization method */
+ size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue);
+ if (FSE_isError(errorCode)) return errorCode;
+ }
+ else normalizedCounter[largest] += (short)stillToDistribute;
+ }
+
+#if 0
+ { /* Print Table (debug) */
+ U32 s;
+ U32 nTotal = 0;
+ for (s=0; s<=maxSymbolValue; s++)
+ RAWLOG(2, "%3i: %4i \n", s, normalizedCounter[s]);
+ for (s=0; s<=maxSymbolValue; s++)
+ nTotal += abs(normalizedCounter[s]);
+ if (nTotal != (1U<<tableLog))
+ RAWLOG(2, "Warning !!! Total == %u != %u !!!", nTotal, 1U<<tableLog);
+ getchar();
+ }
+#endif
+
+ return tableLog;
+}
+
+
+/* fake FSE_CTable, for raw (uncompressed) input */
+size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits)
+{
+ const unsigned tableSize = 1 << nbBits;
+ const unsigned tableMask = tableSize - 1;
+ const unsigned maxSymbolValue = tableMask;
+ void* const ptr = ct;
+ U16* const tableU16 = ( (U16*) ptr) + 2;
+ void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableSize>>1); /* assumption : tableLog >= 1 */
+ FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
+ unsigned s;
+
+ /* Sanity checks */
+ if (nbBits < 1) return ERROR(GENERIC); /* min size */
+
+ /* header */
+ tableU16[-2] = (U16) nbBits;
+ tableU16[-1] = (U16) maxSymbolValue;
+
+ /* Build table */
+ for (s=0; s<tableSize; s++)
+ tableU16[s] = (U16)(tableSize + s);
+
+ /* Build Symbol Transformation Table */
+ { const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits);
+ for (s=0; s<=maxSymbolValue; s++) {
+ symbolTT[s].deltaNbBits = deltaNbBits;
+ symbolTT[s].deltaFindState = s-1;
+ } }
+
+ return 0;
+}
+
+/* fake FSE_CTable, for rle input (always same symbol) */
+size_t FSE_buildCTable_rle (FSE_CTable* ct, BYTE symbolValue)
+{
+ void* ptr = ct;
+ U16* tableU16 = ( (U16*) ptr) + 2;
+ void* FSCTptr = (U32*)ptr + 2;
+ FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) FSCTptr;
+
+ /* header */
+ tableU16[-2] = (U16) 0;
+ tableU16[-1] = (U16) symbolValue;
+
+ /* Build table */
+ tableU16[0] = 0;
+ tableU16[1] = 0; /* just in case */
+
+ /* Build Symbol Transformation Table */
+ symbolTT[symbolValue].deltaNbBits = 0;
+ symbolTT[symbolValue].deltaFindState = 0;
+
+ return 0;
+}
+
+
+static size_t FSE_compress_usingCTable_generic (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const FSE_CTable* ct, const unsigned fast)
+{
+ const BYTE* const istart = (const BYTE*) src;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* ip=iend;
+
+ BIT_CStream_t bitC;
+ FSE_CState_t CState1, CState2;
+
+ /* init */
+ if (srcSize <= 2) return 0;
+ { size_t const initError = BIT_initCStream(&bitC, dst, dstSize);
+ if (FSE_isError(initError)) return 0; /* not enough space available to write a bitstream */ }
+
+#define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
+
+ if (srcSize & 1) {
+ FSE_initCState2(&CState1, ct, *--ip);
+ FSE_initCState2(&CState2, ct, *--ip);
+ FSE_encodeSymbol(&bitC, &CState1, *--ip);
+ FSE_FLUSHBITS(&bitC);
+ } else {
+ FSE_initCState2(&CState2, ct, *--ip);
+ FSE_initCState2(&CState1, ct, *--ip);
+ }
+
+ /* join to mod 4 */
+ srcSize -= 2;
+ if ((sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) { /* test bit 2 */
+ FSE_encodeSymbol(&bitC, &CState2, *--ip);
+ FSE_encodeSymbol(&bitC, &CState1, *--ip);
+ FSE_FLUSHBITS(&bitC);
+ }
+
+ /* 2 or 4 encoding per loop */
+ while ( ip>istart ) {
+
+ FSE_encodeSymbol(&bitC, &CState2, *--ip);
+
+ if (sizeof(bitC.bitContainer)*8 < FSE_MAX_TABLELOG*2+7 ) /* this test must be static */
+ FSE_FLUSHBITS(&bitC);
+
+ FSE_encodeSymbol(&bitC, &CState1, *--ip);
+
+ if (sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) { /* this test must be static */
+ FSE_encodeSymbol(&bitC, &CState2, *--ip);
+ FSE_encodeSymbol(&bitC, &CState1, *--ip);
+ }
+
+ FSE_FLUSHBITS(&bitC);
+ }
+
+ FSE_flushCState(&bitC, &CState2);
+ FSE_flushCState(&bitC, &CState1);
+ return BIT_closeCStream(&bitC);
+}
+
+size_t FSE_compress_usingCTable (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const FSE_CTable* ct)
+{
+ unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize));
+
+ if (fast)
+ return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1);
+ else
+ return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0);
+}
+
+
+size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
+
+#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e
+#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
+
+/* FSE_compress_wksp() :
+ * Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
+ * `wkspSize` size must be `(1<<tableLog)`.
+ */
+size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
+{
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + dstSize;
+
+ unsigned count[FSE_MAX_SYMBOL_VALUE+1];
+ S16 norm[FSE_MAX_SYMBOL_VALUE+1];
+ FSE_CTable* CTable = (FSE_CTable*)workSpace;
+ size_t const CTableSize = FSE_CTABLE_SIZE_U32(tableLog, maxSymbolValue);
+ void* scratchBuffer = (void*)(CTable + CTableSize);
+ size_t const scratchBufferSize = wkspSize - (CTableSize * sizeof(FSE_CTable));
+
+ /* init conditions */
+ if (wkspSize < FSE_WKSP_SIZE_U32(tableLog, maxSymbolValue)) return ERROR(tableLog_tooLarge);
+ if (srcSize <= 1) return 0; /* Not compressible */
+ if (!maxSymbolValue) maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
+ if (!tableLog) tableLog = FSE_DEFAULT_TABLELOG;
+
+ /* Scan input and build symbol stats */
+ { CHECK_V_F(maxCount, HIST_count_wksp(count, &maxSymbolValue, src, srcSize, scratchBuffer, scratchBufferSize) );
+ if (maxCount == srcSize) return 1; /* only a single symbol in src : rle */
+ if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
+ if (maxCount < (srcSize >> 7)) return 0; /* Heuristic : not compressible enough */
+ }
+
+ tableLog = FSE_optimalTableLog(tableLog, srcSize, maxSymbolValue);
+ CHECK_F( FSE_normalizeCount(norm, tableLog, count, srcSize, maxSymbolValue) );
+
+ /* Write table description header */
+ { CHECK_V_F(nc_err, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) );
+ op += nc_err;
+ }
+
+ /* Compress */
+ CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, scratchBufferSize) );
+ { CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, src, srcSize, CTable) );
+ if (cSize == 0) return 0; /* not enough space for compressed data */
+ op += cSize;
+ }
+
+ /* check compressibility */
+ if ( (size_t)(op-ostart) >= srcSize-1 ) return 0;
+
+ return op-ostart;
+}
+
+typedef struct {
+ FSE_CTable CTable_max[FSE_CTABLE_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)];
+ BYTE scratchBuffer[1 << FSE_MAX_TABLELOG];
+} fseWkspMax_t;
+
+size_t FSE_compress2 (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog)
+{
+ fseWkspMax_t scratchBuffer;
+ DEBUG_STATIC_ASSERT(sizeof(scratchBuffer) >= FSE_WKSP_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)); /* compilation failures here means scratchBuffer is not large enough */
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
+ return FSE_compress_wksp(dst, dstCapacity, src, srcSize, maxSymbolValue, tableLog, &scratchBuffer, sizeof(scratchBuffer));
+}
+
+size_t FSE_compress (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ return FSE_compress2(dst, dstCapacity, src, srcSize, FSE_MAX_SYMBOL_VALUE, FSE_DEFAULT_TABLELOG);
+}
+
+
+#endif /* FSE_COMMONDEFS_ONLY */
diff --git a/vendor/github.com/DataDog/zstd/fse_decompress.c b/vendor/github.com/DataDog/zstd/fse_decompress.c
new file mode 100644
index 0000000..72bbead
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/fse_decompress.c
@@ -0,0 +1,309 @@
+/* ******************************************************************
+ FSE : Finite State Entropy decoder
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+
+/* **************************************************************
+* Includes
+****************************************************************/
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memcpy, memset */
+#include "bitstream.h"
+#include "compiler.h"
+#define FSE_STATIC_LINKING_ONLY
+#include "fse.h"
+#include "error_private.h"
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define FSE_isError ERR_isError
+#define FSE_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
+
+/* check and forward error code */
+#define CHECK_F(f) { size_t const e = f; if (FSE_isError(e)) return e; }
+
+
+/* **************************************************************
+* Templates
+****************************************************************/
+/*
+ designed to be included
+ for type-specific functions (template emulation in C)
+ Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSE_FUNCTION_EXTENSION
+# error "FSE_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSE_FUNCTION_TYPE
+# error "FSE_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSE_CAT(X,Y) X##Y
+#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
+#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
+
+
+/* Function templates */
+FSE_DTable* FSE_createDTable (unsigned tableLog)
+{
+ if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
+ return (FSE_DTable*)malloc( FSE_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
+}
+
+void FSE_freeDTable (FSE_DTable* dt)
+{
+ free(dt);
+}
+
+size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+ void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
+ FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
+ U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
+
+ U32 const maxSV1 = maxSymbolValue + 1;
+ U32 const tableSize = 1 << tableLog;
+ U32 highThreshold = tableSize-1;
+
+ /* Sanity Checks */
+ if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
+
+ /* Init, lay down lowprob symbols */
+ { FSE_DTableHeader DTableH;
+ DTableH.tableLog = (U16)tableLog;
+ DTableH.fastMode = 1;
+ { S16 const largeLimit= (S16)(1 << (tableLog-1));
+ U32 s;
+ for (s=0; s<maxSV1; s++) {
+ if (normalizedCounter[s]==-1) {
+ tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
+ symbolNext[s] = 1;
+ } else {
+ if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
+ symbolNext[s] = normalizedCounter[s];
+ } } }
+ memcpy(dt, &DTableH, sizeof(DTableH));
+ }
+
+ /* Spread symbols */
+ { U32 const tableMask = tableSize-1;
+ U32 const step = FSE_TABLESTEP(tableSize);
+ U32 s, position = 0;
+ for (s=0; s<maxSV1; s++) {
+ int i;
+ for (i=0; i<normalizedCounter[s]; i++) {
+ tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
+ position = (position + step) & tableMask;
+ while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
+ } }
+ if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
+ }
+
+ /* Build Decoding table */
+ { U32 u;
+ for (u=0; u<tableSize; u++) {
+ FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
+ U32 const nextState = symbolNext[symbol]++;
+ tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
+ tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
+ } }
+
+ return 0;
+}
+
+
+#ifndef FSE_COMMONDEFS_ONLY
+
+/*-*******************************************************
+* Decompression (Byte symbols)
+*********************************************************/
+size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ void* dPtr = dt + 1;
+ FSE_decode_t* const cell = (FSE_decode_t*)dPtr;
+
+ DTableH->tableLog = 0;
+ DTableH->fastMode = 0;
+
+ cell->newState = 0;
+ cell->symbol = symbolValue;
+ cell->nbBits = 0;
+
+ return 0;
+}
+
+
+size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ void* dPtr = dt + 1;
+ FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
+ const unsigned tableSize = 1 << nbBits;
+ const unsigned tableMask = tableSize - 1;
+ const unsigned maxSV1 = tableMask+1;
+ unsigned s;
+
+ /* Sanity checks */
+ if (nbBits < 1) return ERROR(GENERIC); /* min size */
+
+ /* Build Decoding Table */
+ DTableH->tableLog = (U16)nbBits;
+ DTableH->fastMode = 1;
+ for (s=0; s<maxSV1; s++) {
+ dinfo[s].newState = 0;
+ dinfo[s].symbol = (BYTE)s;
+ dinfo[s].nbBits = (BYTE)nbBits;
+ }
+
+ return 0;
+}
+
+FORCE_INLINE_TEMPLATE size_t FSE_decompress_usingDTable_generic(
+ void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSE_DTable* dt, const unsigned fast)
+{
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const omax = op + maxDstSize;
+ BYTE* const olimit = omax-3;
+
+ BIT_DStream_t bitD;
+ FSE_DState_t state1;
+ FSE_DState_t state2;
+
+ /* Init */
+ CHECK_F(BIT_initDStream(&bitD, cSrc, cSrcSize));
+
+ FSE_initDState(&state1, &bitD, dt);
+ FSE_initDState(&state2, &bitD, dt);
+
+#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
+
+ /* 4 symbols per loop */
+ for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) & (op<olimit) ; op+=4) {
+ op[0] = FSE_GETSYMBOL(&state1);
+
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BIT_reloadDStream(&bitD);
+
+ op[1] = FSE_GETSYMBOL(&state2);
+
+ if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
+
+ op[2] = FSE_GETSYMBOL(&state1);
+
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BIT_reloadDStream(&bitD);
+
+ op[3] = FSE_GETSYMBOL(&state2);
+ }
+
+ /* tail */
+ /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
+ while (1) {
+ if (op>(omax-2)) return ERROR(dstSize_tooSmall);
+ *op++ = FSE_GETSYMBOL(&state1);
+ if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
+ *op++ = FSE_GETSYMBOL(&state2);
+ break;
+ }
+
+ if (op>(omax-2)) return ERROR(dstSize_tooSmall);
+ *op++ = FSE_GETSYMBOL(&state2);
+ if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
+ *op++ = FSE_GETSYMBOL(&state1);
+ break;
+ } }
+
+ return op-ostart;
+}
+
+
+size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSE_DTable* dt)
+{
+ const void* ptr = dt;
+ const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
+ const U32 fastMode = DTableH->fastMode;
+
+ /* select fast mode (static) */
+ if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
+ return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
+}
+
+
+size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, FSE_DTable* workSpace, unsigned maxLog)
+{
+ const BYTE* const istart = (const BYTE*)cSrc;
+ const BYTE* ip = istart;
+ short counting[FSE_MAX_SYMBOL_VALUE+1];
+ unsigned tableLog;
+ unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
+
+ /* normal FSE decoding mode */
+ size_t const NCountLength = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
+ if (FSE_isError(NCountLength)) return NCountLength;
+ //if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size; supposed to be already checked in NCountLength, only remaining case : NCountLength==cSrcSize */
+ if (tableLog > maxLog) return ERROR(tableLog_tooLarge);
+ ip += NCountLength;
+ cSrcSize -= NCountLength;
+
+ CHECK_F( FSE_buildDTable (workSpace, counting, maxSymbolValue, tableLog) );
+
+ return FSE_decompress_usingDTable (dst, dstCapacity, ip, cSrcSize, workSpace); /* always return, even if it is an error code */
+}
+
+
+typedef FSE_DTable DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
+
+size_t FSE_decompress(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize)
+{
+ DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
+ return FSE_decompress_wksp(dst, dstCapacity, cSrc, cSrcSize, dt, FSE_MAX_TABLELOG);
+}
+
+
+
+#endif /* FSE_COMMONDEFS_ONLY */
diff --git a/vendor/github.com/DataDog/zstd/hist.c b/vendor/github.com/DataDog/zstd/hist.c
new file mode 100644
index 0000000..45b7bab
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/hist.c
@@ -0,0 +1,203 @@
+/* ******************************************************************
+ hist : Histogram functions
+ part of Finite State Entropy project
+ Copyright (C) 2013-present, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+/* --- dependencies --- */
+#include "mem.h" /* U32, BYTE, etc. */
+#include "debug.h" /* assert, DEBUGLOG */
+#include "error_private.h" /* ERROR */
+#include "hist.h"
+
+
+/* --- Error management --- */
+unsigned HIST_isError(size_t code) { return ERR_isError(code); }
+
+/*-**************************************************************
+ * Histogram functions
+ ****************************************************************/
+unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+ const BYTE* const end = ip + srcSize;
+ unsigned maxSymbolValue = *maxSymbolValuePtr;
+ unsigned largestCount=0;
+
+ memset(count, 0, (maxSymbolValue+1) * sizeof(*count));
+ if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
+
+ while (ip<end) {
+ assert(*ip <= maxSymbolValue);
+ count[*ip++]++;
+ }
+
+ while (!count[maxSymbolValue]) maxSymbolValue--;
+ *maxSymbolValuePtr = maxSymbolValue;
+
+ { U32 s;
+ for (s=0; s<=maxSymbolValue; s++)
+ if (count[s] > largestCount) largestCount = count[s];
+ }
+
+ return largestCount;
+}
+
+typedef enum { trustInput, checkMaxSymbolValue } HIST_checkInput_e;
+
+/* HIST_count_parallel_wksp() :
+ * store histogram into 4 intermediate tables, recombined at the end.
+ * this design makes better use of OoO cpus,
+ * and is noticeably faster when some values are heavily repeated.
+ * But it needs some additional workspace for intermediate tables.
+ * `workSpace` size must be a table of size >= HIST_WKSP_SIZE_U32.
+ * @return : largest histogram frequency,
+ * or an error code (notably when histogram would be larger than *maxSymbolValuePtr). */
+static size_t HIST_count_parallel_wksp(
+ unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* source, size_t sourceSize,
+ HIST_checkInput_e check,
+ U32* const workSpace)
+{
+ const BYTE* ip = (const BYTE*)source;
+ const BYTE* const iend = ip+sourceSize;
+ unsigned maxSymbolValue = *maxSymbolValuePtr;
+ unsigned max=0;
+ U32* const Counting1 = workSpace;
+ U32* const Counting2 = Counting1 + 256;
+ U32* const Counting3 = Counting2 + 256;
+ U32* const Counting4 = Counting3 + 256;
+
+ memset(workSpace, 0, 4*256*sizeof(unsigned));
+
+ /* safety checks */
+ if (!sourceSize) {
+ memset(count, 0, maxSymbolValue + 1);
+ *maxSymbolValuePtr = 0;
+ return 0;
+ }
+ if (!maxSymbolValue) maxSymbolValue = 255; /* 0 == default */
+
+ /* by stripes of 16 bytes */
+ { U32 cached = MEM_read32(ip); ip += 4;
+ while (ip < iend-15) {
+ U32 c = cached; cached = MEM_read32(ip); ip += 4;
+ Counting1[(BYTE) c ]++;
+ Counting2[(BYTE)(c>>8) ]++;
+ Counting3[(BYTE)(c>>16)]++;
+ Counting4[ c>>24 ]++;
+ c = cached; cached = MEM_read32(ip); ip += 4;
+ Counting1[(BYTE) c ]++;
+ Counting2[(BYTE)(c>>8) ]++;
+ Counting3[(BYTE)(c>>16)]++;
+ Counting4[ c>>24 ]++;
+ c = cached; cached = MEM_read32(ip); ip += 4;
+ Counting1[(BYTE) c ]++;
+ Counting2[(BYTE)(c>>8) ]++;
+ Counting3[(BYTE)(c>>16)]++;
+ Counting4[ c>>24 ]++;
+ c = cached; cached = MEM_read32(ip); ip += 4;
+ Counting1[(BYTE) c ]++;
+ Counting2[(BYTE)(c>>8) ]++;
+ Counting3[(BYTE)(c>>16)]++;
+ Counting4[ c>>24 ]++;
+ }
+ ip-=4;
+ }
+
+ /* finish last symbols */
+ while (ip<iend) Counting1[*ip++]++;
+
+ if (check) { /* verify stats will fit into destination table */
+ U32 s; for (s=255; s>maxSymbolValue; s--) {
+ Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
+ if (Counting1[s]) return ERROR(maxSymbolValue_tooSmall);
+ } }
+
+ { U32 s;
+ if (maxSymbolValue > 255) maxSymbolValue = 255;
+ for (s=0; s<=maxSymbolValue; s++) {
+ count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s];
+ if (count[s] > max) max = count[s];
+ } }
+
+ while (!count[maxSymbolValue]) maxSymbolValue--;
+ *maxSymbolValuePtr = maxSymbolValue;
+ return (size_t)max;
+}
+
+/* HIST_countFast_wksp() :
+ * Same as HIST_countFast(), but using an externally provided scratch buffer.
+ * `workSpace` is a writable buffer which must be 4-bytes aligned,
+ * `workSpaceSize` must be >= HIST_WKSP_SIZE
+ */
+size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* source, size_t sourceSize,
+ void* workSpace, size_t workSpaceSize)
+{
+ if (sourceSize < 1500) /* heuristic threshold */
+ return HIST_count_simple(count, maxSymbolValuePtr, source, sourceSize);
+ if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
+ if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall);
+ return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, trustInput, (U32*)workSpace);
+}
+
+/* fast variant (unsafe : won't check if src contains values beyond count[] limit) */
+size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* source, size_t sourceSize)
+{
+ unsigned tmpCounters[HIST_WKSP_SIZE_U32];
+ return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, tmpCounters, sizeof(tmpCounters));
+}
+
+/* HIST_count_wksp() :
+ * Same as HIST_count(), but using an externally provided scratch buffer.
+ * `workSpace` size must be table of >= HIST_WKSP_SIZE_U32 unsigned */
+size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* source, size_t sourceSize,
+ void* workSpace, size_t workSpaceSize)
+{
+ if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
+ if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall);
+ if (*maxSymbolValuePtr < 255)
+ return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, checkMaxSymbolValue, (U32*)workSpace);
+ *maxSymbolValuePtr = 255;
+ return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace, workSpaceSize);
+}
+
+size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize)
+{
+ unsigned tmpCounters[HIST_WKSP_SIZE_U32];
+ return HIST_count_wksp(count, maxSymbolValuePtr, src, srcSize, tmpCounters, sizeof(tmpCounters));
+}
diff --git a/vendor/github.com/DataDog/zstd/hist.h b/vendor/github.com/DataDog/zstd/hist.h
new file mode 100644
index 0000000..8b38935
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/hist.h
@@ -0,0 +1,95 @@
+/* ******************************************************************
+ hist : Histogram functions
+ part of Finite State Entropy project
+ Copyright (C) 2013-present, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+/* --- dependencies --- */
+#include <stddef.h> /* size_t */
+
+
+/* --- simple histogram functions --- */
+
+/*! HIST_count():
+ * Provides the precise count of each byte within a table 'count'.
+ * 'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
+ * Updates *maxSymbolValuePtr with actual largest symbol value detected.
+ * @return : count of the most frequent symbol (which isn't identified).
+ * or an error code, which can be tested using HIST_isError().
+ * note : if return == srcSize, there is only one symbol.
+ */
+size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize);
+
+unsigned HIST_isError(size_t code); /**< tells if a return value is an error code */
+
+
+/* --- advanced histogram functions --- */
+
+#define HIST_WKSP_SIZE_U32 1024
+#define HIST_WKSP_SIZE (HIST_WKSP_SIZE_U32 * sizeof(unsigned))
+/** HIST_count_wksp() :
+ * Same as HIST_count(), but using an externally provided scratch buffer.
+ * Benefit is this function will use very little stack space.
+ * `workSpace` is a writable buffer which must be 4-bytes aligned,
+ * `workSpaceSize` must be >= HIST_WKSP_SIZE
+ */
+size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize,
+ void* workSpace, size_t workSpaceSize);
+
+/** HIST_countFast() :
+ * same as HIST_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr.
+ * This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr`
+ */
+size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize);
+
+/** HIST_countFast_wksp() :
+ * Same as HIST_countFast(), but using an externally provided scratch buffer.
+ * `workSpace` is a writable buffer which must be 4-bytes aligned,
+ * `workSpaceSize` must be >= HIST_WKSP_SIZE
+ */
+size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize,
+ void* workSpace, size_t workSpaceSize);
+
+/*! HIST_count_simple() :
+ * Same as HIST_countFast(), this function is unsafe,
+ * and will segfault if any value within `src` is `> *maxSymbolValuePtr`.
+ * It is also a bit slower for large inputs.
+ * However, it does not need any additional memory (not even on stack).
+ * @return : count of the most frequent symbol.
+ * Note this function doesn't produce any error (i.e. it must succeed).
+ */
+unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize);
diff --git a/vendor/github.com/DataDog/zstd/huf.h b/vendor/github.com/DataDog/zstd/huf.h
new file mode 100644
index 0000000..6b572c4
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/huf.h
@@ -0,0 +1,358 @@
+/* ******************************************************************
+ huff0 huffman codec,
+ part of Finite State Entropy library
+ Copyright (C) 2013-present, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#ifndef HUF_H_298734234
+#define HUF_H_298734234
+
+/* *** Dependencies *** */
+#include <stddef.h> /* size_t */
+
+
+/* *** library symbols visibility *** */
+/* Note : when linking with -fvisibility=hidden on gcc, or by default on Visual,
+ * HUF symbols remain "private" (internal symbols for library only).
+ * Set macro FSE_DLL_EXPORT to 1 if you want HUF symbols visible on DLL interface */
+#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
+# define HUF_PUBLIC_API __attribute__ ((visibility ("default")))
+#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
+# define HUF_PUBLIC_API __declspec(dllexport)
+#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
+# define HUF_PUBLIC_API __declspec(dllimport) /* not required, just to generate faster code (saves a function pointer load from IAT and an indirect jump) */
+#else
+# define HUF_PUBLIC_API
+#endif
+
+
+/* ========================== */
+/* *** simple functions *** */
+/* ========================== */
+
+/** HUF_compress() :
+ * Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'.
+ * 'dst' buffer must be already allocated.
+ * Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize).
+ * `srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB.
+ * @return : size of compressed data (<= `dstCapacity`).
+ * Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
+ * if HUF_isError(return), compression failed (more details using HUF_getErrorName())
+ */
+HUF_PUBLIC_API size_t HUF_compress(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize);
+
+/** HUF_decompress() :
+ * Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
+ * into already allocated buffer 'dst', of minimum size 'dstSize'.
+ * `originalSize` : **must** be the ***exact*** size of original (uncompressed) data.
+ * Note : in contrast with FSE, HUF_decompress can regenerate
+ * RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
+ * because it knows size to regenerate (originalSize).
+ * @return : size of regenerated data (== originalSize),
+ * or an error code, which can be tested using HUF_isError()
+ */
+HUF_PUBLIC_API size_t HUF_decompress(void* dst, size_t originalSize,
+ const void* cSrc, size_t cSrcSize);
+
+
+/* *** Tool functions *** */
+#define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */
+HUF_PUBLIC_API size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */
+
+/* Error Management */
+HUF_PUBLIC_API unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */
+HUF_PUBLIC_API const char* HUF_getErrorName(size_t code); /**< provides error code string (useful for debugging) */
+
+
+/* *** Advanced function *** */
+
+/** HUF_compress2() :
+ * Same as HUF_compress(), but offers control over `maxSymbolValue` and `tableLog`.
+ * `maxSymbolValue` must be <= HUF_SYMBOLVALUE_MAX .
+ * `tableLog` must be `<= HUF_TABLELOG_MAX` . */
+HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned tableLog);
+
+/** HUF_compress4X_wksp() :
+ * Same as HUF_compress2(), but uses externally allocated `workSpace`.
+ * `workspace` must have minimum alignment of 4, and be at least as large as HUF_WORKSPACE_SIZE */
+#define HUF_WORKSPACE_SIZE (6 << 10)
+#define HUF_WORKSPACE_SIZE_U32 (HUF_WORKSPACE_SIZE / sizeof(U32))
+HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned tableLog,
+ void* workSpace, size_t wkspSize);
+
+#endif /* HUF_H_298734234 */
+
+/* ******************************************************************
+ * WARNING !!
+ * The following section contains advanced and experimental definitions
+ * which shall never be used in the context of a dynamic library,
+ * because they are not guaranteed to remain stable in the future.
+ * Only consider them in association with static linking.
+ * *****************************************************************/
+#if defined(HUF_STATIC_LINKING_ONLY) && !defined(HUF_H_HUF_STATIC_LINKING_ONLY)
+#define HUF_H_HUF_STATIC_LINKING_ONLY
+
+/* *** Dependencies *** */
+#include "mem.h" /* U32 */
+
+
+/* *** Constants *** */
+#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
+#define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */
+#define HUF_SYMBOLVALUE_MAX 255
+
+#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
+#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
+# error "HUF_TABLELOG_MAX is too large !"
+#endif
+
+
+/* ****************************************
+* Static allocation
+******************************************/
+/* HUF buffer bounds */
+#define HUF_CTABLEBOUND 129
+#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true when incompressible is pre-filtered with fast heuristic */
+#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
+
+/* static allocation of HUF's Compression Table */
+#define HUF_CTABLE_SIZE_U32(maxSymbolValue) ((maxSymbolValue)+1) /* Use tables of U32, for proper alignment */
+#define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_U32(maxSymbolValue) * sizeof(U32))
+#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
+ U32 name##hb[HUF_CTABLE_SIZE_U32(maxSymbolValue)]; \
+ void* name##hv = &(name##hb); \
+ HUF_CElt* name = (HUF_CElt*)(name##hv) /* no final ; */
+
+/* static allocation of HUF's DTable */
+typedef U32 HUF_DTable;
+#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog)))
+#define HUF_CREATE_STATIC_DTABLEX1(DTable, maxTableLog) \
+ HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1) * 0x01000001) }
+#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
+ HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog) * 0x01000001) }
+
+
+/* ****************************************
+* Advanced decompression functions
+******************************************/
+size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
+#endif
+
+size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */
+size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */
+size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< considers RLE and uncompressed as errors */
+size_t HUF_decompress4X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
+size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
+size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
+#endif
+
+
+/* ****************************************
+ * HUF detailed API
+ * ****************************************/
+
+/*! HUF_compress() does the following:
+ * 1. count symbol occurrence from source[] into table count[] using FSE_count() (exposed within "fse.h")
+ * 2. (optional) refine tableLog using HUF_optimalTableLog()
+ * 3. build Huffman table from count using HUF_buildCTable()
+ * 4. save Huffman table to memory buffer using HUF_writeCTable()
+ * 5. encode the data stream using HUF_compress4X_usingCTable()
+ *
+ * The following API allows targeting specific sub-functions for advanced tasks.
+ * For example, it's possible to compress several blocks using the same 'CTable',
+ * or to save and regenerate 'CTable' using external methods.
+ */
+unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
+typedef struct HUF_CElt_s HUF_CElt; /* incomplete type */
+size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits); /* @return : maxNbBits; CTable and count can overlap. In which case, CTable will overwrite count content */
+size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
+size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
+
+typedef enum {
+ HUF_repeat_none, /**< Cannot use the previous table */
+ HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */
+ HUF_repeat_valid /**< Can use the previous table and it is assumed to be valid */
+ } HUF_repeat;
+/** HUF_compress4X_repeat() :
+ * Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
+ * If it uses hufTable it does not modify hufTable or repeat.
+ * If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
+ * If preferRepeat then the old table will always be used if valid. */
+size_t HUF_compress4X_repeat(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned tableLog,
+ void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2);
+
+/** HUF_buildCTable_wksp() :
+ * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
+ * `workSpace` must be aligned on 4-bytes boundaries, and its size must be >= HUF_CTABLE_WORKSPACE_SIZE.
+ */
+#define HUF_CTABLE_WORKSPACE_SIZE_U32 (2*HUF_SYMBOLVALUE_MAX +1 +1)
+#define HUF_CTABLE_WORKSPACE_SIZE (HUF_CTABLE_WORKSPACE_SIZE_U32 * sizeof(unsigned))
+size_t HUF_buildCTable_wksp (HUF_CElt* tree,
+ const unsigned* count, U32 maxSymbolValue, U32 maxNbBits,
+ void* workSpace, size_t wkspSize);
+
+/*! HUF_readStats() :
+ * Read compact Huffman tree, saved by HUF_writeCTable().
+ * `huffWeight` is destination buffer.
+ * @return : size read from `src` , or an error Code .
+ * Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
+size_t HUF_readStats(BYTE* huffWeight, size_t hwSize,
+ U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize);
+
+/** HUF_readCTable() :
+ * Loading a CTable saved with HUF_writeCTable() */
+size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
+
+/** HUF_getNbBits() :
+ * Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX
+ * Note 1 : is not inlined, as HUF_CElt definition is private
+ * Note 2 : const void* used, so that it can provide a statically allocated table as argument (which uses type U32) */
+U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue);
+
+/*
+ * HUF_decompress() does the following:
+ * 1. select the decompression algorithm (X1, X2) based on pre-computed heuristics
+ * 2. build Huffman table from save, using HUF_readDTableX?()
+ * 3. decode 1 or 4 segments in parallel using HUF_decompress?X?_usingDTable()
+ */
+
+/** HUF_selectDecoder() :
+ * Tells which decoder is likely to decode faster,
+ * based on a set of pre-computed metrics.
+ * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
+ * Assumption : 0 < dstSize <= 128 KB */
+U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
+
+/**
+ * The minimum workspace size for the `workSpace` used in
+ * HUF_readDTableX1_wksp() and HUF_readDTableX2_wksp().
+ *
+ * The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when
+ * HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15.
+ * Buffer overflow errors may potentially occur if code modifications result in
+ * a required workspace size greater than that specified in the following
+ * macro.
+ */
+#define HUF_DECOMPRESS_WORKSPACE_SIZE (2 << 10)
+#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
+
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_readDTableX1 (HUF_DTable* DTable, const void* src, size_t srcSize);
+size_t HUF_readDTableX1_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
+#endif
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize);
+size_t HUF_readDTableX2_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
+#endif
+
+size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_decompress4X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+#endif
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+#endif
+
+
+/* ====================== */
+/* single stream variants */
+/* ====================== */
+
+size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
+size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
+size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
+/** HUF_compress1X_repeat() :
+ * Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
+ * If it uses hufTable it does not modify hufTable or repeat.
+ * If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
+ * If preferRepeat then the old table will always be used if valid. */
+size_t HUF_compress1X_repeat(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned tableLog,
+ void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2);
+
+size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
+#endif
+
+size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
+size_t HUF_decompress1X_DCtx_wksp (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize);
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_decompress1X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
+size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
+#endif
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
+size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
+#endif
+
+size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); /**< automatic selection of sing or double symbol decoder, based on DTable */
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_decompress1X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+#endif
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+#endif
+
+/* BMI2 variants.
+ * If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
+ */
+size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
+#endif
+size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
+size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
+
+#endif /* HUF_STATIC_LINKING_ONLY */
+
+#if defined (__cplusplus)
+}
+#endif
diff --git a/vendor/github.com/DataDog/zstd/huf_compress.c b/vendor/github.com/DataDog/zstd/huf_compress.c
new file mode 100644
index 0000000..f074f1e
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/huf_compress.c
@@ -0,0 +1,798 @@
+/* ******************************************************************
+ Huffman encoder, part of New Generation Entropy library
+ Copyright (C) 2013-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+/* **************************************************************
+* Compiler specifics
+****************************************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+#endif
+
+
+/* **************************************************************
+* Includes
+****************************************************************/
+#include <string.h> /* memcpy, memset */
+#include <stdio.h> /* printf (debug) */
+#include "compiler.h"
+#include "bitstream.h"
+#include "hist.h"
+#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
+#include "fse.h" /* header compression */
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+#include "error_private.h"
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define HUF_isError ERR_isError
+#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
+#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e
+#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
+
+
+/* **************************************************************
+* Utils
+****************************************************************/
+unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
+{
+ return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
+}
+
+
+/* *******************************************************
+* HUF : Huffman block compression
+*********************************************************/
+/* HUF_compressWeights() :
+ * Same as FSE_compress(), but dedicated to huff0's weights compression.
+ * The use case needs much less stack memory.
+ * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
+ */
+#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
+static size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
+{
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + dstSize;
+
+ unsigned maxSymbolValue = HUF_TABLELOG_MAX;
+ U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
+
+ FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
+ BYTE scratchBuffer[1<<MAX_FSE_TABLELOG_FOR_HUFF_HEADER];
+
+ unsigned count[HUF_TABLELOG_MAX+1];
+ S16 norm[HUF_TABLELOG_MAX+1];
+
+ /* init conditions */
+ if (wtSize <= 1) return 0; /* Not compressible */
+
+ /* Scan input and build symbol stats */
+ { unsigned const maxCount = HIST_count_simple(count, &maxSymbolValue, weightTable, wtSize); /* never fails */
+ if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
+ if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
+ }
+
+ tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
+ CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue) );
+
+ /* Write table description header */
+ { CHECK_V_F(hSize, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) );
+ op += hSize;
+ }
+
+ /* Compress */
+ CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
+ { CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, weightTable, wtSize, CTable) );
+ if (cSize == 0) return 0; /* not enough space for compressed data */
+ op += cSize;
+ }
+
+ return op-ostart;
+}
+
+
+struct HUF_CElt_s {
+ U16 val;
+ BYTE nbBits;
+}; /* typedef'd to HUF_CElt within "huf.h" */
+
+/*! HUF_writeCTable() :
+ `CTable` : Huffman tree to save, using huf representation.
+ @return : size of saved CTable */
+size_t HUF_writeCTable (void* dst, size_t maxDstSize,
+ const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
+{
+ BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
+ BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
+ BYTE* op = (BYTE*)dst;
+ U32 n;
+
+ /* check conditions */
+ if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
+
+ /* convert to weight */
+ bitsToWeight[0] = 0;
+ for (n=1; n<huffLog+1; n++)
+ bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
+ for (n=0; n<maxSymbolValue; n++)
+ huffWeight[n] = bitsToWeight[CTable[n].nbBits];
+
+ /* attempt weights compression by FSE */
+ { CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
+ if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
+ op[0] = (BYTE)hSize;
+ return hSize+1;
+ } }
+
+ /* write raw values as 4-bits (max : 15) */
+ if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
+ if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
+ op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
+ huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
+ for (n=0; n<maxSymbolValue; n+=2)
+ op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
+ return ((maxSymbolValue+1)/2) + 1;
+}
+
+
+size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize)
+{
+ BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
+ U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
+ U32 tableLog = 0;
+ U32 nbSymbols = 0;
+
+ /* get symbol weights */
+ CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
+
+ /* check result */
+ if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
+ if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
+
+ /* Prepare base value per rank */
+ { U32 n, nextRankStart = 0;
+ for (n=1; n<=tableLog; n++) {
+ U32 current = nextRankStart;
+ nextRankStart += (rankVal[n] << (n-1));
+ rankVal[n] = current;
+ } }
+
+ /* fill nbBits */
+ { U32 n; for (n=0; n<nbSymbols; n++) {
+ const U32 w = huffWeight[n];
+ CTable[n].nbBits = (BYTE)(tableLog + 1 - w);
+ } }
+
+ /* fill val */
+ { U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
+ U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
+ { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
+ /* determine stating value per rank */
+ valPerRank[tableLog+1] = 0; /* for w==0 */
+ { U16 min = 0;
+ U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
+ valPerRank[n] = min; /* get starting value within each rank */
+ min += nbPerRank[n];
+ min >>= 1;
+ } }
+ /* assign value within rank, symbol order */
+ { U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
+ }
+
+ *maxSymbolValuePtr = nbSymbols - 1;
+ return readSize;
+}
+
+U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
+{
+ const HUF_CElt* table = (const HUF_CElt*)symbolTable;
+ assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
+ return table[symbolValue].nbBits;
+}
+
+
+typedef struct nodeElt_s {
+ U32 count;
+ U16 parent;
+ BYTE byte;
+ BYTE nbBits;
+} nodeElt;
+
+static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
+{
+ const U32 largestBits = huffNode[lastNonNull].nbBits;
+ if (largestBits <= maxNbBits) return largestBits; /* early exit : no elt > maxNbBits */
+
+ /* there are several too large elements (at least >= 2) */
+ { int totalCost = 0;
+ const U32 baseCost = 1 << (largestBits - maxNbBits);
+ U32 n = lastNonNull;
+
+ while (huffNode[n].nbBits > maxNbBits) {
+ totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
+ huffNode[n].nbBits = (BYTE)maxNbBits;
+ n --;
+ } /* n stops at huffNode[n].nbBits <= maxNbBits */
+ while (huffNode[n].nbBits == maxNbBits) n--; /* n end at index of smallest symbol using < maxNbBits */
+
+ /* renorm totalCost */
+ totalCost >>= (largestBits - maxNbBits); /* note : totalCost is necessarily a multiple of baseCost */
+
+ /* repay normalized cost */
+ { U32 const noSymbol = 0xF0F0F0F0;
+ U32 rankLast[HUF_TABLELOG_MAX+2];
+ int pos;
+
+ /* Get pos of last (smallest) symbol per rank */
+ memset(rankLast, 0xF0, sizeof(rankLast));
+ { U32 currentNbBits = maxNbBits;
+ for (pos=n ; pos >= 0; pos--) {
+ if (huffNode[pos].nbBits >= currentNbBits) continue;
+ currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */
+ rankLast[maxNbBits-currentNbBits] = pos;
+ } }
+
+ while (totalCost > 0) {
+ U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1;
+ for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
+ U32 highPos = rankLast[nBitsToDecrease];
+ U32 lowPos = rankLast[nBitsToDecrease-1];
+ if (highPos == noSymbol) continue;
+ if (lowPos == noSymbol) break;
+ { U32 const highTotal = huffNode[highPos].count;
+ U32 const lowTotal = 2 * huffNode[lowPos].count;
+ if (highTotal <= lowTotal) break;
+ } }
+ /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
+ /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
+ while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
+ nBitsToDecrease ++;
+ totalCost -= 1 << (nBitsToDecrease-1);
+ if (rankLast[nBitsToDecrease-1] == noSymbol)
+ rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; /* this rank is no longer empty */
+ huffNode[rankLast[nBitsToDecrease]].nbBits ++;
+ if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
+ rankLast[nBitsToDecrease] = noSymbol;
+ else {
+ rankLast[nBitsToDecrease]--;
+ if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
+ rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
+ } } /* while (totalCost > 0) */
+
+ while (totalCost < 0) { /* Sometimes, cost correction overshoot */
+ if (rankLast[1] == noSymbol) { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
+ while (huffNode[n].nbBits == maxNbBits) n--;
+ huffNode[n+1].nbBits--;
+ rankLast[1] = n+1;
+ totalCost++;
+ continue;
+ }
+ huffNode[ rankLast[1] + 1 ].nbBits--;
+ rankLast[1]++;
+ totalCost ++;
+ } } } /* there are several too large elements (at least >= 2) */
+
+ return maxNbBits;
+}
+
+
+typedef struct {
+ U32 base;
+ U32 current;
+} rankPos;
+
+static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue)
+{
+ rankPos rank[32];
+ U32 n;
+
+ memset(rank, 0, sizeof(rank));
+ for (n=0; n<=maxSymbolValue; n++) {
+ U32 r = BIT_highbit32(count[n] + 1);
+ rank[r].base ++;
+ }
+ for (n=30; n>0; n--) rank[n-1].base += rank[n].base;
+ for (n=0; n<32; n++) rank[n].current = rank[n].base;
+ for (n=0; n<=maxSymbolValue; n++) {
+ U32 const c = count[n];
+ U32 const r = BIT_highbit32(c+1) + 1;
+ U32 pos = rank[r].current++;
+ while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) {
+ huffNode[pos] = huffNode[pos-1];
+ pos--;
+ }
+ huffNode[pos].count = c;
+ huffNode[pos].byte = (BYTE)n;
+ }
+}
+
+
+/** HUF_buildCTable_wksp() :
+ * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
+ * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of HUF_CTABLE_WORKSPACE_SIZE_U32 unsigned.
+ */
+#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
+typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
+size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
+{
+ nodeElt* const huffNode0 = (nodeElt*)workSpace;
+ nodeElt* const huffNode = huffNode0+1;
+ U32 n, nonNullRank;
+ int lowS, lowN;
+ U16 nodeNb = STARTNODE;
+ U32 nodeRoot;
+
+ /* safety checks */
+ if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
+ if (wkspSize < sizeof(huffNodeTable)) return ERROR(workSpace_tooSmall);
+ if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
+ if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
+ memset(huffNode0, 0, sizeof(huffNodeTable));
+
+ /* sort, decreasing order */
+ HUF_sort(huffNode, count, maxSymbolValue);
+
+ /* init for parents */
+ nonNullRank = maxSymbolValue;
+ while(huffNode[nonNullRank].count == 0) nonNullRank--;
+ lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
+ huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
+ huffNode[lowS].parent = huffNode[lowS-1].parent = nodeNb;
+ nodeNb++; lowS-=2;
+ for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
+ huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
+
+ /* create parents */
+ while (nodeNb <= nodeRoot) {
+ U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
+ U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
+ huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
+ huffNode[n1].parent = huffNode[n2].parent = nodeNb;
+ nodeNb++;
+ }
+
+ /* distribute weights (unlimited tree height) */
+ huffNode[nodeRoot].nbBits = 0;
+ for (n=nodeRoot-1; n>=STARTNODE; n--)
+ huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
+ for (n=0; n<=nonNullRank; n++)
+ huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
+
+ /* enforce maxTableLog */
+ maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits);
+
+ /* fill result into tree (val, nbBits) */
+ { U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
+ U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
+ if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
+ for (n=0; n<=nonNullRank; n++)
+ nbPerRank[huffNode[n].nbBits]++;
+ /* determine stating value per rank */
+ { U16 min = 0;
+ for (n=maxNbBits; n>0; n--) {
+ valPerRank[n] = min; /* get starting value within each rank */
+ min += nbPerRank[n];
+ min >>= 1;
+ } }
+ for (n=0; n<=maxSymbolValue; n++)
+ tree[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */
+ for (n=0; n<=maxSymbolValue; n++)
+ tree[n].val = valPerRank[tree[n].nbBits]++; /* assign value within rank, symbol order */
+ }
+
+ return maxNbBits;
+}
+
+/** HUF_buildCTable() :
+ * @return : maxNbBits
+ * Note : count is used before tree is written, so they can safely overlap
+ */
+size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
+{
+ huffNodeTable nodeTable;
+ return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, nodeTable, sizeof(nodeTable));
+}
+
+static size_t HUF_estimateCompressedSize(HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
+{
+ size_t nbBits = 0;
+ int s;
+ for (s = 0; s <= (int)maxSymbolValue; ++s) {
+ nbBits += CTable[s].nbBits * count[s];
+ }
+ return nbBits >> 3;
+}
+
+static int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
+ int bad = 0;
+ int s;
+ for (s = 0; s <= (int)maxSymbolValue; ++s) {
+ bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
+ }
+ return !bad;
+}
+
+size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
+
+FORCE_INLINE_TEMPLATE void
+HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
+{
+ BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
+}
+
+#define HUF_FLUSHBITS(s) BIT_flushBits(s)
+
+#define HUF_FLUSHBITS_1(stream) \
+ if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
+
+#define HUF_FLUSHBITS_2(stream) \
+ if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
+
+FORCE_INLINE_TEMPLATE size_t
+HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const HUF_CElt* CTable)
+{
+ const BYTE* ip = (const BYTE*) src;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = ostart + dstSize;
+ BYTE* op = ostart;
+ size_t n;
+ BIT_CStream_t bitC;
+
+ /* init */
+ if (dstSize < 8) return 0; /* not enough space to compress */
+ { size_t const initErr = BIT_initCStream(&bitC, op, oend-op);
+ if (HUF_isError(initErr)) return 0; }
+
+ n = srcSize & ~3; /* join to mod 4 */
+ switch (srcSize & 3)
+ {
+ case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
+ HUF_FLUSHBITS_2(&bitC);
+ /* fall-through */
+ case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
+ HUF_FLUSHBITS_1(&bitC);
+ /* fall-through */
+ case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
+ HUF_FLUSHBITS(&bitC);
+ /* fall-through */
+ case 0 : /* fall-through */
+ default: break;
+ }
+
+ for (; n>0; n-=4) { /* note : n&3==0 at this stage */
+ HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
+ HUF_FLUSHBITS_1(&bitC);
+ HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
+ HUF_FLUSHBITS_2(&bitC);
+ HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
+ HUF_FLUSHBITS_1(&bitC);
+ HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
+ HUF_FLUSHBITS(&bitC);
+ }
+
+ return BIT_closeCStream(&bitC);
+}
+
+#if DYNAMIC_BMI2
+
+static TARGET_ATTRIBUTE("bmi2") size_t
+HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const HUF_CElt* CTable)
+{
+ return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
+}
+
+static size_t
+HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const HUF_CElt* CTable)
+{
+ return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
+}
+
+static size_t
+HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const HUF_CElt* CTable, const int bmi2)
+{
+ if (bmi2) {
+ return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
+ }
+ return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
+}
+
+#else
+
+static size_t
+HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const HUF_CElt* CTable, const int bmi2)
+{
+ (void)bmi2;
+ return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
+}
+
+#endif
+
+size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
+{
+ return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
+}
+
+
+static size_t
+HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const HUF_CElt* CTable, int bmi2)
+{
+ size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
+ const BYTE* ip = (const BYTE*) src;
+ const BYTE* const iend = ip + srcSize;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ BYTE* op = ostart;
+
+ if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
+ if (srcSize < 12) return 0; /* no saving possible : too small input */
+ op += 6; /* jumpTable */
+
+ { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
+ if (cSize==0) return 0;
+ assert(cSize <= 65535);
+ MEM_writeLE16(ostart, (U16)cSize);
+ op += cSize;
+ }
+
+ ip += segmentSize;
+ { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
+ if (cSize==0) return 0;
+ assert(cSize <= 65535);
+ MEM_writeLE16(ostart+2, (U16)cSize);
+ op += cSize;
+ }
+
+ ip += segmentSize;
+ { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
+ if (cSize==0) return 0;
+ assert(cSize <= 65535);
+ MEM_writeLE16(ostart+4, (U16)cSize);
+ op += cSize;
+ }
+
+ ip += segmentSize;
+ { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, iend-ip, CTable, bmi2) );
+ if (cSize==0) return 0;
+ op += cSize;
+ }
+
+ return op-ostart;
+}
+
+size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
+{
+ return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
+}
+
+typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
+
+static size_t HUF_compressCTable_internal(
+ BYTE* const ostart, BYTE* op, BYTE* const oend,
+ const void* src, size_t srcSize,
+ HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
+{
+ size_t const cSize = (nbStreams==HUF_singleStream) ?
+ HUF_compress1X_usingCTable_internal(op, oend - op, src, srcSize, CTable, bmi2) :
+ HUF_compress4X_usingCTable_internal(op, oend - op, src, srcSize, CTable, bmi2);
+ if (HUF_isError(cSize)) { return cSize; }
+ if (cSize==0) { return 0; } /* uncompressible */
+ op += cSize;
+ /* check compressibility */
+ if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
+ return op-ostart;
+}
+
+typedef struct {
+ unsigned count[HUF_SYMBOLVALUE_MAX + 1];
+ HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
+ huffNodeTable nodeTable;
+} HUF_compress_tables_t;
+
+/* HUF_compress_internal() :
+ * `workSpace` must a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
+static size_t
+HUF_compress_internal (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned huffLog,
+ HUF_nbStreams_e nbStreams,
+ void* workSpace, size_t wkspSize,
+ HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
+ const int bmi2)
+{
+ HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = ostart + dstSize;
+ BYTE* op = ostart;
+
+ /* checks & inits */
+ if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
+ if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall);
+ if (!srcSize) return 0; /* Uncompressed */
+ if (!dstSize) return 0; /* cannot fit anything within dst budget */
+ if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
+ if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
+ if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
+ if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
+ if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
+
+ /* Heuristic : If old table is valid, use it for small inputs */
+ if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
+ return HUF_compressCTable_internal(ostart, op, oend,
+ src, srcSize,
+ nbStreams, oldHufTable, bmi2);
+ }
+
+ /* Scan input and build symbol stats */
+ { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace, wkspSize) );
+ if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
+ if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
+ }
+
+ /* Check validity of previous table */
+ if ( repeat
+ && *repeat == HUF_repeat_check
+ && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
+ *repeat = HUF_repeat_none;
+ }
+ /* Heuristic : use existing table for small inputs */
+ if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
+ return HUF_compressCTable_internal(ostart, op, oend,
+ src, srcSize,
+ nbStreams, oldHufTable, bmi2);
+ }
+
+ /* Build Huffman Tree */
+ huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
+ { size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
+ maxSymbolValue, huffLog,
+ table->nodeTable, sizeof(table->nodeTable));
+ CHECK_F(maxBits);
+ huffLog = (U32)maxBits;
+ /* Zero unused symbols in CTable, so we can check it for validity */
+ memset(table->CTable + (maxSymbolValue + 1), 0,
+ sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
+ }
+
+ /* Write table description header */
+ { CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) );
+ /* Check if using previous huffman table is beneficial */
+ if (repeat && *repeat != HUF_repeat_none) {
+ size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
+ size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
+ if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
+ return HUF_compressCTable_internal(ostart, op, oend,
+ src, srcSize,
+ nbStreams, oldHufTable, bmi2);
+ } }
+
+ /* Use the new huffman table */
+ if (hSize + 12ul >= srcSize) { return 0; }
+ op += hSize;
+ if (repeat) { *repeat = HUF_repeat_none; }
+ if (oldHufTable)
+ memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */
+ }
+ return HUF_compressCTable_internal(ostart, op, oend,
+ src, srcSize,
+ nbStreams, table->CTable, bmi2);
+}
+
+
+size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned huffLog,
+ void* workSpace, size_t wkspSize)
+{
+ return HUF_compress_internal(dst, dstSize, src, srcSize,
+ maxSymbolValue, huffLog, HUF_singleStream,
+ workSpace, wkspSize,
+ NULL, NULL, 0, 0 /*bmi2*/);
+}
+
+size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned huffLog,
+ void* workSpace, size_t wkspSize,
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
+{
+ return HUF_compress_internal(dst, dstSize, src, srcSize,
+ maxSymbolValue, huffLog, HUF_singleStream,
+ workSpace, wkspSize, hufTable,
+ repeat, preferRepeat, bmi2);
+}
+
+size_t HUF_compress1X (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned huffLog)
+{
+ unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
+ return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
+}
+
+/* HUF_compress4X_repeat():
+ * compress input using 4 streams.
+ * provide workspace to generate compression tables */
+size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned huffLog,
+ void* workSpace, size_t wkspSize)
+{
+ return HUF_compress_internal(dst, dstSize, src, srcSize,
+ maxSymbolValue, huffLog, HUF_fourStreams,
+ workSpace, wkspSize,
+ NULL, NULL, 0, 0 /*bmi2*/);
+}
+
+/* HUF_compress4X_repeat():
+ * compress input using 4 streams.
+ * re-use an existing huffman compression table */
+size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned huffLog,
+ void* workSpace, size_t wkspSize,
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
+{
+ return HUF_compress_internal(dst, dstSize, src, srcSize,
+ maxSymbolValue, huffLog, HUF_fourStreams,
+ workSpace, wkspSize,
+ hufTable, repeat, preferRepeat, bmi2);
+}
+
+size_t HUF_compress2 (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned huffLog)
+{
+ unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
+ return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
+}
+
+size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
+}
diff --git a/vendor/github.com/DataDog/zstd/huf_decompress.c b/vendor/github.com/DataDog/zstd/huf_decompress.c
new file mode 100644
index 0000000..3f8bd29
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/huf_decompress.c
@@ -0,0 +1,1232 @@
+/* ******************************************************************
+ huff0 huffman decoder,
+ part of Finite State Entropy library
+ Copyright (C) 2013-present, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+
+/* **************************************************************
+* Dependencies
+****************************************************************/
+#include <string.h> /* memcpy, memset */
+#include "compiler.h"
+#include "bitstream.h" /* BIT_* */
+#include "fse.h" /* to compress headers */
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+#include "error_private.h"
+
+/* **************************************************************
+* Macros
+****************************************************************/
+
+/* These two optional macros force the use one way or another of the two
+ * Huffman decompression implementations. You can't force in both directions
+ * at the same time.
+ */
+#if defined(HUF_FORCE_DECOMPRESS_X1) && \
+ defined(HUF_FORCE_DECOMPRESS_X2)
+#error "Cannot force the use of the X1 and X2 decoders at the same time!"
+#endif
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define HUF_isError ERR_isError
+#define CHECK_F(f) { size_t const err_ = (f); if (HUF_isError(err_)) return err_; }
+
+
+/* **************************************************************
+* Byte alignment for workSpace management
+****************************************************************/
+#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
+#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
+
+
+/* **************************************************************
+* BMI2 Variant Wrappers
+****************************************************************/
+#if DYNAMIC_BMI2
+
+#define HUF_DGEN(fn) \
+ \
+ static size_t fn##_default( \
+ void* dst, size_t dstSize, \
+ const void* cSrc, size_t cSrcSize, \
+ const HUF_DTable* DTable) \
+ { \
+ return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
+ } \
+ \
+ static TARGET_ATTRIBUTE("bmi2") size_t fn##_bmi2( \
+ void* dst, size_t dstSize, \
+ const void* cSrc, size_t cSrcSize, \
+ const HUF_DTable* DTable) \
+ { \
+ return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
+ } \
+ \
+ static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
+ size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
+ { \
+ if (bmi2) { \
+ return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
+ } \
+ return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
+ }
+
+#else
+
+#define HUF_DGEN(fn) \
+ static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
+ size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
+ { \
+ (void)bmi2; \
+ return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
+ }
+
+#endif
+
+
+/*-***************************/
+/* generic DTableDesc */
+/*-***************************/
+typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
+
+static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
+{
+ DTableDesc dtd;
+ memcpy(&dtd, table, sizeof(dtd));
+ return dtd;
+}
+
+
+#ifndef HUF_FORCE_DECOMPRESS_X2
+
+/*-***************************/
+/* single-symbol decoding */
+/*-***************************/
+typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX1; /* single-symbol decoding */
+
+size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize)
+{
+ U32 tableLog = 0;
+ U32 nbSymbols = 0;
+ size_t iSize;
+ void* const dtPtr = DTable + 1;
+ HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
+
+ U32* rankVal;
+ BYTE* huffWeight;
+ size_t spaceUsed32 = 0;
+
+ rankVal = (U32 *)workSpace + spaceUsed32;
+ spaceUsed32 += HUF_TABLELOG_ABSOLUTEMAX + 1;
+ huffWeight = (BYTE *)((U32 *)workSpace + spaceUsed32);
+ spaceUsed32 += HUF_ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;
+
+ if ((spaceUsed32 << 2) > wkspSize) return ERROR(tableLog_tooLarge);
+
+ DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
+ /* memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
+ if (HUF_isError(iSize)) return iSize;
+
+ /* Table header */
+ { DTableDesc dtd = HUF_getDTableDesc(DTable);
+ if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
+ dtd.tableType = 0;
+ dtd.tableLog = (BYTE)tableLog;
+ memcpy(DTable, &dtd, sizeof(dtd));
+ }
+
+ /* Calculate starting value for each rank */
+ { U32 n, nextRankStart = 0;
+ for (n=1; n<tableLog+1; n++) {
+ U32 const current = nextRankStart;
+ nextRankStart += (rankVal[n] << (n-1));
+ rankVal[n] = current;
+ } }
+
+ /* fill DTable */
+ { U32 n;
+ for (n=0; n<nbSymbols; n++) {
+ U32 const w = huffWeight[n];
+ U32 const length = (1 << w) >> 1;
+ U32 u;
+ HUF_DEltX1 D;
+ D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
+ for (u = rankVal[w]; u < rankVal[w] + length; u++)
+ dt[u] = D;
+ rankVal[w] += length;
+ } }
+
+ return iSize;
+}
+
+size_t HUF_readDTableX1(HUF_DTable* DTable, const void* src, size_t srcSize)
+{
+ U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
+ return HUF_readDTableX1_wksp(DTable, src, srcSize,
+ workSpace, sizeof(workSpace));
+}
+
+FORCE_INLINE_TEMPLATE BYTE
+HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
+{
+ size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
+ BYTE const c = dt[val].byte;
+ BIT_skipBits(Dstream, dt[val].nbBits);
+ return c;
+}
+
+#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
+ *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
+ HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
+
+#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
+
+HINT_INLINE size_t
+HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 4 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
+ HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
+ }
+
+ /* [0-3] symbols remaining */
+ if (MEM_32bits())
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
+ HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
+
+ /* no more data to retrieve from bitstream, no need to reload */
+ while (p < pEnd)
+ HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
+
+ return pEnd-pStart;
+}
+
+FORCE_INLINE_TEMPLATE size_t
+HUF_decompress1X1_usingDTable_internal_body(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + dstSize;
+ const void* dtPtr = DTable + 1;
+ const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
+ BIT_DStream_t bitD;
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+ U32 const dtLog = dtd.tableLog;
+
+ CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
+
+ HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
+
+ if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
+
+ return dstSize;
+}
+
+FORCE_INLINE_TEMPLATE size_t
+HUF_decompress4X1_usingDTable_internal_body(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ /* Check */
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ { const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable + 1;
+ const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
+
+ /* Init */
+ BIT_DStream_t bitD1;
+ BIT_DStream_t bitD2;
+ BIT_DStream_t bitD3;
+ BIT_DStream_t bitD4;
+ size_t const length1 = MEM_readLE16(istart);
+ size_t const length2 = MEM_readLE16(istart+2);
+ size_t const length3 = MEM_readLE16(istart+4);
+ size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal = BIT_DStream_unfinished;
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+ U32 const dtLog = dtd.tableLog;
+
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
+ CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
+ CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
+ CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
+
+ /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ while ( (endSignal==BIT_DStream_unfinished) && (op4<(oend-3)) ) {
+ HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
+ BIT_reloadDStream(&bitD1);
+ BIT_reloadDStream(&bitD2);
+ BIT_reloadDStream(&bitD3);
+ BIT_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ /* note : should not be necessary : op# advance in lock step, and we control op4.
+ * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
+ HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
+ HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
+ HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+ if (!endCheck) return ERROR(corruption_detected); }
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize,
+ const void *cSrc,
+ size_t cSrcSize,
+ const HUF_DTable *DTable);
+
+HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
+HUF_DGEN(HUF_decompress4X1_usingDTable_internal)
+
+
+
+size_t HUF_decompress1X1_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
+ if (dtd.tableType != 0) return ERROR(GENERIC);
+ return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+}
+
+size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
+}
+
+
+size_t HUF_decompress1X1_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize)
+{
+ U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
+ return HUF_decompress1X1_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
+ workSpace, sizeof(workSpace));
+}
+
+size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX);
+ return HUF_decompress1X1_DCtx (DTable, dst, dstSize, cSrc, cSrcSize);
+}
+
+size_t HUF_decompress4X1_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
+ if (dtd.tableType != 0) return ERROR(GENERIC);
+ return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+}
+
+static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize, int bmi2)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const hSize = HUF_readDTableX1_wksp (dctx, cSrc, cSrcSize,
+ workSpace, wkspSize);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
+}
+
+size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize)
+{
+ return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0);
+}
+
+
+size_t HUF_decompress4X1_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
+ return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
+ workSpace, sizeof(workSpace));
+}
+size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX);
+ return HUF_decompress4X1_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
+}
+
+#endif /* HUF_FORCE_DECOMPRESS_X2 */
+
+
+#ifndef HUF_FORCE_DECOMPRESS_X1
+
+/* *************************/
+/* double-symbols decoding */
+/* *************************/
+
+typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
+typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
+typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
+typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
+
+
+/* HUF_fillDTableX2Level2() :
+ * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
+static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 sizeLog, const U32 consumed,
+ const U32* rankValOrigin, const int minWeight,
+ const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
+ U32 nbBitsBaseline, U16 baseSeq)
+{
+ HUF_DEltX2 DElt;
+ U32 rankVal[HUF_TABLELOG_MAX + 1];
+
+ /* get pre-calculated rankVal */
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill skipped values */
+ if (minWeight>1) {
+ U32 i, skipSize = rankVal[minWeight];
+ MEM_writeLE16(&(DElt.sequence), baseSeq);
+ DElt.nbBits = (BYTE)(consumed);
+ DElt.length = 1;
+ for (i = 0; i < skipSize; i++)
+ DTable[i] = DElt;
+ }
+
+ /* fill DTable */
+ { U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
+ const U32 symbol = sortedSymbols[s].symbol;
+ const U32 weight = sortedSymbols[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 length = 1 << (sizeLog-nbBits);
+ const U32 start = rankVal[weight];
+ U32 i = start;
+ const U32 end = start + length;
+
+ MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
+ DElt.nbBits = (BYTE)(nbBits + consumed);
+ DElt.length = 2;
+ do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
+
+ rankVal[weight] += length;
+ } }
+}
+
+
+static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
+ const sortedSymbol_t* sortedList, const U32 sortedListSize,
+ const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
+ const U32 nbBitsBaseline)
+{
+ U32 rankVal[HUF_TABLELOG_MAX + 1];
+ const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
+ const U32 minBits = nbBitsBaseline - maxWeight;
+ U32 s;
+
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill DTable */
+ for (s=0; s<sortedListSize; s++) {
+ const U16 symbol = sortedList[s].symbol;
+ const U32 weight = sortedList[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 start = rankVal[weight];
+ const U32 length = 1 << (targetLog-nbBits);
+
+ if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
+ U32 sortedRank;
+ int minWeight = nbBits + scaleLog;
+ if (minWeight < 1) minWeight = 1;
+ sortedRank = rankStart[minWeight];
+ HUF_fillDTableX2Level2(DTable+start, targetLog-nbBits, nbBits,
+ rankValOrigin[nbBits], minWeight,
+ sortedList+sortedRank, sortedListSize-sortedRank,
+ nbBitsBaseline, symbol);
+ } else {
+ HUF_DEltX2 DElt;
+ MEM_writeLE16(&(DElt.sequence), symbol);
+ DElt.nbBits = (BYTE)(nbBits);
+ DElt.length = 1;
+ { U32 const end = start + length;
+ U32 u;
+ for (u = start; u < end; u++) DTable[u] = DElt;
+ } }
+ rankVal[weight] += length;
+ }
+}
+
+size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
+ const void* src, size_t srcSize,
+ void* workSpace, size_t wkspSize)
+{
+ U32 tableLog, maxW, sizeOfSort, nbSymbols;
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
+ U32 const maxTableLog = dtd.maxTableLog;
+ size_t iSize;
+ void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
+ HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
+ U32 *rankStart;
+
+ rankValCol_t* rankVal;
+ U32* rankStats;
+ U32* rankStart0;
+ sortedSymbol_t* sortedSymbol;
+ BYTE* weightList;
+ size_t spaceUsed32 = 0;
+
+ rankVal = (rankValCol_t *)((U32 *)workSpace + spaceUsed32);
+ spaceUsed32 += (sizeof(rankValCol_t) * HUF_TABLELOG_MAX) >> 2;
+ rankStats = (U32 *)workSpace + spaceUsed32;
+ spaceUsed32 += HUF_TABLELOG_MAX + 1;
+ rankStart0 = (U32 *)workSpace + spaceUsed32;
+ spaceUsed32 += HUF_TABLELOG_MAX + 2;
+ sortedSymbol = (sortedSymbol_t *)workSpace + (spaceUsed32 * sizeof(U32)) / sizeof(sortedSymbol_t);
+ spaceUsed32 += HUF_ALIGN(sizeof(sortedSymbol_t) * (HUF_SYMBOLVALUE_MAX + 1), sizeof(U32)) >> 2;
+ weightList = (BYTE *)((U32 *)workSpace + spaceUsed32);
+ spaceUsed32 += HUF_ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;
+
+ if ((spaceUsed32 << 2) > wkspSize) return ERROR(tableLog_tooLarge);
+
+ rankStart = rankStart0 + 1;
+ memset(rankStats, 0, sizeof(U32) * (2 * HUF_TABLELOG_MAX + 2 + 1));
+
+ DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
+ if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
+ /* memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUF_readStats(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
+ if (HUF_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
+
+ /* find maxWeight */
+ for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
+
+ /* Get start index of each weight */
+ { U32 w, nextRankStart = 0;
+ for (w=1; w<maxW+1; w++) {
+ U32 current = nextRankStart;
+ nextRankStart += rankStats[w];
+ rankStart[w] = current;
+ }
+ rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
+ sizeOfSort = nextRankStart;
+ }
+
+ /* sort symbols by weight */
+ { U32 s;
+ for (s=0; s<nbSymbols; s++) {
+ U32 const w = weightList[s];
+ U32 const r = rankStart[w]++;
+ sortedSymbol[r].symbol = (BYTE)s;
+ sortedSymbol[r].weight = (BYTE)w;
+ }
+ rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
+ }
+
+ /* Build rankVal */
+ { U32* const rankVal0 = rankVal[0];
+ { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
+ U32 nextRankVal = 0;
+ U32 w;
+ for (w=1; w<maxW+1; w++) {
+ U32 current = nextRankVal;
+ nextRankVal += rankStats[w] << (w+rescale);
+ rankVal0[w] = current;
+ } }
+ { U32 const minBits = tableLog+1 - maxW;
+ U32 consumed;
+ for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
+ U32* const rankValPtr = rankVal[consumed];
+ U32 w;
+ for (w = 1; w < maxW+1; w++) {
+ rankValPtr[w] = rankVal0[w] >> consumed;
+ } } } }
+
+ HUF_fillDTableX2(dt, maxTableLog,
+ sortedSymbol, sizeOfSort,
+ rankStart0, rankVal, maxW,
+ tableLog+1);
+
+ dtd.tableLog = (BYTE)maxTableLog;
+ dtd.tableType = 1;
+ memcpy(DTable, &dtd, sizeof(dtd));
+ return iSize;
+}
+
+size_t HUF_readDTableX2(HUF_DTable* DTable, const void* src, size_t srcSize)
+{
+ U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
+ return HUF_readDTableX2_wksp(DTable, src, srcSize,
+ workSpace, sizeof(workSpace));
+}
+
+
+FORCE_INLINE_TEMPLATE U32
+HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
+{
+ size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 2);
+ BIT_skipBits(DStream, dt[val].nbBits);
+ return dt[val].length;
+}
+
+FORCE_INLINE_TEMPLATE U32
+HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
+{
+ size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 1);
+ if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
+ else {
+ if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
+ BIT_skipBits(DStream, dt[val].nbBits);
+ if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
+ /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
+ DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
+ } }
+ return 1;
+}
+
+#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
+ ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
+ ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
+
+HINT_INLINE size_t
+HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
+ const HUF_DEltX2* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 8 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ }
+
+ /* closer to end : up to 2 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ while (p <= pEnd-2)
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
+
+ if (p < pEnd)
+ p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
+
+ return p-pStart;
+}
+
+FORCE_INLINE_TEMPLATE size_t
+HUF_decompress1X2_usingDTable_internal_body(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ BIT_DStream_t bitD;
+
+ /* Init */
+ CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
+
+ /* decode */
+ { BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
+ const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+ HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
+ }
+
+ /* check */
+ if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+}
+
+
+FORCE_INLINE_TEMPLATE size_t
+HUF_decompress4X2_usingDTable_internal_body(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ { const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable+1;
+ const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
+
+ /* Init */
+ BIT_DStream_t bitD1;
+ BIT_DStream_t bitD2;
+ BIT_DStream_t bitD3;
+ BIT_DStream_t bitD4;
+ size_t const length1 = MEM_readLE16(istart);
+ size_t const length2 = MEM_readLE16(istart+2);
+ size_t const length3 = MEM_readLE16(istart+4);
+ size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ size_t const segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+ U32 const dtLog = dtd.tableLog;
+
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
+ CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
+ CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
+ CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ for ( ; (endSignal==BIT_DStream_unfinished) & (op4<(oend-(sizeof(bitD4.bitContainer)-1))) ; ) {
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
+
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
+ HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
+ HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
+ HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+ if (!endCheck) return ERROR(corruption_detected); }
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
+HUF_DGEN(HUF_decompress4X2_usingDTable_internal)
+
+size_t HUF_decompress1X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
+ if (dtd.tableType != 1) return ERROR(GENERIC);
+ return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+}
+
+size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
+ workSpace, wkspSize);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
+}
+
+
+size_t HUF_decompress1X2_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize)
+{
+ U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
+ return HUF_decompress1X2_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
+ workSpace, sizeof(workSpace));
+}
+
+size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
+ return HUF_decompress1X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
+}
+
+size_t HUF_decompress4X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
+ if (dtd.tableType != 1) return ERROR(GENERIC);
+ return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+}
+
+static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize, int bmi2)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
+ workSpace, wkspSize);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
+}
+
+size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize)
+{
+ return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0);
+}
+
+
+size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize)
+{
+ U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
+ return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
+ workSpace, sizeof(workSpace));
+}
+
+size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
+ return HUF_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
+}
+
+#endif /* HUF_FORCE_DECOMPRESS_X1 */
+
+
+/* ***********************************/
+/* Universal decompression selectors */
+/* ***********************************/
+
+size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)dtd;
+ assert(dtd.tableType == 0);
+ return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)dtd;
+ assert(dtd.tableType == 1);
+ return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+#else
+ return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
+ HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+#endif
+}
+
+size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)dtd;
+ assert(dtd.tableType == 0);
+ return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)dtd;
+ assert(dtd.tableType == 1);
+ return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+#else
+ return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
+ HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+#endif
+}
+
+
+#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
+typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
+static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
+{
+ /* single, double, quad */
+ {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
+ {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
+ {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
+ {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
+ {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
+ {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
+ {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
+ {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
+ {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
+ {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
+ {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
+ {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
+ {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
+ {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
+ {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
+ {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
+};
+#endif
+
+/** HUF_selectDecoder() :
+ * Tells which decoder is likely to decode faster,
+ * based on a set of pre-computed metrics.
+ * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
+ * Assumption : 0 < dstSize <= 128 KB */
+U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
+{
+ assert(dstSize > 0);
+ assert(dstSize <= 128*1024);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)dstSize;
+ (void)cSrcSize;
+ return 0;
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)dstSize;
+ (void)cSrcSize;
+ return 1;
+#else
+ /* decoder timing evaluation */
+ { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
+ U32 const D256 = (U32)(dstSize >> 8);
+ U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
+ U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
+ DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, to reduce cache eviction */
+ return DTime1 < DTime0;
+ }
+#endif
+}
+
+
+typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
+
+size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
+ static const decompressionAlgo decompress[2] = { HUF_decompress4X1, HUF_decompress4X2 };
+#endif
+
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
+ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
+
+ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)algoNb;
+ assert(algoNb == 0);
+ return HUF_decompress4X1(dst, dstSize, cSrc, cSrcSize);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)algoNb;
+ assert(algoNb == 1);
+ return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize);
+#else
+ return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
+#endif
+ }
+}
+
+size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
+ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
+
+ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)algoNb;
+ assert(algoNb == 0);
+ return HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)algoNb;
+ assert(algoNb == 1);
+ return HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize);
+#else
+ return algoNb ? HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
+ HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
+#endif
+ }
+}
+
+size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
+ return HUF_decompress4X_hufOnly_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
+ workSpace, sizeof(workSpace));
+}
+
+
+size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst,
+ size_t dstSize, const void* cSrc,
+ size_t cSrcSize, void* workSpace,
+ size_t wkspSize)
+{
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize == 0) return ERROR(corruption_detected);
+
+ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)algoNb;
+ assert(algoNb == 0);
+ return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)algoNb;
+ assert(algoNb == 1);
+ return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
+#else
+ return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
+ cSrcSize, workSpace, wkspSize):
+ HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
+#endif
+ }
+}
+
+size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize)
+{
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
+ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
+
+ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)algoNb;
+ assert(algoNb == 0);
+ return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
+ cSrcSize, workSpace, wkspSize);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)algoNb;
+ assert(algoNb == 1);
+ return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
+ cSrcSize, workSpace, wkspSize);
+#else
+ return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
+ cSrcSize, workSpace, wkspSize):
+ HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
+ cSrcSize, workSpace, wkspSize);
+#endif
+ }
+}
+
+size_t HUF_decompress1X_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize)
+{
+ U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
+ return HUF_decompress1X_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
+ workSpace, sizeof(workSpace));
+}
+
+
+size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
+{
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)dtd;
+ assert(dtd.tableType == 0);
+ return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)dtd;
+ assert(dtd.tableType == 1);
+ return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
+#else
+ return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
+ HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
+#endif
+}
+
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
+}
+#endif
+
+size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
+{
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)dtd;
+ assert(dtd.tableType == 0);
+ return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)dtd;
+ assert(dtd.tableType == 1);
+ return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
+#else
+ return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
+ HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
+#endif
+}
+
+size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
+{
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize == 0) return ERROR(corruption_detected);
+
+ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)algoNb;
+ assert(algoNb == 0);
+ return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)algoNb;
+ assert(algoNb == 1);
+ return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
+#else
+ return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) :
+ HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
+#endif
+ }
+}
diff --git a/vendor/github.com/DataDog/zstd/mem.h b/vendor/github.com/DataDog/zstd/mem.h
new file mode 100644
index 0000000..5da2487
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/mem.h
@@ -0,0 +1,380 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef MEM_H_MODULE
+#define MEM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/*-****************************************
+* Dependencies
+******************************************/
+#include <stddef.h> /* size_t, ptrdiff_t */
+#include <string.h> /* memcpy */
+
+
+/*-****************************************
+* Compiler specifics
+******************************************/
+#if defined(_MSC_VER) /* Visual Studio */
+# include <stdlib.h> /* _byteswap_ulong */
+# include <intrin.h> /* _byteswap_* */
+#endif
+#if defined(__GNUC__)
+# define MEM_STATIC static __inline __attribute__((unused))
+#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define MEM_STATIC static inline
+#elif defined(_MSC_VER)
+# define MEM_STATIC static __inline
+#else
+# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
+
+#ifndef __has_builtin
+# define __has_builtin(x) 0 /* compat. with non-clang compilers */
+#endif
+
+/* code only tested on 32 and 64 bits systems */
+#define MEM_STATIC_ASSERT(c) { enum { MEM_static_assert = 1/(int)(!!(c)) }; }
+MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
+
+
+/*-**************************************************************
+* Basic Types
+*****************************************************************/
+#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+# include <stdint.h>
+ typedef uint8_t BYTE;
+ typedef uint16_t U16;
+ typedef int16_t S16;
+ typedef uint32_t U32;
+ typedef int32_t S32;
+ typedef uint64_t U64;
+ typedef int64_t S64;
+#else
+# include <limits.h>
+#if CHAR_BIT != 8
+# error "this implementation requires char to be exactly 8-bit type"
+#endif
+ typedef unsigned char BYTE;
+#if USHRT_MAX != 65535
+# error "this implementation requires short to be exactly 16-bit type"
+#endif
+ typedef unsigned short U16;
+ typedef signed short S16;
+#if UINT_MAX != 4294967295
+# error "this implementation requires int to be exactly 32-bit type"
+#endif
+ typedef unsigned int U32;
+ typedef signed int S32;
+/* note : there are no limits defined for long long type in C90.
+ * limits exist in C99, however, in such case, <stdint.h> is preferred */
+ typedef unsigned long long U64;
+ typedef signed long long S64;
+#endif
+
+
+/*-**************************************************************
+* Memory I/O
+*****************************************************************/
+/* MEM_FORCE_MEMORY_ACCESS :
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable).
+ * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method is portable but violate C standard.
+ * It can generate buggy code on targets depending on alignment.
+ * In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6)
+ * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
+# define MEM_FORCE_MEMORY_ACCESS 2
+# elif defined(__INTEL_COMPILER) || defined(__GNUC__)
+# define MEM_FORCE_MEMORY_ACCESS 1
+# endif
+#endif
+
+MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
+MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
+
+MEM_STATIC unsigned MEM_isLittleEndian(void)
+{
+ const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
+ return one.c[0];
+}
+
+#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
+
+/* violates C standard, by lying on structure alignment.
+Only use if no other choice to achieve best performance on target platform */
+MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
+MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
+MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
+MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
+MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
+MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
+
+#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+#if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32))
+ __pragma( pack(push, 1) )
+ typedef struct { U16 v; } unalign16;
+ typedef struct { U32 v; } unalign32;
+ typedef struct { U64 v; } unalign64;
+ typedef struct { size_t v; } unalignArch;
+ __pragma( pack(pop) )
+#else
+ typedef struct { U16 v; } __attribute__((packed)) unalign16;
+ typedef struct { U32 v; } __attribute__((packed)) unalign32;
+ typedef struct { U64 v; } __attribute__((packed)) unalign64;
+ typedef struct { size_t v; } __attribute__((packed)) unalignArch;
+#endif
+
+MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; }
+MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; }
+MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; }
+MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; }
+MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; }
+MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; }
+
+#else
+
+/* default method, safe and standard.
+ can sometimes prove slower */
+
+MEM_STATIC U16 MEM_read16(const void* memPtr)
+{
+ U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U32 MEM_read32(const void* memPtr)
+{
+ U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U64 MEM_read64(const void* memPtr)
+{
+ U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC size_t MEM_readST(const void* memPtr)
+{
+ size_t val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value)
+{
+ memcpy(memPtr, &value, sizeof(value));
+}
+
+MEM_STATIC void MEM_write32(void* memPtr, U32 value)
+{
+ memcpy(memPtr, &value, sizeof(value));
+}
+
+MEM_STATIC void MEM_write64(void* memPtr, U64 value)
+{
+ memcpy(memPtr, &value, sizeof(value));
+}
+
+#endif /* MEM_FORCE_MEMORY_ACCESS */
+
+MEM_STATIC U32 MEM_swap32(U32 in)
+{
+#if defined(_MSC_VER) /* Visual Studio */
+ return _byteswap_ulong(in);
+#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
+ || (defined(__clang__) && __has_builtin(__builtin_bswap32))
+ return __builtin_bswap32(in);
+#else
+ return ((in << 24) & 0xff000000 ) |
+ ((in << 8) & 0x00ff0000 ) |
+ ((in >> 8) & 0x0000ff00 ) |
+ ((in >> 24) & 0x000000ff );
+#endif
+}
+
+MEM_STATIC U64 MEM_swap64(U64 in)
+{
+#if defined(_MSC_VER) /* Visual Studio */
+ return _byteswap_uint64(in);
+#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
+ || (defined(__clang__) && __has_builtin(__builtin_bswap64))
+ return __builtin_bswap64(in);
+#else
+ return ((in << 56) & 0xff00000000000000ULL) |
+ ((in << 40) & 0x00ff000000000000ULL) |
+ ((in << 24) & 0x0000ff0000000000ULL) |
+ ((in << 8) & 0x000000ff00000000ULL) |
+ ((in >> 8) & 0x00000000ff000000ULL) |
+ ((in >> 24) & 0x0000000000ff0000ULL) |
+ ((in >> 40) & 0x000000000000ff00ULL) |
+ ((in >> 56) & 0x00000000000000ffULL);
+#endif
+}
+
+MEM_STATIC size_t MEM_swapST(size_t in)
+{
+ if (MEM_32bits())
+ return (size_t)MEM_swap32((U32)in);
+ else
+ return (size_t)MEM_swap64((U64)in);
+}
+
+/*=== Little endian r/w ===*/
+
+MEM_STATIC U16 MEM_readLE16(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read16(memPtr);
+ else {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U16)(p[0] + (p[1]<<8));
+ }
+}
+
+MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
+{
+ if (MEM_isLittleEndian()) {
+ MEM_write16(memPtr, val);
+ } else {
+ BYTE* p = (BYTE*)memPtr;
+ p[0] = (BYTE)val;
+ p[1] = (BYTE)(val>>8);
+ }
+}
+
+MEM_STATIC U32 MEM_readLE24(const void* memPtr)
+{
+ return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
+}
+
+MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
+{
+ MEM_writeLE16(memPtr, (U16)val);
+ ((BYTE*)memPtr)[2] = (BYTE)(val>>16);
+}
+
+MEM_STATIC U32 MEM_readLE32(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read32(memPtr);
+ else
+ return MEM_swap32(MEM_read32(memPtr));
+}
+
+MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
+{
+ if (MEM_isLittleEndian())
+ MEM_write32(memPtr, val32);
+ else
+ MEM_write32(memPtr, MEM_swap32(val32));
+}
+
+MEM_STATIC U64 MEM_readLE64(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read64(memPtr);
+ else
+ return MEM_swap64(MEM_read64(memPtr));
+}
+
+MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
+{
+ if (MEM_isLittleEndian())
+ MEM_write64(memPtr, val64);
+ else
+ MEM_write64(memPtr, MEM_swap64(val64));
+}
+
+MEM_STATIC size_t MEM_readLEST(const void* memPtr)
+{
+ if (MEM_32bits())
+ return (size_t)MEM_readLE32(memPtr);
+ else
+ return (size_t)MEM_readLE64(memPtr);
+}
+
+MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
+{
+ if (MEM_32bits())
+ MEM_writeLE32(memPtr, (U32)val);
+ else
+ MEM_writeLE64(memPtr, (U64)val);
+}
+
+/*=== Big endian r/w ===*/
+
+MEM_STATIC U32 MEM_readBE32(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_swap32(MEM_read32(memPtr));
+ else
+ return MEM_read32(memPtr);
+}
+
+MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
+{
+ if (MEM_isLittleEndian())
+ MEM_write32(memPtr, MEM_swap32(val32));
+ else
+ MEM_write32(memPtr, val32);
+}
+
+MEM_STATIC U64 MEM_readBE64(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_swap64(MEM_read64(memPtr));
+ else
+ return MEM_read64(memPtr);
+}
+
+MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
+{
+ if (MEM_isLittleEndian())
+ MEM_write64(memPtr, MEM_swap64(val64));
+ else
+ MEM_write64(memPtr, val64);
+}
+
+MEM_STATIC size_t MEM_readBEST(const void* memPtr)
+{
+ if (MEM_32bits())
+ return (size_t)MEM_readBE32(memPtr);
+ else
+ return (size_t)MEM_readBE64(memPtr);
+}
+
+MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
+{
+ if (MEM_32bits())
+ MEM_writeBE32(memPtr, (U32)val);
+ else
+ MEM_writeBE64(memPtr, (U64)val);
+}
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* MEM_H_MODULE */
diff --git a/vendor/github.com/DataDog/zstd/pool.c b/vendor/github.com/DataDog/zstd/pool.c
new file mode 100644
index 0000000..7a82945
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/pool.c
@@ -0,0 +1,340 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+/* ====== Dependencies ======= */
+#include <stddef.h> /* size_t */
+#include "debug.h" /* assert */
+#include "zstd_internal.h" /* ZSTD_malloc, ZSTD_free */
+#include "pool.h"
+
+/* ====== Compiler specifics ====== */
+#if defined(_MSC_VER)
+# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
+#endif
+
+
+#ifdef ZSTD_MULTITHREAD
+
+#include "threading.h" /* pthread adaptation */
+
+/* A job is a function and an opaque argument */
+typedef struct POOL_job_s {
+ POOL_function function;
+ void *opaque;
+} POOL_job;
+
+struct POOL_ctx_s {
+ ZSTD_customMem customMem;
+ /* Keep track of the threads */
+ ZSTD_pthread_t* threads;
+ size_t threadCapacity;
+ size_t threadLimit;
+
+ /* The queue is a circular buffer */
+ POOL_job *queue;
+ size_t queueHead;
+ size_t queueTail;
+ size_t queueSize;
+
+ /* The number of threads working on jobs */
+ size_t numThreadsBusy;
+ /* Indicates if the queue is empty */
+ int queueEmpty;
+
+ /* The mutex protects the queue */
+ ZSTD_pthread_mutex_t queueMutex;
+ /* Condition variable for pushers to wait on when the queue is full */
+ ZSTD_pthread_cond_t queuePushCond;
+ /* Condition variables for poppers to wait on when the queue is empty */
+ ZSTD_pthread_cond_t queuePopCond;
+ /* Indicates if the queue is shutting down */
+ int shutdown;
+};
+
+/* POOL_thread() :
+ * Work thread for the thread pool.
+ * Waits for jobs and executes them.
+ * @returns : NULL on failure else non-null.
+ */
+static void* POOL_thread(void* opaque) {
+ POOL_ctx* const ctx = (POOL_ctx*)opaque;
+ if (!ctx) { return NULL; }
+ for (;;) {
+ /* Lock the mutex and wait for a non-empty queue or until shutdown */
+ ZSTD_pthread_mutex_lock(&ctx->queueMutex);
+
+ while ( ctx->queueEmpty
+ || (ctx->numThreadsBusy >= ctx->threadLimit) ) {
+ if (ctx->shutdown) {
+ /* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit),
+ * a few threads will be shutdown while !queueEmpty,
+ * but enough threads will remain active to finish the queue */
+ ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
+ return opaque;
+ }
+ ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex);
+ }
+ /* Pop a job off the queue */
+ { POOL_job const job = ctx->queue[ctx->queueHead];
+ ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize;
+ ctx->numThreadsBusy++;
+ ctx->queueEmpty = ctx->queueHead == ctx->queueTail;
+ /* Unlock the mutex, signal a pusher, and run the job */
+ ZSTD_pthread_cond_signal(&ctx->queuePushCond);
+ ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
+
+ job.function(job.opaque);
+
+ /* If the intended queue size was 0, signal after finishing job */
+ ZSTD_pthread_mutex_lock(&ctx->queueMutex);
+ ctx->numThreadsBusy--;
+ if (ctx->queueSize == 1) {
+ ZSTD_pthread_cond_signal(&ctx->queuePushCond);
+ }
+ ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
+ }
+ } /* for (;;) */
+ assert(0); /* Unreachable */
+}
+
+POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
+ return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
+}
+
+POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
+ ZSTD_customMem customMem) {
+ POOL_ctx* ctx;
+ /* Check parameters */
+ if (!numThreads) { return NULL; }
+ /* Allocate the context and zero initialize */
+ ctx = (POOL_ctx*)ZSTD_calloc(sizeof(POOL_ctx), customMem);
+ if (!ctx) { return NULL; }
+ /* Initialize the job queue.
+ * It needs one extra space since one space is wasted to differentiate
+ * empty and full queues.
+ */
+ ctx->queueSize = queueSize + 1;
+ ctx->queue = (POOL_job*)ZSTD_malloc(ctx->queueSize * sizeof(POOL_job), customMem);
+ ctx->queueHead = 0;
+ ctx->queueTail = 0;
+ ctx->numThreadsBusy = 0;
+ ctx->queueEmpty = 1;
+ (void)ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL);
+ (void)ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL);
+ (void)ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL);
+ ctx->shutdown = 0;
+ /* Allocate space for the thread handles */
+ ctx->threads = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), customMem);
+ ctx->threadCapacity = 0;
+ ctx->customMem = customMem;
+ /* Check for errors */
+ if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; }
+ /* Initialize the threads */
+ { size_t i;
+ for (i = 0; i < numThreads; ++i) {
+ if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) {
+ ctx->threadCapacity = i;
+ POOL_free(ctx);
+ return NULL;
+ } }
+ ctx->threadCapacity = numThreads;
+ ctx->threadLimit = numThreads;
+ }
+ return ctx;
+}
+
+/*! POOL_join() :
+ Shutdown the queue, wake any sleeping threads, and join all of the threads.
+*/
+static void POOL_join(POOL_ctx* ctx) {
+ /* Shut down the queue */
+ ZSTD_pthread_mutex_lock(&ctx->queueMutex);
+ ctx->shutdown = 1;
+ ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
+ /* Wake up sleeping threads */
+ ZSTD_pthread_cond_broadcast(&ctx->queuePushCond);
+ ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
+ /* Join all of the threads */
+ { size_t i;
+ for (i = 0; i < ctx->threadCapacity; ++i) {
+ ZSTD_pthread_join(ctx->threads[i], NULL); /* note : could fail */
+ } }
+}
+
+void POOL_free(POOL_ctx *ctx) {
+ if (!ctx) { return; }
+ POOL_join(ctx);
+ ZSTD_pthread_mutex_destroy(&ctx->queueMutex);
+ ZSTD_pthread_cond_destroy(&ctx->queuePushCond);
+ ZSTD_pthread_cond_destroy(&ctx->queuePopCond);
+ ZSTD_free(ctx->queue, ctx->customMem);
+ ZSTD_free(ctx->threads, ctx->customMem);
+ ZSTD_free(ctx, ctx->customMem);
+}
+
+
+
+size_t POOL_sizeof(POOL_ctx *ctx) {
+ if (ctx==NULL) return 0; /* supports sizeof NULL */
+ return sizeof(*ctx)
+ + ctx->queueSize * sizeof(POOL_job)
+ + ctx->threadCapacity * sizeof(ZSTD_pthread_t);
+}
+
+
+/* @return : 0 on success, 1 on error */
+static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads)
+{
+ if (numThreads <= ctx->threadCapacity) {
+ if (!numThreads) return 1;
+ ctx->threadLimit = numThreads;
+ return 0;
+ }
+ /* numThreads > threadCapacity */
+ { ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem);
+ if (!threadPool) return 1;
+ /* replace existing thread pool */
+ memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool));
+ ZSTD_free(ctx->threads, ctx->customMem);
+ ctx->threads = threadPool;
+ /* Initialize additional threads */
+ { size_t threadId;
+ for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) {
+ if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) {
+ ctx->threadCapacity = threadId;
+ return 1;
+ } }
+ } }
+ /* successfully expanded */
+ ctx->threadCapacity = numThreads;
+ ctx->threadLimit = numThreads;
+ return 0;
+}
+
+/* @return : 0 on success, 1 on error */
+int POOL_resize(POOL_ctx* ctx, size_t numThreads)
+{
+ int result;
+ if (ctx==NULL) return 1;
+ ZSTD_pthread_mutex_lock(&ctx->queueMutex);
+ result = POOL_resize_internal(ctx, numThreads);
+ ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
+ ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
+ return result;
+}
+
+/**
+ * Returns 1 if the queue is full and 0 otherwise.
+ *
+ * When queueSize is 1 (pool was created with an intended queueSize of 0),
+ * then a queue is empty if there is a thread free _and_ no job is waiting.
+ */
+static int isQueueFull(POOL_ctx const* ctx) {
+ if (ctx->queueSize > 1) {
+ return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize);
+ } else {
+ return (ctx->numThreadsBusy == ctx->threadLimit) ||
+ !ctx->queueEmpty;
+ }
+}
+
+
+static void POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque)
+{
+ POOL_job const job = {function, opaque};
+ assert(ctx != NULL);
+ if (ctx->shutdown) return;
+
+ ctx->queueEmpty = 0;
+ ctx->queue[ctx->queueTail] = job;
+ ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize;
+ ZSTD_pthread_cond_signal(&ctx->queuePopCond);
+}
+
+void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque)
+{
+ assert(ctx != NULL);
+ ZSTD_pthread_mutex_lock(&ctx->queueMutex);
+ /* Wait until there is space in the queue for the new job */
+ while (isQueueFull(ctx) && (!ctx->shutdown)) {
+ ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
+ }
+ POOL_add_internal(ctx, function, opaque);
+ ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
+}
+
+
+int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque)
+{
+ assert(ctx != NULL);
+ ZSTD_pthread_mutex_lock(&ctx->queueMutex);
+ if (isQueueFull(ctx)) {
+ ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
+ return 0;
+ }
+ POOL_add_internal(ctx, function, opaque);
+ ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
+ return 1;
+}
+
+
+#else /* ZSTD_MULTITHREAD not defined */
+
+/* ========================== */
+/* No multi-threading support */
+/* ========================== */
+
+
+/* We don't need any data, but if it is empty, malloc() might return NULL. */
+struct POOL_ctx_s {
+ int dummy;
+};
+static POOL_ctx g_ctx;
+
+POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
+ return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
+}
+
+POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) {
+ (void)numThreads;
+ (void)queueSize;
+ (void)customMem;
+ return &g_ctx;
+}
+
+void POOL_free(POOL_ctx* ctx) {
+ assert(!ctx || ctx == &g_ctx);
+ (void)ctx;
+}
+
+int POOL_resize(POOL_ctx* ctx, size_t numThreads) {
+ (void)ctx; (void)numThreads;
+ return 0;
+}
+
+void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) {
+ (void)ctx;
+ function(opaque);
+}
+
+int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) {
+ (void)ctx;
+ function(opaque);
+ return 1;
+}
+
+size_t POOL_sizeof(POOL_ctx* ctx) {
+ if (ctx==NULL) return 0; /* supports sizeof NULL */
+ assert(ctx == &g_ctx);
+ return sizeof(*ctx);
+}
+
+#endif /* ZSTD_MULTITHREAD */
diff --git a/vendor/github.com/DataDog/zstd/pool.h b/vendor/github.com/DataDog/zstd/pool.h
new file mode 100644
index 0000000..458d37f
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/pool.h
@@ -0,0 +1,84 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef POOL_H
+#define POOL_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+#include <stddef.h> /* size_t */
+#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_customMem */
+#include "zstd.h"
+
+typedef struct POOL_ctx_s POOL_ctx;
+
+/*! POOL_create() :
+ * Create a thread pool with at most `numThreads` threads.
+ * `numThreads` must be at least 1.
+ * The maximum number of queued jobs before blocking is `queueSize`.
+ * @return : POOL_ctx pointer on success, else NULL.
+*/
+POOL_ctx* POOL_create(size_t numThreads, size_t queueSize);
+
+POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
+ ZSTD_customMem customMem);
+
+/*! POOL_free() :
+ * Free a thread pool returned by POOL_create().
+ */
+void POOL_free(POOL_ctx* ctx);
+
+/*! POOL_resize() :
+ * Expands or shrinks pool's number of threads.
+ * This is more efficient than releasing + creating a new context,
+ * since it tries to preserve and re-use existing threads.
+ * `numThreads` must be at least 1.
+ * @return : 0 when resize was successful,
+ * !0 (typically 1) if there is an error.
+ * note : only numThreads can be resized, queueSize remains unchanged.
+ */
+int POOL_resize(POOL_ctx* ctx, size_t numThreads);
+
+/*! POOL_sizeof() :
+ * @return threadpool memory usage
+ * note : compatible with NULL (returns 0 in this case)
+ */
+size_t POOL_sizeof(POOL_ctx* ctx);
+
+/*! POOL_function :
+ * The function type that can be added to a thread pool.
+ */
+typedef void (*POOL_function)(void*);
+
+/*! POOL_add() :
+ * Add the job `function(opaque)` to the thread pool. `ctx` must be valid.
+ * Possibly blocks until there is room in the queue.
+ * Note : The function may be executed asynchronously,
+ * therefore, `opaque` must live until function has been completed.
+ */
+void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque);
+
+
+/*! POOL_tryAdd() :
+ * Add the job `function(opaque)` to thread pool _if_ a worker is available.
+ * Returns immediately even if not (does not block).
+ * @return : 1 if successful, 0 if not.
+ */
+int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque);
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif
diff --git a/vendor/github.com/DataDog/zstd/threading.c b/vendor/github.com/DataDog/zstd/threading.c
new file mode 100644
index 0000000..f3d4fa8
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/threading.c
@@ -0,0 +1,75 @@
+/**
+ * Copyright (c) 2016 Tino Reichardt
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ *
+ * You can contact the author at:
+ * - zstdmt source repository: https://github.com/mcmilk/zstdmt
+ */
+
+/**
+ * This file will hold wrapper for systems, which do not support pthreads
+ */
+
+/* create fake symbol to avoid empty translation unit warning */
+int g_ZSTD_threading_useless_symbol;
+
+#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
+
+/**
+ * Windows minimalist Pthread Wrapper, based on :
+ * http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
+ */
+
+
+/* === Dependencies === */
+#include <process.h>
+#include <errno.h>
+#include "threading.h"
+
+
+/* === Implementation === */
+
+static unsigned __stdcall worker(void *arg)
+{
+ ZSTD_pthread_t* const thread = (ZSTD_pthread_t*) arg;
+ thread->arg = thread->start_routine(thread->arg);
+ return 0;
+}
+
+int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused,
+ void* (*start_routine) (void*), void* arg)
+{
+ (void)unused;
+ thread->arg = arg;
+ thread->start_routine = start_routine;
+ thread->handle = (HANDLE) _beginthreadex(NULL, 0, worker, thread, 0, NULL);
+
+ if (!thread->handle)
+ return errno;
+ else
+ return 0;
+}
+
+int ZSTD_pthread_join(ZSTD_pthread_t thread, void **value_ptr)
+{
+ DWORD result;
+
+ if (!thread.handle) return 0;
+
+ result = WaitForSingleObject(thread.handle, INFINITE);
+ switch (result) {
+ case WAIT_OBJECT_0:
+ if (value_ptr) *value_ptr = thread.arg;
+ return 0;
+ case WAIT_ABANDONED:
+ return EINVAL;
+ default:
+ return GetLastError();
+ }
+}
+
+#endif /* ZSTD_MULTITHREAD */
diff --git a/vendor/github.com/DataDog/zstd/threading.h b/vendor/github.com/DataDog/zstd/threading.h
new file mode 100644
index 0000000..d806c89
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/threading.h
@@ -0,0 +1,123 @@
+/**
+ * Copyright (c) 2016 Tino Reichardt
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ *
+ * You can contact the author at:
+ * - zstdmt source repository: https://github.com/mcmilk/zstdmt
+ */
+
+#ifndef THREADING_H_938743
+#define THREADING_H_938743
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
+
+/**
+ * Windows minimalist Pthread Wrapper, based on :
+ * http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
+ */
+#ifdef WINVER
+# undef WINVER
+#endif
+#define WINVER 0x0600
+
+#ifdef _WIN32_WINNT
+# undef _WIN32_WINNT
+#endif
+#define _WIN32_WINNT 0x0600
+
+#ifndef WIN32_LEAN_AND_MEAN
+# define WIN32_LEAN_AND_MEAN
+#endif
+
+#undef ERROR /* reported already defined on VS 2015 (Rich Geldreich) */
+#include <windows.h>
+#undef ERROR
+#define ERROR(name) ZSTD_ERROR(name)
+
+
+/* mutex */
+#define ZSTD_pthread_mutex_t CRITICAL_SECTION
+#define ZSTD_pthread_mutex_init(a, b) ((void)(b), InitializeCriticalSection((a)), 0)
+#define ZSTD_pthread_mutex_destroy(a) DeleteCriticalSection((a))
+#define ZSTD_pthread_mutex_lock(a) EnterCriticalSection((a))
+#define ZSTD_pthread_mutex_unlock(a) LeaveCriticalSection((a))
+
+/* condition variable */
+#define ZSTD_pthread_cond_t CONDITION_VARIABLE
+#define ZSTD_pthread_cond_init(a, b) ((void)(b), InitializeConditionVariable((a)), 0)
+#define ZSTD_pthread_cond_destroy(a) ((void)(a))
+#define ZSTD_pthread_cond_wait(a, b) SleepConditionVariableCS((a), (b), INFINITE)
+#define ZSTD_pthread_cond_signal(a) WakeConditionVariable((a))
+#define ZSTD_pthread_cond_broadcast(a) WakeAllConditionVariable((a))
+
+/* ZSTD_pthread_create() and ZSTD_pthread_join() */
+typedef struct {
+ HANDLE handle;
+ void* (*start_routine)(void*);
+ void* arg;
+} ZSTD_pthread_t;
+
+int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused,
+ void* (*start_routine) (void*), void* arg);
+
+int ZSTD_pthread_join(ZSTD_pthread_t thread, void** value_ptr);
+
+/**
+ * add here more wrappers as required
+ */
+
+
+#elif defined(ZSTD_MULTITHREAD) /* posix assumed ; need a better detection method */
+/* === POSIX Systems === */
+# include <pthread.h>
+
+#define ZSTD_pthread_mutex_t pthread_mutex_t
+#define ZSTD_pthread_mutex_init(a, b) pthread_mutex_init((a), (b))
+#define ZSTD_pthread_mutex_destroy(a) pthread_mutex_destroy((a))
+#define ZSTD_pthread_mutex_lock(a) pthread_mutex_lock((a))
+#define ZSTD_pthread_mutex_unlock(a) pthread_mutex_unlock((a))
+
+#define ZSTD_pthread_cond_t pthread_cond_t
+#define ZSTD_pthread_cond_init(a, b) pthread_cond_init((a), (b))
+#define ZSTD_pthread_cond_destroy(a) pthread_cond_destroy((a))
+#define ZSTD_pthread_cond_wait(a, b) pthread_cond_wait((a), (b))
+#define ZSTD_pthread_cond_signal(a) pthread_cond_signal((a))
+#define ZSTD_pthread_cond_broadcast(a) pthread_cond_broadcast((a))
+
+#define ZSTD_pthread_t pthread_t
+#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d))
+#define ZSTD_pthread_join(a, b) pthread_join((a),(b))
+
+#else /* ZSTD_MULTITHREAD not defined */
+/* No multithreading support */
+
+typedef int ZSTD_pthread_mutex_t;
+#define ZSTD_pthread_mutex_init(a, b) ((void)(a), (void)(b), 0)
+#define ZSTD_pthread_mutex_destroy(a) ((void)(a))
+#define ZSTD_pthread_mutex_lock(a) ((void)(a))
+#define ZSTD_pthread_mutex_unlock(a) ((void)(a))
+
+typedef int ZSTD_pthread_cond_t;
+#define ZSTD_pthread_cond_init(a, b) ((void)(a), (void)(b), 0)
+#define ZSTD_pthread_cond_destroy(a) ((void)(a))
+#define ZSTD_pthread_cond_wait(a, b) ((void)(a), (void)(b))
+#define ZSTD_pthread_cond_signal(a) ((void)(a))
+#define ZSTD_pthread_cond_broadcast(a) ((void)(a))
+
+/* do not use ZSTD_pthread_t */
+
+#endif /* ZSTD_MULTITHREAD */
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* THREADING_H_938743 */
diff --git a/vendor/github.com/DataDog/zstd/travis_test_32.sh b/vendor/github.com/DataDog/zstd/travis_test_32.sh
new file mode 100644
index 0000000..d29c86c
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/travis_test_32.sh
@@ -0,0 +1,18 @@
+#!/bin/bash
+# Get utilities
+yum -y -q -e 0 install wget tar unzip gcc
+
+# Get Go
+wget -q https://dl.google.com/go/go1.11.1.linux-386.tar.gz
+tar -C /usr/local -xzf go1.11.1.linux-386.tar.gz
+export PATH=$PATH:/usr/local/go/bin
+
+# Get payload
+wget -q https://github.com/DataDog/zstd/files/2246767/mr.zip
+unzip mr.zip
+
+# Build and run tests
+cd zstd
+go build
+PAYLOAD=$(pwd)/mr go test -v
+PAYLOAD=$(pwd)/mr go test -bench .
diff --git a/vendor/github.com/DataDog/zstd/update.txt b/vendor/github.com/DataDog/zstd/update.txt
new file mode 100644
index 0000000..1de939f
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/update.txt
@@ -0,0 +1,56 @@
+./lib/common/bitstream.h
+./lib/common/compiler.h
+./lib/compress/zstd_compress_internal.h
+./lib/compress/zstd_fast.h
+./lib/compress/zstd_double_fast.h
+./lib/compress/zstd_lazy.h
+./lib/compress/zstd_ldm.h
+./lib/dictBuilder/cover.c
+./lib/dictBuilder/divsufsort.c
+./lib/dictBuilder/divsufsort.h
+./lib/common/entropy_common.c
+./lib/common/error_private.c
+./lib/common/error_private.h
+./lib/compress/fse_compress.c
+./lib/common/fse_decompress.c
+./lib/common/fse.h
+./lib/compress/huf_compress.c
+./lib/decompress/huf_decompress.c
+./lib/common/huf.h
+./lib/common/mem.h
+./lib/common/pool.c
+./lib/common/pool.h
+./lib/common/threading.c
+./lib/common/threading.h
+./lib/common/xxhash.c
+./lib/common/xxhash.h
+./lib/deprecated/zbuff_common.c
+./lib/deprecated/zbuff_compress.c
+./lib/deprecated/zbuff_decompress.c
+./lib/deprecated/zbuff.h
+./lib/dictBuilder/zdict.c
+./lib/dictBuilder/zdict.h
+./lib/common/zstd_common.c
+./lib/compress/zstd_compress.c
+./lib/decompress/zstd_decompress.c
+./lib/common/zstd_errors.h
+./lib/zstd.h
+./lib/common/zstd_internal.h
+./lib/legacy/zstd_legacy.h
+./lib/compress/zstd_opt.c
+./lib/compress/zstd_opt.h
+./lib/legacy/zstd_v01.c
+./lib/legacy/zstd_v01.h
+./lib/legacy/zstd_v02.c
+./lib/legacy/zstd_v02.h
+./lib/legacy/zstd_v03.c
+./lib/legacy/zstd_v03.h
+./lib/legacy/zstd_v04.c
+./lib/legacy/zstd_v04.h
+./lib/legacy/zstd_v05.c
+./lib/legacy/zstd_v05.h
+./lib/legacy/zstd_v06.c
+./lib/legacy/zstd_v06.h
+./lib/legacy/zstd_v07.c
+./lib/legacy/zstd_v07.h
+
diff --git a/vendor/github.com/DataDog/zstd/xxhash.c b/vendor/github.com/DataDog/zstd/xxhash.c
new file mode 100644
index 0000000..30599aa
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/xxhash.c
@@ -0,0 +1,876 @@
+/*
+* xxHash - Fast Hash algorithm
+* Copyright (C) 2012-2016, Yann Collet
+*
+* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions are
+* met:
+*
+* * Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* * Redistributions in binary form must reproduce the above
+* copyright notice, this list of conditions and the following disclaimer
+* in the documentation and/or other materials provided with the
+* distribution.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*
+* You can contact the author at :
+* - xxHash homepage: http://www.xxhash.com
+* - xxHash source repository : https://github.com/Cyan4973/xxHash
+*/
+
+
+/* *************************************
+* Tuning parameters
+***************************************/
+/*!XXH_FORCE_MEMORY_ACCESS :
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
+ * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
+ * It can generate buggy code on targets which do not support unaligned memory accesses.
+ * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
+ * See http://stackoverflow.com/a/32095106/646947 for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
+# define XXH_FORCE_MEMORY_ACCESS 2
+# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
+ (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# define XXH_FORCE_MEMORY_ACCESS 1
+# endif
+#endif
+
+/*!XXH_ACCEPT_NULL_INPUT_POINTER :
+ * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
+ * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
+ * By default, this option is disabled. To enable it, uncomment below define :
+ */
+/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
+
+/*!XXH_FORCE_NATIVE_FORMAT :
+ * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
+ * Results are therefore identical for little-endian and big-endian CPU.
+ * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
+ * Should endian-independence be of no importance for your application, you may set the #define below to 1,
+ * to improve speed for Big-endian CPU.
+ * This option has no impact on Little_Endian CPU.
+ */
+#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
+# define XXH_FORCE_NATIVE_FORMAT 0
+#endif
+
+/*!XXH_FORCE_ALIGN_CHECK :
+ * This is a minor performance trick, only useful with lots of very small keys.
+ * It means : check for aligned/unaligned input.
+ * The check costs one initial branch per hash; set to 0 when the input data
+ * is guaranteed to be aligned.
+ */
+#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
+# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
+# define XXH_FORCE_ALIGN_CHECK 0
+# else
+# define XXH_FORCE_ALIGN_CHECK 1
+# endif
+#endif
+
+
+/* *************************************
+* Includes & Memory related functions
+***************************************/
+/* Modify the local functions below should you wish to use some other memory routines */
+/* for malloc(), free() */
+#include <stdlib.h>
+#include <stddef.h> /* size_t */
+static void* XXH_malloc(size_t s) { return malloc(s); }
+static void XXH_free (void* p) { free(p); }
+/* for memcpy() */
+#include <string.h>
+static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
+
+#ifndef XXH_STATIC_LINKING_ONLY
+# define XXH_STATIC_LINKING_ONLY
+#endif
+#include "xxhash.h"
+
+
+/* *************************************
+* Compiler Specific Options
+***************************************/
+#if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# define INLINE_KEYWORD inline
+#else
+# define INLINE_KEYWORD
+#endif
+
+#if defined(__GNUC__)
+# define FORCE_INLINE_ATTR __attribute__((always_inline))
+#elif defined(_MSC_VER)
+# define FORCE_INLINE_ATTR __forceinline
+#else
+# define FORCE_INLINE_ATTR
+#endif
+
+#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
+
+
+#ifdef _MSC_VER
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+#endif
+
+
+/* *************************************
+* Basic Types
+***************************************/
+#ifndef MEM_MODULE
+# define MEM_MODULE
+# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+# include <stdint.h>
+ typedef uint8_t BYTE;
+ typedef uint16_t U16;
+ typedef uint32_t U32;
+ typedef int32_t S32;
+ typedef uint64_t U64;
+# else
+ typedef unsigned char BYTE;
+ typedef unsigned short U16;
+ typedef unsigned int U32;
+ typedef signed int S32;
+ typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
+# endif
+#endif
+
+
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
+
+/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
+static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
+static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
+
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
+
+static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
+
+#else
+
+/* portable and safe solution. Generally efficient.
+ * see : http://stackoverflow.com/a/32095106/646947
+ */
+
+static U32 XXH_read32(const void* memPtr)
+{
+ U32 val;
+ memcpy(&val, memPtr, sizeof(val));
+ return val;
+}
+
+static U64 XXH_read64(const void* memPtr)
+{
+ U64 val;
+ memcpy(&val, memPtr, sizeof(val));
+ return val;
+}
+
+#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
+
+
+/* ****************************************
+* Compiler-specific Functions and Macros
+******************************************/
+#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+
+/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
+#if defined(_MSC_VER)
+# define XXH_rotl32(x,r) _rotl(x,r)
+# define XXH_rotl64(x,r) _rotl64(x,r)
+#else
+# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
+# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
+#endif
+
+#if defined(_MSC_VER) /* Visual Studio */
+# define XXH_swap32 _byteswap_ulong
+# define XXH_swap64 _byteswap_uint64
+#elif GCC_VERSION >= 403
+# define XXH_swap32 __builtin_bswap32
+# define XXH_swap64 __builtin_bswap64
+#else
+static U32 XXH_swap32 (U32 x)
+{
+ return ((x << 24) & 0xff000000 ) |
+ ((x << 8) & 0x00ff0000 ) |
+ ((x >> 8) & 0x0000ff00 ) |
+ ((x >> 24) & 0x000000ff );
+}
+static U64 XXH_swap64 (U64 x)
+{
+ return ((x << 56) & 0xff00000000000000ULL) |
+ ((x << 40) & 0x00ff000000000000ULL) |
+ ((x << 24) & 0x0000ff0000000000ULL) |
+ ((x << 8) & 0x000000ff00000000ULL) |
+ ((x >> 8) & 0x00000000ff000000ULL) |
+ ((x >> 24) & 0x0000000000ff0000ULL) |
+ ((x >> 40) & 0x000000000000ff00ULL) |
+ ((x >> 56) & 0x00000000000000ffULL);
+}
+#endif
+
+
+/* *************************************
+* Architecture Macros
+***************************************/
+typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
+
+/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
+#ifndef XXH_CPU_LITTLE_ENDIAN
+ static const int g_one = 1;
+# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
+#endif
+
+
+/* ***************************
+* Memory reads
+*****************************/
+typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
+
+FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
+{
+ if (align==XXH_unaligned)
+ return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
+ else
+ return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
+}
+
+FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
+{
+ return XXH_readLE32_align(ptr, endian, XXH_unaligned);
+}
+
+static U32 XXH_readBE32(const void* ptr)
+{
+ return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
+}
+
+FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
+{
+ if (align==XXH_unaligned)
+ return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
+ else
+ return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
+}
+
+FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
+{
+ return XXH_readLE64_align(ptr, endian, XXH_unaligned);
+}
+
+static U64 XXH_readBE64(const void* ptr)
+{
+ return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
+}
+
+
+/* *************************************
+* Macros
+***************************************/
+#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+/* *************************************
+* Constants
+***************************************/
+static const U32 PRIME32_1 = 2654435761U;
+static const U32 PRIME32_2 = 2246822519U;
+static const U32 PRIME32_3 = 3266489917U;
+static const U32 PRIME32_4 = 668265263U;
+static const U32 PRIME32_5 = 374761393U;
+
+static const U64 PRIME64_1 = 11400714785074694791ULL;
+static const U64 PRIME64_2 = 14029467366897019727ULL;
+static const U64 PRIME64_3 = 1609587929392839161ULL;
+static const U64 PRIME64_4 = 9650029242287828579ULL;
+static const U64 PRIME64_5 = 2870177450012600261ULL;
+
+XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
+
+
+/* **************************
+* Utils
+****************************/
+XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
+{
+ memcpy(dstState, srcState, sizeof(*dstState));
+}
+
+XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
+{
+ memcpy(dstState, srcState, sizeof(*dstState));
+}
+
+
+/* ***************************
+* Simple Hash Functions
+*****************************/
+
+static U32 XXH32_round(U32 seed, U32 input)
+{
+ seed += input * PRIME32_2;
+ seed = XXH_rotl32(seed, 13);
+ seed *= PRIME32_1;
+ return seed;
+}
+
+FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
+{
+ const BYTE* p = (const BYTE*)input;
+ const BYTE* bEnd = p + len;
+ U32 h32;
+#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+ if (p==NULL) {
+ len=0;
+ bEnd=p=(const BYTE*)(size_t)16;
+ }
+#endif
+
+ if (len>=16) {
+ const BYTE* const limit = bEnd - 16;
+ U32 v1 = seed + PRIME32_1 + PRIME32_2;
+ U32 v2 = seed + PRIME32_2;
+ U32 v3 = seed + 0;
+ U32 v4 = seed - PRIME32_1;
+
+ do {
+ v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
+ v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
+ v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
+ v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
+ } while (p<=limit);
+
+ h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
+ } else {
+ h32 = seed + PRIME32_5;
+ }
+
+ h32 += (U32) len;
+
+ while (p+4<=bEnd) {
+ h32 += XXH_get32bits(p) * PRIME32_3;
+ h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
+ p+=4;
+ }
+
+ while (p<bEnd) {
+ h32 += (*p) * PRIME32_5;
+ h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
+ p++;
+ }
+
+ h32 ^= h32 >> 15;
+ h32 *= PRIME32_2;
+ h32 ^= h32 >> 13;
+ h32 *= PRIME32_3;
+ h32 ^= h32 >> 16;
+
+ return h32;
+}
+
+
+XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
+{
+#if 0
+ /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
+ XXH32_CREATESTATE_STATIC(state);
+ XXH32_reset(state, seed);
+ XXH32_update(state, input, len);
+ return XXH32_digest(state);
+#else
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if (XXH_FORCE_ALIGN_CHECK) {
+ if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
+ else
+ return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
+ } }
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
+ else
+ return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
+#endif
+}
+
+
+static U64 XXH64_round(U64 acc, U64 input)
+{
+ acc += input * PRIME64_2;
+ acc = XXH_rotl64(acc, 31);
+ acc *= PRIME64_1;
+ return acc;
+}
+
+static U64 XXH64_mergeRound(U64 acc, U64 val)
+{
+ val = XXH64_round(0, val);
+ acc ^= val;
+ acc = acc * PRIME64_1 + PRIME64_4;
+ return acc;
+}
+
+FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
+{
+ const BYTE* p = (const BYTE*)input;
+ const BYTE* const bEnd = p + len;
+ U64 h64;
+#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+ if (p==NULL) {
+ len=0;
+ bEnd=p=(const BYTE*)(size_t)32;
+ }
+#endif
+
+ if (len>=32) {
+ const BYTE* const limit = bEnd - 32;
+ U64 v1 = seed + PRIME64_1 + PRIME64_2;
+ U64 v2 = seed + PRIME64_2;
+ U64 v3 = seed + 0;
+ U64 v4 = seed - PRIME64_1;
+
+ do {
+ v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
+ v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
+ v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
+ v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
+ } while (p<=limit);
+
+ h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+ h64 = XXH64_mergeRound(h64, v1);
+ h64 = XXH64_mergeRound(h64, v2);
+ h64 = XXH64_mergeRound(h64, v3);
+ h64 = XXH64_mergeRound(h64, v4);
+
+ } else {
+ h64 = seed + PRIME64_5;
+ }
+
+ h64 += (U64) len;
+
+ while (p+8<=bEnd) {
+ U64 const k1 = XXH64_round(0, XXH_get64bits(p));
+ h64 ^= k1;
+ h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
+ p+=8;
+ }
+
+ if (p+4<=bEnd) {
+ h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
+ h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
+ p+=4;
+ }
+
+ while (p<bEnd) {
+ h64 ^= (*p) * PRIME64_5;
+ h64 = XXH_rotl64(h64, 11) * PRIME64_1;
+ p++;
+ }
+
+ h64 ^= h64 >> 33;
+ h64 *= PRIME64_2;
+ h64 ^= h64 >> 29;
+ h64 *= PRIME64_3;
+ h64 ^= h64 >> 32;
+
+ return h64;
+}
+
+
+XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
+{
+#if 0
+ /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
+ XXH64_CREATESTATE_STATIC(state);
+ XXH64_reset(state, seed);
+ XXH64_update(state, input, len);
+ return XXH64_digest(state);
+#else
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if (XXH_FORCE_ALIGN_CHECK) {
+ if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
+ else
+ return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
+ } }
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
+ else
+ return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
+#endif
+}
+
+
+/* **************************************************
+* Advanced Hash Functions
+****************************************************/
+
+XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
+{
+ return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
+}
+XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
+{
+ XXH_free(statePtr);
+ return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
+{
+ return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
+}
+XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
+{
+ XXH_free(statePtr);
+ return XXH_OK;
+}
+
+
+/*** Hash feed ***/
+
+XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
+{
+ XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
+ memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
+ state.v1 = seed + PRIME32_1 + PRIME32_2;
+ state.v2 = seed + PRIME32_2;
+ state.v3 = seed + 0;
+ state.v4 = seed - PRIME32_1;
+ memcpy(statePtr, &state, sizeof(state));
+ return XXH_OK;
+}
+
+
+XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
+{
+ XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
+ memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
+ state.v1 = seed + PRIME64_1 + PRIME64_2;
+ state.v2 = seed + PRIME64_2;
+ state.v3 = seed + 0;
+ state.v4 = seed - PRIME64_1;
+ memcpy(statePtr, &state, sizeof(state));
+ return XXH_OK;
+}
+
+
+FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
+{
+ const BYTE* p = (const BYTE*)input;
+ const BYTE* const bEnd = p + len;
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+ if (input==NULL) return XXH_ERROR;
+#endif
+
+ state->total_len_32 += (unsigned)len;
+ state->large_len |= (len>=16) | (state->total_len_32>=16);
+
+ if (state->memsize + len < 16) { /* fill in tmp buffer */
+ XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
+ state->memsize += (unsigned)len;
+ return XXH_OK;
+ }
+
+ if (state->memsize) { /* some data left from previous update */
+ XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
+ { const U32* p32 = state->mem32;
+ state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
+ state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
+ state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
+ state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
+ }
+ p += 16-state->memsize;
+ state->memsize = 0;
+ }
+
+ if (p <= bEnd-16) {
+ const BYTE* const limit = bEnd - 16;
+ U32 v1 = state->v1;
+ U32 v2 = state->v2;
+ U32 v3 = state->v3;
+ U32 v4 = state->v4;
+
+ do {
+ v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
+ v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
+ v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
+ v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
+ } while (p<=limit);
+
+ state->v1 = v1;
+ state->v2 = v2;
+ state->v3 = v3;
+ state->v4 = v4;
+ }
+
+ if (p < bEnd) {
+ XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
+ state->memsize = (unsigned)(bEnd-p);
+ }
+
+ return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
+ else
+ return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
+}
+
+
+
+FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
+{
+ const BYTE * p = (const BYTE*)state->mem32;
+ const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
+ U32 h32;
+
+ if (state->large_len) {
+ h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
+ } else {
+ h32 = state->v3 /* == seed */ + PRIME32_5;
+ }
+
+ h32 += state->total_len_32;
+
+ while (p+4<=bEnd) {
+ h32 += XXH_readLE32(p, endian) * PRIME32_3;
+ h32 = XXH_rotl32(h32, 17) * PRIME32_4;
+ p+=4;
+ }
+
+ while (p<bEnd) {
+ h32 += (*p) * PRIME32_5;
+ h32 = XXH_rotl32(h32, 11) * PRIME32_1;
+ p++;
+ }
+
+ h32 ^= h32 >> 15;
+ h32 *= PRIME32_2;
+ h32 ^= h32 >> 13;
+ h32 *= PRIME32_3;
+ h32 ^= h32 >> 16;
+
+ return h32;
+}
+
+
+XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH32_digest_endian(state_in, XXH_littleEndian);
+ else
+ return XXH32_digest_endian(state_in, XXH_bigEndian);
+}
+
+
+
+/* **** XXH64 **** */
+
+FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
+{
+ const BYTE* p = (const BYTE*)input;
+ const BYTE* const bEnd = p + len;
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+ if (input==NULL) return XXH_ERROR;
+#endif
+
+ state->total_len += len;
+
+ if (state->memsize + len < 32) { /* fill in tmp buffer */
+ XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
+ state->memsize += (U32)len;
+ return XXH_OK;
+ }
+
+ if (state->memsize) { /* tmp buffer is full */
+ XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
+ state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
+ state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
+ state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
+ state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
+ p += 32-state->memsize;
+ state->memsize = 0;
+ }
+
+ if (p+32 <= bEnd) {
+ const BYTE* const limit = bEnd - 32;
+ U64 v1 = state->v1;
+ U64 v2 = state->v2;
+ U64 v3 = state->v3;
+ U64 v4 = state->v4;
+
+ do {
+ v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
+ v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
+ v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
+ v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
+ } while (p<=limit);
+
+ state->v1 = v1;
+ state->v2 = v2;
+ state->v3 = v3;
+ state->v4 = v4;
+ }
+
+ if (p < bEnd) {
+ XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
+ state->memsize = (unsigned)(bEnd-p);
+ }
+
+ return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
+ else
+ return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
+}
+
+
+
+FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
+{
+ const BYTE * p = (const BYTE*)state->mem64;
+ const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
+ U64 h64;
+
+ if (state->total_len >= 32) {
+ U64 const v1 = state->v1;
+ U64 const v2 = state->v2;
+ U64 const v3 = state->v3;
+ U64 const v4 = state->v4;
+
+ h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+ h64 = XXH64_mergeRound(h64, v1);
+ h64 = XXH64_mergeRound(h64, v2);
+ h64 = XXH64_mergeRound(h64, v3);
+ h64 = XXH64_mergeRound(h64, v4);
+ } else {
+ h64 = state->v3 + PRIME64_5;
+ }
+
+ h64 += (U64) state->total_len;
+
+ while (p+8<=bEnd) {
+ U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
+ h64 ^= k1;
+ h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
+ p+=8;
+ }
+
+ if (p+4<=bEnd) {
+ h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
+ h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
+ p+=4;
+ }
+
+ while (p<bEnd) {
+ h64 ^= (*p) * PRIME64_5;
+ h64 = XXH_rotl64(h64, 11) * PRIME64_1;
+ p++;
+ }
+
+ h64 ^= h64 >> 33;
+ h64 *= PRIME64_2;
+ h64 ^= h64 >> 29;
+ h64 *= PRIME64_3;
+ h64 ^= h64 >> 32;
+
+ return h64;
+}
+
+
+XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH64_digest_endian(state_in, XXH_littleEndian);
+ else
+ return XXH64_digest_endian(state_in, XXH_bigEndian);
+}
+
+
+/* **************************
+* Canonical representation
+****************************/
+
+/*! Default XXH result types are basic unsigned 32 and 64 bits.
+* The canonical representation follows human-readable write convention, aka big-endian (large digits first).
+* These functions allow transformation of hash result into and from its canonical format.
+* This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
+*/
+
+XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
+{
+ XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
+ if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
+ memcpy(dst, &hash, sizeof(*dst));
+}
+
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
+{
+ XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
+ if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
+ memcpy(dst, &hash, sizeof(*dst));
+}
+
+XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
+{
+ return XXH_readBE32(src);
+}
+
+XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
+{
+ return XXH_readBE64(src);
+}
diff --git a/vendor/github.com/DataDog/zstd/xxhash.h b/vendor/github.com/DataDog/zstd/xxhash.h
new file mode 100644
index 0000000..9bad1f5
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/xxhash.h
@@ -0,0 +1,305 @@
+/*
+ xxHash - Extremely Fast Hash algorithm
+ Header File
+ Copyright (C) 2012-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - xxHash source repository : https://github.com/Cyan4973/xxHash
+*/
+
+/* Notice extracted from xxHash homepage :
+
+xxHash is an extremely fast Hash algorithm, running at RAM speed limits.
+It also successfully passes all tests from the SMHasher suite.
+
+Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
+
+Name Speed Q.Score Author
+xxHash 5.4 GB/s 10
+CrapWow 3.2 GB/s 2 Andrew
+MumurHash 3a 2.7 GB/s 10 Austin Appleby
+SpookyHash 2.0 GB/s 10 Bob Jenkins
+SBox 1.4 GB/s 9 Bret Mulvey
+Lookup3 1.2 GB/s 9 Bob Jenkins
+SuperFastHash 1.2 GB/s 1 Paul Hsieh
+CityHash64 1.05 GB/s 10 Pike & Alakuijala
+FNV 0.55 GB/s 5 Fowler, Noll, Vo
+CRC32 0.43 GB/s 9
+MD5-32 0.33 GB/s 10 Ronald L. Rivest
+SHA1-32 0.28 GB/s 10
+
+Q.Score is a measure of quality of the hash function.
+It depends on successfully passing SMHasher test set.
+10 is a perfect score.
+
+A 64-bits version, named XXH64, is available since r35.
+It offers much better speed, but for 64-bits applications only.
+Name Speed on 64 bits Speed on 32 bits
+XXH64 13.8 GB/s 1.9 GB/s
+XXH32 6.8 GB/s 6.0 GB/s
+*/
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#ifndef XXHASH_H_5627135585666179
+#define XXHASH_H_5627135585666179 1
+
+
+/* ****************************
+* Definitions
+******************************/
+#include <stddef.h> /* size_t */
+typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
+
+
+/* ****************************
+* API modifier
+******************************/
+/** XXH_PRIVATE_API
+* This is useful if you want to include xxhash functions in `static` mode
+* in order to inline them, and remove their symbol from the public list.
+* Methodology :
+* #define XXH_PRIVATE_API
+* #include "xxhash.h"
+* `xxhash.c` is automatically included.
+* It's not useful to compile and link it as a separate module anymore.
+*/
+#ifdef XXH_PRIVATE_API
+# ifndef XXH_STATIC_LINKING_ONLY
+# define XXH_STATIC_LINKING_ONLY
+# endif
+# if defined(__GNUC__)
+# define XXH_PUBLIC_API static __inline __attribute__((unused))
+# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define XXH_PUBLIC_API static inline
+# elif defined(_MSC_VER)
+# define XXH_PUBLIC_API static __inline
+# else
+# define XXH_PUBLIC_API static /* this version may generate warnings for unused static functions; disable the relevant warning */
+# endif
+#else
+# define XXH_PUBLIC_API /* do nothing */
+#endif /* XXH_PRIVATE_API */
+
+/*!XXH_NAMESPACE, aka Namespace Emulation :
+
+If you want to include _and expose_ xxHash functions from within your own library,
+but also want to avoid symbol collisions with another library which also includes xxHash,
+
+you can use XXH_NAMESPACE, to automatically prefix any public symbol from xxhash library
+with the value of XXH_NAMESPACE (so avoid to keep it NULL and avoid numeric values).
+
+Note that no change is required within the calling program as long as it includes `xxhash.h` :
+regular symbol name will be automatically translated by this header.
+*/
+#ifdef XXH_NAMESPACE
+# define XXH_CAT(A,B) A##B
+# define XXH_NAME2(A,B) XXH_CAT(A,B)
+# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
+# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
+# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
+# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
+# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
+# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
+# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
+# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
+# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
+# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
+# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
+# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
+# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
+# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
+# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
+# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
+# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
+# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
+# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
+#endif
+
+
+/* *************************************
+* Version
+***************************************/
+#define XXH_VERSION_MAJOR 0
+#define XXH_VERSION_MINOR 6
+#define XXH_VERSION_RELEASE 2
+#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
+XXH_PUBLIC_API unsigned XXH_versionNumber (void);
+
+
+/* ****************************
+* Simple Hash Functions
+******************************/
+typedef unsigned int XXH32_hash_t;
+typedef unsigned long long XXH64_hash_t;
+
+XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, unsigned int seed);
+XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, unsigned long long seed);
+
+/*!
+XXH32() :
+ Calculate the 32-bits hash of sequence "length" bytes stored at memory address "input".
+ The memory between input & input+length must be valid (allocated and read-accessible).
+ "seed" can be used to alter the result predictably.
+ Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s
+XXH64() :
+ Calculate the 64-bits hash of sequence of length "len" stored at memory address "input".
+ "seed" can be used to alter the result predictably.
+ This function runs 2x faster on 64-bits systems, but slower on 32-bits systems (see benchmark).
+*/
+
+
+/* ****************************
+* Streaming Hash Functions
+******************************/
+typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */
+typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
+
+/*! State allocation, compatible with dynamic libraries */
+
+XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
+XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
+
+XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
+XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
+
+
+/* hash streaming */
+
+XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, unsigned int seed);
+XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
+XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
+
+XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, unsigned long long seed);
+XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
+XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
+
+/*
+These functions generate the xxHash of an input provided in multiple segments.
+Note that, for small input, they are slower than single-call functions, due to state management.
+For small input, prefer `XXH32()` and `XXH64()` .
+
+XXH state must first be allocated, using XXH*_createState() .
+
+Start a new hash by initializing state with a seed, using XXH*_reset().
+
+Then, feed the hash state by calling XXH*_update() as many times as necessary.
+Obviously, input must be allocated and read accessible.
+The function returns an error code, with 0 meaning OK, and any other value meaning there is an error.
+
+Finally, a hash value can be produced anytime, by using XXH*_digest().
+This function returns the nn-bits hash as an int or long long.
+
+It's still possible to continue inserting input into the hash state after a digest,
+and generate some new hashes later on, by calling again XXH*_digest().
+
+When done, free XXH state space if it was allocated dynamically.
+*/
+
+
+/* **************************
+* Utils
+****************************/
+#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* ! C99 */
+# define restrict /* disable restrict */
+#endif
+
+XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dst_state, const XXH32_state_t* restrict src_state);
+XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dst_state, const XXH64_state_t* restrict src_state);
+
+
+/* **************************
+* Canonical representation
+****************************/
+/* Default result type for XXH functions are primitive unsigned 32 and 64 bits.
+* The canonical representation uses human-readable write convention, aka big-endian (large digits first).
+* These functions allow transformation of hash result into and from its canonical format.
+* This way, hash values can be written into a file / memory, and remain comparable on different systems and programs.
+*/
+typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
+typedef struct { unsigned char digest[8]; } XXH64_canonical_t;
+
+XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
+
+XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
+XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
+
+#endif /* XXHASH_H_5627135585666179 */
+
+
+
+/* ================================================================================================
+ This section contains definitions which are not guaranteed to remain stable.
+ They may change in future versions, becoming incompatible with a different version of the library.
+ They shall only be used with static linking.
+ Never use these definitions in association with dynamic linking !
+=================================================================================================== */
+#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXH_STATIC_H_3543687687345)
+#define XXH_STATIC_H_3543687687345
+
+/* These definitions are only meant to allow allocation of XXH state
+ statically, on stack, or in a struct for example.
+ Do not use members directly. */
+
+ struct XXH32_state_s {
+ unsigned total_len_32;
+ unsigned large_len;
+ unsigned v1;
+ unsigned v2;
+ unsigned v3;
+ unsigned v4;
+ unsigned mem32[4]; /* buffer defined as U32 for alignment */
+ unsigned memsize;
+ unsigned reserved; /* never read nor write, will be removed in a future version */
+ }; /* typedef'd to XXH32_state_t */
+
+ struct XXH64_state_s {
+ unsigned long long total_len;
+ unsigned long long v1;
+ unsigned long long v2;
+ unsigned long long v3;
+ unsigned long long v4;
+ unsigned long long mem64[4]; /* buffer defined as U64 for alignment */
+ unsigned memsize;
+ unsigned reserved[2]; /* never read nor write, will be removed in a future version */
+ }; /* typedef'd to XXH64_state_t */
+
+
+# ifdef XXH_PRIVATE_API
+# include "xxhash.c" /* include xxhash functions as `static`, for inlining */
+# endif
+
+#endif /* XXH_STATIC_LINKING_ONLY && XXH_STATIC_H_3543687687345 */
+
+
+#if defined (__cplusplus)
+}
+#endif
diff --git a/vendor/github.com/DataDog/zstd/zbuff.h b/vendor/github.com/DataDog/zstd/zbuff.h
new file mode 100644
index 0000000..a93115d
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zbuff.h
@@ -0,0 +1,213 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/* ***************************************************************
+* NOTES/WARNINGS
+******************************************************************/
+/* The streaming API defined here is deprecated.
+ * Consider migrating towards ZSTD_compressStream() API in `zstd.h`
+ * See 'lib/README.md'.
+ *****************************************************************/
+
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#ifndef ZSTD_BUFFERED_H_23987
+#define ZSTD_BUFFERED_H_23987
+
+/* *************************************
+* Dependencies
+***************************************/
+#include <stddef.h> /* size_t */
+#include "zstd.h" /* ZSTD_CStream, ZSTD_DStream, ZSTDLIB_API */
+
+
+/* ***************************************************************
+* Compiler specifics
+*****************************************************************/
+/* Deprecation warnings */
+/* Should these warnings be a problem,
+ it is generally possible to disable them,
+ typically with -Wno-deprecated-declarations for gcc
+ or _CRT_SECURE_NO_WARNINGS in Visual.
+ Otherwise, it's also possible to define ZBUFF_DISABLE_DEPRECATE_WARNINGS */
+#ifdef ZBUFF_DISABLE_DEPRECATE_WARNINGS
+# define ZBUFF_DEPRECATED(message) ZSTDLIB_API /* disable deprecation warnings */
+#else
+# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
+# define ZBUFF_DEPRECATED(message) [[deprecated(message)]] ZSTDLIB_API
+# elif (defined(__GNUC__) && (__GNUC__ >= 5)) || defined(__clang__)
+# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated(message)))
+# elif defined(__GNUC__) && (__GNUC__ >= 3)
+# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated))
+# elif defined(_MSC_VER)
+# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __declspec(deprecated(message))
+# else
+# pragma message("WARNING: You need to implement ZBUFF_DEPRECATED for this compiler")
+# define ZBUFF_DEPRECATED(message) ZSTDLIB_API
+# endif
+#endif /* ZBUFF_DISABLE_DEPRECATE_WARNINGS */
+
+
+/* *************************************
+* Streaming functions
+***************************************/
+/* This is the easier "buffered" streaming API,
+* using an internal buffer to lift all restrictions on user-provided buffers
+* which can be any size, any place, for both input and output.
+* ZBUFF and ZSTD are 100% interoperable,
+* frames created by one can be decoded by the other one */
+
+typedef ZSTD_CStream ZBUFF_CCtx;
+ZBUFF_DEPRECATED("use ZSTD_createCStream") ZBUFF_CCtx* ZBUFF_createCCtx(void);
+ZBUFF_DEPRECATED("use ZSTD_freeCStream") size_t ZBUFF_freeCCtx(ZBUFF_CCtx* cctx);
+
+ZBUFF_DEPRECATED("use ZSTD_initCStream") size_t ZBUFF_compressInit(ZBUFF_CCtx* cctx, int compressionLevel);
+ZBUFF_DEPRECATED("use ZSTD_initCStream_usingDict") size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
+
+ZBUFF_DEPRECATED("use ZSTD_compressStream") size_t ZBUFF_compressContinue(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr, const void* src, size_t* srcSizePtr);
+ZBUFF_DEPRECATED("use ZSTD_flushStream") size_t ZBUFF_compressFlush(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
+ZBUFF_DEPRECATED("use ZSTD_endStream") size_t ZBUFF_compressEnd(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
+
+/*-*************************************************
+* Streaming compression - howto
+*
+* A ZBUFF_CCtx object is required to track streaming operation.
+* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
+* ZBUFF_CCtx objects can be reused multiple times.
+*
+* Start by initializing ZBUF_CCtx.
+* Use ZBUFF_compressInit() to start a new compression operation.
+* Use ZBUFF_compressInitDictionary() for a compression which requires a dictionary.
+*
+* Use ZBUFF_compressContinue() repetitively to consume input stream.
+* *srcSizePtr and *dstCapacityPtr can be any size.
+* The function will report how many bytes were read or written within *srcSizePtr and *dstCapacityPtr.
+* Note that it may not consume the entire input, in which case it's up to the caller to present again remaining data.
+* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each call, so save its content if it matters or change @dst .
+* @return : a hint to preferred nb of bytes to use as input for next function call (it's just a hint, to improve latency)
+* or an error code, which can be tested using ZBUFF_isError().
+*
+* At any moment, it's possible to flush whatever data remains within buffer, using ZBUFF_compressFlush().
+* The nb of bytes written into `dst` will be reported into *dstCapacityPtr.
+* Note that the function cannot output more than *dstCapacityPtr,
+* therefore, some content might still be left into internal buffer if *dstCapacityPtr is too small.
+* @return : nb of bytes still present into internal buffer (0 if it's empty)
+* or an error code, which can be tested using ZBUFF_isError().
+*
+* ZBUFF_compressEnd() instructs to finish a frame.
+* It will perform a flush and write frame epilogue.
+* The epilogue is required for decoders to consider a frame completed.
+* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
+* In which case, call again ZBUFF_compressFlush() to complete the flush.
+* @return : nb of bytes still present into internal buffer (0 if it's empty)
+* or an error code, which can be tested using ZBUFF_isError().
+*
+* Hint : _recommended buffer_ sizes (not compulsory) : ZBUFF_recommendedCInSize() / ZBUFF_recommendedCOutSize()
+* input : ZBUFF_recommendedCInSize==128 KB block size is the internal unit, use this value to reduce intermediate stages (better latency)
+* output : ZBUFF_recommendedCOutSize==ZSTD_compressBound(128 KB) + 3 + 3 : ensures it's always possible to write/flush/end a full block. Skip some buffering.
+* By using both, it ensures that input will be entirely consumed, and output will always contain the result, reducing intermediate buffering.
+* **************************************************/
+
+
+typedef ZSTD_DStream ZBUFF_DCtx;
+ZBUFF_DEPRECATED("use ZSTD_createDStream") ZBUFF_DCtx* ZBUFF_createDCtx(void);
+ZBUFF_DEPRECATED("use ZSTD_freeDStream") size_t ZBUFF_freeDCtx(ZBUFF_DCtx* dctx);
+
+ZBUFF_DEPRECATED("use ZSTD_initDStream") size_t ZBUFF_decompressInit(ZBUFF_DCtx* dctx);
+ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* dctx, const void* dict, size_t dictSize);
+
+ZBUFF_DEPRECATED("use ZSTD_decompressStream") size_t ZBUFF_decompressContinue(ZBUFF_DCtx* dctx,
+ void* dst, size_t* dstCapacityPtr,
+ const void* src, size_t* srcSizePtr);
+
+/*-***************************************************************************
+* Streaming decompression howto
+*
+* A ZBUFF_DCtx object is required to track streaming operations.
+* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
+* Use ZBUFF_decompressInit() to start a new decompression operation,
+* or ZBUFF_decompressInitDictionary() if decompression requires a dictionary.
+* Note that ZBUFF_DCtx objects can be re-init multiple times.
+*
+* Use ZBUFF_decompressContinue() repetitively to consume your input.
+* *srcSizePtr and *dstCapacityPtr can be any size.
+* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
+* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
+* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
+* @return : 0 when a frame is completely decoded and fully flushed,
+* 1 when there is still some data left within internal buffer to flush,
+* >1 when more data is expected, with value being a suggested next input size (it's just a hint, which helps latency),
+* or an error code, which can be tested using ZBUFF_isError().
+*
+* Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize() and ZBUFF_recommendedDOutSize()
+* output : ZBUFF_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
+* input : ZBUFF_recommendedDInSize == 128KB + 3;
+* just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
+* *******************************************************************************/
+
+
+/* *************************************
+* Tool functions
+***************************************/
+ZBUFF_DEPRECATED("use ZSTD_isError") unsigned ZBUFF_isError(size_t errorCode);
+ZBUFF_DEPRECATED("use ZSTD_getErrorName") const char* ZBUFF_getErrorName(size_t errorCode);
+
+/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
+* These sizes are just hints, they tend to offer better latency */
+ZBUFF_DEPRECATED("use ZSTD_CStreamInSize") size_t ZBUFF_recommendedCInSize(void);
+ZBUFF_DEPRECATED("use ZSTD_CStreamOutSize") size_t ZBUFF_recommendedCOutSize(void);
+ZBUFF_DEPRECATED("use ZSTD_DStreamInSize") size_t ZBUFF_recommendedDInSize(void);
+ZBUFF_DEPRECATED("use ZSTD_DStreamOutSize") size_t ZBUFF_recommendedDOutSize(void);
+
+#endif /* ZSTD_BUFFERED_H_23987 */
+
+
+#ifdef ZBUFF_STATIC_LINKING_ONLY
+#ifndef ZBUFF_STATIC_H_30298098432
+#define ZBUFF_STATIC_H_30298098432
+
+/* ====================================================================================
+ * The definitions in this section are considered experimental.
+ * They should never be used in association with a dynamic library, as they may change in the future.
+ * They are provided for advanced usages.
+ * Use them only in association with static linking.
+ * ==================================================================================== */
+
+/*--- Dependency ---*/
+#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters, ZSTD_customMem */
+#include "zstd.h"
+
+
+/*--- Custom memory allocator ---*/
+/*! ZBUFF_createCCtx_advanced() :
+ * Create a ZBUFF compression context using external alloc and free functions */
+ZBUFF_DEPRECATED("use ZSTD_createCStream_advanced") ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem);
+
+/*! ZBUFF_createDCtx_advanced() :
+ * Create a ZBUFF decompression context using external alloc and free functions */
+ZBUFF_DEPRECATED("use ZSTD_createDStream_advanced") ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem);
+
+
+/*--- Advanced Streaming Initialization ---*/
+ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
+ const void* dict, size_t dictSize,
+ ZSTD_parameters params, unsigned long long pledgedSrcSize);
+
+
+#endif /* ZBUFF_STATIC_H_30298098432 */
+#endif /* ZBUFF_STATIC_LINKING_ONLY */
+
+
+#if defined (__cplusplus)
+}
+#endif
diff --git a/vendor/github.com/DataDog/zstd/zbuff_common.c b/vendor/github.com/DataDog/zstd/zbuff_common.c
new file mode 100644
index 0000000..661b9b0
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zbuff_common.c
@@ -0,0 +1,26 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/*-*************************************
+* Dependencies
+***************************************/
+#include "error_private.h"
+#include "zbuff.h"
+
+/*-****************************************
+* ZBUFF Error Management (deprecated)
+******************************************/
+
+/*! ZBUFF_isError() :
+* tells if a return value is an error code */
+unsigned ZBUFF_isError(size_t errorCode) { return ERR_isError(errorCode); }
+/*! ZBUFF_getErrorName() :
+* provides error code string from function result (useful for debugging) */
+const char* ZBUFF_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
diff --git a/vendor/github.com/DataDog/zstd/zbuff_compress.c b/vendor/github.com/DataDog/zstd/zbuff_compress.c
new file mode 100644
index 0000000..f39c60d
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zbuff_compress.c
@@ -0,0 +1,147 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+
+/* *************************************
+* Dependencies
+***************************************/
+#define ZBUFF_STATIC_LINKING_ONLY
+#include "zbuff.h"
+
+
+/*-***********************************************************
+* Streaming compression
+*
+* A ZBUFF_CCtx object is required to track streaming operation.
+* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
+* Use ZBUFF_compressInit() to start a new compression operation.
+* ZBUFF_CCtx objects can be reused multiple times.
+*
+* Use ZBUFF_compressContinue() repetitively to consume your input.
+* *srcSizePtr and *dstCapacityPtr can be any size.
+* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
+* Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input.
+* The content of dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters or change dst .
+* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
+* or an error code, which can be tested using ZBUFF_isError().
+*
+* ZBUFF_compressFlush() can be used to instruct ZBUFF to compress and output whatever remains within its buffer.
+* Note that it will not output more than *dstCapacityPtr.
+* Therefore, some content might still be left into its internal buffer if dst buffer is too small.
+* @return : nb of bytes still present into internal buffer (0 if it's empty)
+* or an error code, which can be tested using ZBUFF_isError().
+*
+* ZBUFF_compressEnd() instructs to finish a frame.
+* It will perform a flush and write frame epilogue.
+* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
+* @return : nb of bytes still present into internal buffer (0 if it's empty)
+* or an error code, which can be tested using ZBUFF_isError().
+*
+* Hint : recommended buffer sizes (not compulsory)
+* input : ZSTD_BLOCKSIZE_MAX (128 KB), internal unit size, it improves latency to use this value.
+* output : ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + ZBUFF_endFrameSize : ensures it's always possible to write/flush/end a full block at best speed.
+* ***********************************************************/
+
+ZBUFF_CCtx* ZBUFF_createCCtx(void)
+{
+ return ZSTD_createCStream();
+}
+
+ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem)
+{
+ return ZSTD_createCStream_advanced(customMem);
+}
+
+size_t ZBUFF_freeCCtx(ZBUFF_CCtx* zbc)
+{
+ return ZSTD_freeCStream(zbc);
+}
+
+
+/* ====== Initialization ====== */
+
+size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
+ const void* dict, size_t dictSize,
+ ZSTD_parameters params, unsigned long long pledgedSrcSize)
+{
+ if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* preserve "0 == unknown" behavior */
+ return ZSTD_initCStream_advanced(zbc, dict, dictSize, params, pledgedSrcSize);
+}
+
+
+size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* zbc, const void* dict, size_t dictSize, int compressionLevel)
+{
+ return ZSTD_initCStream_usingDict(zbc, dict, dictSize, compressionLevel);
+}
+
+size_t ZBUFF_compressInit(ZBUFF_CCtx* zbc, int compressionLevel)
+{
+ return ZSTD_initCStream(zbc, compressionLevel);
+}
+
+/* ====== Compression ====== */
+
+
+size_t ZBUFF_compressContinue(ZBUFF_CCtx* zbc,
+ void* dst, size_t* dstCapacityPtr,
+ const void* src, size_t* srcSizePtr)
+{
+ size_t result;
+ ZSTD_outBuffer outBuff;
+ ZSTD_inBuffer inBuff;
+ outBuff.dst = dst;
+ outBuff.pos = 0;
+ outBuff.size = *dstCapacityPtr;
+ inBuff.src = src;
+ inBuff.pos = 0;
+ inBuff.size = *srcSizePtr;
+ result = ZSTD_compressStream(zbc, &outBuff, &inBuff);
+ *dstCapacityPtr = outBuff.pos;
+ *srcSizePtr = inBuff.pos;
+ return result;
+}
+
+
+
+/* ====== Finalize ====== */
+
+size_t ZBUFF_compressFlush(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
+{
+ size_t result;
+ ZSTD_outBuffer outBuff;
+ outBuff.dst = dst;
+ outBuff.pos = 0;
+ outBuff.size = *dstCapacityPtr;
+ result = ZSTD_flushStream(zbc, &outBuff);
+ *dstCapacityPtr = outBuff.pos;
+ return result;
+}
+
+
+size_t ZBUFF_compressEnd(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
+{
+ size_t result;
+ ZSTD_outBuffer outBuff;
+ outBuff.dst = dst;
+ outBuff.pos = 0;
+ outBuff.size = *dstCapacityPtr;
+ result = ZSTD_endStream(zbc, &outBuff);
+ *dstCapacityPtr = outBuff.pos;
+ return result;
+}
+
+
+
+/* *************************************
+* Tool functions
+***************************************/
+size_t ZBUFF_recommendedCInSize(void) { return ZSTD_CStreamInSize(); }
+size_t ZBUFF_recommendedCOutSize(void) { return ZSTD_CStreamOutSize(); }
diff --git a/vendor/github.com/DataDog/zstd/zbuff_decompress.c b/vendor/github.com/DataDog/zstd/zbuff_decompress.c
new file mode 100644
index 0000000..923c22b
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zbuff_decompress.c
@@ -0,0 +1,75 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+
+/* *************************************
+* Dependencies
+***************************************/
+#define ZBUFF_STATIC_LINKING_ONLY
+#include "zbuff.h"
+
+
+ZBUFF_DCtx* ZBUFF_createDCtx(void)
+{
+ return ZSTD_createDStream();
+}
+
+ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem)
+{
+ return ZSTD_createDStream_advanced(customMem);
+}
+
+size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbd)
+{
+ return ZSTD_freeDStream(zbd);
+}
+
+
+/* *** Initialization *** */
+
+size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* zbd, const void* dict, size_t dictSize)
+{
+ return ZSTD_initDStream_usingDict(zbd, dict, dictSize);
+}
+
+size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbd)
+{
+ return ZSTD_initDStream(zbd);
+}
+
+
+/* *** Decompression *** */
+
+size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbd,
+ void* dst, size_t* dstCapacityPtr,
+ const void* src, size_t* srcSizePtr)
+{
+ ZSTD_outBuffer outBuff;
+ ZSTD_inBuffer inBuff;
+ size_t result;
+ outBuff.dst = dst;
+ outBuff.pos = 0;
+ outBuff.size = *dstCapacityPtr;
+ inBuff.src = src;
+ inBuff.pos = 0;
+ inBuff.size = *srcSizePtr;
+ result = ZSTD_decompressStream(zbd, &outBuff, &inBuff);
+ *dstCapacityPtr = outBuff.pos;
+ *srcSizePtr = inBuff.pos;
+ return result;
+}
+
+
+/* *************************************
+* Tool functions
+***************************************/
+size_t ZBUFF_recommendedDInSize(void) { return ZSTD_DStreamInSize(); }
+size_t ZBUFF_recommendedDOutSize(void) { return ZSTD_DStreamOutSize(); }
diff --git a/vendor/github.com/DataDog/zstd/zdict.c b/vendor/github.com/DataDog/zstd/zdict.c
new file mode 100644
index 0000000..ee21ee1
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zdict.c
@@ -0,0 +1,1111 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+/*-**************************************
+* Tuning parameters
+****************************************/
+#define MINRATIO 4 /* minimum nb of apparition to be selected in dictionary */
+#define ZDICT_MAX_SAMPLES_SIZE (2000U << 20)
+#define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO)
+
+
+/*-**************************************
+* Compiler Options
+****************************************/
+/* Unix Large Files support (>4GB) */
+#define _FILE_OFFSET_BITS 64
+#if (defined(__sun__) && (!defined(__LP64__))) /* Sun Solaris 32-bits requires specific definitions */
+# define _LARGEFILE_SOURCE
+#elif ! defined(__LP64__) /* No point defining Large file for 64 bit */
+# define _LARGEFILE64_SOURCE
+#endif
+
+
+/*-*************************************
+* Dependencies
+***************************************/
+#include <stdlib.h> /* malloc, free */
+#include <string.h> /* memset */
+#include <stdio.h> /* fprintf, fopen, ftello64 */
+#include <time.h> /* clock */
+
+#include "mem.h" /* read */
+#include "fse.h" /* FSE_normalizeCount, FSE_writeNCount */
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h" /* HUF_buildCTable, HUF_writeCTable */
+#include "zstd_internal.h" /* includes zstd.h */
+#include "xxhash.h" /* XXH64 */
+#include "divsufsort.h"
+#ifndef ZDICT_STATIC_LINKING_ONLY
+# define ZDICT_STATIC_LINKING_ONLY
+#endif
+#include "zdict.h"
+
+
+/*-*************************************
+* Constants
+***************************************/
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+
+#define DICTLISTSIZE_DEFAULT 10000
+
+#define NOISELENGTH 32
+
+static const int g_compressionLevel_default = 3;
+static const U32 g_selectivity_default = 9;
+
+
+/*-*************************************
+* Console display
+***************************************/
+#define DISPLAY(...) { fprintf(stderr, __VA_ARGS__); fflush( stderr ); }
+#define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
+
+static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; }
+
+static void ZDICT_printHex(const void* ptr, size_t length)
+{
+ const BYTE* const b = (const BYTE*)ptr;
+ size_t u;
+ for (u=0; u<length; u++) {
+ BYTE c = b[u];
+ if (c<32 || c>126) c = '.'; /* non-printable char */
+ DISPLAY("%c", c);
+ }
+}
+
+
+/*-********************************************************
+* Helper functions
+**********************************************************/
+unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }
+
+const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
+
+unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize)
+{
+ if (dictSize < 8) return 0;
+ if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0;
+ return MEM_readLE32((const char*)dictBuffer + 4);
+}
+
+
+/*-********************************************************
+* Dictionary training functions
+**********************************************************/
+static unsigned ZDICT_NbCommonBytes (size_t val)
+{
+ if (MEM_isLittleEndian()) {
+ if (MEM_64bits()) {
+# if defined(_MSC_VER) && defined(_WIN64)
+ unsigned long r = 0;
+ _BitScanForward64( &r, (U64)val );
+ return (unsigned)(r>>3);
+# elif defined(__GNUC__) && (__GNUC__ >= 3)
+ return (__builtin_ctzll((U64)val) >> 3);
+# else
+ static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
+ return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
+# endif
+ } else { /* 32 bits */
+# if defined(_MSC_VER)
+ unsigned long r=0;
+ _BitScanForward( &r, (U32)val );
+ return (unsigned)(r>>3);
+# elif defined(__GNUC__) && (__GNUC__ >= 3)
+ return (__builtin_ctz((U32)val) >> 3);
+# else
+ static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
+ return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
+# endif
+ }
+ } else { /* Big Endian CPU */
+ if (MEM_64bits()) {
+# if defined(_MSC_VER) && defined(_WIN64)
+ unsigned long r = 0;
+ _BitScanReverse64( &r, val );
+ return (unsigned)(r>>3);
+# elif defined(__GNUC__) && (__GNUC__ >= 3)
+ return (__builtin_clzll(val) >> 3);
+# else
+ unsigned r;
+ const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
+ if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
+ if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
+ r += (!val);
+ return r;
+# endif
+ } else { /* 32 bits */
+# if defined(_MSC_VER)
+ unsigned long r = 0;
+ _BitScanReverse( &r, (unsigned long)val );
+ return (unsigned)(r>>3);
+# elif defined(__GNUC__) && (__GNUC__ >= 3)
+ return (__builtin_clz((U32)val) >> 3);
+# else
+ unsigned r;
+ if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
+ r += (!val);
+ return r;
+# endif
+ } }
+}
+
+
+/*! ZDICT_count() :
+ Count the nb of common bytes between 2 pointers.
+ Note : this function presumes end of buffer followed by noisy guard band.
+*/
+static size_t ZDICT_count(const void* pIn, const void* pMatch)
+{
+ const char* const pStart = (const char*)pIn;
+ for (;;) {
+ size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
+ if (!diff) {
+ pIn = (const char*)pIn+sizeof(size_t);
+ pMatch = (const char*)pMatch+sizeof(size_t);
+ continue;
+ }
+ pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff);
+ return (size_t)((const char*)pIn - pStart);
+ }
+}
+
+
+typedef struct {
+ U32 pos;
+ U32 length;
+ U32 savings;
+} dictItem;
+
+static void ZDICT_initDictItem(dictItem* d)
+{
+ d->pos = 1;
+ d->length = 0;
+ d->savings = (U32)(-1);
+}
+
+
+#define LLIMIT 64 /* heuristic determined experimentally */
+#define MINMATCHLENGTH 7 /* heuristic determined experimentally */
+static dictItem ZDICT_analyzePos(
+ BYTE* doneMarks,
+ const int* suffix, U32 start,
+ const void* buffer, U32 minRatio, U32 notificationLevel)
+{
+ U32 lengthList[LLIMIT] = {0};
+ U32 cumulLength[LLIMIT] = {0};
+ U32 savings[LLIMIT] = {0};
+ const BYTE* b = (const BYTE*)buffer;
+ size_t maxLength = LLIMIT;
+ size_t pos = suffix[start];
+ U32 end = start;
+ dictItem solution;
+
+ /* init */
+ memset(&solution, 0, sizeof(solution));
+ doneMarks[pos] = 1;
+
+ /* trivial repetition cases */
+ if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
+ ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
+ ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
+ /* skip and mark segment */
+ U16 const pattern16 = MEM_read16(b+pos+4);
+ U32 u, patternEnd = 6;
+ while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ;
+ if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++;
+ for (u=1; u<patternEnd; u++)
+ doneMarks[pos+u] = 1;
+ return solution;
+ }
+
+ /* look forward */
+ { size_t length;
+ do {
+ end++;
+ length = ZDICT_count(b + pos, b + suffix[end]);
+ } while (length >= MINMATCHLENGTH);
+ }
+
+ /* look backward */
+ { size_t length;
+ do {
+ length = ZDICT_count(b + pos, b + *(suffix+start-1));
+ if (length >=MINMATCHLENGTH) start--;
+ } while(length >= MINMATCHLENGTH);
+ }
+
+ /* exit if not found a minimum nb of repetitions */
+ if (end-start < minRatio) {
+ U32 idx;
+ for(idx=start; idx<end; idx++)
+ doneMarks[suffix[idx]] = 1;
+ return solution;
+ }
+
+ { int i;
+ U32 mml;
+ U32 refinedStart = start;
+ U32 refinedEnd = end;
+
+ DISPLAYLEVEL(4, "\n");
+ DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u ", (unsigned)(end-start), MINMATCHLENGTH, (unsigned)pos);
+ DISPLAYLEVEL(4, "\n");
+
+ for (mml = MINMATCHLENGTH ; ; mml++) {
+ BYTE currentChar = 0;
+ U32 currentCount = 0;
+ U32 currentID = refinedStart;
+ U32 id;
+ U32 selectedCount = 0;
+ U32 selectedID = currentID;
+ for (id =refinedStart; id < refinedEnd; id++) {
+ if (b[suffix[id] + mml] != currentChar) {
+ if (currentCount > selectedCount) {
+ selectedCount = currentCount;
+ selectedID = currentID;
+ }
+ currentID = id;
+ currentChar = b[ suffix[id] + mml];
+ currentCount = 0;
+ }
+ currentCount ++;
+ }
+ if (currentCount > selectedCount) { /* for last */
+ selectedCount = currentCount;
+ selectedID = currentID;
+ }
+
+ if (selectedCount < minRatio)
+ break;
+ refinedStart = selectedID;
+ refinedEnd = refinedStart + selectedCount;
+ }
+
+ /* evaluate gain based on new dict */
+ start = refinedStart;
+ pos = suffix[refinedStart];
+ end = start;
+ memset(lengthList, 0, sizeof(lengthList));
+
+ /* look forward */
+ { size_t length;
+ do {
+ end++;
+ length = ZDICT_count(b + pos, b + suffix[end]);
+ if (length >= LLIMIT) length = LLIMIT-1;
+ lengthList[length]++;
+ } while (length >=MINMATCHLENGTH);
+ }
+
+ /* look backward */
+ { size_t length = MINMATCHLENGTH;
+ while ((length >= MINMATCHLENGTH) & (start > 0)) {
+ length = ZDICT_count(b + pos, b + suffix[start - 1]);
+ if (length >= LLIMIT) length = LLIMIT - 1;
+ lengthList[length]++;
+ if (length >= MINMATCHLENGTH) start--;
+ }
+ }
+
+ /* largest useful length */
+ memset(cumulLength, 0, sizeof(cumulLength));
+ cumulLength[maxLength-1] = lengthList[maxLength-1];
+ for (i=(int)(maxLength-2); i>=0; i--)
+ cumulLength[i] = cumulLength[i+1] + lengthList[i];
+
+ for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
+ maxLength = i;
+
+ /* reduce maxLength in case of final into repetitive data */
+ { U32 l = (U32)maxLength;
+ BYTE const c = b[pos + maxLength-1];
+ while (b[pos+l-2]==c) l--;
+ maxLength = l;
+ }
+ if (maxLength < MINMATCHLENGTH) return solution; /* skip : no long-enough solution */
+
+ /* calculate savings */
+ savings[5] = 0;
+ for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
+ savings[i] = savings[i-1] + (lengthList[i] * (i-3));
+
+ DISPLAYLEVEL(4, "Selected dict at position %u, of length %u : saves %u (ratio: %.2f) \n",
+ (unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / maxLength);
+
+ solution.pos = (U32)pos;
+ solution.length = (U32)maxLength;
+ solution.savings = savings[maxLength];
+
+ /* mark positions done */
+ { U32 id;
+ for (id=start; id<end; id++) {
+ U32 p, pEnd, length;
+ U32 const testedPos = suffix[id];
+ if (testedPos == pos)
+ length = solution.length;
+ else {
+ length = (U32)ZDICT_count(b+pos, b+testedPos);
+ if (length > solution.length) length = solution.length;
+ }
+ pEnd = (U32)(testedPos + length);
+ for (p=testedPos; p<pEnd; p++)
+ doneMarks[p] = 1;
+ } } }
+
+ return solution;
+}
+
+
+static int isIncluded(const void* in, const void* container, size_t length)
+{
+ const char* const ip = (const char*) in;
+ const char* const into = (const char*) container;
+ size_t u;
+
+ for (u=0; u<length; u++) { /* works because end of buffer is a noisy guard band */
+ if (ip[u] != into[u]) break;
+ }
+
+ return u==length;
+}
+
+/*! ZDICT_tryMerge() :
+ check if dictItem can be merged, do it if possible
+ @return : id of destination elt, 0 if not merged
+*/
+static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer)
+{
+ const U32 tableSize = table->pos;
+ const U32 eltEnd = elt.pos + elt.length;
+ const char* const buf = (const char*) buffer;
+
+ /* tail overlap */
+ U32 u; for (u=1; u<tableSize; u++) {
+ if (u==eltNbToSkip) continue;
+ if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) { /* overlap, existing > new */
+ /* append */
+ U32 const addedLength = table[u].pos - elt.pos;
+ table[u].length += addedLength;
+ table[u].pos = elt.pos;
+ table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */
+ table[u].savings += elt.length / 8; /* rough approx bonus */
+ elt = table[u];
+ /* sort : improve rank */
+ while ((u>1) && (table[u-1].savings < elt.savings))
+ table[u] = table[u-1], u--;
+ table[u] = elt;
+ return u;
+ } }
+
+ /* front overlap */
+ for (u=1; u<tableSize; u++) {
+ if (u==eltNbToSkip) continue;
+
+ if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) { /* overlap, existing < new */
+ /* append */
+ int const addedLength = (int)eltEnd - (table[u].pos + table[u].length);
+ table[u].savings += elt.length / 8; /* rough approx bonus */
+ if (addedLength > 0) { /* otherwise, elt fully included into existing */
+ table[u].length += addedLength;
+ table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */
+ }
+ /* sort : improve rank */
+ elt = table[u];
+ while ((u>1) && (table[u-1].savings < elt.savings))
+ table[u] = table[u-1], u--;
+ table[u] = elt;
+ return u;
+ }
+
+ if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) {
+ if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) {
+ size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 );
+ table[u].pos = elt.pos;
+ table[u].savings += (U32)(elt.savings * addedLength / elt.length);
+ table[u].length = MIN(elt.length, table[u].length + 1);
+ return u;
+ }
+ }
+ }
+
+ return 0;
+}
+
+
+static void ZDICT_removeDictItem(dictItem* table, U32 id)
+{
+ /* convention : table[0].pos stores nb of elts */
+ U32 const max = table[0].pos;
+ U32 u;
+ if (!id) return; /* protection, should never happen */
+ for (u=id; u<max-1; u++)
+ table[u] = table[u+1];
+ table->pos--;
+}
+
+
+static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer)
+{
+ /* merge if possible */
+ U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer);
+ if (mergeId) {
+ U32 newMerge = 1;
+ while (newMerge) {
+ newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer);
+ if (newMerge) ZDICT_removeDictItem(table, mergeId);
+ mergeId = newMerge;
+ }
+ return;
+ }
+
+ /* insert */
+ { U32 current;
+ U32 nextElt = table->pos;
+ if (nextElt >= maxSize) nextElt = maxSize-1;
+ current = nextElt-1;
+ while (table[current].savings < elt.savings) {
+ table[current+1] = table[current];
+ current--;
+ }
+ table[current+1] = elt;
+ table->pos = nextElt+1;
+ }
+}
+
+
+static U32 ZDICT_dictSize(const dictItem* dictList)
+{
+ U32 u, dictSize = 0;
+ for (u=1; u<dictList[0].pos; u++)
+ dictSize += dictList[u].length;
+ return dictSize;
+}
+
+
+static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize,
+ const void* const buffer, size_t bufferSize, /* buffer must end with noisy guard band */
+ const size_t* fileSizes, unsigned nbFiles,
+ unsigned minRatio, U32 notificationLevel)
+{
+ int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
+ int* const suffix = suffix0+1;
+ U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
+ BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks)); /* +16 for overflow security */
+ U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
+ size_t result = 0;
+ clock_t displayClock = 0;
+ clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10;
+
+# define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \
+ if (ZDICT_clockSpan(displayClock) > refreshRate) \
+ { displayClock = clock(); DISPLAY(__VA_ARGS__); \
+ if (notificationLevel>=4) fflush(stderr); } }
+
+ /* init */
+ DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
+ if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
+ result = ERROR(memory_allocation);
+ goto _cleanup;
+ }
+ if (minRatio < MINRATIO) minRatio = MINRATIO;
+ memset(doneMarks, 0, bufferSize+16);
+
+ /* limit sample set size (divsufsort limitation)*/
+ if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (unsigned)(ZDICT_MAX_SAMPLES_SIZE>>20));
+ while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles];
+
+ /* sort */
+ DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (unsigned)(bufferSize>>20));
+ { int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
+ if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
+ }
+ suffix[bufferSize] = (int)bufferSize; /* leads into noise */
+ suffix0[0] = (int)bufferSize; /* leads into noise */
+ /* build reverse suffix sort */
+ { size_t pos;
+ for (pos=0; pos < bufferSize; pos++)
+ reverseSuffix[suffix[pos]] = (U32)pos;
+ /* note filePos tracks borders between samples.
+ It's not used at this stage, but planned to become useful in a later update */
+ filePos[0] = 0;
+ for (pos=1; pos<nbFiles; pos++)
+ filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
+ }
+
+ DISPLAYLEVEL(2, "finding patterns ... \n");
+ DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
+
+ { U32 cursor; for (cursor=0; cursor < bufferSize; ) {
+ dictItem solution;
+ if (doneMarks[cursor]) { cursor++; continue; }
+ solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel);
+ if (solution.length==0) { cursor++; continue; }
+ ZDICT_insertDictItem(dictList, dictListSize, solution, buffer);
+ cursor += solution.length;
+ DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100);
+ } }
+
+_cleanup:
+ free(suffix0);
+ free(reverseSuffix);
+ free(doneMarks);
+ free(filePos);
+ return result;
+}
+
+
+static void ZDICT_fillNoise(void* buffer, size_t length)
+{
+ unsigned const prime1 = 2654435761U;
+ unsigned const prime2 = 2246822519U;
+ unsigned acc = prime1;
+ size_t p=0;;
+ for (p=0; p<length; p++) {
+ acc *= prime2;
+ ((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
+ }
+}
+
+
+typedef struct
+{
+ ZSTD_CDict* dict; /* dictionary */
+ ZSTD_CCtx* zc; /* working context */
+ void* workPlace; /* must be ZSTD_BLOCKSIZE_MAX allocated */
+} EStats_ress_t;
+
+#define MAXREPOFFSET 1024
+
+static void ZDICT_countEStats(EStats_ress_t esr, ZSTD_parameters params,
+ unsigned* countLit, unsigned* offsetcodeCount, unsigned* matchlengthCount, unsigned* litlengthCount, U32* repOffsets,
+ const void* src, size_t srcSize,
+ U32 notificationLevel)
+{
+ size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params.cParams.windowLog);
+ size_t cSize;
+
+ if (srcSize > blockSizeMax) srcSize = blockSizeMax; /* protection vs large samples */
+ { size_t const errorCode = ZSTD_compressBegin_usingCDict(esr.zc, esr.dict);
+ if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_compressBegin_usingCDict failed \n"); return; }
+
+ }
+ cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize);
+ if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (unsigned)srcSize); return; }
+
+ if (cSize) { /* if == 0; block is not compressible */
+ const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc);
+
+ /* literals stats */
+ { const BYTE* bytePtr;
+ for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++)
+ countLit[*bytePtr]++;
+ }
+
+ /* seqStats */
+ { U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
+ ZSTD_seqToCodes(seqStorePtr);
+
+ { const BYTE* codePtr = seqStorePtr->ofCode;
+ U32 u;
+ for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++;
+ }
+
+ { const BYTE* codePtr = seqStorePtr->mlCode;
+ U32 u;
+ for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++;
+ }
+
+ { const BYTE* codePtr = seqStorePtr->llCode;
+ U32 u;
+ for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++;
+ }
+
+ if (nbSeq >= 2) { /* rep offsets */
+ const seqDef* const seq = seqStorePtr->sequencesStart;
+ U32 offset1 = seq[0].offset - 3;
+ U32 offset2 = seq[1].offset - 3;
+ if (offset1 >= MAXREPOFFSET) offset1 = 0;
+ if (offset2 >= MAXREPOFFSET) offset2 = 0;
+ repOffsets[offset1] += 3;
+ repOffsets[offset2] += 1;
+ } } }
+}
+
+static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles)
+{
+ size_t total=0;
+ unsigned u;
+ for (u=0; u<nbFiles; u++) total += fileSizes[u];
+ return total;
+}
+
+typedef struct { U32 offset; U32 count; } offsetCount_t;
+
+static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count)
+{
+ U32 u;
+ table[ZSTD_REP_NUM].offset = val;
+ table[ZSTD_REP_NUM].count = count;
+ for (u=ZSTD_REP_NUM; u>0; u--) {
+ offsetCount_t tmp;
+ if (table[u-1].count >= table[u].count) break;
+ tmp = table[u-1];
+ table[u-1] = table[u];
+ table[u] = tmp;
+ }
+}
+
+/* ZDICT_flatLit() :
+ * rewrite `countLit` to contain a mostly flat but still compressible distribution of literals.
+ * necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode.
+ */
+static void ZDICT_flatLit(unsigned* countLit)
+{
+ int u;
+ for (u=1; u<256; u++) countLit[u] = 2;
+ countLit[0] = 4;
+ countLit[253] = 1;
+ countLit[254] = 1;
+}
+
+#define OFFCODE_MAX 30 /* only applicable to first block */
+static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
+ unsigned compressionLevel,
+ const void* srcBuffer, const size_t* fileSizes, unsigned nbFiles,
+ const void* dictBuffer, size_t dictBufferSize,
+ unsigned notificationLevel)
+{
+ unsigned countLit[256];
+ HUF_CREATE_STATIC_CTABLE(hufTable, 255);
+ unsigned offcodeCount[OFFCODE_MAX+1];
+ short offcodeNCount[OFFCODE_MAX+1];
+ U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB));
+ unsigned matchLengthCount[MaxML+1];
+ short matchLengthNCount[MaxML+1];
+ unsigned litLengthCount[MaxLL+1];
+ short litLengthNCount[MaxLL+1];
+ U32 repOffset[MAXREPOFFSET];
+ offsetCount_t bestRepOffset[ZSTD_REP_NUM+1];
+ EStats_ress_t esr = { NULL, NULL, NULL };
+ ZSTD_parameters params;
+ U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
+ size_t pos = 0, errorCode;
+ size_t eSize = 0;
+ size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles);
+ size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles);
+ BYTE* dstPtr = (BYTE*)dstBuffer;
+
+ /* init */
+ DEBUGLOG(4, "ZDICT_analyzeEntropy");
+ if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; } /* too large dictionary */
+ for (u=0; u<256; u++) countLit[u] = 1; /* any character must be described */
+ for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1;
+ for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1;
+ for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1;
+ memset(repOffset, 0, sizeof(repOffset));
+ repOffset[1] = repOffset[4] = repOffset[8] = 1;
+ memset(bestRepOffset, 0, sizeof(bestRepOffset));
+ if (compressionLevel==0) compressionLevel = g_compressionLevel_default;
+ params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize);
+
+ esr.dict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_rawContent, params.cParams, ZSTD_defaultCMem);
+ esr.zc = ZSTD_createCCtx();
+ esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX);
+ if (!esr.dict || !esr.zc || !esr.workPlace) {
+ eSize = ERROR(memory_allocation);
+ DISPLAYLEVEL(1, "Not enough memory \n");
+ goto _cleanup;
+ }
+
+ /* collect stats on all samples */
+ for (u=0; u<nbFiles; u++) {
+ ZDICT_countEStats(esr, params,
+ countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset,
+ (const char*)srcBuffer + pos, fileSizes[u],
+ notificationLevel);
+ pos += fileSizes[u];
+ }
+
+ /* analyze, build stats, starting with literals */
+ { size_t maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
+ if (HUF_isError(maxNbBits)) {
+ eSize = maxNbBits;
+ DISPLAYLEVEL(1, " HUF_buildCTable error \n");
+ goto _cleanup;
+ }
+ if (maxNbBits==8) { /* not compressible : will fail on HUF_writeCTable() */
+ DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n");
+ ZDICT_flatLit(countLit); /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */
+ maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
+ assert(maxNbBits==9);
+ }
+ huffLog = (U32)maxNbBits;
+ }
+
+ /* looking for most common first offsets */
+ { U32 offset;
+ for (offset=1; offset<MAXREPOFFSET; offset++)
+ ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]);
+ }
+ /* note : the result of this phase should be used to better appreciate the impact on statistics */
+
+ total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
+ errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax);
+ if (FSE_isError(errorCode)) {
+ eSize = errorCode;
+ DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
+ goto _cleanup;
+ }
+ Offlog = (U32)errorCode;
+
+ total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
+ errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML);
+ if (FSE_isError(errorCode)) {
+ eSize = errorCode;
+ DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
+ goto _cleanup;
+ }
+ mlLog = (U32)errorCode;
+
+ total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
+ errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL);
+ if (FSE_isError(errorCode)) {
+ eSize = errorCode;
+ DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
+ goto _cleanup;
+ }
+ llLog = (U32)errorCode;
+
+ /* write result to buffer */
+ { size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog);
+ if (HUF_isError(hhSize)) {
+ eSize = hhSize;
+ DISPLAYLEVEL(1, "HUF_writeCTable error \n");
+ goto _cleanup;
+ }
+ dstPtr += hhSize;
+ maxDstSize -= hhSize;
+ eSize += hhSize;
+ }
+
+ { size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
+ if (FSE_isError(ohSize)) {
+ eSize = ohSize;
+ DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
+ goto _cleanup;
+ }
+ dstPtr += ohSize;
+ maxDstSize -= ohSize;
+ eSize += ohSize;
+ }
+
+ { size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
+ if (FSE_isError(mhSize)) {
+ eSize = mhSize;
+ DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
+ goto _cleanup;
+ }
+ dstPtr += mhSize;
+ maxDstSize -= mhSize;
+ eSize += mhSize;
+ }
+
+ { size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
+ if (FSE_isError(lhSize)) {
+ eSize = lhSize;
+ DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
+ goto _cleanup;
+ }
+ dstPtr += lhSize;
+ maxDstSize -= lhSize;
+ eSize += lhSize;
+ }
+
+ if (maxDstSize<12) {
+ eSize = ERROR(dstSize_tooSmall);
+ DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
+ goto _cleanup;
+ }
+# if 0
+ MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset);
+ MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset);
+ MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset);
+#else
+ /* at this stage, we don't use the result of "most common first offset",
+ as the impact of statistics is not properly evaluated */
+ MEM_writeLE32(dstPtr+0, repStartValue[0]);
+ MEM_writeLE32(dstPtr+4, repStartValue[1]);
+ MEM_writeLE32(dstPtr+8, repStartValue[2]);
+#endif
+ eSize += 12;
+
+_cleanup:
+ ZSTD_freeCDict(esr.dict);
+ ZSTD_freeCCtx(esr.zc);
+ free(esr.workPlace);
+
+ return eSize;
+}
+
+
+
+size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
+ const void* customDictContent, size_t dictContentSize,
+ const void* samplesBuffer, const size_t* samplesSizes,
+ unsigned nbSamples, ZDICT_params_t params)
+{
+ size_t hSize;
+#define HBUFFSIZE 256 /* should prove large enough for all entropy headers */
+ BYTE header[HBUFFSIZE];
+ int const compressionLevel = (params.compressionLevel == 0) ? g_compressionLevel_default : params.compressionLevel;
+ U32 const notificationLevel = params.notificationLevel;
+
+ /* check conditions */
+ DEBUGLOG(4, "ZDICT_finalizeDictionary");
+ if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall);
+ if (dictContentSize < ZDICT_CONTENTSIZE_MIN) return ERROR(srcSize_wrong);
+ if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall);
+
+ /* dictionary header */
+ MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY);
+ { U64 const randomID = XXH64(customDictContent, dictContentSize, 0);
+ U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
+ U32 const dictID = params.dictID ? params.dictID : compliantID;
+ MEM_writeLE32(header+4, dictID);
+ }
+ hSize = 8;
+
+ /* entropy tables */
+ DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
+ DISPLAYLEVEL(2, "statistics ... \n");
+ { size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize,
+ compressionLevel,
+ samplesBuffer, samplesSizes, nbSamples,
+ customDictContent, dictContentSize,
+ notificationLevel);
+ if (ZDICT_isError(eSize)) return eSize;
+ hSize += eSize;
+ }
+
+ /* copy elements in final buffer ; note : src and dst buffer can overlap */
+ if (hSize + dictContentSize > dictBufferCapacity) dictContentSize = dictBufferCapacity - hSize;
+ { size_t const dictSize = hSize + dictContentSize;
+ char* dictEnd = (char*)dictBuffer + dictSize;
+ memmove(dictEnd - dictContentSize, customDictContent, dictContentSize);
+ memcpy(dictBuffer, header, hSize);
+ return dictSize;
+ }
+}
+
+
+static size_t ZDICT_addEntropyTablesFromBuffer_advanced(
+ void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
+ const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
+ ZDICT_params_t params)
+{
+ int const compressionLevel = (params.compressionLevel == 0) ? g_compressionLevel_default : params.compressionLevel;
+ U32 const notificationLevel = params.notificationLevel;
+ size_t hSize = 8;
+
+ /* calculate entropy tables */
+ DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
+ DISPLAYLEVEL(2, "statistics ... \n");
+ { size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize,
+ compressionLevel,
+ samplesBuffer, samplesSizes, nbSamples,
+ (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize,
+ notificationLevel);
+ if (ZDICT_isError(eSize)) return eSize;
+ hSize += eSize;
+ }
+
+ /* add dictionary header (after entropy tables) */
+ MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY);
+ { U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0);
+ U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
+ U32 const dictID = params.dictID ? params.dictID : compliantID;
+ MEM_writeLE32((char*)dictBuffer+4, dictID);
+ }
+
+ if (hSize + dictContentSize < dictBufferCapacity)
+ memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize);
+ return MIN(dictBufferCapacity, hSize+dictContentSize);
+}
+
+/* Hidden declaration for dbio.c */
+size_t ZDICT_trainFromBuffer_unsafe_legacy(
+ void* dictBuffer, size_t maxDictSize,
+ const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
+ ZDICT_legacy_params_t params);
+/*! ZDICT_trainFromBuffer_unsafe_legacy() :
+* Warning : `samplesBuffer` must be followed by noisy guard band.
+* @return : size of dictionary, or an error code which can be tested with ZDICT_isError()
+*/
+size_t ZDICT_trainFromBuffer_unsafe_legacy(
+ void* dictBuffer, size_t maxDictSize,
+ const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
+ ZDICT_legacy_params_t params)
+{
+ U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16));
+ dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
+ unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel;
+ unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity;
+ size_t const targetDictSize = maxDictSize;
+ size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
+ size_t dictSize = 0;
+ U32 const notificationLevel = params.zParams.notificationLevel;
+
+ /* checks */
+ if (!dictList) return ERROR(memory_allocation);
+ if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); } /* requested dictionary size is too small */
+ if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); } /* not enough source to create dictionary */
+
+ /* init */
+ ZDICT_initDictItem(dictList);
+
+ /* build dictionary */
+ ZDICT_trainBuffer_legacy(dictList, dictListSize,
+ samplesBuffer, samplesBuffSize,
+ samplesSizes, nbSamples,
+ minRep, notificationLevel);
+
+ /* display best matches */
+ if (params.zParams.notificationLevel>= 3) {
+ unsigned const nb = MIN(25, dictList[0].pos);
+ unsigned const dictContentSize = ZDICT_dictSize(dictList);
+ unsigned u;
+ DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", (unsigned)dictList[0].pos-1, dictContentSize);
+ DISPLAYLEVEL(3, "list %u best segments \n", nb-1);
+ for (u=1; u<nb; u++) {
+ unsigned const pos = dictList[u].pos;
+ unsigned const length = dictList[u].length;
+ U32 const printedLength = MIN(40, length);
+ if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) {
+ free(dictList);
+ return ERROR(GENERIC); /* should never happen */
+ }
+ DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
+ u, length, pos, (unsigned)dictList[u].savings);
+ ZDICT_printHex((const char*)samplesBuffer+pos, printedLength);
+ DISPLAYLEVEL(3, "| \n");
+ } }
+
+
+ /* create dictionary */
+ { unsigned dictContentSize = ZDICT_dictSize(dictList);
+ if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); } /* dictionary content too small */
+ if (dictContentSize < targetDictSize/4) {
+ DISPLAYLEVEL(2, "! warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (unsigned)maxDictSize);
+ if (samplesBuffSize < 10 * targetDictSize)
+ DISPLAYLEVEL(2, "! consider increasing the number of samples (total size : %u MB)\n", (unsigned)(samplesBuffSize>>20));
+ if (minRep > MINRATIO) {
+ DISPLAYLEVEL(2, "! consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1);
+ DISPLAYLEVEL(2, "! note : larger dictionaries are not necessarily better, test its efficiency on samples \n");
+ }
+ }
+
+ if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) {
+ unsigned proposedSelectivity = selectivity-1;
+ while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; }
+ DISPLAYLEVEL(2, "! note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (unsigned)maxDictSize);
+ DISPLAYLEVEL(2, "! consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity);
+ DISPLAYLEVEL(2, "! always test dictionary efficiency on real samples \n");
+ }
+
+ /* limit dictionary size */
+ { U32 const max = dictList->pos; /* convention : nb of useful elts within dictList */
+ U32 currentSize = 0;
+ U32 n; for (n=1; n<max; n++) {
+ currentSize += dictList[n].length;
+ if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; }
+ }
+ dictList->pos = n;
+ dictContentSize = currentSize;
+ }
+
+ /* build dict content */
+ { U32 u;
+ BYTE* ptr = (BYTE*)dictBuffer + maxDictSize;
+ for (u=1; u<dictList->pos; u++) {
+ U32 l = dictList[u].length;
+ ptr -= l;
+ if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); } /* should not happen */
+ memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
+ } }
+
+ dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize,
+ samplesBuffer, samplesSizes, nbSamples,
+ params.zParams);
+ }
+
+ /* clean up */
+ free(dictList);
+ return dictSize;
+}
+
+
+/* ZDICT_trainFromBuffer_legacy() :
+ * issue : samplesBuffer need to be followed by a noisy guard band.
+ * work around : duplicate the buffer, and add the noise */
+size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity,
+ const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
+ ZDICT_legacy_params_t params)
+{
+ size_t result;
+ void* newBuff;
+ size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
+ if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0; /* not enough content => no dictionary */
+
+ newBuff = malloc(sBuffSize + NOISELENGTH);
+ if (!newBuff) return ERROR(memory_allocation);
+
+ memcpy(newBuff, samplesBuffer, sBuffSize);
+ ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH); /* guard band, for end of buffer condition */
+
+ result =
+ ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff,
+ samplesSizes, nbSamples, params);
+ free(newBuff);
+ return result;
+}
+
+
+size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
+ const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
+{
+ ZDICT_fastCover_params_t params;
+ DEBUGLOG(3, "ZDICT_trainFromBuffer");
+ memset(¶ms, 0, sizeof(params));
+ params.d = 8;
+ params.steps = 4;
+ /* Default to level 6 since no compression level information is available */
+ params.zParams.compressionLevel = 3;
+#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=1)
+ params.zParams.notificationLevel = DEBUGLEVEL;
+#endif
+ return ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, dictBufferCapacity,
+ samplesBuffer, samplesSizes, nbSamples,
+ ¶ms);
+}
+
+size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
+ const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
+{
+ ZDICT_params_t params;
+ memset(¶ms, 0, sizeof(params));
+ return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity,
+ samplesBuffer, samplesSizes, nbSamples,
+ params);
+}
diff --git a/vendor/github.com/DataDog/zstd/zdict.h b/vendor/github.com/DataDog/zstd/zdict.h
new file mode 100644
index 0000000..37978ec
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zdict.h
@@ -0,0 +1,282 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef DICTBUILDER_H_001
+#define DICTBUILDER_H_001
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*====== Dependencies ======*/
+#include <stddef.h> /* size_t */
+
+
+/* ===== ZDICTLIB_API : control library symbols visibility ===== */
+#ifndef ZDICTLIB_VISIBILITY
+# if defined(__GNUC__) && (__GNUC__ >= 4)
+# define ZDICTLIB_VISIBILITY __attribute__ ((visibility ("default")))
+# else
+# define ZDICTLIB_VISIBILITY
+# endif
+#endif
+#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
+# define ZDICTLIB_API __declspec(dllexport) ZDICTLIB_VISIBILITY
+#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
+# define ZDICTLIB_API __declspec(dllimport) ZDICTLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
+#else
+# define ZDICTLIB_API ZDICTLIB_VISIBILITY
+#endif
+
+
+/*! ZDICT_trainFromBuffer():
+ * Train a dictionary from an array of samples.
+ * Redirect towards ZDICT_optimizeTrainFromBuffer_fastCover() single-threaded, with d=8, steps=4,
+ * f=20, and accel=1.
+ * Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
+ * supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
+ * The resulting dictionary will be saved into `dictBuffer`.
+ * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
+ * or an error code, which can be tested with ZDICT_isError().
+ * Note: Dictionary training will fail if there are not enough samples to construct a
+ * dictionary, or if most of the samples are too small (< 8 bytes being the lower limit).
+ * If dictionary training fails, you should use zstd without a dictionary, as the dictionary
+ * would've been ineffective anyways. If you believe your samples would benefit from a dictionary
+ * please open an issue with details, and we can look into it.
+ * Note: ZDICT_trainFromBuffer()'s memory usage is about 6 MB.
+ * Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
+ * It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
+ * In general, it's recommended to provide a few thousands samples, though this can vary a lot.
+ * It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
+ */
+ZDICTLIB_API size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
+ const void* samplesBuffer,
+ const size_t* samplesSizes, unsigned nbSamples);
+
+
+/*====== Helper functions ======*/
+ZDICTLIB_API unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize); /**< extracts dictID; @return zero if error (not a valid dictionary) */
+ZDICTLIB_API unsigned ZDICT_isError(size_t errorCode);
+ZDICTLIB_API const char* ZDICT_getErrorName(size_t errorCode);
+
+
+
+#ifdef ZDICT_STATIC_LINKING_ONLY
+
+/* ====================================================================================
+ * The definitions in this section are considered experimental.
+ * They should never be used with a dynamic library, as they may change in the future.
+ * They are provided for advanced usages.
+ * Use them only in association with static linking.
+ * ==================================================================================== */
+
+typedef struct {
+ int compressionLevel; /* optimize for a specific zstd compression level; 0 means default */
+ unsigned notificationLevel; /* Write log to stderr; 0 = none (default); 1 = errors; 2 = progression; 3 = details; 4 = debug; */
+ unsigned dictID; /* force dictID value; 0 means auto mode (32-bits random value) */
+} ZDICT_params_t;
+
+/*! ZDICT_cover_params_t:
+ * k and d are the only required parameters.
+ * For others, value 0 means default.
+ */
+typedef struct {
+ unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */
+ unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */
+ unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */
+ unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */
+ double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (1.0), 1.0 when all samples are used for both training and testing */
+ unsigned shrinkDict; /* Train dictionaries to shrink in size starting from the minimum size and selects the smallest dictionary that is shrinkDictMaxRegression% worse than the largest dictionary. 0 means no shrinking and 1 means shrinking */
+ unsigned shrinkDictMaxRegression; /* Sets shrinkDictMaxRegression so that a smaller dictionary can be at worse shrinkDictMaxRegression% worse than the max dict size dictionary. */
+ ZDICT_params_t zParams;
+} ZDICT_cover_params_t;
+
+typedef struct {
+ unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */
+ unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */
+ unsigned f; /* log of size of frequency array : constraint: 0 < f <= 31 : 1 means default(20)*/
+ unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */
+ unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */
+ double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (0.75), 1.0 when all samples are used for both training and testing */
+ unsigned accel; /* Acceleration level: constraint: 0 < accel <= 10, higher means faster and less accurate, 0 means default(1) */
+ unsigned shrinkDict; /* Train dictionaries to shrink in size starting from the minimum size and selects the smallest dictionary that is shrinkDictMaxRegression% worse than the largest dictionary. 0 means no shrinking and 1 means shrinking */
+ unsigned shrinkDictMaxRegression; /* Sets shrinkDictMaxRegression so that a smaller dictionary can be at worse shrinkDictMaxRegression% worse than the max dict size dictionary. */
+
+ ZDICT_params_t zParams;
+} ZDICT_fastCover_params_t;
+
+/*! ZDICT_trainFromBuffer_cover():
+ * Train a dictionary from an array of samples using the COVER algorithm.
+ * Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
+ * supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
+ * The resulting dictionary will be saved into `dictBuffer`.
+ * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
+ * or an error code, which can be tested with ZDICT_isError().
+ * See ZDICT_trainFromBuffer() for details on failure modes.
+ * Note: ZDICT_trainFromBuffer_cover() requires about 9 bytes of memory for each input byte.
+ * Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
+ * It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
+ * In general, it's recommended to provide a few thousands samples, though this can vary a lot.
+ * It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
+ */
+ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
+ void *dictBuffer, size_t dictBufferCapacity,
+ const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
+ ZDICT_cover_params_t parameters);
+
+/*! ZDICT_optimizeTrainFromBuffer_cover():
+ * The same requirements as above hold for all the parameters except `parameters`.
+ * This function tries many parameter combinations and picks the best parameters.
+ * `*parameters` is filled with the best parameters found,
+ * dictionary constructed with those parameters is stored in `dictBuffer`.
+ *
+ * All of the parameters d, k, steps are optional.
+ * If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}.
+ * if steps is zero it defaults to its default value.
+ * If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000].
+ *
+ * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
+ * or an error code, which can be tested with ZDICT_isError().
+ * On success `*parameters` contains the parameters selected.
+ * See ZDICT_trainFromBuffer() for details on failure modes.
+ * Note: ZDICT_optimizeTrainFromBuffer_cover() requires about 8 bytes of memory for each input byte and additionally another 5 bytes of memory for each byte of memory for each thread.
+ */
+ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
+ void* dictBuffer, size_t dictBufferCapacity,
+ const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
+ ZDICT_cover_params_t* parameters);
+
+/*! ZDICT_trainFromBuffer_fastCover():
+ * Train a dictionary from an array of samples using a modified version of COVER algorithm.
+ * Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
+ * supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
+ * d and k are required.
+ * All other parameters are optional, will use default values if not provided
+ * The resulting dictionary will be saved into `dictBuffer`.
+ * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
+ * or an error code, which can be tested with ZDICT_isError().
+ * See ZDICT_trainFromBuffer() for details on failure modes.
+ * Note: ZDICT_trainFromBuffer_fastCover() requires 6 * 2^f bytes of memory.
+ * Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
+ * It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
+ * In general, it's recommended to provide a few thousands samples, though this can vary a lot.
+ * It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
+ */
+ZDICTLIB_API size_t ZDICT_trainFromBuffer_fastCover(void *dictBuffer,
+ size_t dictBufferCapacity, const void *samplesBuffer,
+ const size_t *samplesSizes, unsigned nbSamples,
+ ZDICT_fastCover_params_t parameters);
+
+/*! ZDICT_optimizeTrainFromBuffer_fastCover():
+ * The same requirements as above hold for all the parameters except `parameters`.
+ * This function tries many parameter combinations (specifically, k and d combinations)
+ * and picks the best parameters. `*parameters` is filled with the best parameters found,
+ * dictionary constructed with those parameters is stored in `dictBuffer`.
+ * All of the parameters d, k, steps, f, and accel are optional.
+ * If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}.
+ * if steps is zero it defaults to its default value.
+ * If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000].
+ * If f is zero, default value of 20 is used.
+ * If accel is zero, default value of 1 is used.
+ *
+ * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
+ * or an error code, which can be tested with ZDICT_isError().
+ * On success `*parameters` contains the parameters selected.
+ * See ZDICT_trainFromBuffer() for details on failure modes.
+ * Note: ZDICT_optimizeTrainFromBuffer_fastCover() requires about 6 * 2^f bytes of memory for each thread.
+ */
+ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_fastCover(void* dictBuffer,
+ size_t dictBufferCapacity, const void* samplesBuffer,
+ const size_t* samplesSizes, unsigned nbSamples,
+ ZDICT_fastCover_params_t* parameters);
+
+/*! ZDICT_finalizeDictionary():
+ * Given a custom content as a basis for dictionary, and a set of samples,
+ * finalize dictionary by adding headers and statistics.
+ *
+ * Samples must be stored concatenated in a flat buffer `samplesBuffer`,
+ * supplied with an array of sizes `samplesSizes`, providing the size of each sample in order.
+ *
+ * dictContentSize must be >= ZDICT_CONTENTSIZE_MIN bytes.
+ * maxDictSize must be >= dictContentSize, and must be >= ZDICT_DICTSIZE_MIN bytes.
+ *
+ * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`),
+ * or an error code, which can be tested by ZDICT_isError().
+ * Note: ZDICT_finalizeDictionary() will push notifications into stderr if instructed to, using notificationLevel>0.
+ * Note 2: dictBuffer and dictContent can overlap
+ */
+#define ZDICT_CONTENTSIZE_MIN 128
+#define ZDICT_DICTSIZE_MIN 256
+ZDICTLIB_API size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
+ const void* dictContent, size_t dictContentSize,
+ const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
+ ZDICT_params_t parameters);
+
+typedef struct {
+ unsigned selectivityLevel; /* 0 means default; larger => select more => larger dictionary */
+ ZDICT_params_t zParams;
+} ZDICT_legacy_params_t;
+
+/*! ZDICT_trainFromBuffer_legacy():
+ * Train a dictionary from an array of samples.
+ * Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
+ * supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
+ * The resulting dictionary will be saved into `dictBuffer`.
+ * `parameters` is optional and can be provided with values set to 0 to mean "default".
+ * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
+ * or an error code, which can be tested with ZDICT_isError().
+ * See ZDICT_trainFromBuffer() for details on failure modes.
+ * Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
+ * It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
+ * In general, it's recommended to provide a few thousands samples, though this can vary a lot.
+ * It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
+ * Note: ZDICT_trainFromBuffer_legacy() will send notifications into stderr if instructed to, using notificationLevel>0.
+ */
+ZDICTLIB_API size_t ZDICT_trainFromBuffer_legacy(
+ void *dictBuffer, size_t dictBufferCapacity,
+ const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
+ ZDICT_legacy_params_t parameters);
+
+/* Deprecation warnings */
+/* It is generally possible to disable deprecation warnings from compiler,
+ for example with -Wno-deprecated-declarations for gcc
+ or _CRT_SECURE_NO_WARNINGS in Visual.
+ Otherwise, it's also possible to manually define ZDICT_DISABLE_DEPRECATE_WARNINGS */
+#ifdef ZDICT_DISABLE_DEPRECATE_WARNINGS
+# define ZDICT_DEPRECATED(message) ZDICTLIB_API /* disable deprecation warnings */
+#else
+# define ZDICT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
+# define ZDICT_DEPRECATED(message) [[deprecated(message)]] ZDICTLIB_API
+# elif (ZDICT_GCC_VERSION >= 405) || defined(__clang__)
+# define ZDICT_DEPRECATED(message) ZDICTLIB_API __attribute__((deprecated(message)))
+# elif (ZDICT_GCC_VERSION >= 301)
+# define ZDICT_DEPRECATED(message) ZDICTLIB_API __attribute__((deprecated))
+# elif defined(_MSC_VER)
+# define ZDICT_DEPRECATED(message) ZDICTLIB_API __declspec(deprecated(message))
+# else
+# pragma message("WARNING: You need to implement ZDICT_DEPRECATED for this compiler")
+# define ZDICT_DEPRECATED(message) ZDICTLIB_API
+# endif
+#endif /* ZDICT_DISABLE_DEPRECATE_WARNINGS */
+
+ZDICT_DEPRECATED("use ZDICT_finalizeDictionary() instead")
+size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
+ const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples);
+
+
+#endif /* ZDICT_STATIC_LINKING_ONLY */
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* DICTBUILDER_H_001 */
diff --git a/vendor/github.com/DataDog/zstd/zstd.go b/vendor/github.com/DataDog/zstd/zstd.go
new file mode 100644
index 0000000..b6af4eb
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd.go
@@ -0,0 +1,147 @@
+package zstd
+
+/*
+#define ZSTD_STATIC_LINKING_ONLY
+#include "zstd.h"
+#include "stdint.h" // for uintptr_t
+
+// The following *_wrapper function are used for removing superflouos
+// memory allocations when calling the wrapped functions from Go code.
+// See https://github.com/golang/go/issues/24450 for details.
+
+static size_t ZSTD_compress_wrapper(uintptr_t dst, size_t maxDstSize, const uintptr_t src, size_t srcSize, int compressionLevel) {
+ return ZSTD_compress((void*)dst, maxDstSize, (const void*)src, srcSize, compressionLevel);
+}
+
+static size_t ZSTD_decompress_wrapper(uintptr_t dst, size_t maxDstSize, uintptr_t src, size_t srcSize) {
+ return ZSTD_decompress((void*)dst, maxDstSize, (const void *)src, srcSize);
+}
+
+*/
+import "C"
+import (
+ "bytes"
+ "errors"
+ "io/ioutil"
+ "runtime"
+ "unsafe"
+)
+
+// Defines best and standard values for zstd cli
+const (
+ BestSpeed = 1
+ BestCompression = 20
+ DefaultCompression = 5
+)
+
+var (
+ // ErrEmptySlice is returned when there is nothing to compress
+ ErrEmptySlice = errors.New("Bytes slice is empty")
+)
+
+// CompressBound returns the worst case size needed for a destination buffer,
+// which can be used to preallocate a destination buffer or select a previously
+// allocated buffer from a pool.
+// See zstd.h to mirror implementation of ZSTD_COMPRESSBOUND
+func CompressBound(srcSize int) int {
+ lowLimit := 128 << 10 // 128 kB
+ var margin int
+ if srcSize < lowLimit {
+ margin = (lowLimit - srcSize) >> 11
+ }
+ return srcSize + (srcSize >> 8) + margin
+}
+
+// cCompressBound is a cgo call to check the go implementation above against the c code.
+func cCompressBound(srcSize int) int {
+ return int(C.ZSTD_compressBound(C.size_t(srcSize)))
+}
+
+// Compress src into dst. If you have a buffer to use, you can pass it to
+// prevent allocation. If it is too small, or if nil is passed, a new buffer
+// will be allocated and returned.
+func Compress(dst, src []byte) ([]byte, error) {
+ return CompressLevel(dst, src, DefaultCompression)
+}
+
+// CompressLevel is the same as Compress but you can pass a compression level
+func CompressLevel(dst, src []byte, level int) ([]byte, error) {
+ bound := CompressBound(len(src))
+ if cap(dst) >= bound {
+ dst = dst[0:bound] // Reuse dst buffer
+ } else {
+ dst = make([]byte, bound)
+ }
+
+ srcPtr := C.uintptr_t(uintptr(0)) // Do not point anywhere, if src is empty
+ if len(src) > 0 {
+ srcPtr = C.uintptr_t(uintptr(unsafe.Pointer(&src[0])))
+ }
+
+ cWritten := C.ZSTD_compress_wrapper(
+ C.uintptr_t(uintptr(unsafe.Pointer(&dst[0]))),
+ C.size_t(len(dst)),
+ srcPtr,
+ C.size_t(len(src)),
+ C.int(level))
+
+ runtime.KeepAlive(src)
+ written := int(cWritten)
+ // Check if the return is an Error code
+ if err := getError(written); err != nil {
+ return nil, err
+ }
+ return dst[:written], nil
+}
+
+// Decompress src into dst. If you have a buffer to use, you can pass it to
+// prevent allocation. If it is too small, or if nil is passed, a new buffer
+// will be allocated and returned.
+func Decompress(dst, src []byte) ([]byte, error) {
+ if len(src) == 0 {
+ return []byte{}, ErrEmptySlice
+ }
+ decompress := func(dst, src []byte) ([]byte, error) {
+
+ cWritten := C.ZSTD_decompress_wrapper(
+ C.uintptr_t(uintptr(unsafe.Pointer(&dst[0]))),
+ C.size_t(len(dst)),
+ C.uintptr_t(uintptr(unsafe.Pointer(&src[0]))),
+ C.size_t(len(src)))
+
+ runtime.KeepAlive(src)
+ written := int(cWritten)
+ // Check error
+ if err := getError(written); err != nil {
+ return nil, err
+ }
+ return dst[:written], nil
+ }
+
+ if len(dst) == 0 {
+ // Attempt to use zStd to determine decompressed size (may result in error or 0)
+ size := int(C.size_t(C.ZSTD_getDecompressedSize(unsafe.Pointer(&src[0]), C.size_t(len(src)))))
+
+ if err := getError(size); err != nil {
+ return nil, err
+ }
+
+ if size > 0 {
+ dst = make([]byte, size)
+ } else {
+ dst = make([]byte, len(src)*3) // starting guess
+ }
+ }
+ for i := 0; i < 3; i++ { // 3 tries to allocate a bigger buffer
+ result, err := decompress(dst, src)
+ if !IsDstSizeTooSmallError(err) {
+ return result, err
+ }
+ dst = make([]byte, len(dst)*2) // Grow buffer by 2
+ }
+
+ // We failed getting a dst buffer of correct size, use stream API
+ r := NewReader(bytes.NewReader(src))
+ defer r.Close()
+ return ioutil.ReadAll(r)
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd.h b/vendor/github.com/DataDog/zstd/zstd.h
new file mode 100644
index 0000000..a1910ee
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd.h
@@ -0,0 +1,1945 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#ifndef ZSTD_H_235446
+#define ZSTD_H_235446
+
+/* ====== Dependency ======*/
+#include <stddef.h> /* size_t */
+
+
+/* ===== ZSTDLIB_API : control library symbols visibility ===== */
+#ifndef ZSTDLIB_VISIBILITY
+# if defined(__GNUC__) && (__GNUC__ >= 4)
+# define ZSTDLIB_VISIBILITY __attribute__ ((visibility ("default")))
+# else
+# define ZSTDLIB_VISIBILITY
+# endif
+#endif
+#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
+# define ZSTDLIB_API __declspec(dllexport) ZSTDLIB_VISIBILITY
+#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
+# define ZSTDLIB_API __declspec(dllimport) ZSTDLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
+#else
+# define ZSTDLIB_API ZSTDLIB_VISIBILITY
+#endif
+
+
+/*******************************************************************************
+ Introduction
+
+ zstd, short for Zstandard, is a fast lossless compression algorithm, targeting
+ real-time compression scenarios at zlib-level and better compression ratios.
+ The zstd compression library provides in-memory compression and decompression
+ functions.
+
+ The library supports regular compression levels from 1 up to ZSTD_maxCLevel(),
+ which is currently 22. Levels >= 20, labeled `--ultra`, should be used with
+ caution, as they require more memory. The library also offers negative
+ compression levels, which extend the range of speed vs. ratio preferences.
+ The lower the level, the faster the speed (at the cost of compression).
+
+ Compression can be done in:
+ - a single step (described as Simple API)
+ - a single step, reusing a context (described as Explicit context)
+ - unbounded multiple steps (described as Streaming compression)
+
+ The compression ratio achievable on small data can be highly improved using
+ a dictionary. Dictionary compression can be performed in:
+ - a single step (described as Simple dictionary API)
+ - a single step, reusing a dictionary (described as Bulk-processing
+ dictionary API)
+
+ Advanced experimental functions can be accessed using
+ `#define ZSTD_STATIC_LINKING_ONLY` before including zstd.h.
+
+ Advanced experimental APIs should never be used with a dynamically-linked
+ library. They are not "stable"; their definitions or signatures may change in
+ the future. Only static linking is allowed.
+*******************************************************************************/
+
+/*------ Version ------*/
+#define ZSTD_VERSION_MAJOR 1
+#define ZSTD_VERSION_MINOR 4
+#define ZSTD_VERSION_RELEASE 1
+
+#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
+ZSTDLIB_API unsigned ZSTD_versionNumber(void); /**< to check runtime library version */
+
+#define ZSTD_LIB_VERSION ZSTD_VERSION_MAJOR.ZSTD_VERSION_MINOR.ZSTD_VERSION_RELEASE
+#define ZSTD_QUOTE(str) #str
+#define ZSTD_EXPAND_AND_QUOTE(str) ZSTD_QUOTE(str)
+#define ZSTD_VERSION_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_LIB_VERSION)
+ZSTDLIB_API const char* ZSTD_versionString(void); /* requires v1.3.0+ */
+
+/* *************************************
+ * Default constant
+ ***************************************/
+#ifndef ZSTD_CLEVEL_DEFAULT
+# define ZSTD_CLEVEL_DEFAULT 3
+#endif
+
+/* *************************************
+ * Constants
+ ***************************************/
+
+/* All magic numbers are supposed read/written to/from files/memory using little-endian convention */
+#define ZSTD_MAGICNUMBER 0xFD2FB528 /* valid since v0.8.0 */
+#define ZSTD_MAGIC_DICTIONARY 0xEC30A437 /* valid since v0.7.0 */
+#define ZSTD_MAGIC_SKIPPABLE_START 0x184D2A50 /* all 16 values, from 0x184D2A50 to 0x184D2A5F, signal the beginning of a skippable frame */
+#define ZSTD_MAGIC_SKIPPABLE_MASK 0xFFFFFFF0
+
+#define ZSTD_BLOCKSIZELOG_MAX 17
+#define ZSTD_BLOCKSIZE_MAX (1<<ZSTD_BLOCKSIZELOG_MAX)
+
+
+
+/***************************************
+* Simple API
+***************************************/
+/*! ZSTD_compress() :
+ * Compresses `src` content as a single zstd compressed frame into already allocated `dst`.
+ * Hint : compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
+ * @return : compressed size written into `dst` (<= `dstCapacity),
+ * or an error code if it fails (which can be tested using ZSTD_isError()). */
+ZSTDLIB_API size_t ZSTD_compress( void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ int compressionLevel);
+
+/*! ZSTD_decompress() :
+ * `compressedSize` : must be the _exact_ size of some number of compressed and/or skippable frames.
+ * `dstCapacity` is an upper bound of originalSize to regenerate.
+ * If user cannot imply a maximum upper bound, it's better to use streaming mode to decompress data.
+ * @return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
+ * or an errorCode if it fails (which can be tested using ZSTD_isError()). */
+ZSTDLIB_API size_t ZSTD_decompress( void* dst, size_t dstCapacity,
+ const void* src, size_t compressedSize);
+
+/*! ZSTD_getFrameContentSize() : requires v1.3.0+
+ * `src` should point to the start of a ZSTD encoded frame.
+ * `srcSize` must be at least as large as the frame header.
+ * hint : any size >= `ZSTD_frameHeaderSize_max` is large enough.
+ * @return : - decompressed size of `src` frame content, if known
+ * - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined
+ * - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small)
+ * note 1 : a 0 return value means the frame is valid but "empty".
+ * note 2 : decompressed size is an optional field, it may not be present, typically in streaming mode.
+ * When `return==ZSTD_CONTENTSIZE_UNKNOWN`, data to decompress could be any size.
+ * In which case, it's necessary to use streaming mode to decompress data.
+ * Optionally, application can rely on some implicit limit,
+ * as ZSTD_decompress() only needs an upper bound of decompressed size.
+ * (For example, data could be necessarily cut into blocks <= 16 KB).
+ * note 3 : decompressed size is always present when compression is completed using single-pass functions,
+ * such as ZSTD_compress(), ZSTD_compressCCtx() ZSTD_compress_usingDict() or ZSTD_compress_usingCDict().
+ * note 4 : decompressed size can be very large (64-bits value),
+ * potentially larger than what local system can handle as a single memory segment.
+ * In which case, it's necessary to use streaming mode to decompress data.
+ * note 5 : If source is untrusted, decompressed size could be wrong or intentionally modified.
+ * Always ensure return value fits within application's authorized limits.
+ * Each application can set its own limits.
+ * note 6 : This function replaces ZSTD_getDecompressedSize() */
+#define ZSTD_CONTENTSIZE_UNKNOWN (0ULL - 1)
+#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
+ZSTDLIB_API unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize);
+
+/*! ZSTD_getDecompressedSize() :
+ * NOTE: This function is now obsolete, in favor of ZSTD_getFrameContentSize().
+ * Both functions work the same way, but ZSTD_getDecompressedSize() blends
+ * "empty", "unknown" and "error" results to the same return value (0),
+ * while ZSTD_getFrameContentSize() gives them separate return values.
+ * @return : decompressed size of `src` frame content _if known and not empty_, 0 otherwise. */
+ZSTDLIB_API unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize);
+
+/*! ZSTD_findFrameCompressedSize() :
+ * `src` should point to the start of a ZSTD frame or skippable frame.
+ * `srcSize` must be >= first frame size
+ * @return : the compressed size of the first frame starting at `src`,
+ * suitable to pass as `srcSize` to `ZSTD_decompress` or similar,
+ * or an error code if input is invalid */
+ZSTDLIB_API size_t ZSTD_findFrameCompressedSize(const void* src, size_t srcSize);
+
+
+/*====== Helper functions ======*/
+#define ZSTD_COMPRESSBOUND(srcSize) ((srcSize) + ((srcSize)>>8) + (((srcSize) < (128<<10)) ? (((128<<10) - (srcSize)) >> 11) /* margin, from 64 to 0 */ : 0)) /* this formula ensures that bound(A) + bound(B) <= bound(A+B) as long as A and B >= 128 KB */
+ZSTDLIB_API size_t ZSTD_compressBound(size_t srcSize); /*!< maximum compressed size in worst case single-pass scenario */
+ZSTDLIB_API unsigned ZSTD_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
+ZSTDLIB_API const char* ZSTD_getErrorName(size_t code); /*!< provides readable string from an error code */
+ZSTDLIB_API int ZSTD_minCLevel(void); /*!< minimum negative compression level allowed */
+ZSTDLIB_API int ZSTD_maxCLevel(void); /*!< maximum compression level available */
+
+
+/***************************************
+* Explicit context
+***************************************/
+/*= Compression context
+ * When compressing many times,
+ * it is recommended to allocate a context just once,
+ * and re-use it for each successive compression operation.
+ * This will make workload friendlier for system's memory.
+ * Note : re-using context is just a speed / resource optimization.
+ * It doesn't change the compression ratio, which remains identical.
+ * Note 2 : In multi-threaded environments,
+ * use one different context per thread for parallel execution.
+ */
+typedef struct ZSTD_CCtx_s ZSTD_CCtx;
+ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx(void);
+ZSTDLIB_API size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx);
+
+/*! ZSTD_compressCCtx() :
+ * Same as ZSTD_compress(), using an explicit ZSTD_CCtx
+ * The function will compress at requested compression level,
+ * ignoring any other parameter */
+ZSTDLIB_API size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ int compressionLevel);
+
+/*= Decompression context
+ * When decompressing many times,
+ * it is recommended to allocate a context only once,
+ * and re-use it for each successive compression operation.
+ * This will make workload friendlier for system's memory.
+ * Use one context per thread for parallel execution. */
+typedef struct ZSTD_DCtx_s ZSTD_DCtx;
+ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx(void);
+ZSTDLIB_API size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx);
+
+/*! ZSTD_decompressDCtx() :
+ * Same as ZSTD_decompress(),
+ * requires an allocated ZSTD_DCtx.
+ * Compatible with sticky parameters.
+ */
+ZSTDLIB_API size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize);
+
+
+/***************************************
+* Advanced compression API
+***************************************/
+
+/* API design :
+ * Parameters are pushed one by one into an existing context,
+ * using ZSTD_CCtx_set*() functions.
+ * Pushed parameters are sticky : they are valid for next compressed frame, and any subsequent frame.
+ * "sticky" parameters are applicable to `ZSTD_compress2()` and `ZSTD_compressStream*()` !
+ * They do not apply to "simple" one-shot variants such as ZSTD_compressCCtx()
+ *
+ * It's possible to reset all parameters to "default" using ZSTD_CCtx_reset().
+ *
+ * This API supercedes all other "advanced" API entry points in the experimental section.
+ * In the future, we expect to remove from experimental API entry points which are redundant with this API.
+ */
+
+
+/* Compression strategies, listed from fastest to strongest */
+typedef enum { ZSTD_fast=1,
+ ZSTD_dfast=2,
+ ZSTD_greedy=3,
+ ZSTD_lazy=4,
+ ZSTD_lazy2=5,
+ ZSTD_btlazy2=6,
+ ZSTD_btopt=7,
+ ZSTD_btultra=8,
+ ZSTD_btultra2=9
+ /* note : new strategies _might_ be added in the future.
+ Only the order (from fast to strong) is guaranteed */
+} ZSTD_strategy;
+
+
+typedef enum {
+
+ /* compression parameters
+ * Note: When compressing with a ZSTD_CDict these parameters are superseded
+ * by the parameters used to construct the ZSTD_CDict. See ZSTD_CCtx_refCDict()
+ * for more info (superseded-by-cdict). */
+ ZSTD_c_compressionLevel=100, /* Update all compression parameters according to pre-defined cLevel table
+ * Default level is ZSTD_CLEVEL_DEFAULT==3.
+ * Special: value 0 means default, which is controlled by ZSTD_CLEVEL_DEFAULT.
+ * Note 1 : it's possible to pass a negative compression level.
+ * Note 2 : setting a level sets all default values of other compression parameters */
+ ZSTD_c_windowLog=101, /* Maximum allowed back-reference distance, expressed as power of 2.
+ * Must be clamped between ZSTD_WINDOWLOG_MIN and ZSTD_WINDOWLOG_MAX.
+ * Special: value 0 means "use default windowLog".
+ * Note: Using a windowLog greater than ZSTD_WINDOWLOG_LIMIT_DEFAULT
+ * requires explicitly allowing such window size at decompression stage if using streaming. */
+ ZSTD_c_hashLog=102, /* Size of the initial probe table, as a power of 2.
+ * Resulting memory usage is (1 << (hashLog+2)).
+ * Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX.
+ * Larger tables improve compression ratio of strategies <= dFast,
+ * and improve speed of strategies > dFast.
+ * Special: value 0 means "use default hashLog". */
+ ZSTD_c_chainLog=103, /* Size of the multi-probe search table, as a power of 2.
+ * Resulting memory usage is (1 << (chainLog+2)).
+ * Must be clamped between ZSTD_CHAINLOG_MIN and ZSTD_CHAINLOG_MAX.
+ * Larger tables result in better and slower compression.
+ * This parameter is useless when using "fast" strategy.
+ * It's still useful when using "dfast" strategy,
+ * in which case it defines a secondary probe table.
+ * Special: value 0 means "use default chainLog". */
+ ZSTD_c_searchLog=104, /* Number of search attempts, as a power of 2.
+ * More attempts result in better and slower compression.
+ * This parameter is useless when using "fast" and "dFast" strategies.
+ * Special: value 0 means "use default searchLog". */
+ ZSTD_c_minMatch=105, /* Minimum size of searched matches.
+ * Note that Zstandard can still find matches of smaller size,
+ * it just tweaks its search algorithm to look for this size and larger.
+ * Larger values increase compression and decompression speed, but decrease ratio.
+ * Must be clamped between ZSTD_MINMATCH_MIN and ZSTD_MINMATCH_MAX.
+ * Note that currently, for all strategies < btopt, effective minimum is 4.
+ * , for all strategies > fast, effective maximum is 6.
+ * Special: value 0 means "use default minMatchLength". */
+ ZSTD_c_targetLength=106, /* Impact of this field depends on strategy.
+ * For strategies btopt, btultra & btultra2:
+ * Length of Match considered "good enough" to stop search.
+ * Larger values make compression stronger, and slower.
+ * For strategy fast:
+ * Distance between match sampling.
+ * Larger values make compression faster, and weaker.
+ * Special: value 0 means "use default targetLength". */
+ ZSTD_c_strategy=107, /* See ZSTD_strategy enum definition.
+ * The higher the value of selected strategy, the more complex it is,
+ * resulting in stronger and slower compression.
+ * Special: value 0 means "use default strategy". */
+
+ /* LDM mode parameters */
+ ZSTD_c_enableLongDistanceMatching=160, /* Enable long distance matching.
+ * This parameter is designed to improve compression ratio
+ * for large inputs, by finding large matches at long distance.
+ * It increases memory usage and window size.
+ * Note: enabling this parameter increases default ZSTD_c_windowLog to 128 MB
+ * except when expressly set to a different value. */
+ ZSTD_c_ldmHashLog=161, /* Size of the table for long distance matching, as a power of 2.
+ * Larger values increase memory usage and compression ratio,
+ * but decrease compression speed.
+ * Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX
+ * default: windowlog - 7.
+ * Special: value 0 means "automatically determine hashlog". */
+ ZSTD_c_ldmMinMatch=162, /* Minimum match size for long distance matcher.
+ * Larger/too small values usually decrease compression ratio.
+ * Must be clamped between ZSTD_LDM_MINMATCH_MIN and ZSTD_LDM_MINMATCH_MAX.
+ * Special: value 0 means "use default value" (default: 64). */
+ ZSTD_c_ldmBucketSizeLog=163, /* Log size of each bucket in the LDM hash table for collision resolution.
+ * Larger values improve collision resolution but decrease compression speed.
+ * The maximum value is ZSTD_LDM_BUCKETSIZELOG_MAX.
+ * Special: value 0 means "use default value" (default: 3). */
+ ZSTD_c_ldmHashRateLog=164, /* Frequency of inserting/looking up entries into the LDM hash table.
+ * Must be clamped between 0 and (ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN).
+ * Default is MAX(0, (windowLog - ldmHashLog)), optimizing hash table usage.
+ * Larger values improve compression speed.
+ * Deviating far from default value will likely result in a compression ratio decrease.
+ * Special: value 0 means "automatically determine hashRateLog". */
+
+ /* frame parameters */
+ ZSTD_c_contentSizeFlag=200, /* Content size will be written into frame header _whenever known_ (default:1)
+ * Content size must be known at the beginning of compression.
+ * This is automatically the case when using ZSTD_compress2(),
+ * For streaming variants, content size must be provided with ZSTD_CCtx_setPledgedSrcSize() */
+ ZSTD_c_checksumFlag=201, /* A 32-bits checksum of content is written at end of frame (default:0) */
+ ZSTD_c_dictIDFlag=202, /* When applicable, dictionary's ID is written into frame header (default:1) */
+
+ /* multi-threading parameters */
+ /* These parameters are only useful if multi-threading is enabled (compiled with build macro ZSTD_MULTITHREAD).
+ * They return an error otherwise. */
+ ZSTD_c_nbWorkers=400, /* Select how many threads will be spawned to compress in parallel.
+ * When nbWorkers >= 1, triggers asynchronous mode when used with ZSTD_compressStream*() :
+ * ZSTD_compressStream*() consumes input and flush output if possible, but immediately gives back control to caller,
+ * while compression work is performed in parallel, within worker threads.
+ * (note : a strong exception to this rule is when first invocation of ZSTD_compressStream2() sets ZSTD_e_end :
+ * in which case, ZSTD_compressStream2() delegates to ZSTD_compress2(), which is always a blocking call).
+ * More workers improve speed, but also increase memory usage.
+ * Default value is `0`, aka "single-threaded mode" : no worker is spawned, compression is performed inside Caller's thread, all invocations are blocking */
+ ZSTD_c_jobSize=401, /* Size of a compression job. This value is enforced only when nbWorkers >= 1.
+ * Each compression job is completed in parallel, so this value can indirectly impact the nb of active threads.
+ * 0 means default, which is dynamically determined based on compression parameters.
+ * Job size must be a minimum of overlap size, or 1 MB, whichever is largest.
+ * The minimum size is automatically and transparently enforced */
+ ZSTD_c_overlapLog=402, /* Control the overlap size, as a fraction of window size.
+ * The overlap size is an amount of data reloaded from previous job at the beginning of a new job.
+ * It helps preserve compression ratio, while each job is compressed in parallel.
+ * This value is enforced only when nbWorkers >= 1.
+ * Larger values increase compression ratio, but decrease speed.
+ * Possible values range from 0 to 9 :
+ * - 0 means "default" : value will be determined by the library, depending on strategy
+ * - 1 means "no overlap"
+ * - 9 means "full overlap", using a full window size.
+ * Each intermediate rank increases/decreases load size by a factor 2 :
+ * 9: full window; 8: w/2; 7: w/4; 6: w/8; 5:w/16; 4: w/32; 3:w/64; 2:w/128; 1:no overlap; 0:default
+ * default value varies between 6 and 9, depending on strategy */
+
+ /* note : additional experimental parameters are also available
+ * within the experimental section of the API.
+ * At the time of this writing, they include :
+ * ZSTD_c_rsyncable
+ * ZSTD_c_format
+ * ZSTD_c_forceMaxWindow
+ * ZSTD_c_forceAttachDict
+ * ZSTD_c_literalCompressionMode
+ * ZSTD_c_targetCBlockSize
+ * Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them.
+ * note : never ever use experimentalParam? names directly;
+ * also, the enums values themselves are unstable and can still change.
+ */
+ ZSTD_c_experimentalParam1=500,
+ ZSTD_c_experimentalParam2=10,
+ ZSTD_c_experimentalParam3=1000,
+ ZSTD_c_experimentalParam4=1001,
+ ZSTD_c_experimentalParam5=1002,
+ ZSTD_c_experimentalParam6=1003,
+} ZSTD_cParameter;
+
+typedef struct {
+ size_t error;
+ int lowerBound;
+ int upperBound;
+} ZSTD_bounds;
+
+/*! ZSTD_cParam_getBounds() :
+ * All parameters must belong to an interval with lower and upper bounds,
+ * otherwise they will either trigger an error or be automatically clamped.
+ * @return : a structure, ZSTD_bounds, which contains
+ * - an error status field, which must be tested using ZSTD_isError()
+ * - lower and upper bounds, both inclusive
+ */
+ZSTDLIB_API ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter cParam);
+
+/*! ZSTD_CCtx_setParameter() :
+ * Set one compression parameter, selected by enum ZSTD_cParameter.
+ * All parameters have valid bounds. Bounds can be queried using ZSTD_cParam_getBounds().
+ * Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter).
+ * Setting a parameter is generally only possible during frame initialization (before starting compression).
+ * Exception : when using multi-threading mode (nbWorkers >= 1),
+ * the following parameters can be updated _during_ compression (within same frame):
+ * => compressionLevel, hashLog, chainLog, searchLog, minMatch, targetLength and strategy.
+ * new parameters will be active for next job only (after a flush()).
+ * @return : an error code (which can be tested using ZSTD_isError()).
+ */
+ZSTDLIB_API size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value);
+
+/*! ZSTD_CCtx_setPledgedSrcSize() :
+ * Total input data size to be compressed as a single frame.
+ * Value will be written in frame header, unless if explicitly forbidden using ZSTD_c_contentSizeFlag.
+ * This value will also be controlled at end of frame, and trigger an error if not respected.
+ * @result : 0, or an error code (which can be tested with ZSTD_isError()).
+ * Note 1 : pledgedSrcSize==0 actually means zero, aka an empty frame.
+ * In order to mean "unknown content size", pass constant ZSTD_CONTENTSIZE_UNKNOWN.
+ * ZSTD_CONTENTSIZE_UNKNOWN is default value for any new frame.
+ * Note 2 : pledgedSrcSize is only valid once, for the next frame.
+ * It's discarded at the end of the frame, and replaced by ZSTD_CONTENTSIZE_UNKNOWN.
+ * Note 3 : Whenever all input data is provided and consumed in a single round,
+ * for example with ZSTD_compress2(),
+ * or invoking immediately ZSTD_compressStream2(,,,ZSTD_e_end),
+ * this value is automatically overridden by srcSize instead.
+ */
+ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize);
+
+typedef enum {
+ ZSTD_reset_session_only = 1,
+ ZSTD_reset_parameters = 2,
+ ZSTD_reset_session_and_parameters = 3
+} ZSTD_ResetDirective;
+
+/*! ZSTD_CCtx_reset() :
+ * There are 2 different things that can be reset, independently or jointly :
+ * - The session : will stop compressing current frame, and make CCtx ready to start a new one.
+ * Useful after an error, or to interrupt any ongoing compression.
+ * Any internal data not yet flushed is cancelled.
+ * Compression parameters and dictionary remain unchanged.
+ * They will be used to compress next frame.
+ * Resetting session never fails.
+ * - The parameters : changes all parameters back to "default".
+ * This removes any reference to any dictionary too.
+ * Parameters can only be changed between 2 sessions (i.e. no compression is currently ongoing)
+ * otherwise the reset fails, and function returns an error value (which can be tested using ZSTD_isError())
+ * - Both : similar to resetting the session, followed by resetting parameters.
+ */
+ZSTDLIB_API size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset);
+
+/*! ZSTD_compress2() :
+ * Behave the same as ZSTD_compressCCtx(), but compression parameters are set using the advanced API.
+ * ZSTD_compress2() always starts a new frame.
+ * Should cctx hold data from a previously unfinished frame, everything about it is forgotten.
+ * - Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*()
+ * - The function is always blocking, returns when compression is completed.
+ * Hint : compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
+ * @return : compressed size written into `dst` (<= `dstCapacity),
+ * or an error code if it fails (which can be tested using ZSTD_isError()).
+ */
+ZSTDLIB_API size_t ZSTD_compress2( ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize);
+
+
+/***************************************
+* Advanced decompression API
+***************************************/
+
+/* The advanced API pushes parameters one by one into an existing DCtx context.
+ * Parameters are sticky, and remain valid for all following frames
+ * using the same DCtx context.
+ * It's possible to reset parameters to default values using ZSTD_DCtx_reset().
+ * Note : This API is compatible with existing ZSTD_decompressDCtx() and ZSTD_decompressStream().
+ * Therefore, no new decompression function is necessary.
+ */
+
+typedef enum {
+
+ ZSTD_d_windowLogMax=100, /* Select a size limit (in power of 2) beyond which
+ * the streaming API will refuse to allocate memory buffer
+ * in order to protect the host from unreasonable memory requirements.
+ * This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode.
+ * By default, a decompression context accepts window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT).
+ * Special: value 0 means "use default maximum windowLog". */
+
+ /* note : additional experimental parameters are also available
+ * within the experimental section of the API.
+ * At the time of this writing, they include :
+ * ZSTD_c_format
+ * Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them.
+ * note : never ever use experimentalParam? names directly
+ */
+ ZSTD_d_experimentalParam1=1000
+
+} ZSTD_dParameter;
+
+/*! ZSTD_dParam_getBounds() :
+ * All parameters must belong to an interval with lower and upper bounds,
+ * otherwise they will either trigger an error or be automatically clamped.
+ * @return : a structure, ZSTD_bounds, which contains
+ * - an error status field, which must be tested using ZSTD_isError()
+ * - both lower and upper bounds, inclusive
+ */
+ZSTDLIB_API ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam);
+
+/*! ZSTD_DCtx_setParameter() :
+ * Set one compression parameter, selected by enum ZSTD_dParameter.
+ * All parameters have valid bounds. Bounds can be queried using ZSTD_dParam_getBounds().
+ * Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter).
+ * Setting a parameter is only possible during frame initialization (before starting decompression).
+ * @return : 0, or an error code (which can be tested using ZSTD_isError()).
+ */
+ZSTDLIB_API size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int value);
+
+/*! ZSTD_DCtx_reset() :
+ * Return a DCtx to clean state.
+ * Session and parameters can be reset jointly or separately.
+ * Parameters can only be reset when no active frame is being decompressed.
+ * @return : 0, or an error code, which can be tested with ZSTD_isError()
+ */
+ZSTDLIB_API size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset);
+
+
+/****************************
+* Streaming
+****************************/
+
+typedef struct ZSTD_inBuffer_s {
+ const void* src; /**< start of input buffer */
+ size_t size; /**< size of input buffer */
+ size_t pos; /**< position where reading stopped. Will be updated. Necessarily 0 <= pos <= size */
+} ZSTD_inBuffer;
+
+typedef struct ZSTD_outBuffer_s {
+ void* dst; /**< start of output buffer */
+ size_t size; /**< size of output buffer */
+ size_t pos; /**< position where writing stopped. Will be updated. Necessarily 0 <= pos <= size */
+} ZSTD_outBuffer;
+
+
+
+/*-***********************************************************************
+* Streaming compression - HowTo
+*
+* A ZSTD_CStream object is required to track streaming operation.
+* Use ZSTD_createCStream() and ZSTD_freeCStream() to create/release resources.
+* ZSTD_CStream objects can be reused multiple times on consecutive compression operations.
+* It is recommended to re-use ZSTD_CStream since it will play nicer with system's memory, by re-using already allocated memory.
+*
+* For parallel execution, use one separate ZSTD_CStream per thread.
+*
+* note : since v1.3.0, ZSTD_CStream and ZSTD_CCtx are the same thing.
+*
+* Parameters are sticky : when starting a new compression on the same context,
+* it will re-use the same sticky parameters as previous compression session.
+* When in doubt, it's recommended to fully initialize the context before usage.
+* Use ZSTD_CCtx_reset() to reset the context and ZSTD_CCtx_setParameter(),
+* ZSTD_CCtx_setPledgedSrcSize(), or ZSTD_CCtx_loadDictionary() and friends to
+* set more specific parameters, the pledged source size, or load a dictionary.
+*
+* Use ZSTD_compressStream2() with ZSTD_e_continue as many times as necessary to
+* consume input stream. The function will automatically update both `pos`
+* fields within `input` and `output`.
+* Note that the function may not consume the entire input, for example, because
+* the output buffer is already full, in which case `input.pos < input.size`.
+* The caller must check if input has been entirely consumed.
+* If not, the caller must make some room to receive more compressed data,
+* and then present again remaining input data.
+* note: ZSTD_e_continue is guaranteed to make some forward progress when called,
+* but doesn't guarantee maximal forward progress. This is especially relevant
+* when compressing with multiple threads. The call won't block if it can
+* consume some input, but if it can't it will wait for some, but not all,
+* output to be flushed.
+* @return : provides a minimum amount of data remaining to be flushed from internal buffers
+* or an error code, which can be tested using ZSTD_isError().
+*
+* At any moment, it's possible to flush whatever data might remain stuck within internal buffer,
+* using ZSTD_compressStream2() with ZSTD_e_flush. `output->pos` will be updated.
+* Note that, if `output->size` is too small, a single invocation with ZSTD_e_flush might not be enough (return code > 0).
+* In which case, make some room to receive more compressed data, and call again ZSTD_compressStream2() with ZSTD_e_flush.
+* You must continue calling ZSTD_compressStream2() with ZSTD_e_flush until it returns 0, at which point you can change the
+* operation.
+* note: ZSTD_e_flush will flush as much output as possible, meaning when compressing with multiple threads, it will
+* block until the flush is complete or the output buffer is full.
+* @return : 0 if internal buffers are entirely flushed,
+* >0 if some data still present within internal buffer (the value is minimal estimation of remaining size),
+* or an error code, which can be tested using ZSTD_isError().
+*
+* Calling ZSTD_compressStream2() with ZSTD_e_end instructs to finish a frame.
+* It will perform a flush and write frame epilogue.
+* The epilogue is required for decoders to consider a frame completed.
+* flush operation is the same, and follows same rules as calling ZSTD_compressStream2() with ZSTD_e_flush.
+* You must continue calling ZSTD_compressStream2() with ZSTD_e_end until it returns 0, at which point you are free to
+* start a new frame.
+* note: ZSTD_e_end will flush as much output as possible, meaning when compressing with multiple threads, it will
+* block until the flush is complete or the output buffer is full.
+* @return : 0 if frame fully completed and fully flushed,
+* >0 if some data still present within internal buffer (the value is minimal estimation of remaining size),
+* or an error code, which can be tested using ZSTD_isError().
+*
+* *******************************************************************/
+
+typedef ZSTD_CCtx ZSTD_CStream; /**< CCtx and CStream are now effectively same object (>= v1.3.0) */
+ /* Continue to distinguish them for compatibility with older versions <= v1.2.0 */
+/*===== ZSTD_CStream management functions =====*/
+ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream(void);
+ZSTDLIB_API size_t ZSTD_freeCStream(ZSTD_CStream* zcs);
+
+/*===== Streaming compression functions =====*/
+typedef enum {
+ ZSTD_e_continue=0, /* collect more data, encoder decides when to output compressed result, for optimal compression ratio */
+ ZSTD_e_flush=1, /* flush any data provided so far,
+ * it creates (at least) one new block, that can be decoded immediately on reception;
+ * frame will continue: any future data can still reference previously compressed data, improving compression.
+ * note : multithreaded compression will block to flush as much output as possible. */
+ ZSTD_e_end=2 /* flush any remaining data _and_ close current frame.
+ * note that frame is only closed after compressed data is fully flushed (return value == 0).
+ * After that point, any additional data starts a new frame.
+ * note : each frame is independent (does not reference any content from previous frame).
+ : note : multithreaded compression will block to flush as much output as possible. */
+} ZSTD_EndDirective;
+
+/*! ZSTD_compressStream2() :
+ * Behaves about the same as ZSTD_compressStream, with additional control on end directive.
+ * - Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*()
+ * - Compression parameters cannot be changed once compression is started (save a list of exceptions in multi-threading mode)
+ * - output->pos must be <= dstCapacity, input->pos must be <= srcSize
+ * - output->pos and input->pos will be updated. They are guaranteed to remain below their respective limit.
+ * - When nbWorkers==0 (default), function is blocking : it completes its job before returning to caller.
+ * - When nbWorkers>=1, function is non-blocking : it just acquires a copy of input, and distributes jobs to internal worker threads, flush whatever is available,
+ * and then immediately returns, just indicating that there is some data remaining to be flushed.
+ * The function nonetheless guarantees forward progress : it will return only after it reads or write at least 1+ byte.
+ * - Exception : if the first call requests a ZSTD_e_end directive and provides enough dstCapacity, the function delegates to ZSTD_compress2() which is always blocking.
+ * - @return provides a minimum amount of data remaining to be flushed from internal buffers
+ * or an error code, which can be tested using ZSTD_isError().
+ * if @return != 0, flush is not fully completed, there is still some data left within internal buffers.
+ * This is useful for ZSTD_e_flush, since in this case more flushes are necessary to empty all buffers.
+ * For ZSTD_e_end, @return == 0 when internal buffers are fully flushed and frame is completed.
+ * - after a ZSTD_e_end directive, if internal buffer is not fully flushed (@return != 0),
+ * only ZSTD_e_end or ZSTD_e_flush operations are allowed.
+ * Before starting a new compression job, or changing compression parameters,
+ * it is required to fully flush internal buffers.
+ */
+ZSTDLIB_API size_t ZSTD_compressStream2( ZSTD_CCtx* cctx,
+ ZSTD_outBuffer* output,
+ ZSTD_inBuffer* input,
+ ZSTD_EndDirective endOp);
+
+
+/* These buffer sizes are softly recommended.
+ * They are not required : ZSTD_compressStream*() happily accepts any buffer size, for both input and output.
+ * Respecting the recommended size just makes it a bit easier for ZSTD_compressStream*(),
+ * reducing the amount of memory shuffling and buffering, resulting in minor performance savings.
+ *
+ * However, note that these recommendations are from the perspective of a C caller program.
+ * If the streaming interface is invoked from some other language,
+ * especially managed ones such as Java or Go, through a foreign function interface such as jni or cgo,
+ * a major performance rule is to reduce crossing such interface to an absolute minimum.
+ * It's not rare that performance ends being spent more into the interface, rather than compression itself.
+ * In which cases, prefer using large buffers, as large as practical,
+ * for both input and output, to reduce the nb of roundtrips.
+ */
+ZSTDLIB_API size_t ZSTD_CStreamInSize(void); /**< recommended size for input buffer */
+ZSTDLIB_API size_t ZSTD_CStreamOutSize(void); /**< recommended size for output buffer. Guarantee to successfully flush at least one complete compressed block. */
+
+
+/* *****************************************************************************
+ * This following is a legacy streaming API.
+ * It can be replaced by ZSTD_CCtx_reset() and ZSTD_compressStream2().
+ * It is redundant, but remains fully supported.
+ * Advanced parameters and dictionary compression can only be used through the
+ * new API.
+ ******************************************************************************/
+
+/*!
+ * Equivalent to:
+ *
+ * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ * ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any)
+ * ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel);
+ */
+ZSTDLIB_API size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel);
+/*!
+ * Alternative for ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue).
+ * NOTE: The return value is different. ZSTD_compressStream() returns a hint for
+ * the next read size (if non-zero and not an error). ZSTD_compressStream2()
+ * returns the minimum nb of bytes left to flush (if non-zero and not an error).
+ */
+ZSTDLIB_API size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
+/*! Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_flush). */
+ZSTDLIB_API size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output);
+/*! Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_end). */
+ZSTDLIB_API size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output);
+
+
+/*-***************************************************************************
+* Streaming decompression - HowTo
+*
+* A ZSTD_DStream object is required to track streaming operations.
+* Use ZSTD_createDStream() and ZSTD_freeDStream() to create/release resources.
+* ZSTD_DStream objects can be re-used multiple times.
+*
+* Use ZSTD_initDStream() to start a new decompression operation.
+* @return : recommended first input size
+* Alternatively, use advanced API to set specific properties.
+*
+* Use ZSTD_decompressStream() repetitively to consume your input.
+* The function will update both `pos` fields.
+* If `input.pos < input.size`, some input has not been consumed.
+* It's up to the caller to present again remaining data.
+* The function tries to flush all data decoded immediately, respecting output buffer size.
+* If `output.pos < output.size`, decoder has flushed everything it could.
+* But if `output.pos == output.size`, there might be some data left within internal buffers.,
+* In which case, call ZSTD_decompressStream() again to flush whatever remains in the buffer.
+* Note : with no additional input provided, amount of data flushed is necessarily <= ZSTD_BLOCKSIZE_MAX.
+* @return : 0 when a frame is completely decoded and fully flushed,
+* or an error code, which can be tested using ZSTD_isError(),
+* or any other value > 0, which means there is still some decoding or flushing to do to complete current frame :
+* the return value is a suggested next input size (just a hint for better latency)
+* that will never request more than the remaining frame size.
+* *******************************************************************************/
+
+typedef ZSTD_DCtx ZSTD_DStream; /**< DCtx and DStream are now effectively same object (>= v1.3.0) */
+ /* For compatibility with versions <= v1.2.0, prefer differentiating them. */
+/*===== ZSTD_DStream management functions =====*/
+ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream(void);
+ZSTDLIB_API size_t ZSTD_freeDStream(ZSTD_DStream* zds);
+
+/*===== Streaming decompression functions =====*/
+
+/* This function is redundant with the advanced API and equivalent to:
+ *
+ * ZSTD_DCtx_reset(zds);
+ * ZSTD_DCtx_refDDict(zds, NULL);
+ */
+ZSTDLIB_API size_t ZSTD_initDStream(ZSTD_DStream* zds);
+
+ZSTDLIB_API size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
+
+ZSTDLIB_API size_t ZSTD_DStreamInSize(void); /*!< recommended size for input buffer */
+ZSTDLIB_API size_t ZSTD_DStreamOutSize(void); /*!< recommended size for output buffer. Guarantee to successfully flush at least one complete block in all circumstances. */
+
+
+/**************************
+* Simple dictionary API
+***************************/
+/*! ZSTD_compress_usingDict() :
+ * Compression at an explicit compression level using a Dictionary.
+ * A dictionary can be any arbitrary data segment (also called a prefix),
+ * or a buffer with specified information (see dictBuilder/zdict.h).
+ * Note : This function loads the dictionary, resulting in significant startup delay.
+ * It's intended for a dictionary used only once.
+ * Note 2 : When `dict == NULL || dictSize < 8` no dictionary is used. */
+ZSTDLIB_API size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize,
+ int compressionLevel);
+
+/*! ZSTD_decompress_usingDict() :
+ * Decompression using a known Dictionary.
+ * Dictionary must be identical to the one used during compression.
+ * Note : This function loads the dictionary, resulting in significant startup delay.
+ * It's intended for a dictionary used only once.
+ * Note : When `dict == NULL || dictSize < 8` no dictionary is used. */
+ZSTDLIB_API size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize);
+
+
+/***********************************
+ * Bulk processing dictionary API
+ **********************************/
+typedef struct ZSTD_CDict_s ZSTD_CDict;
+
+/*! ZSTD_createCDict() :
+ * When compressing multiple messages / blocks using the same dictionary, it's recommended to load it only once.
+ * ZSTD_createCDict() will create a digested dictionary, ready to start future compression operations without startup cost.
+ * ZSTD_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only.
+ * `dictBuffer` can be released after ZSTD_CDict creation, because its content is copied within CDict.
+ * Consider experimental function `ZSTD_createCDict_byReference()` if you prefer to not duplicate `dictBuffer` content.
+ * Note : A ZSTD_CDict can be created from an empty dictBuffer, but it is inefficient when used to compress small data. */
+ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict(const void* dictBuffer, size_t dictSize,
+ int compressionLevel);
+
+/*! ZSTD_freeCDict() :
+ * Function frees memory allocated by ZSTD_createCDict(). */
+ZSTDLIB_API size_t ZSTD_freeCDict(ZSTD_CDict* CDict);
+
+/*! ZSTD_compress_usingCDict() :
+ * Compression using a digested Dictionary.
+ * Recommended when same dictionary is used multiple times.
+ * Note : compression level is _decided at dictionary creation time_,
+ * and frame parameters are hardcoded (dictID=yes, contentSize=yes, checksum=no) */
+ZSTDLIB_API size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_CDict* cdict);
+
+
+typedef struct ZSTD_DDict_s ZSTD_DDict;
+
+/*! ZSTD_createDDict() :
+ * Create a digested dictionary, ready to start decompression operation without startup delay.
+ * dictBuffer can be released after DDict creation, as its content is copied inside DDict. */
+ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict(const void* dictBuffer, size_t dictSize);
+
+/*! ZSTD_freeDDict() :
+ * Function frees memory allocated with ZSTD_createDDict() */
+ZSTDLIB_API size_t ZSTD_freeDDict(ZSTD_DDict* ddict);
+
+/*! ZSTD_decompress_usingDDict() :
+ * Decompression using a digested Dictionary.
+ * Recommended when same dictionary is used multiple times. */
+ZSTDLIB_API size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_DDict* ddict);
+
+
+/********************************
+ * Dictionary helper functions
+ *******************************/
+
+/*! ZSTD_getDictID_fromDict() :
+ * Provides the dictID stored within dictionary.
+ * if @return == 0, the dictionary is not conformant with Zstandard specification.
+ * It can still be loaded, but as a content-only dictionary. */
+ZSTDLIB_API unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize);
+
+/*! ZSTD_getDictID_fromDDict() :
+ * Provides the dictID of the dictionary loaded into `ddict`.
+ * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
+ * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
+ZSTDLIB_API unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict);
+
+/*! ZSTD_getDictID_fromFrame() :
+ * Provides the dictID required to decompressed the frame stored within `src`.
+ * If @return == 0, the dictID could not be decoded.
+ * This could for one of the following reasons :
+ * - The frame does not require a dictionary to be decoded (most common case).
+ * - The frame was built with dictID intentionally removed. Whatever dictionary is necessary is a hidden information.
+ * Note : this use case also happens when using a non-conformant dictionary.
+ * - `srcSize` is too small, and as a result, the frame header could not be decoded (only possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`).
+ * - This is not a Zstandard frame.
+ * When identifying the exact failure cause, it's possible to use ZSTD_getFrameHeader(), which will provide a more precise error code. */
+ZSTDLIB_API unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize);
+
+
+/*******************************************************************************
+ * Advanced dictionary and prefix API
+ *
+ * This API allows dictionaries to be used with ZSTD_compress2(),
+ * ZSTD_compressStream2(), and ZSTD_decompress(). Dictionaries are sticky, and
+ * only reset with the context is reset with ZSTD_reset_parameters or
+ * ZSTD_reset_session_and_parameters. Prefixes are single-use.
+ ******************************************************************************/
+
+
+/*! ZSTD_CCtx_loadDictionary() :
+ * Create an internal CDict from `dict` buffer.
+ * Decompression will have to use same dictionary.
+ * @result : 0, or an error code (which can be tested with ZSTD_isError()).
+ * Special: Loading a NULL (or 0-size) dictionary invalidates previous dictionary,
+ * meaning "return to no-dictionary mode".
+ * Note 1 : Dictionary is sticky, it will be used for all future compressed frames.
+ * To return to "no-dictionary" situation, load a NULL dictionary (or reset parameters).
+ * Note 2 : Loading a dictionary involves building tables.
+ * It's also a CPU consuming operation, with non-negligible impact on latency.
+ * Tables are dependent on compression parameters, and for this reason,
+ * compression parameters can no longer be changed after loading a dictionary.
+ * Note 3 :`dict` content will be copied internally.
+ * Use experimental ZSTD_CCtx_loadDictionary_byReference() to reference content instead.
+ * In such a case, dictionary buffer must outlive its users.
+ * Note 4 : Use ZSTD_CCtx_loadDictionary_advanced()
+ * to precisely select how dictionary content must be interpreted. */
+ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize);
+
+/*! ZSTD_CCtx_refCDict() :
+ * Reference a prepared dictionary, to be used for all next compressed frames.
+ * Note that compression parameters are enforced from within CDict,
+ * and supersede any compression parameter previously set within CCtx.
+ * The parameters ignored are labled as "superseded-by-cdict" in the ZSTD_cParameter enum docs.
+ * The ignored parameters will be used again if the CCtx is returned to no-dictionary mode.
+ * The dictionary will remain valid for future compressed frames using same CCtx.
+ * @result : 0, or an error code (which can be tested with ZSTD_isError()).
+ * Special : Referencing a NULL CDict means "return to no-dictionary mode".
+ * Note 1 : Currently, only one dictionary can be managed.
+ * Referencing a new dictionary effectively "discards" any previous one.
+ * Note 2 : CDict is just referenced, its lifetime must outlive its usage within CCtx. */
+ZSTDLIB_API size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict);
+
+/*! ZSTD_CCtx_refPrefix() :
+ * Reference a prefix (single-usage dictionary) for next compressed frame.
+ * A prefix is **only used once**. Tables are discarded at end of frame (ZSTD_e_end).
+ * Decompression will need same prefix to properly regenerate data.
+ * Compressing with a prefix is similar in outcome as performing a diff and compressing it,
+ * but performs much faster, especially during decompression (compression speed is tunable with compression level).
+ * @result : 0, or an error code (which can be tested with ZSTD_isError()).
+ * Special: Adding any prefix (including NULL) invalidates any previous prefix or dictionary
+ * Note 1 : Prefix buffer is referenced. It **must** outlive compression.
+ * Its content must remain unmodified during compression.
+ * Note 2 : If the intention is to diff some large src data blob with some prior version of itself,
+ * ensure that the window size is large enough to contain the entire source.
+ * See ZSTD_c_windowLog.
+ * Note 3 : Referencing a prefix involves building tables, which are dependent on compression parameters.
+ * It's a CPU consuming operation, with non-negligible impact on latency.
+ * If there is a need to use the same prefix multiple times, consider loadDictionary instead.
+ * Note 4 : By default, the prefix is interpreted as raw content (ZSTD_dm_rawContent).
+ * Use experimental ZSTD_CCtx_refPrefix_advanced() to alter dictionary interpretation. */
+ZSTDLIB_API size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx,
+ const void* prefix, size_t prefixSize);
+
+/*! ZSTD_DCtx_loadDictionary() :
+ * Create an internal DDict from dict buffer,
+ * to be used to decompress next frames.
+ * The dictionary remains valid for all future frames, until explicitly invalidated.
+ * @result : 0, or an error code (which can be tested with ZSTD_isError()).
+ * Special : Adding a NULL (or 0-size) dictionary invalidates any previous dictionary,
+ * meaning "return to no-dictionary mode".
+ * Note 1 : Loading a dictionary involves building tables,
+ * which has a non-negligible impact on CPU usage and latency.
+ * It's recommended to "load once, use many times", to amortize the cost
+ * Note 2 :`dict` content will be copied internally, so `dict` can be released after loading.
+ * Use ZSTD_DCtx_loadDictionary_byReference() to reference dictionary content instead.
+ * Note 3 : Use ZSTD_DCtx_loadDictionary_advanced() to take control of
+ * how dictionary content is loaded and interpreted.
+ */
+ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
+
+/*! ZSTD_DCtx_refDDict() :
+ * Reference a prepared dictionary, to be used to decompress next frames.
+ * The dictionary remains active for decompression of future frames using same DCtx.
+ * @result : 0, or an error code (which can be tested with ZSTD_isError()).
+ * Note 1 : Currently, only one dictionary can be managed.
+ * Referencing a new dictionary effectively "discards" any previous one.
+ * Special: referencing a NULL DDict means "return to no-dictionary mode".
+ * Note 2 : DDict is just referenced, its lifetime must outlive its usage from DCtx.
+ */
+ZSTDLIB_API size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
+
+/*! ZSTD_DCtx_refPrefix() :
+ * Reference a prefix (single-usage dictionary) to decompress next frame.
+ * This is the reverse operation of ZSTD_CCtx_refPrefix(),
+ * and must use the same prefix as the one used during compression.
+ * Prefix is **only used once**. Reference is discarded at end of frame.
+ * End of frame is reached when ZSTD_decompressStream() returns 0.
+ * @result : 0, or an error code (which can be tested with ZSTD_isError()).
+ * Note 1 : Adding any prefix (including NULL) invalidates any previously set prefix or dictionary
+ * Note 2 : Prefix buffer is referenced. It **must** outlive decompression.
+ * Prefix buffer must remain unmodified up to the end of frame,
+ * reached when ZSTD_decompressStream() returns 0.
+ * Note 3 : By default, the prefix is treated as raw content (ZSTD_dm_rawContent).
+ * Use ZSTD_CCtx_refPrefix_advanced() to alter dictMode (Experimental section)
+ * Note 4 : Referencing a raw content prefix has almost no cpu nor memory cost.
+ * A full dictionary is more costly, as it requires building tables.
+ */
+ZSTDLIB_API size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx,
+ const void* prefix, size_t prefixSize);
+
+/* === Memory management === */
+
+/*! ZSTD_sizeof_*() :
+ * These functions give the _current_ memory usage of selected object.
+ * Note that object memory usage can evolve (increase or decrease) over time. */
+ZSTDLIB_API size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx);
+ZSTDLIB_API size_t ZSTD_sizeof_DCtx(const ZSTD_DCtx* dctx);
+ZSTDLIB_API size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs);
+ZSTDLIB_API size_t ZSTD_sizeof_DStream(const ZSTD_DStream* zds);
+ZSTDLIB_API size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict);
+ZSTDLIB_API size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict);
+
+#endif /* ZSTD_H_235446 */
+
+
+/* **************************************************************************************
+ * ADVANCED AND EXPERIMENTAL FUNCTIONS
+ ****************************************************************************************
+ * The definitions in the following section are considered experimental.
+ * They are provided for advanced scenarios.
+ * They should never be used with a dynamic library, as prototypes may change in the future.
+ * Use them only in association with static linking.
+ * ***************************************************************************************/
+
+#if defined(ZSTD_STATIC_LINKING_ONLY) && !defined(ZSTD_H_ZSTD_STATIC_LINKING_ONLY)
+#define ZSTD_H_ZSTD_STATIC_LINKING_ONLY
+
+/****************************************************************************************
+ * experimental API (static linking only)
+ ****************************************************************************************
+ * The following symbols and constants
+ * are not planned to join "stable API" status in the near future.
+ * They can still change in future versions.
+ * Some of them are planned to remain in the static_only section indefinitely.
+ * Some of them might be removed in the future (especially when redundant with existing stable functions)
+ * ***************************************************************************************/
+
+#define ZSTD_FRAMEHEADERSIZE_PREFIX 5 /* minimum input size required to query frame header size */
+#define ZSTD_FRAMEHEADERSIZE_MIN 6
+#define ZSTD_FRAMEHEADERSIZE_MAX 18 /* can be useful for static allocation */
+#define ZSTD_SKIPPABLEHEADERSIZE 8
+
+/* compression parameter bounds */
+#define ZSTD_WINDOWLOG_MAX_32 30
+#define ZSTD_WINDOWLOG_MAX_64 31
+#define ZSTD_WINDOWLOG_MAX ((int)(sizeof(size_t) == 4 ? ZSTD_WINDOWLOG_MAX_32 : ZSTD_WINDOWLOG_MAX_64))
+#define ZSTD_WINDOWLOG_MIN 10
+#define ZSTD_HASHLOG_MAX ((ZSTD_WINDOWLOG_MAX < 30) ? ZSTD_WINDOWLOG_MAX : 30)
+#define ZSTD_HASHLOG_MIN 6
+#define ZSTD_CHAINLOG_MAX_32 29
+#define ZSTD_CHAINLOG_MAX_64 30
+#define ZSTD_CHAINLOG_MAX ((int)(sizeof(size_t) == 4 ? ZSTD_CHAINLOG_MAX_32 : ZSTD_CHAINLOG_MAX_64))
+#define ZSTD_CHAINLOG_MIN ZSTD_HASHLOG_MIN
+#define ZSTD_SEARCHLOG_MAX (ZSTD_WINDOWLOG_MAX-1)
+#define ZSTD_SEARCHLOG_MIN 1
+#define ZSTD_MINMATCH_MAX 7 /* only for ZSTD_fast, other strategies are limited to 6 */
+#define ZSTD_MINMATCH_MIN 3 /* only for ZSTD_btopt+, faster strategies are limited to 4 */
+#define ZSTD_TARGETLENGTH_MAX ZSTD_BLOCKSIZE_MAX
+#define ZSTD_TARGETLENGTH_MIN 0 /* note : comparing this constant to an unsigned results in a tautological test */
+#define ZSTD_STRATEGY_MIN ZSTD_fast
+#define ZSTD_STRATEGY_MAX ZSTD_btultra2
+
+
+#define ZSTD_OVERLAPLOG_MIN 0
+#define ZSTD_OVERLAPLOG_MAX 9
+
+#define ZSTD_WINDOWLOG_LIMIT_DEFAULT 27 /* by default, the streaming decoder will refuse any frame
+ * requiring larger than (1<<ZSTD_WINDOWLOG_LIMIT_DEFAULT) window size,
+ * to preserve host's memory from unreasonable requirements.
+ * This limit can be overridden using ZSTD_DCtx_setParameter(,ZSTD_d_windowLogMax,).
+ * The limit does not apply for one-pass decoders (such as ZSTD_decompress()), since no additional memory is allocated */
+
+
+/* LDM parameter bounds */
+#define ZSTD_LDM_HASHLOG_MIN ZSTD_HASHLOG_MIN
+#define ZSTD_LDM_HASHLOG_MAX ZSTD_HASHLOG_MAX
+#define ZSTD_LDM_MINMATCH_MIN 4
+#define ZSTD_LDM_MINMATCH_MAX 4096
+#define ZSTD_LDM_BUCKETSIZELOG_MIN 1
+#define ZSTD_LDM_BUCKETSIZELOG_MAX 8
+#define ZSTD_LDM_HASHRATELOG_MIN 0
+#define ZSTD_LDM_HASHRATELOG_MAX (ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN)
+
+/* Advanced parameter bounds */
+#define ZSTD_TARGETCBLOCKSIZE_MIN 64
+#define ZSTD_TARGETCBLOCKSIZE_MAX ZSTD_BLOCKSIZE_MAX
+
+/* internal */
+#define ZSTD_HASHLOG3_MAX 17
+
+
+/* --- Advanced types --- */
+
+typedef struct ZSTD_CCtx_params_s ZSTD_CCtx_params;
+
+typedef struct {
+ unsigned windowLog; /**< largest match distance : larger == more compression, more memory needed during decompression */
+ unsigned chainLog; /**< fully searched segment : larger == more compression, slower, more memory (useless for fast) */
+ unsigned hashLog; /**< dispatch table : larger == faster, more memory */
+ unsigned searchLog; /**< nb of searches : larger == more compression, slower */
+ unsigned minMatch; /**< match length searched : larger == faster decompression, sometimes less compression */
+ unsigned targetLength; /**< acceptable match size for optimal parser (only) : larger == more compression, slower */
+ ZSTD_strategy strategy; /**< see ZSTD_strategy definition above */
+} ZSTD_compressionParameters;
+
+typedef struct {
+ int contentSizeFlag; /**< 1: content size will be in frame header (when known) */
+ int checksumFlag; /**< 1: generate a 32-bits checksum using XXH64 algorithm at end of frame, for error detection */
+ int noDictIDFlag; /**< 1: no dictID will be saved into frame header (dictID is only useful for dictionary compression) */
+} ZSTD_frameParameters;
+
+typedef struct {
+ ZSTD_compressionParameters cParams;
+ ZSTD_frameParameters fParams;
+} ZSTD_parameters;
+
+typedef enum {
+ ZSTD_dct_auto = 0, /* dictionary is "full" when starting with ZSTD_MAGIC_DICTIONARY, otherwise it is "rawContent" */
+ ZSTD_dct_rawContent = 1, /* ensures dictionary is always loaded as rawContent, even if it starts with ZSTD_MAGIC_DICTIONARY */
+ ZSTD_dct_fullDict = 2 /* refuses to load a dictionary if it does not respect Zstandard's specification, starting with ZSTD_MAGIC_DICTIONARY */
+} ZSTD_dictContentType_e;
+
+typedef enum {
+ ZSTD_dlm_byCopy = 0, /**< Copy dictionary content internally */
+ ZSTD_dlm_byRef = 1, /**< Reference dictionary content -- the dictionary buffer must outlive its users. */
+} ZSTD_dictLoadMethod_e;
+
+typedef enum {
+ /* Opened question : should we have a format ZSTD_f_auto ?
+ * Today, it would mean exactly the same as ZSTD_f_zstd1.
+ * But, in the future, should several formats become supported,
+ * on the compression side, it would mean "default format".
+ * On the decompression side, it would mean "automatic format detection",
+ * so that ZSTD_f_zstd1 would mean "accept *only* zstd frames".
+ * Since meaning is a little different, another option could be to define different enums for compression and decompression.
+ * This question could be kept for later, when there are actually multiple formats to support,
+ * but there is also the question of pinning enum values, and pinning value `0` is especially important */
+ ZSTD_f_zstd1 = 0, /* zstd frame format, specified in zstd_compression_format.md (default) */
+ ZSTD_f_zstd1_magicless = 1, /* Variant of zstd frame format, without initial 4-bytes magic number.
+ * Useful to save 4 bytes per generated frame.
+ * Decoder cannot recognise automatically this format, requiring this instruction. */
+} ZSTD_format_e;
+
+typedef enum {
+ /* Note: this enum and the behavior it controls are effectively internal
+ * implementation details of the compressor. They are expected to continue
+ * to evolve and should be considered only in the context of extremely
+ * advanced performance tuning.
+ *
+ * Zstd currently supports the use of a CDict in two ways:
+ *
+ * - The contents of the CDict can be copied into the working context. This
+ * means that the compression can search both the dictionary and input
+ * while operating on a single set of internal tables. This makes
+ * the compression faster per-byte of input. However, the initial copy of
+ * the CDict's tables incurs a fixed cost at the beginning of the
+ * compression. For small compressions (< 8 KB), that copy can dominate
+ * the cost of the compression.
+ *
+ * - The CDict's tables can be used in-place. In this model, compression is
+ * slower per input byte, because the compressor has to search two sets of
+ * tables. However, this model incurs no start-up cost (as long as the
+ * working context's tables can be reused). For small inputs, this can be
+ * faster than copying the CDict's tables.
+ *
+ * Zstd has a simple internal heuristic that selects which strategy to use
+ * at the beginning of a compression. However, if experimentation shows that
+ * Zstd is making poor choices, it is possible to override that choice with
+ * this enum.
+ */
+ ZSTD_dictDefaultAttach = 0, /* Use the default heuristic. */
+ ZSTD_dictForceAttach = 1, /* Never copy the dictionary. */
+ ZSTD_dictForceCopy = 2, /* Always copy the dictionary. */
+} ZSTD_dictAttachPref_e;
+
+typedef enum {
+ ZSTD_lcm_auto = 0, /**< Automatically determine the compression mode based on the compression level.
+ * Negative compression levels will be uncompressed, and positive compression
+ * levels will be compressed. */
+ ZSTD_lcm_huffman = 1, /**< Always attempt Huffman compression. Uncompressed literals will still be
+ * emitted if Huffman compression is not profitable. */
+ ZSTD_lcm_uncompressed = 2, /**< Always emit uncompressed literals. */
+} ZSTD_literalCompressionMode_e;
+
+
+/***************************************
+* Frame size functions
+***************************************/
+
+/*! ZSTD_findDecompressedSize() :
+ * `src` should point to the start of a series of ZSTD encoded and/or skippable frames
+ * `srcSize` must be the _exact_ size of this series
+ * (i.e. there should be a frame boundary at `src + srcSize`)
+ * @return : - decompressed size of all data in all successive frames
+ * - if the decompressed size cannot be determined: ZSTD_CONTENTSIZE_UNKNOWN
+ * - if an error occurred: ZSTD_CONTENTSIZE_ERROR
+ *
+ * note 1 : decompressed size is an optional field, that may not be present, especially in streaming mode.
+ * When `return==ZSTD_CONTENTSIZE_UNKNOWN`, data to decompress could be any size.
+ * In which case, it's necessary to use streaming mode to decompress data.
+ * note 2 : decompressed size is always present when compression is done with ZSTD_compress()
+ * note 3 : decompressed size can be very large (64-bits value),
+ * potentially larger than what local system can handle as a single memory segment.
+ * In which case, it's necessary to use streaming mode to decompress data.
+ * note 4 : If source is untrusted, decompressed size could be wrong or intentionally modified.
+ * Always ensure result fits within application's authorized limits.
+ * Each application can set its own limits.
+ * note 5 : ZSTD_findDecompressedSize handles multiple frames, and so it must traverse the input to
+ * read each contained frame header. This is fast as most of the data is skipped,
+ * however it does mean that all frame data must be present and valid. */
+ZSTDLIB_API unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize);
+
+/*! ZSTD_decompressBound() :
+ * `src` should point to the start of a series of ZSTD encoded and/or skippable frames
+ * `srcSize` must be the _exact_ size of this series
+ * (i.e. there should be a frame boundary at `src + srcSize`)
+ * @return : - upper-bound for the decompressed size of all data in all successive frames
+ * - if an error occured: ZSTD_CONTENTSIZE_ERROR
+ *
+ * note 1 : an error can occur if `src` contains an invalid or incorrectly formatted frame.
+ * note 2 : the upper-bound is exact when the decompressed size field is available in every ZSTD encoded frame of `src`.
+ * in this case, `ZSTD_findDecompressedSize` and `ZSTD_decompressBound` return the same value.
+ * note 3 : when the decompressed size field isn't available, the upper-bound for that frame is calculated by:
+ * upper-bound = # blocks * min(128 KB, Window_Size)
+ */
+ZSTDLIB_API unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize);
+
+/*! ZSTD_frameHeaderSize() :
+ * srcSize must be >= ZSTD_FRAMEHEADERSIZE_PREFIX.
+ * @return : size of the Frame Header,
+ * or an error code (if srcSize is too small) */
+ZSTDLIB_API size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize);
+
+
+/***************************************
+* Memory management
+***************************************/
+
+/*! ZSTD_estimate*() :
+ * These functions make it possible to estimate memory usage
+ * of a future {D,C}Ctx, before its creation.
+ * ZSTD_estimateCCtxSize() will provide a budget large enough for any compression level up to selected one.
+ * It will also consider src size to be arbitrarily "large", which is worst case.
+ * If srcSize is known to always be small, ZSTD_estimateCCtxSize_usingCParams() can provide a tighter estimation.
+ * ZSTD_estimateCCtxSize_usingCParams() can be used in tandem with ZSTD_getCParams() to create cParams from compressionLevel.
+ * ZSTD_estimateCCtxSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParams_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_c_nbWorkers is >= 1.
+ * Note : CCtx size estimation is only correct for single-threaded compression. */
+ZSTDLIB_API size_t ZSTD_estimateCCtxSize(int compressionLevel);
+ZSTDLIB_API size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams);
+ZSTDLIB_API size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params);
+ZSTDLIB_API size_t ZSTD_estimateDCtxSize(void);
+
+/*! ZSTD_estimateCStreamSize() :
+ * ZSTD_estimateCStreamSize() will provide a budget large enough for any compression level up to selected one.
+ * It will also consider src size to be arbitrarily "large", which is worst case.
+ * If srcSize is known to always be small, ZSTD_estimateCStreamSize_usingCParams() can provide a tighter estimation.
+ * ZSTD_estimateCStreamSize_usingCParams() can be used in tandem with ZSTD_getCParams() to create cParams from compressionLevel.
+ * ZSTD_estimateCStreamSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParams_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_c_nbWorkers is >= 1.
+ * Note : CStream size estimation is only correct for single-threaded compression.
+ * ZSTD_DStream memory budget depends on window Size.
+ * This information can be passed manually, using ZSTD_estimateDStreamSize,
+ * or deducted from a valid frame Header, using ZSTD_estimateDStreamSize_fromFrame();
+ * Note : if streaming is init with function ZSTD_init?Stream_usingDict(),
+ * an internal ?Dict will be created, which additional size is not estimated here.
+ * In this case, get total size by adding ZSTD_estimate?DictSize */
+ZSTDLIB_API size_t ZSTD_estimateCStreamSize(int compressionLevel);
+ZSTDLIB_API size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams);
+ZSTDLIB_API size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params);
+ZSTDLIB_API size_t ZSTD_estimateDStreamSize(size_t windowSize);
+ZSTDLIB_API size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize);
+
+/*! ZSTD_estimate?DictSize() :
+ * ZSTD_estimateCDictSize() will bet that src size is relatively "small", and content is copied, like ZSTD_createCDict().
+ * ZSTD_estimateCDictSize_advanced() makes it possible to control compression parameters precisely, like ZSTD_createCDict_advanced().
+ * Note : dictionaries created by reference (`ZSTD_dlm_byRef`) are logically smaller.
+ */
+ZSTDLIB_API size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel);
+ZSTDLIB_API size_t ZSTD_estimateCDictSize_advanced(size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod);
+ZSTDLIB_API size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod);
+
+/*! ZSTD_initStatic*() :
+ * Initialize an object using a pre-allocated fixed-size buffer.
+ * workspace: The memory area to emplace the object into.
+ * Provided pointer *must be 8-bytes aligned*.
+ * Buffer must outlive object.
+ * workspaceSize: Use ZSTD_estimate*Size() to determine
+ * how large workspace must be to support target scenario.
+ * @return : pointer to object (same address as workspace, just different type),
+ * or NULL if error (size too small, incorrect alignment, etc.)
+ * Note : zstd will never resize nor malloc() when using a static buffer.
+ * If the object requires more memory than available,
+ * zstd will just error out (typically ZSTD_error_memory_allocation).
+ * Note 2 : there is no corresponding "free" function.
+ * Since workspace is allocated externally, it must be freed externally too.
+ * Note 3 : cParams : use ZSTD_getCParams() to convert a compression level
+ * into its associated cParams.
+ * Limitation 1 : currently not compatible with internal dictionary creation, triggered by
+ * ZSTD_CCtx_loadDictionary(), ZSTD_initCStream_usingDict() or ZSTD_initDStream_usingDict().
+ * Limitation 2 : static cctx currently not compatible with multi-threading.
+ * Limitation 3 : static dctx is incompatible with legacy support.
+ */
+ZSTDLIB_API ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize);
+ZSTDLIB_API ZSTD_CStream* ZSTD_initStaticCStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticCCtx() */
+
+ZSTDLIB_API ZSTD_DCtx* ZSTD_initStaticDCtx(void* workspace, size_t workspaceSize);
+ZSTDLIB_API ZSTD_DStream* ZSTD_initStaticDStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticDCtx() */
+
+ZSTDLIB_API const ZSTD_CDict* ZSTD_initStaticCDict(
+ void* workspace, size_t workspaceSize,
+ const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_compressionParameters cParams);
+
+ZSTDLIB_API const ZSTD_DDict* ZSTD_initStaticDDict(
+ void* workspace, size_t workspaceSize,
+ const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType);
+
+
+/*! Custom memory allocation :
+ * These prototypes make it possible to pass your own allocation/free functions.
+ * ZSTD_customMem is provided at creation time, using ZSTD_create*_advanced() variants listed below.
+ * All allocation/free operations will be completed using these custom variants instead of regular <stdlib.h> ones.
+ */
+typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size);
+typedef void (*ZSTD_freeFunction) (void* opaque, void* address);
+typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem;
+static ZSTD_customMem const ZSTD_defaultCMem = { NULL, NULL, NULL }; /**< this constant defers to stdlib's functions */
+
+ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem);
+ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem);
+ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem);
+ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem);
+
+ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_compressionParameters cParams,
+ ZSTD_customMem customMem);
+
+ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_customMem customMem);
+
+
+
+/***************************************
+* Advanced compression functions
+***************************************/
+
+/*! ZSTD_createCDict_byReference() :
+ * Create a digested dictionary for compression
+ * Dictionary content is just referenced, not duplicated.
+ * As a consequence, `dictBuffer` **must** outlive CDict,
+ * and its content must remain unmodified throughout the lifetime of CDict. */
+ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_byReference(const void* dictBuffer, size_t dictSize, int compressionLevel);
+
+/*! ZSTD_getCParams() :
+ * @return ZSTD_compressionParameters structure for a selected compression level and estimated srcSize.
+ * `estimatedSrcSize` value is optional, select 0 if not known */
+ZSTDLIB_API ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize);
+
+/*! ZSTD_getParams() :
+ * same as ZSTD_getCParams(), but @return a full `ZSTD_parameters` object instead of sub-component `ZSTD_compressionParameters`.
+ * All fields of `ZSTD_frameParameters` are set to default : contentSize=1, checksum=0, noDictID=0 */
+ZSTDLIB_API ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize);
+
+/*! ZSTD_checkCParams() :
+ * Ensure param values remain within authorized range.
+ * @return 0 on success, or an error code (can be checked with ZSTD_isError()) */
+ZSTDLIB_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params);
+
+/*! ZSTD_adjustCParams() :
+ * optimize params for a given `srcSize` and `dictSize`.
+ * `srcSize` can be unknown, in which case use ZSTD_CONTENTSIZE_UNKNOWN.
+ * `dictSize` must be `0` when there is no dictionary.
+ * cPar can be invalid : all parameters will be clamped within valid range in the @return struct.
+ * This function never fails (wide contract) */
+ZSTDLIB_API ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize);
+
+/*! ZSTD_compress_advanced() :
+ * Same as ZSTD_compress_usingDict(), with fine-tune control over compression parameters (by structure) */
+ZSTDLIB_API size_t ZSTD_compress_advanced(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize,
+ ZSTD_parameters params);
+
+/*! ZSTD_compress_usingCDict_advanced() :
+ * Same as ZSTD_compress_usingCDict(), with fine-tune control over frame parameters */
+ZSTDLIB_API size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_CDict* cdict,
+ ZSTD_frameParameters fParams);
+
+
+/*! ZSTD_CCtx_loadDictionary_byReference() :
+ * Same as ZSTD_CCtx_loadDictionary(), but dictionary content is referenced, instead of being copied into CCtx.
+ * It saves some memory, but also requires that `dict` outlives its usage within `cctx` */
+ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference(ZSTD_CCtx* cctx, const void* dict, size_t dictSize);
+
+/*! ZSTD_CCtx_loadDictionary_advanced() :
+ * Same as ZSTD_CCtx_loadDictionary(), but gives finer control over
+ * how to load the dictionary (by copy ? by reference ?)
+ * and how to interpret it (automatic ? force raw mode ? full mode only ?) */
+ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
+
+/*! ZSTD_CCtx_refPrefix_advanced() :
+ * Same as ZSTD_CCtx_refPrefix(), but gives finer control over
+ * how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */
+ZSTDLIB_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
+
+/* === experimental parameters === */
+/* these parameters can be used with ZSTD_setParameter()
+ * they are not guaranteed to remain supported in the future */
+
+ /* Enables rsyncable mode,
+ * which makes compressed files more rsync friendly
+ * by adding periodic synchronization points to the compressed data.
+ * The target average block size is ZSTD_c_jobSize / 2.
+ * It's possible to modify the job size to increase or decrease
+ * the granularity of the synchronization point.
+ * Once the jobSize is smaller than the window size,
+ * it will result in compression ratio degradation.
+ * NOTE 1: rsyncable mode only works when multithreading is enabled.
+ * NOTE 2: rsyncable performs poorly in combination with long range mode,
+ * since it will decrease the effectiveness of synchronization points,
+ * though mileage may vary.
+ * NOTE 3: Rsyncable mode limits maximum compression speed to ~400 MB/s.
+ * If the selected compression level is already running significantly slower,
+ * the overall speed won't be significantly impacted.
+ */
+ #define ZSTD_c_rsyncable ZSTD_c_experimentalParam1
+
+/* Select a compression format.
+ * The value must be of type ZSTD_format_e.
+ * See ZSTD_format_e enum definition for details */
+#define ZSTD_c_format ZSTD_c_experimentalParam2
+
+/* Force back-reference distances to remain < windowSize,
+ * even when referencing into Dictionary content (default:0) */
+#define ZSTD_c_forceMaxWindow ZSTD_c_experimentalParam3
+
+/* Controls whether the contents of a CDict
+ * are used in place, or copied into the working context.
+ * Accepts values from the ZSTD_dictAttachPref_e enum.
+ * See the comments on that enum for an explanation of the feature. */
+#define ZSTD_c_forceAttachDict ZSTD_c_experimentalParam4
+
+/* Controls how the literals are compressed (default is auto).
+ * The value must be of type ZSTD_literalCompressionMode_e.
+ * See ZSTD_literalCompressionMode_t enum definition for details.
+ */
+#define ZSTD_c_literalCompressionMode ZSTD_c_experimentalParam5
+
+/* Tries to fit compressed block size to be around targetCBlockSize.
+ * No target when targetCBlockSize == 0.
+ * There is no guarantee on compressed block size (default:0) */
+#define ZSTD_c_targetCBlockSize ZSTD_c_experimentalParam6
+
+/*! ZSTD_CCtx_getParameter() :
+ * Get the requested compression parameter value, selected by enum ZSTD_cParameter,
+ * and store it into int* value.
+ * @return : 0, or an error code (which can be tested with ZSTD_isError()).
+ */
+ZSTDLIB_API size_t ZSTD_CCtx_getParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value);
+
+
+/*! ZSTD_CCtx_params :
+ * Quick howto :
+ * - ZSTD_createCCtxParams() : Create a ZSTD_CCtx_params structure
+ * - ZSTD_CCtxParams_setParameter() : Push parameters one by one into
+ * an existing ZSTD_CCtx_params structure.
+ * This is similar to
+ * ZSTD_CCtx_setParameter().
+ * - ZSTD_CCtx_setParametersUsingCCtxParams() : Apply parameters to
+ * an existing CCtx.
+ * These parameters will be applied to
+ * all subsequent frames.
+ * - ZSTD_compressStream2() : Do compression using the CCtx.
+ * - ZSTD_freeCCtxParams() : Free the memory.
+ *
+ * This can be used with ZSTD_estimateCCtxSize_advanced_usingCCtxParams()
+ * for static allocation of CCtx for single-threaded compression.
+ */
+ZSTDLIB_API ZSTD_CCtx_params* ZSTD_createCCtxParams(void);
+ZSTDLIB_API size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params);
+
+/*! ZSTD_CCtxParams_reset() :
+ * Reset params to default values.
+ */
+ZSTDLIB_API size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params);
+
+/*! ZSTD_CCtxParams_init() :
+ * Initializes the compression parameters of cctxParams according to
+ * compression level. All other parameters are reset to their default values.
+ */
+ZSTDLIB_API size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel);
+
+/*! ZSTD_CCtxParams_init_advanced() :
+ * Initializes the compression and frame parameters of cctxParams according to
+ * params. All other parameters are reset to their default values.
+ */
+ZSTDLIB_API size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params);
+
+/*! ZSTD_CCtxParams_setParameter() :
+ * Similar to ZSTD_CCtx_setParameter.
+ * Set one compression parameter, selected by enum ZSTD_cParameter.
+ * Parameters must be applied to a ZSTD_CCtx using ZSTD_CCtx_setParametersUsingCCtxParams().
+ * @result : 0, or an error code (which can be tested with ZSTD_isError()).
+ */
+ZSTDLIB_API size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int value);
+
+/*! ZSTD_CCtxParams_getParameter() :
+ * Similar to ZSTD_CCtx_getParameter.
+ * Get the requested value of one compression parameter, selected by enum ZSTD_cParameter.
+ * @result : 0, or an error code (which can be tested with ZSTD_isError()).
+ */
+ZSTDLIB_API size_t ZSTD_CCtxParams_getParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int* value);
+
+/*! ZSTD_CCtx_setParametersUsingCCtxParams() :
+ * Apply a set of ZSTD_CCtx_params to the compression context.
+ * This can be done even after compression is started,
+ * if nbWorkers==0, this will have no impact until a new compression is started.
+ * if nbWorkers>=1, new parameters will be picked up at next job,
+ * with a few restrictions (windowLog, pledgedSrcSize, nbWorkers, jobSize, and overlapLog are not updated).
+ */
+ZSTDLIB_API size_t ZSTD_CCtx_setParametersUsingCCtxParams(
+ ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params);
+
+/*! ZSTD_compressStream2_simpleArgs() :
+ * Same as ZSTD_compressStream2(),
+ * but using only integral types as arguments.
+ * This variant might be helpful for binders from dynamic languages
+ * which have troubles handling structures containing memory pointers.
+ */
+ZSTDLIB_API size_t ZSTD_compressStream2_simpleArgs (
+ ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity, size_t* dstPos,
+ const void* src, size_t srcSize, size_t* srcPos,
+ ZSTD_EndDirective endOp);
+
+
+/***************************************
+* Advanced decompression functions
+***************************************/
+
+/*! ZSTD_isFrame() :
+ * Tells if the content of `buffer` starts with a valid Frame Identifier.
+ * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
+ * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled.
+ * Note 3 : Skippable Frame Identifiers are considered valid. */
+ZSTDLIB_API unsigned ZSTD_isFrame(const void* buffer, size_t size);
+
+/*! ZSTD_createDDict_byReference() :
+ * Create a digested dictionary, ready to start decompression operation without startup delay.
+ * Dictionary content is referenced, and therefore stays in dictBuffer.
+ * It is important that dictBuffer outlives DDict,
+ * it must remain read accessible throughout the lifetime of DDict */
+ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize);
+
+/*! ZSTD_DCtx_loadDictionary_byReference() :
+ * Same as ZSTD_DCtx_loadDictionary(),
+ * but references `dict` content instead of copying it into `dctx`.
+ * This saves memory if `dict` remains around.,
+ * However, it's imperative that `dict` remains accessible (and unmodified) while being used, so it must outlive decompression. */
+ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
+
+/*! ZSTD_DCtx_loadDictionary_advanced() :
+ * Same as ZSTD_DCtx_loadDictionary(),
+ * but gives direct control over
+ * how to load the dictionary (by copy ? by reference ?)
+ * and how to interpret it (automatic ? force raw mode ? full mode only ?). */
+ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
+
+/*! ZSTD_DCtx_refPrefix_advanced() :
+ * Same as ZSTD_DCtx_refPrefix(), but gives finer control over
+ * how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */
+ZSTDLIB_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
+
+/*! ZSTD_DCtx_setMaxWindowSize() :
+ * Refuses allocating internal buffers for frames requiring a window size larger than provided limit.
+ * This protects a decoder context from reserving too much memory for itself (potential attack scenario).
+ * This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode.
+ * By default, a decompression context accepts all window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT)
+ * @return : 0, or an error code (which can be tested using ZSTD_isError()).
+ */
+ZSTDLIB_API size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize);
+
+/* ZSTD_d_format
+ * experimental parameter,
+ * allowing selection between ZSTD_format_e input compression formats
+ */
+#define ZSTD_d_format ZSTD_d_experimentalParam1
+
+/*! ZSTD_DCtx_setFormat() :
+ * Instruct the decoder context about what kind of data to decode next.
+ * This instruction is mandatory to decode data without a fully-formed header,
+ * such ZSTD_f_zstd1_magicless for example.
+ * @return : 0, or an error code (which can be tested using ZSTD_isError()). */
+ZSTDLIB_API size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format);
+
+/*! ZSTD_decompressStream_simpleArgs() :
+ * Same as ZSTD_decompressStream(),
+ * but using only integral types as arguments.
+ * This can be helpful for binders from dynamic languages
+ * which have troubles handling structures containing memory pointers.
+ */
+ZSTDLIB_API size_t ZSTD_decompressStream_simpleArgs (
+ ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity, size_t* dstPos,
+ const void* src, size_t srcSize, size_t* srcPos);
+
+
+/********************************************************************
+* Advanced streaming functions
+* Warning : most of these functions are now redundant with the Advanced API.
+* Once Advanced API reaches "stable" status,
+* redundant functions will be deprecated, and then at some point removed.
+********************************************************************/
+
+/*===== Advanced Streaming compression functions =====*/
+/**! ZSTD_initCStream_srcSize() :
+ * This function is deprecated, and equivalent to:
+ * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ * ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any)
+ * ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel);
+ * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
+ *
+ * pledgedSrcSize must be correct. If it is not known at init time, use
+ * ZSTD_CONTENTSIZE_UNKNOWN. Note that, for compatibility with older programs,
+ * "0" also disables frame content size field. It may be enabled in the future.
+ */
+ZSTDLIB_API size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pledgedSrcSize);
+/**! ZSTD_initCStream_usingDict() :
+ * This function is deprecated, and is equivalent to:
+ * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ * ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel);
+ * ZSTD_CCtx_loadDictionary(zcs, dict, dictSize);
+ *
+ * Creates of an internal CDict (incompatible with static CCtx), except if
+ * dict == NULL or dictSize < 8, in which case no dict is used.
+ * Note: dict is loaded with ZSTD_dm_auto (treated as a full zstd dictionary if
+ * it begins with ZSTD_MAGIC_DICTIONARY, else as raw content) and ZSTD_dlm_byCopy.
+ */
+ZSTDLIB_API size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel);
+/**! ZSTD_initCStream_advanced() :
+ * This function is deprecated, and is approximately equivalent to:
+ * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ * ZSTD_CCtx_setZstdParams(zcs, params); // Set the zstd params and leave the rest as-is
+ * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
+ * ZSTD_CCtx_loadDictionary(zcs, dict, dictSize);
+ *
+ * pledgedSrcSize must be correct. If srcSize is not known at init time, use
+ * value ZSTD_CONTENTSIZE_UNKNOWN. dict is loaded with ZSTD_dm_auto and ZSTD_dlm_byCopy.
+ */
+ZSTDLIB_API size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs, const void* dict, size_t dictSize,
+ ZSTD_parameters params, unsigned long long pledgedSrcSize);
+/**! ZSTD_initCStream_usingCDict() :
+ * This function is deprecated, and equivalent to:
+ * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ * ZSTD_CCtx_refCDict(zcs, cdict);
+ *
+ * note : cdict will just be referenced, and must outlive compression session
+ */
+ZSTDLIB_API size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict);
+/**! ZSTD_initCStream_usingCDict_advanced() :
+ * This function is deprecated, and is approximately equivalent to:
+ * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ * ZSTD_CCtx_setZstdFrameParams(zcs, fParams); // Set the zstd frame params and leave the rest as-is
+ * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
+ * ZSTD_CCtx_refCDict(zcs, cdict);
+ *
+ * same as ZSTD_initCStream_usingCDict(), with control over frame parameters.
+ * pledgedSrcSize must be correct. If srcSize is not known at init time, use
+ * value ZSTD_CONTENTSIZE_UNKNOWN.
+ */
+ZSTDLIB_API size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs, const ZSTD_CDict* cdict, ZSTD_frameParameters fParams, unsigned long long pledgedSrcSize);
+
+/*! ZSTD_resetCStream() :
+ * This function is deprecated, and is equivalent to:
+ * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
+ *
+ * start a new frame, using same parameters from previous frame.
+ * This is typically useful to skip dictionary loading stage, since it will re-use it in-place.
+ * Note that zcs must be init at least once before using ZSTD_resetCStream().
+ * If pledgedSrcSize is not known at reset time, use macro ZSTD_CONTENTSIZE_UNKNOWN.
+ * If pledgedSrcSize > 0, its value must be correct, as it will be written in header, and controlled at the end.
+ * For the time being, pledgedSrcSize==0 is interpreted as "srcSize unknown" for compatibility with older programs,
+ * but it will change to mean "empty" in future version, so use macro ZSTD_CONTENTSIZE_UNKNOWN instead.
+ * @return : 0, or an error code (which can be tested using ZSTD_isError())
+ */
+ZSTDLIB_API size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize);
+
+
+typedef struct {
+ unsigned long long ingested; /* nb input bytes read and buffered */
+ unsigned long long consumed; /* nb input bytes actually compressed */
+ unsigned long long produced; /* nb of compressed bytes generated and buffered */
+ unsigned long long flushed; /* nb of compressed bytes flushed : not provided; can be tracked from caller side */
+ unsigned currentJobID; /* MT only : latest started job nb */
+ unsigned nbActiveWorkers; /* MT only : nb of workers actively compressing at probe time */
+} ZSTD_frameProgression;
+
+/* ZSTD_getFrameProgression() :
+ * tells how much data has been ingested (read from input)
+ * consumed (input actually compressed) and produced (output) for current frame.
+ * Note : (ingested - consumed) is amount of input data buffered internally, not yet compressed.
+ * Aggregates progression inside active worker threads.
+ */
+ZSTDLIB_API ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx);
+
+/*! ZSTD_toFlushNow() :
+ * Tell how many bytes are ready to be flushed immediately.
+ * Useful for multithreading scenarios (nbWorkers >= 1).
+ * Probe the oldest active job, defined as oldest job not yet entirely flushed,
+ * and check its output buffer.
+ * @return : amount of data stored in oldest job and ready to be flushed immediately.
+ * if @return == 0, it means either :
+ * + there is no active job (could be checked with ZSTD_frameProgression()), or
+ * + oldest job is still actively compressing data,
+ * but everything it has produced has also been flushed so far,
+ * therefore flush speed is limited by production speed of oldest job
+ * irrespective of the speed of concurrent (and newer) jobs.
+ */
+ZSTDLIB_API size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx);
+
+
+/*===== Advanced Streaming decompression functions =====*/
+/**
+ * This function is deprecated, and is equivalent to:
+ *
+ * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
+ * ZSTD_DCtx_loadDictionary(zds, dict, dictSize);
+ *
+ * note: no dictionary will be used if dict == NULL or dictSize < 8
+ */
+ZSTDLIB_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize);
+/**
+ * This function is deprecated, and is equivalent to:
+ *
+ * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
+ * ZSTD_DCtx_refDDict(zds, ddict);
+ *
+ * note : ddict is referenced, it must outlive decompression session
+ */
+ZSTDLIB_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict);
+/**
+ * This function is deprecated, and is equivalent to:
+ *
+ * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
+ *
+ * re-use decompression parameters from previous init; saves dictionary loading
+ */
+ZSTDLIB_API size_t ZSTD_resetDStream(ZSTD_DStream* zds);
+
+
+/*********************************************************************
+* Buffer-less and synchronous inner streaming functions
+*
+* This is an advanced API, giving full control over buffer management, for users which need direct control over memory.
+* But it's also a complex one, with several restrictions, documented below.
+* Prefer normal streaming API for an easier experience.
+********************************************************************* */
+
+/**
+ Buffer-less streaming compression (synchronous mode)
+
+ A ZSTD_CCtx object is required to track streaming operations.
+ Use ZSTD_createCCtx() / ZSTD_freeCCtx() to manage resource.
+ ZSTD_CCtx object can be re-used multiple times within successive compression operations.
+
+ Start by initializing a context.
+ Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression,
+ or ZSTD_compressBegin_advanced(), for finer parameter control.
+ It's also possible to duplicate a reference context which has already been initialized, using ZSTD_copyCCtx()
+
+ Then, consume your input using ZSTD_compressContinue().
+ There are some important considerations to keep in mind when using this advanced function :
+ - ZSTD_compressContinue() has no internal buffer. It uses externally provided buffers only.
+ - Interface is synchronous : input is consumed entirely and produces 1+ compressed blocks.
+ - Caller must ensure there is enough space in `dst` to store compressed data under worst case scenario.
+ Worst case evaluation is provided by ZSTD_compressBound().
+ ZSTD_compressContinue() doesn't guarantee recover after a failed compression.
+ - ZSTD_compressContinue() presumes prior input ***is still accessible and unmodified*** (up to maximum distance size, see WindowLog).
+ It remembers all previous contiguous blocks, plus one separated memory segment (which can itself consists of multiple contiguous blocks)
+ - ZSTD_compressContinue() detects that prior input has been overwritten when `src` buffer overlaps.
+ In which case, it will "discard" the relevant memory section from its history.
+
+ Finish a frame with ZSTD_compressEnd(), which will write the last block(s) and optional checksum.
+ It's possible to use srcSize==0, in which case, it will write a final empty block to end the frame.
+ Without last block mark, frames are considered unfinished (hence corrupted) by compliant decoders.
+
+ `ZSTD_CCtx` object can be re-used (ZSTD_compressBegin()) to compress again.
+*/
+
+/*===== Buffer-less streaming compression functions =====*/
+ZSTDLIB_API size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel);
+ZSTDLIB_API size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
+ZSTDLIB_API size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize); /**< pledgedSrcSize : If srcSize is not known at init time, use ZSTD_CONTENTSIZE_UNKNOWN */
+ZSTDLIB_API size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); /**< note: fails if cdict==NULL */
+ZSTDLIB_API size_t ZSTD_compressBegin_usingCDict_advanced(ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize); /* compression parameters are already set within cdict. pledgedSrcSize must be correct. If srcSize is not known, use macro ZSTD_CONTENTSIZE_UNKNOWN */
+ZSTDLIB_API size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx, unsigned long long pledgedSrcSize); /**< note: if pledgedSrcSize is not known, use ZSTD_CONTENTSIZE_UNKNOWN */
+
+ZSTDLIB_API size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIB_API size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+
+/*-
+ Buffer-less streaming decompression (synchronous mode)
+
+ A ZSTD_DCtx object is required to track streaming operations.
+ Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it.
+ A ZSTD_DCtx object can be re-used multiple times.
+
+ First typical operation is to retrieve frame parameters, using ZSTD_getFrameHeader().
+ Frame header is extracted from the beginning of compressed frame, so providing only the frame's beginning is enough.
+ Data fragment must be large enough to ensure successful decoding.
+ `ZSTD_frameHeaderSize_max` bytes is guaranteed to always be large enough.
+ @result : 0 : successful decoding, the `ZSTD_frameHeader` structure is correctly filled.
+ >0 : `srcSize` is too small, please provide at least @result bytes on next attempt.
+ errorCode, which can be tested using ZSTD_isError().
+
+ It fills a ZSTD_frameHeader structure with important information to correctly decode the frame,
+ such as the dictionary ID, content size, or maximum back-reference distance (`windowSize`).
+ Note that these values could be wrong, either because of data corruption, or because a 3rd party deliberately spoofs false information.
+ As a consequence, check that values remain within valid application range.
+ For example, do not allocate memory blindly, check that `windowSize` is within expectation.
+ Each application can set its own limits, depending on local restrictions.
+ For extended interoperability, it is recommended to support `windowSize` of at least 8 MB.
+
+ ZSTD_decompressContinue() needs previous data blocks during decompression, up to `windowSize` bytes.
+ ZSTD_decompressContinue() is very sensitive to contiguity,
+ if 2 blocks don't follow each other, make sure that either the compressor breaks contiguity at the same place,
+ or that previous contiguous segment is large enough to properly handle maximum back-reference distance.
+ There are multiple ways to guarantee this condition.
+
+ The most memory efficient way is to use a round buffer of sufficient size.
+ Sufficient size is determined by invoking ZSTD_decodingBufferSize_min(),
+ which can @return an error code if required value is too large for current system (in 32-bits mode).
+ In a round buffer methodology, ZSTD_decompressContinue() decompresses each block next to previous one,
+ up to the moment there is not enough room left in the buffer to guarantee decoding another full block,
+ which maximum size is provided in `ZSTD_frameHeader` structure, field `blockSizeMax`.
+ At which point, decoding can resume from the beginning of the buffer.
+ Note that already decoded data stored in the buffer should be flushed before being overwritten.
+
+ There are alternatives possible, for example using two or more buffers of size `windowSize` each, though they consume more memory.
+
+ Finally, if you control the compression process, you can also ignore all buffer size rules,
+ as long as the encoder and decoder progress in "lock-step",
+ aka use exactly the same buffer sizes, break contiguity at the same place, etc.
+
+ Once buffers are setup, start decompression, with ZSTD_decompressBegin().
+ If decompression requires a dictionary, use ZSTD_decompressBegin_usingDict() or ZSTD_decompressBegin_usingDDict().
+
+ Then use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively.
+ ZSTD_nextSrcSizeToDecompress() tells how many bytes to provide as 'srcSize' to ZSTD_decompressContinue().
+ ZSTD_decompressContinue() requires this _exact_ amount of bytes, or it will fail.
+
+ @result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity).
+ It can be zero : it just means ZSTD_decompressContinue() has decoded some metadata item.
+ It can also be an error code, which can be tested with ZSTD_isError().
+
+ A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero.
+ Context can then be reset to start a new decompression.
+
+ Note : it's possible to know if next input to present is a header or a block, using ZSTD_nextInputType().
+ This information is not required to properly decode a frame.
+
+ == Special case : skippable frames ==
+
+ Skippable frames allow integration of user-defined data into a flow of concatenated frames.
+ Skippable frames will be ignored (skipped) by decompressor.
+ The format of skippable frames is as follows :
+ a) Skippable frame ID - 4 Bytes, Little endian format, any value from 0x184D2A50 to 0x184D2A5F
+ b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits
+ c) Frame Content - any content (User Data) of length equal to Frame Size
+ For skippable frames ZSTD_getFrameHeader() returns zfhPtr->frameType==ZSTD_skippableFrame.
+ For skippable frames ZSTD_decompressContinue() always returns 0 : it only skips the content.
+*/
+
+/*===== Buffer-less streaming decompression functions =====*/
+typedef enum { ZSTD_frame, ZSTD_skippableFrame } ZSTD_frameType_e;
+typedef struct {
+ unsigned long long frameContentSize; /* if == ZSTD_CONTENTSIZE_UNKNOWN, it means this field is not available. 0 means "empty" */
+ unsigned long long windowSize; /* can be very large, up to <= frameContentSize */
+ unsigned blockSizeMax;
+ ZSTD_frameType_e frameType; /* if == ZSTD_skippableFrame, frameContentSize is the size of skippable content */
+ unsigned headerSize;
+ unsigned dictID;
+ unsigned checksumFlag;
+} ZSTD_frameHeader;
+
+/*! ZSTD_getFrameHeader() :
+ * decode Frame Header, or requires larger `srcSize`.
+ * @return : 0, `zfhPtr` is correctly filled,
+ * >0, `srcSize` is too small, value is wanted `srcSize` amount,
+ * or an error code, which can be tested using ZSTD_isError() */
+ZSTDLIB_API size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize); /**< doesn't consume input */
+/*! ZSTD_getFrameHeader_advanced() :
+ * same as ZSTD_getFrameHeader(),
+ * with added capability to select a format (like ZSTD_f_zstd1_magicless) */
+ZSTDLIB_API size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format);
+ZSTDLIB_API size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize); /**< when frame content size is not known, pass in frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN */
+
+ZSTDLIB_API size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx);
+ZSTDLIB_API size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
+ZSTDLIB_API size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
+
+ZSTDLIB_API size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx);
+ZSTDLIB_API size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+/* misc */
+ZSTDLIB_API void ZSTD_copyDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx);
+typedef enum { ZSTDnit_frameHeader, ZSTDnit_blockHeader, ZSTDnit_block, ZSTDnit_lastBlock, ZSTDnit_checksum, ZSTDnit_skippableFrame } ZSTD_nextInputType_e;
+ZSTDLIB_API ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx);
+
+
+
+
+/* ============================ */
+/** Block level API */
+/* ============================ */
+
+/*!
+ Block functions produce and decode raw zstd blocks, without frame metadata.
+ Frame metadata cost is typically ~18 bytes, which can be non-negligible for very small blocks (< 100 bytes).
+ User will have to take in charge required information to regenerate data, such as compressed and content sizes.
+
+ A few rules to respect :
+ - Compressing and decompressing require a context structure
+ + Use ZSTD_createCCtx() and ZSTD_createDCtx()
+ - It is necessary to init context before starting
+ + compression : any ZSTD_compressBegin*() variant, including with dictionary
+ + decompression : any ZSTD_decompressBegin*() variant, including with dictionary
+ + copyCCtx() and copyDCtx() can be used too
+ - Block size is limited, it must be <= ZSTD_getBlockSize() <= ZSTD_BLOCKSIZE_MAX == 128 KB
+ + If input is larger than a block size, it's necessary to split input data into multiple blocks
+ + For inputs larger than a single block, really consider using regular ZSTD_compress() instead.
+ Frame metadata is not that costly, and quickly becomes negligible as source size grows larger.
+ - When a block is considered not compressible enough, ZSTD_compressBlock() result will be zero.
+ In which case, nothing is produced into `dst` !
+ + User must test for such outcome and deal directly with uncompressed data
+ + ZSTD_decompressBlock() doesn't accept uncompressed data as input !!!
+ + In case of multiple successive blocks, should some of them be uncompressed,
+ decoder must be informed of their existence in order to follow proper history.
+ Use ZSTD_insertBlock() for such a case.
+*/
+
+/*===== Raw zstd block functions =====*/
+ZSTDLIB_API size_t ZSTD_getBlockSize (const ZSTD_CCtx* cctx);
+ZSTDLIB_API size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIB_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIB_API size_t ZSTD_insertBlock (ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert uncompressed block into `dctx` history. Useful for multi-blocks decompression. */
+
+
+#endif /* ZSTD_H_ZSTD_STATIC_LINKING_ONLY */
+
+#if defined (__cplusplus)
+}
+#endif
diff --git a/vendor/github.com/DataDog/zstd/zstd_common.c b/vendor/github.com/DataDog/zstd/zstd_common.c
new file mode 100644
index 0000000..667f4a2
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_common.c
@@ -0,0 +1,83 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+
+/*-*************************************
+* Dependencies
+***************************************/
+#include <stdlib.h> /* malloc, calloc, free */
+#include <string.h> /* memset */
+#include "error_private.h"
+#include "zstd_internal.h"
+
+
+/*-****************************************
+* Version
+******************************************/
+unsigned ZSTD_versionNumber(void) { return ZSTD_VERSION_NUMBER; }
+
+const char* ZSTD_versionString(void) { return ZSTD_VERSION_STRING; }
+
+
+/*-****************************************
+* ZSTD Error Management
+******************************************/
+#undef ZSTD_isError /* defined within zstd_internal.h */
+/*! ZSTD_isError() :
+ * tells if a return value is an error code
+ * symbol is required for external callers */
+unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
+
+/*! ZSTD_getErrorName() :
+ * provides error code string from function result (useful for debugging) */
+const char* ZSTD_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+/*! ZSTD_getError() :
+ * convert a `size_t` function result into a proper ZSTD_errorCode enum */
+ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); }
+
+/*! ZSTD_getErrorString() :
+ * provides error code string from enum */
+const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorString(code); }
+
+
+
+/*=**************************************************************
+* Custom allocator
+****************************************************************/
+void* ZSTD_malloc(size_t size, ZSTD_customMem customMem)
+{
+ if (customMem.customAlloc)
+ return customMem.customAlloc(customMem.opaque, size);
+ return malloc(size);
+}
+
+void* ZSTD_calloc(size_t size, ZSTD_customMem customMem)
+{
+ if (customMem.customAlloc) {
+ /* calloc implemented as malloc+memset;
+ * not as efficient as calloc, but next best guess for custom malloc */
+ void* const ptr = customMem.customAlloc(customMem.opaque, size);
+ memset(ptr, 0, size);
+ return ptr;
+ }
+ return calloc(1, size);
+}
+
+void ZSTD_free(void* ptr, ZSTD_customMem customMem)
+{
+ if (ptr!=NULL) {
+ if (customMem.customFree)
+ customMem.customFree(customMem.opaque, ptr);
+ else
+ free(ptr);
+ }
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_compress.c b/vendor/github.com/DataDog/zstd/zstd_compress.c
new file mode 100644
index 0000000..1476512
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_compress.c
@@ -0,0 +1,4475 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/*-*************************************
+* Dependencies
+***************************************/
+#include <limits.h> /* INT_MAX */
+#include <string.h> /* memset */
+#include "cpu.h"
+#include "mem.h"
+#include "hist.h" /* HIST_countFast_wksp */
+#define FSE_STATIC_LINKING_ONLY /* FSE_encodeSymbol */
+#include "fse.h"
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+#include "zstd_compress_internal.h"
+#include "zstd_fast.h"
+#include "zstd_double_fast.h"
+#include "zstd_lazy.h"
+#include "zstd_opt.h"
+#include "zstd_ldm.h"
+
+
+/*-*************************************
+* Helper functions
+***************************************/
+size_t ZSTD_compressBound(size_t srcSize) {
+ return ZSTD_COMPRESSBOUND(srcSize);
+}
+
+
+/*-*************************************
+* Context memory management
+***************************************/
+struct ZSTD_CDict_s {
+ void* dictBuffer;
+ const void* dictContent;
+ size_t dictContentSize;
+ void* workspace;
+ size_t workspaceSize;
+ ZSTD_matchState_t matchState;
+ ZSTD_compressedBlockState_t cBlockState;
+ ZSTD_customMem customMem;
+ U32 dictID;
+}; /* typedef'd to ZSTD_CDict within "zstd.h" */
+
+ZSTD_CCtx* ZSTD_createCCtx(void)
+{
+ return ZSTD_createCCtx_advanced(ZSTD_defaultCMem);
+}
+
+static void ZSTD_initCCtx(ZSTD_CCtx* cctx, ZSTD_customMem memManager)
+{
+ assert(cctx != NULL);
+ memset(cctx, 0, sizeof(*cctx));
+ cctx->customMem = memManager;
+ cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
+ { size_t const err = ZSTD_CCtx_reset(cctx, ZSTD_reset_parameters);
+ assert(!ZSTD_isError(err));
+ (void)err;
+ }
+}
+
+ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem)
+{
+ ZSTD_STATIC_ASSERT(zcss_init==0);
+ ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN==(0ULL - 1));
+ if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
+ { ZSTD_CCtx* const cctx = (ZSTD_CCtx*)ZSTD_malloc(sizeof(ZSTD_CCtx), customMem);
+ if (!cctx) return NULL;
+ ZSTD_initCCtx(cctx, customMem);
+ return cctx;
+ }
+}
+
+ZSTD_CCtx* ZSTD_initStaticCCtx(void *workspace, size_t workspaceSize)
+{
+ ZSTD_CCtx* const cctx = (ZSTD_CCtx*) workspace;
+ if (workspaceSize <= sizeof(ZSTD_CCtx)) return NULL; /* minimum size */
+ if ((size_t)workspace & 7) return NULL; /* must be 8-aligned */
+ memset(workspace, 0, workspaceSize); /* may be a bit generous, could memset be smaller ? */
+ cctx->staticSize = workspaceSize;
+ cctx->workSpace = (void*)(cctx+1);
+ cctx->workSpaceSize = workspaceSize - sizeof(ZSTD_CCtx);
+
+ /* statically sized space. entropyWorkspace never moves (but prev/next block swap places) */
+ if (cctx->workSpaceSize < HUF_WORKSPACE_SIZE + 2 * sizeof(ZSTD_compressedBlockState_t)) return NULL;
+ assert(((size_t)cctx->workSpace & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
+ cctx->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)cctx->workSpace;
+ cctx->blockState.nextCBlock = cctx->blockState.prevCBlock + 1;
+ {
+ void* const ptr = cctx->blockState.nextCBlock + 1;
+ cctx->entropyWorkspace = (U32*)ptr;
+ }
+ cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
+ return cctx;
+}
+
+/**
+ * Clears and frees all of the dictionaries in the CCtx.
+ */
+static void ZSTD_clearAllDicts(ZSTD_CCtx* cctx)
+{
+ ZSTD_free(cctx->localDict.dictBuffer, cctx->customMem);
+ ZSTD_freeCDict(cctx->localDict.cdict);
+ memset(&cctx->localDict, 0, sizeof(cctx->localDict));
+ memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict));
+ cctx->cdict = NULL;
+}
+
+static size_t ZSTD_sizeof_localDict(ZSTD_localDict dict)
+{
+ size_t const bufferSize = dict.dictBuffer != NULL ? dict.dictSize : 0;
+ size_t const cdictSize = ZSTD_sizeof_CDict(dict.cdict);
+ return bufferSize + cdictSize;
+}
+
+static void ZSTD_freeCCtxContent(ZSTD_CCtx* cctx)
+{
+ assert(cctx != NULL);
+ assert(cctx->staticSize == 0);
+ ZSTD_free(cctx->workSpace, cctx->customMem); cctx->workSpace = NULL;
+ ZSTD_clearAllDicts(cctx);
+#ifdef ZSTD_MULTITHREAD
+ ZSTDMT_freeCCtx(cctx->mtctx); cctx->mtctx = NULL;
+#endif
+}
+
+size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx)
+{
+ if (cctx==NULL) return 0; /* support free on NULL */
+ RETURN_ERROR_IF(cctx->staticSize, memory_allocation,
+ "not compatible with static CCtx");
+ ZSTD_freeCCtxContent(cctx);
+ ZSTD_free(cctx, cctx->customMem);
+ return 0;
+}
+
+
+static size_t ZSTD_sizeof_mtctx(const ZSTD_CCtx* cctx)
+{
+#ifdef ZSTD_MULTITHREAD
+ return ZSTDMT_sizeof_CCtx(cctx->mtctx);
+#else
+ (void)cctx;
+ return 0;
+#endif
+}
+
+
+size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx)
+{
+ if (cctx==NULL) return 0; /* support sizeof on NULL */
+ return sizeof(*cctx) + cctx->workSpaceSize
+ + ZSTD_sizeof_localDict(cctx->localDict)
+ + ZSTD_sizeof_mtctx(cctx);
+}
+
+size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs)
+{
+ return ZSTD_sizeof_CCtx(zcs); /* same object */
+}
+
+/* private API call, for dictBuilder only */
+const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) { return &(ctx->seqStore); }
+
+static ZSTD_CCtx_params ZSTD_makeCCtxParamsFromCParams(
+ ZSTD_compressionParameters cParams)
+{
+ ZSTD_CCtx_params cctxParams;
+ memset(&cctxParams, 0, sizeof(cctxParams));
+ cctxParams.cParams = cParams;
+ cctxParams.compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */
+ assert(!ZSTD_checkCParams(cParams));
+ cctxParams.fParams.contentSizeFlag = 1;
+ return cctxParams;
+}
+
+static ZSTD_CCtx_params* ZSTD_createCCtxParams_advanced(
+ ZSTD_customMem customMem)
+{
+ ZSTD_CCtx_params* params;
+ if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
+ params = (ZSTD_CCtx_params*)ZSTD_calloc(
+ sizeof(ZSTD_CCtx_params), customMem);
+ if (!params) { return NULL; }
+ params->customMem = customMem;
+ params->compressionLevel = ZSTD_CLEVEL_DEFAULT;
+ params->fParams.contentSizeFlag = 1;
+ return params;
+}
+
+ZSTD_CCtx_params* ZSTD_createCCtxParams(void)
+{
+ return ZSTD_createCCtxParams_advanced(ZSTD_defaultCMem);
+}
+
+size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params)
+{
+ if (params == NULL) { return 0; }
+ ZSTD_free(params, params->customMem);
+ return 0;
+}
+
+size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params)
+{
+ return ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT);
+}
+
+size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel) {
+ RETURN_ERROR_IF(!cctxParams, GENERIC);
+ memset(cctxParams, 0, sizeof(*cctxParams));
+ cctxParams->compressionLevel = compressionLevel;
+ cctxParams->fParams.contentSizeFlag = 1;
+ return 0;
+}
+
+size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params)
+{
+ RETURN_ERROR_IF(!cctxParams, GENERIC);
+ FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) );
+ memset(cctxParams, 0, sizeof(*cctxParams));
+ cctxParams->cParams = params.cParams;
+ cctxParams->fParams = params.fParams;
+ cctxParams->compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */
+ assert(!ZSTD_checkCParams(params.cParams));
+ return 0;
+}
+
+/* ZSTD_assignParamsToCCtxParams() :
+ * params is presumed valid at this stage */
+static ZSTD_CCtx_params ZSTD_assignParamsToCCtxParams(
+ ZSTD_CCtx_params cctxParams, ZSTD_parameters params)
+{
+ ZSTD_CCtx_params ret = cctxParams;
+ ret.cParams = params.cParams;
+ ret.fParams = params.fParams;
+ ret.compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */
+ assert(!ZSTD_checkCParams(params.cParams));
+ return ret;
+}
+
+ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter param)
+{
+ ZSTD_bounds bounds = { 0, 0, 0 };
+
+ switch(param)
+ {
+ case ZSTD_c_compressionLevel:
+ bounds.lowerBound = ZSTD_minCLevel();
+ bounds.upperBound = ZSTD_maxCLevel();
+ return bounds;
+
+ case ZSTD_c_windowLog:
+ bounds.lowerBound = ZSTD_WINDOWLOG_MIN;
+ bounds.upperBound = ZSTD_WINDOWLOG_MAX;
+ return bounds;
+
+ case ZSTD_c_hashLog:
+ bounds.lowerBound = ZSTD_HASHLOG_MIN;
+ bounds.upperBound = ZSTD_HASHLOG_MAX;
+ return bounds;
+
+ case ZSTD_c_chainLog:
+ bounds.lowerBound = ZSTD_CHAINLOG_MIN;
+ bounds.upperBound = ZSTD_CHAINLOG_MAX;
+ return bounds;
+
+ case ZSTD_c_searchLog:
+ bounds.lowerBound = ZSTD_SEARCHLOG_MIN;
+ bounds.upperBound = ZSTD_SEARCHLOG_MAX;
+ return bounds;
+
+ case ZSTD_c_minMatch:
+ bounds.lowerBound = ZSTD_MINMATCH_MIN;
+ bounds.upperBound = ZSTD_MINMATCH_MAX;
+ return bounds;
+
+ case ZSTD_c_targetLength:
+ bounds.lowerBound = ZSTD_TARGETLENGTH_MIN;
+ bounds.upperBound = ZSTD_TARGETLENGTH_MAX;
+ return bounds;
+
+ case ZSTD_c_strategy:
+ bounds.lowerBound = ZSTD_STRATEGY_MIN;
+ bounds.upperBound = ZSTD_STRATEGY_MAX;
+ return bounds;
+
+ case ZSTD_c_contentSizeFlag:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_checksumFlag:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_dictIDFlag:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_nbWorkers:
+ bounds.lowerBound = 0;
+#ifdef ZSTD_MULTITHREAD
+ bounds.upperBound = ZSTDMT_NBWORKERS_MAX;
+#else
+ bounds.upperBound = 0;
+#endif
+ return bounds;
+
+ case ZSTD_c_jobSize:
+ bounds.lowerBound = 0;
+#ifdef ZSTD_MULTITHREAD
+ bounds.upperBound = ZSTDMT_JOBSIZE_MAX;
+#else
+ bounds.upperBound = 0;
+#endif
+ return bounds;
+
+ case ZSTD_c_overlapLog:
+ bounds.lowerBound = ZSTD_OVERLAPLOG_MIN;
+ bounds.upperBound = ZSTD_OVERLAPLOG_MAX;
+ return bounds;
+
+ case ZSTD_c_enableLongDistanceMatching:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_ldmHashLog:
+ bounds.lowerBound = ZSTD_LDM_HASHLOG_MIN;
+ bounds.upperBound = ZSTD_LDM_HASHLOG_MAX;
+ return bounds;
+
+ case ZSTD_c_ldmMinMatch:
+ bounds.lowerBound = ZSTD_LDM_MINMATCH_MIN;
+ bounds.upperBound = ZSTD_LDM_MINMATCH_MAX;
+ return bounds;
+
+ case ZSTD_c_ldmBucketSizeLog:
+ bounds.lowerBound = ZSTD_LDM_BUCKETSIZELOG_MIN;
+ bounds.upperBound = ZSTD_LDM_BUCKETSIZELOG_MAX;
+ return bounds;
+
+ case ZSTD_c_ldmHashRateLog:
+ bounds.lowerBound = ZSTD_LDM_HASHRATELOG_MIN;
+ bounds.upperBound = ZSTD_LDM_HASHRATELOG_MAX;
+ return bounds;
+
+ /* experimental parameters */
+ case ZSTD_c_rsyncable:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_forceMaxWindow :
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_format:
+ ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless);
+ bounds.lowerBound = ZSTD_f_zstd1;
+ bounds.upperBound = ZSTD_f_zstd1_magicless; /* note : how to ensure at compile time that this is the highest value enum ? */
+ return bounds;
+
+ case ZSTD_c_forceAttachDict:
+ ZSTD_STATIC_ASSERT(ZSTD_dictDefaultAttach < ZSTD_dictForceCopy);
+ bounds.lowerBound = ZSTD_dictDefaultAttach;
+ bounds.upperBound = ZSTD_dictForceCopy; /* note : how to ensure at compile time that this is the highest value enum ? */
+ return bounds;
+
+ case ZSTD_c_literalCompressionMode:
+ ZSTD_STATIC_ASSERT(ZSTD_lcm_auto < ZSTD_lcm_huffman && ZSTD_lcm_huffman < ZSTD_lcm_uncompressed);
+ bounds.lowerBound = ZSTD_lcm_auto;
+ bounds.upperBound = ZSTD_lcm_uncompressed;
+ return bounds;
+
+ case ZSTD_c_targetCBlockSize:
+ bounds.lowerBound = ZSTD_TARGETCBLOCKSIZE_MIN;
+ bounds.upperBound = ZSTD_TARGETCBLOCKSIZE_MAX;
+ return bounds;
+
+ default:
+ { ZSTD_bounds const boundError = { ERROR(parameter_unsupported), 0, 0 };
+ return boundError;
+ }
+ }
+}
+
+/* ZSTD_cParam_withinBounds:
+ * @return 1 if value is within cParam bounds,
+ * 0 otherwise */
+static int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value)
+{
+ ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
+ if (ZSTD_isError(bounds.error)) return 0;
+ if (value < bounds.lowerBound) return 0;
+ if (value > bounds.upperBound) return 0;
+ return 1;
+}
+
+/* ZSTD_cParam_clampBounds:
+ * Clamps the value into the bounded range.
+ */
+static size_t ZSTD_cParam_clampBounds(ZSTD_cParameter cParam, int* value)
+{
+ ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
+ if (ZSTD_isError(bounds.error)) return bounds.error;
+ if (*value < bounds.lowerBound) *value = bounds.lowerBound;
+ if (*value > bounds.upperBound) *value = bounds.upperBound;
+ return 0;
+}
+
+#define BOUNDCHECK(cParam, val) { \
+ RETURN_ERROR_IF(!ZSTD_cParam_withinBounds(cParam,val), \
+ parameter_outOfBound); \
+}
+
+
+static int ZSTD_isUpdateAuthorized(ZSTD_cParameter param)
+{
+ switch(param)
+ {
+ case ZSTD_c_compressionLevel:
+ case ZSTD_c_hashLog:
+ case ZSTD_c_chainLog:
+ case ZSTD_c_searchLog:
+ case ZSTD_c_minMatch:
+ case ZSTD_c_targetLength:
+ case ZSTD_c_strategy:
+ return 1;
+
+ case ZSTD_c_format:
+ case ZSTD_c_windowLog:
+ case ZSTD_c_contentSizeFlag:
+ case ZSTD_c_checksumFlag:
+ case ZSTD_c_dictIDFlag:
+ case ZSTD_c_forceMaxWindow :
+ case ZSTD_c_nbWorkers:
+ case ZSTD_c_jobSize:
+ case ZSTD_c_overlapLog:
+ case ZSTD_c_rsyncable:
+ case ZSTD_c_enableLongDistanceMatching:
+ case ZSTD_c_ldmHashLog:
+ case ZSTD_c_ldmMinMatch:
+ case ZSTD_c_ldmBucketSizeLog:
+ case ZSTD_c_ldmHashRateLog:
+ case ZSTD_c_forceAttachDict:
+ case ZSTD_c_literalCompressionMode:
+ case ZSTD_c_targetCBlockSize:
+ default:
+ return 0;
+ }
+}
+
+size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value)
+{
+ DEBUGLOG(4, "ZSTD_CCtx_setParameter (%i, %i)", (int)param, value);
+ if (cctx->streamStage != zcss_init) {
+ if (ZSTD_isUpdateAuthorized(param)) {
+ cctx->cParamsChanged = 1;
+ } else {
+ RETURN_ERROR(stage_wrong);
+ } }
+
+ switch(param)
+ {
+ case ZSTD_c_nbWorkers:
+ RETURN_ERROR_IF((value!=0) && cctx->staticSize, parameter_unsupported,
+ "MT not compatible with static alloc");
+ break;
+
+ case ZSTD_c_compressionLevel:
+ case ZSTD_c_windowLog:
+ case ZSTD_c_hashLog:
+ case ZSTD_c_chainLog:
+ case ZSTD_c_searchLog:
+ case ZSTD_c_minMatch:
+ case ZSTD_c_targetLength:
+ case ZSTD_c_strategy:
+ case ZSTD_c_ldmHashRateLog:
+ case ZSTD_c_format:
+ case ZSTD_c_contentSizeFlag:
+ case ZSTD_c_checksumFlag:
+ case ZSTD_c_dictIDFlag:
+ case ZSTD_c_forceMaxWindow:
+ case ZSTD_c_forceAttachDict:
+ case ZSTD_c_literalCompressionMode:
+ case ZSTD_c_jobSize:
+ case ZSTD_c_overlapLog:
+ case ZSTD_c_rsyncable:
+ case ZSTD_c_enableLongDistanceMatching:
+ case ZSTD_c_ldmHashLog:
+ case ZSTD_c_ldmMinMatch:
+ case ZSTD_c_ldmBucketSizeLog:
+ case ZSTD_c_targetCBlockSize:
+ break;
+
+ default: RETURN_ERROR(parameter_unsupported);
+ }
+ return ZSTD_CCtxParams_setParameter(&cctx->requestedParams, param, value);
+}
+
+size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams,
+ ZSTD_cParameter param, int value)
+{
+ DEBUGLOG(4, "ZSTD_CCtxParams_setParameter (%i, %i)", (int)param, value);
+ switch(param)
+ {
+ case ZSTD_c_format :
+ BOUNDCHECK(ZSTD_c_format, value);
+ CCtxParams->format = (ZSTD_format_e)value;
+ return (size_t)CCtxParams->format;
+
+ case ZSTD_c_compressionLevel : {
+ FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value));
+ if (value) { /* 0 : does not change current level */
+ CCtxParams->compressionLevel = value;
+ }
+ if (CCtxParams->compressionLevel >= 0) return CCtxParams->compressionLevel;
+ return 0; /* return type (size_t) cannot represent negative values */
+ }
+
+ case ZSTD_c_windowLog :
+ if (value!=0) /* 0 => use default */
+ BOUNDCHECK(ZSTD_c_windowLog, value);
+ CCtxParams->cParams.windowLog = value;
+ return CCtxParams->cParams.windowLog;
+
+ case ZSTD_c_hashLog :
+ if (value!=0) /* 0 => use default */
+ BOUNDCHECK(ZSTD_c_hashLog, value);
+ CCtxParams->cParams.hashLog = value;
+ return CCtxParams->cParams.hashLog;
+
+ case ZSTD_c_chainLog :
+ if (value!=0) /* 0 => use default */
+ BOUNDCHECK(ZSTD_c_chainLog, value);
+ CCtxParams->cParams.chainLog = value;
+ return CCtxParams->cParams.chainLog;
+
+ case ZSTD_c_searchLog :
+ if (value!=0) /* 0 => use default */
+ BOUNDCHECK(ZSTD_c_searchLog, value);
+ CCtxParams->cParams.searchLog = value;
+ return value;
+
+ case ZSTD_c_minMatch :
+ if (value!=0) /* 0 => use default */
+ BOUNDCHECK(ZSTD_c_minMatch, value);
+ CCtxParams->cParams.minMatch = value;
+ return CCtxParams->cParams.minMatch;
+
+ case ZSTD_c_targetLength :
+ BOUNDCHECK(ZSTD_c_targetLength, value);
+ CCtxParams->cParams.targetLength = value;
+ return CCtxParams->cParams.targetLength;
+
+ case ZSTD_c_strategy :
+ if (value!=0) /* 0 => use default */
+ BOUNDCHECK(ZSTD_c_strategy, value);
+ CCtxParams->cParams.strategy = (ZSTD_strategy)value;
+ return (size_t)CCtxParams->cParams.strategy;
+
+ case ZSTD_c_contentSizeFlag :
+ /* Content size written in frame header _when known_ (default:1) */
+ DEBUGLOG(4, "set content size flag = %u", (value!=0));
+ CCtxParams->fParams.contentSizeFlag = value != 0;
+ return CCtxParams->fParams.contentSizeFlag;
+
+ case ZSTD_c_checksumFlag :
+ /* A 32-bits content checksum will be calculated and written at end of frame (default:0) */
+ CCtxParams->fParams.checksumFlag = value != 0;
+ return CCtxParams->fParams.checksumFlag;
+
+ case ZSTD_c_dictIDFlag : /* When applicable, dictionary's dictID is provided in frame header (default:1) */
+ DEBUGLOG(4, "set dictIDFlag = %u", (value!=0));
+ CCtxParams->fParams.noDictIDFlag = !value;
+ return !CCtxParams->fParams.noDictIDFlag;
+
+ case ZSTD_c_forceMaxWindow :
+ CCtxParams->forceWindow = (value != 0);
+ return CCtxParams->forceWindow;
+
+ case ZSTD_c_forceAttachDict : {
+ const ZSTD_dictAttachPref_e pref = (ZSTD_dictAttachPref_e)value;
+ BOUNDCHECK(ZSTD_c_forceAttachDict, pref);
+ CCtxParams->attachDictPref = pref;
+ return CCtxParams->attachDictPref;
+ }
+
+ case ZSTD_c_literalCompressionMode : {
+ const ZSTD_literalCompressionMode_e lcm = (ZSTD_literalCompressionMode_e)value;
+ BOUNDCHECK(ZSTD_c_literalCompressionMode, lcm);
+ CCtxParams->literalCompressionMode = lcm;
+ return CCtxParams->literalCompressionMode;
+ }
+
+ case ZSTD_c_nbWorkers :
+#ifndef ZSTD_MULTITHREAD
+ RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
+ return 0;
+#else
+ FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value));
+ CCtxParams->nbWorkers = value;
+ return CCtxParams->nbWorkers;
+#endif
+
+ case ZSTD_c_jobSize :
+#ifndef ZSTD_MULTITHREAD
+ RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
+ return 0;
+#else
+ /* Adjust to the minimum non-default value. */
+ if (value != 0 && value < ZSTDMT_JOBSIZE_MIN)
+ value = ZSTDMT_JOBSIZE_MIN;
+ FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value));
+ assert(value >= 0);
+ CCtxParams->jobSize = value;
+ return CCtxParams->jobSize;
+#endif
+
+ case ZSTD_c_overlapLog :
+#ifndef ZSTD_MULTITHREAD
+ RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
+ return 0;
+#else
+ FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value));
+ CCtxParams->overlapLog = value;
+ return CCtxParams->overlapLog;
+#endif
+
+ case ZSTD_c_rsyncable :
+#ifndef ZSTD_MULTITHREAD
+ RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
+ return 0;
+#else
+ FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value));
+ CCtxParams->rsyncable = value;
+ return CCtxParams->rsyncable;
+#endif
+
+ case ZSTD_c_enableLongDistanceMatching :
+ CCtxParams->ldmParams.enableLdm = (value!=0);
+ return CCtxParams->ldmParams.enableLdm;
+
+ case ZSTD_c_ldmHashLog :
+ if (value!=0) /* 0 ==> auto */
+ BOUNDCHECK(ZSTD_c_ldmHashLog, value);
+ CCtxParams->ldmParams.hashLog = value;
+ return CCtxParams->ldmParams.hashLog;
+
+ case ZSTD_c_ldmMinMatch :
+ if (value!=0) /* 0 ==> default */
+ BOUNDCHECK(ZSTD_c_ldmMinMatch, value);
+ CCtxParams->ldmParams.minMatchLength = value;
+ return CCtxParams->ldmParams.minMatchLength;
+
+ case ZSTD_c_ldmBucketSizeLog :
+ if (value!=0) /* 0 ==> default */
+ BOUNDCHECK(ZSTD_c_ldmBucketSizeLog, value);
+ CCtxParams->ldmParams.bucketSizeLog = value;
+ return CCtxParams->ldmParams.bucketSizeLog;
+
+ case ZSTD_c_ldmHashRateLog :
+ RETURN_ERROR_IF(value > ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN,
+ parameter_outOfBound);
+ CCtxParams->ldmParams.hashRateLog = value;
+ return CCtxParams->ldmParams.hashRateLog;
+
+ case ZSTD_c_targetCBlockSize :
+ if (value!=0) /* 0 ==> default */
+ BOUNDCHECK(ZSTD_c_targetCBlockSize, value);
+ CCtxParams->targetCBlockSize = value;
+ return CCtxParams->targetCBlockSize;
+
+ default: RETURN_ERROR(parameter_unsupported, "unknown parameter");
+ }
+}
+
+size_t ZSTD_CCtx_getParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value)
+{
+ return ZSTD_CCtxParams_getParameter(&cctx->requestedParams, param, value);
+}
+
+size_t ZSTD_CCtxParams_getParameter(
+ ZSTD_CCtx_params* CCtxParams, ZSTD_cParameter param, int* value)
+{
+ switch(param)
+ {
+ case ZSTD_c_format :
+ *value = CCtxParams->format;
+ break;
+ case ZSTD_c_compressionLevel :
+ *value = CCtxParams->compressionLevel;
+ break;
+ case ZSTD_c_windowLog :
+ *value = (int)CCtxParams->cParams.windowLog;
+ break;
+ case ZSTD_c_hashLog :
+ *value = (int)CCtxParams->cParams.hashLog;
+ break;
+ case ZSTD_c_chainLog :
+ *value = (int)CCtxParams->cParams.chainLog;
+ break;
+ case ZSTD_c_searchLog :
+ *value = CCtxParams->cParams.searchLog;
+ break;
+ case ZSTD_c_minMatch :
+ *value = CCtxParams->cParams.minMatch;
+ break;
+ case ZSTD_c_targetLength :
+ *value = CCtxParams->cParams.targetLength;
+ break;
+ case ZSTD_c_strategy :
+ *value = (unsigned)CCtxParams->cParams.strategy;
+ break;
+ case ZSTD_c_contentSizeFlag :
+ *value = CCtxParams->fParams.contentSizeFlag;
+ break;
+ case ZSTD_c_checksumFlag :
+ *value = CCtxParams->fParams.checksumFlag;
+ break;
+ case ZSTD_c_dictIDFlag :
+ *value = !CCtxParams->fParams.noDictIDFlag;
+ break;
+ case ZSTD_c_forceMaxWindow :
+ *value = CCtxParams->forceWindow;
+ break;
+ case ZSTD_c_forceAttachDict :
+ *value = CCtxParams->attachDictPref;
+ break;
+ case ZSTD_c_literalCompressionMode :
+ *value = CCtxParams->literalCompressionMode;
+ break;
+ case ZSTD_c_nbWorkers :
+#ifndef ZSTD_MULTITHREAD
+ assert(CCtxParams->nbWorkers == 0);
+#endif
+ *value = CCtxParams->nbWorkers;
+ break;
+ case ZSTD_c_jobSize :
+#ifndef ZSTD_MULTITHREAD
+ RETURN_ERROR(parameter_unsupported, "not compiled with multithreading");
+#else
+ assert(CCtxParams->jobSize <= INT_MAX);
+ *value = (int)CCtxParams->jobSize;
+ break;
+#endif
+ case ZSTD_c_overlapLog :
+#ifndef ZSTD_MULTITHREAD
+ RETURN_ERROR(parameter_unsupported, "not compiled with multithreading");
+#else
+ *value = CCtxParams->overlapLog;
+ break;
+#endif
+ case ZSTD_c_rsyncable :
+#ifndef ZSTD_MULTITHREAD
+ RETURN_ERROR(parameter_unsupported, "not compiled with multithreading");
+#else
+ *value = CCtxParams->rsyncable;
+ break;
+#endif
+ case ZSTD_c_enableLongDistanceMatching :
+ *value = CCtxParams->ldmParams.enableLdm;
+ break;
+ case ZSTD_c_ldmHashLog :
+ *value = CCtxParams->ldmParams.hashLog;
+ break;
+ case ZSTD_c_ldmMinMatch :
+ *value = CCtxParams->ldmParams.minMatchLength;
+ break;
+ case ZSTD_c_ldmBucketSizeLog :
+ *value = CCtxParams->ldmParams.bucketSizeLog;
+ break;
+ case ZSTD_c_ldmHashRateLog :
+ *value = CCtxParams->ldmParams.hashRateLog;
+ break;
+ case ZSTD_c_targetCBlockSize :
+ *value = (int)CCtxParams->targetCBlockSize;
+ break;
+ default: RETURN_ERROR(parameter_unsupported, "unknown parameter");
+ }
+ return 0;
+}
+
+/** ZSTD_CCtx_setParametersUsingCCtxParams() :
+ * just applies `params` into `cctx`
+ * no action is performed, parameters are merely stored.
+ * If ZSTDMT is enabled, parameters are pushed to cctx->mtctx.
+ * This is possible even if a compression is ongoing.
+ * In which case, new parameters will be applied on the fly, starting with next compression job.
+ */
+size_t ZSTD_CCtx_setParametersUsingCCtxParams(
+ ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params)
+{
+ DEBUGLOG(4, "ZSTD_CCtx_setParametersUsingCCtxParams");
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong);
+ RETURN_ERROR_IF(cctx->cdict, stage_wrong);
+
+ cctx->requestedParams = *params;
+ return 0;
+}
+
+ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize)
+{
+ DEBUGLOG(4, "ZSTD_CCtx_setPledgedSrcSize to %u bytes", (U32)pledgedSrcSize);
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong);
+ cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1;
+ return 0;
+}
+
+/**
+ * Initializes the local dict using the requested parameters.
+ * NOTE: This does not use the pledged src size, because it may be used for more
+ * than one compression.
+ */
+static size_t ZSTD_initLocalDict(ZSTD_CCtx* cctx)
+{
+ ZSTD_localDict* const dl = &cctx->localDict;
+ ZSTD_compressionParameters const cParams = ZSTD_getCParamsFromCCtxParams(
+ &cctx->requestedParams, 0, dl->dictSize);
+ if (dl->dict == NULL) {
+ /* No local dictionary. */
+ assert(dl->dictBuffer == NULL);
+ assert(dl->cdict == NULL);
+ assert(dl->dictSize == 0);
+ return 0;
+ }
+ if (dl->cdict != NULL) {
+ assert(cctx->cdict == dl->cdict);
+ /* Local dictionary already initialized. */
+ return 0;
+ }
+ assert(dl->dictSize > 0);
+ assert(cctx->cdict == NULL);
+ assert(cctx->prefixDict.dict == NULL);
+
+ dl->cdict = ZSTD_createCDict_advanced(
+ dl->dict,
+ dl->dictSize,
+ ZSTD_dlm_byRef,
+ dl->dictContentType,
+ cParams,
+ cctx->customMem);
+ RETURN_ERROR_IF(!dl->cdict, memory_allocation);
+ cctx->cdict = dl->cdict;
+ return 0;
+}
+
+size_t ZSTD_CCtx_loadDictionary_advanced(
+ ZSTD_CCtx* cctx, const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType)
+{
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong);
+ RETURN_ERROR_IF(cctx->staticSize, memory_allocation,
+ "no malloc for static CCtx");
+ DEBUGLOG(4, "ZSTD_CCtx_loadDictionary_advanced (size: %u)", (U32)dictSize);
+ ZSTD_clearAllDicts(cctx); /* in case one already exists */
+ if (dict == NULL || dictSize == 0) /* no dictionary mode */
+ return 0;
+ if (dictLoadMethod == ZSTD_dlm_byRef) {
+ cctx->localDict.dict = dict;
+ } else {
+ void* dictBuffer = ZSTD_malloc(dictSize, cctx->customMem);
+ RETURN_ERROR_IF(!dictBuffer, memory_allocation);
+ memcpy(dictBuffer, dict, dictSize);
+ cctx->localDict.dictBuffer = dictBuffer;
+ cctx->localDict.dict = dictBuffer;
+ }
+ cctx->localDict.dictSize = dictSize;
+ cctx->localDict.dictContentType = dictContentType;
+ return 0;
+}
+
+ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference(
+ ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
+{
+ return ZSTD_CCtx_loadDictionary_advanced(
+ cctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto);
+}
+
+ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
+{
+ return ZSTD_CCtx_loadDictionary_advanced(
+ cctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto);
+}
+
+
+size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict)
+{
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong);
+ /* Free the existing local cdict (if any) to save memory. */
+ ZSTD_clearAllDicts(cctx);
+ cctx->cdict = cdict;
+ return 0;
+}
+
+size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize)
+{
+ return ZSTD_CCtx_refPrefix_advanced(cctx, prefix, prefixSize, ZSTD_dct_rawContent);
+}
+
+size_t ZSTD_CCtx_refPrefix_advanced(
+ ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType)
+{
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong);
+ ZSTD_clearAllDicts(cctx);
+ cctx->prefixDict.dict = prefix;
+ cctx->prefixDict.dictSize = prefixSize;
+ cctx->prefixDict.dictContentType = dictContentType;
+ return 0;
+}
+
+/*! ZSTD_CCtx_reset() :
+ * Also dumps dictionary */
+size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset)
+{
+ if ( (reset == ZSTD_reset_session_only)
+ || (reset == ZSTD_reset_session_and_parameters) ) {
+ cctx->streamStage = zcss_init;
+ cctx->pledgedSrcSizePlusOne = 0;
+ }
+ if ( (reset == ZSTD_reset_parameters)
+ || (reset == ZSTD_reset_session_and_parameters) ) {
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong);
+ ZSTD_clearAllDicts(cctx);
+ return ZSTD_CCtxParams_reset(&cctx->requestedParams);
+ }
+ return 0;
+}
+
+
+/** ZSTD_checkCParams() :
+ control CParam values remain within authorized range.
+ @return : 0, or an error code if one value is beyond authorized range */
+size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams)
+{
+ BOUNDCHECK(ZSTD_c_windowLog, (int)cParams.windowLog);
+ BOUNDCHECK(ZSTD_c_chainLog, (int)cParams.chainLog);
+ BOUNDCHECK(ZSTD_c_hashLog, (int)cParams.hashLog);
+ BOUNDCHECK(ZSTD_c_searchLog, (int)cParams.searchLog);
+ BOUNDCHECK(ZSTD_c_minMatch, (int)cParams.minMatch);
+ BOUNDCHECK(ZSTD_c_targetLength,(int)cParams.targetLength);
+ BOUNDCHECK(ZSTD_c_strategy, cParams.strategy);
+ return 0;
+}
+
+/** ZSTD_clampCParams() :
+ * make CParam values within valid range.
+ * @return : valid CParams */
+static ZSTD_compressionParameters
+ZSTD_clampCParams(ZSTD_compressionParameters cParams)
+{
+# define CLAMP_TYPE(cParam, val, type) { \
+ ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); \
+ if ((int)val<bounds.lowerBound) val=(type)bounds.lowerBound; \
+ else if ((int)val>bounds.upperBound) val=(type)bounds.upperBound; \
+ }
+# define CLAMP(cParam, val) CLAMP_TYPE(cParam, val, unsigned)
+ CLAMP(ZSTD_c_windowLog, cParams.windowLog);
+ CLAMP(ZSTD_c_chainLog, cParams.chainLog);
+ CLAMP(ZSTD_c_hashLog, cParams.hashLog);
+ CLAMP(ZSTD_c_searchLog, cParams.searchLog);
+ CLAMP(ZSTD_c_minMatch, cParams.minMatch);
+ CLAMP(ZSTD_c_targetLength,cParams.targetLength);
+ CLAMP_TYPE(ZSTD_c_strategy,cParams.strategy, ZSTD_strategy);
+ return cParams;
+}
+
+/** ZSTD_cycleLog() :
+ * condition for correct operation : hashLog > 1 */
+static U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat)
+{
+ U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2);
+ return hashLog - btScale;
+}
+
+/** ZSTD_adjustCParams_internal() :
+ * optimize `cPar` for a specified input (`srcSize` and `dictSize`).
+ * mostly downsize to reduce memory consumption and initialization latency.
+ * `srcSize` can be ZSTD_CONTENTSIZE_UNKNOWN when not known.
+ * note : for the time being, `srcSize==0` means "unknown" too, for compatibility with older convention.
+ * condition : cPar is presumed validated (can be checked using ZSTD_checkCParams()). */
+static ZSTD_compressionParameters
+ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar,
+ unsigned long long srcSize,
+ size_t dictSize)
+{
+ static const U64 minSrcSize = 513; /* (1<<9) + 1 */
+ static const U64 maxWindowResize = 1ULL << (ZSTD_WINDOWLOG_MAX-1);
+ assert(ZSTD_checkCParams(cPar)==0);
+
+ if (dictSize && (srcSize+1<2) /* ZSTD_CONTENTSIZE_UNKNOWN and 0 mean "unknown" */ )
+ srcSize = minSrcSize; /* presumed small when there is a dictionary */
+ else if (srcSize == 0)
+ srcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* 0 == unknown : presumed large */
+
+ /* resize windowLog if input is small enough, to use less memory */
+ if ( (srcSize < maxWindowResize)
+ && (dictSize < maxWindowResize) ) {
+ U32 const tSize = (U32)(srcSize + dictSize);
+ static U32 const hashSizeMin = 1 << ZSTD_HASHLOG_MIN;
+ U32 const srcLog = (tSize < hashSizeMin) ? ZSTD_HASHLOG_MIN :
+ ZSTD_highbit32(tSize-1) + 1;
+ if (cPar.windowLog > srcLog) cPar.windowLog = srcLog;
+ }
+ if (cPar.hashLog > cPar.windowLog+1) cPar.hashLog = cPar.windowLog+1;
+ { U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy);
+ if (cycleLog > cPar.windowLog)
+ cPar.chainLog -= (cycleLog - cPar.windowLog);
+ }
+
+ if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN)
+ cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* minimum wlog required for valid frame header */
+
+ return cPar;
+}
+
+ZSTD_compressionParameters
+ZSTD_adjustCParams(ZSTD_compressionParameters cPar,
+ unsigned long long srcSize,
+ size_t dictSize)
+{
+ cPar = ZSTD_clampCParams(cPar); /* resulting cPar is necessarily valid (all parameters within range) */
+ return ZSTD_adjustCParams_internal(cPar, srcSize, dictSize);
+}
+
+ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
+ const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize)
+{
+ ZSTD_compressionParameters cParams = ZSTD_getCParams(CCtxParams->compressionLevel, srcSizeHint, dictSize);
+ if (CCtxParams->ldmParams.enableLdm) cParams.windowLog = ZSTD_LDM_DEFAULT_WINDOW_LOG;
+ if (CCtxParams->cParams.windowLog) cParams.windowLog = CCtxParams->cParams.windowLog;
+ if (CCtxParams->cParams.hashLog) cParams.hashLog = CCtxParams->cParams.hashLog;
+ if (CCtxParams->cParams.chainLog) cParams.chainLog = CCtxParams->cParams.chainLog;
+ if (CCtxParams->cParams.searchLog) cParams.searchLog = CCtxParams->cParams.searchLog;
+ if (CCtxParams->cParams.minMatch) cParams.minMatch = CCtxParams->cParams.minMatch;
+ if (CCtxParams->cParams.targetLength) cParams.targetLength = CCtxParams->cParams.targetLength;
+ if (CCtxParams->cParams.strategy) cParams.strategy = CCtxParams->cParams.strategy;
+ assert(!ZSTD_checkCParams(cParams));
+ return ZSTD_adjustCParams_internal(cParams, srcSizeHint, dictSize);
+}
+
+static size_t
+ZSTD_sizeof_matchState(const ZSTD_compressionParameters* const cParams,
+ const U32 forCCtx)
+{
+ size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog);
+ size_t const hSize = ((size_t)1) << cParams->hashLog;
+ U32 const hashLog3 = (forCCtx && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0;
+ size_t const h3Size = ((size_t)1) << hashLog3;
+ size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
+ size_t const optPotentialSpace = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<<Litbits)) * sizeof(U32)
+ + (ZSTD_OPT_NUM+1) * (sizeof(ZSTD_match_t)+sizeof(ZSTD_optimal_t));
+ size_t const optSpace = (forCCtx && (cParams->strategy >= ZSTD_btopt))
+ ? optPotentialSpace
+ : 0;
+ DEBUGLOG(4, "chainSize: %u - hSize: %u - h3Size: %u",
+ (U32)chainSize, (U32)hSize, (U32)h3Size);
+ return tableSpace + optSpace;
+}
+
+size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params)
+{
+ RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only.");
+ { ZSTD_compressionParameters const cParams =
+ ZSTD_getCParamsFromCCtxParams(params, 0, 0);
+ size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog);
+ U32 const divider = (cParams.minMatch==3) ? 3 : 4;
+ size_t const maxNbSeq = blockSize / divider;
+ size_t const tokenSpace = WILDCOPY_OVERLENGTH + blockSize + 11*maxNbSeq;
+ size_t const entropySpace = HUF_WORKSPACE_SIZE;
+ size_t const blockStateSpace = 2 * sizeof(ZSTD_compressedBlockState_t);
+ size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 1);
+
+ size_t const ldmSpace = ZSTD_ldm_getTableSize(params->ldmParams);
+ size_t const ldmSeqSpace = ZSTD_ldm_getMaxNbSeq(params->ldmParams, blockSize) * sizeof(rawSeq);
+
+ size_t const neededSpace = entropySpace + blockStateSpace + tokenSpace +
+ matchStateSize + ldmSpace + ldmSeqSpace;
+
+ DEBUGLOG(5, "sizeof(ZSTD_CCtx) : %u", (U32)sizeof(ZSTD_CCtx));
+ DEBUGLOG(5, "estimate workSpace : %u", (U32)neededSpace);
+ return sizeof(ZSTD_CCtx) + neededSpace;
+ }
+}
+
+size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams)
+{
+ ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams);
+ return ZSTD_estimateCCtxSize_usingCCtxParams(¶ms);
+}
+
+static size_t ZSTD_estimateCCtxSize_internal(int compressionLevel)
+{
+ ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, 0);
+ return ZSTD_estimateCCtxSize_usingCParams(cParams);
+}
+
+size_t ZSTD_estimateCCtxSize(int compressionLevel)
+{
+ int level;
+ size_t memBudget = 0;
+ for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) {
+ size_t const newMB = ZSTD_estimateCCtxSize_internal(level);
+ if (newMB > memBudget) memBudget = newMB;
+ }
+ return memBudget;
+}
+
+size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params)
+{
+ RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only.");
+ { ZSTD_compressionParameters const cParams =
+ ZSTD_getCParamsFromCCtxParams(params, 0, 0);
+ size_t const CCtxSize = ZSTD_estimateCCtxSize_usingCCtxParams(params);
+ size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog);
+ size_t const inBuffSize = ((size_t)1 << cParams.windowLog) + blockSize;
+ size_t const outBuffSize = ZSTD_compressBound(blockSize) + 1;
+ size_t const streamingSize = inBuffSize + outBuffSize;
+
+ return CCtxSize + streamingSize;
+ }
+}
+
+size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams)
+{
+ ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams);
+ return ZSTD_estimateCStreamSize_usingCCtxParams(¶ms);
+}
+
+static size_t ZSTD_estimateCStreamSize_internal(int compressionLevel)
+{
+ ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, 0);
+ return ZSTD_estimateCStreamSize_usingCParams(cParams);
+}
+
+size_t ZSTD_estimateCStreamSize(int compressionLevel)
+{
+ int level;
+ size_t memBudget = 0;
+ for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) {
+ size_t const newMB = ZSTD_estimateCStreamSize_internal(level);
+ if (newMB > memBudget) memBudget = newMB;
+ }
+ return memBudget;
+}
+
+/* ZSTD_getFrameProgression():
+ * tells how much data has been consumed (input) and produced (output) for current frame.
+ * able to count progression inside worker threads (non-blocking mode).
+ */
+ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx)
+{
+#ifdef ZSTD_MULTITHREAD
+ if (cctx->appliedParams.nbWorkers > 0) {
+ return ZSTDMT_getFrameProgression(cctx->mtctx);
+ }
+#endif
+ { ZSTD_frameProgression fp;
+ size_t const buffered = (cctx->inBuff == NULL) ? 0 :
+ cctx->inBuffPos - cctx->inToCompress;
+ if (buffered) assert(cctx->inBuffPos >= cctx->inToCompress);
+ assert(buffered <= ZSTD_BLOCKSIZE_MAX);
+ fp.ingested = cctx->consumedSrcSize + buffered;
+ fp.consumed = cctx->consumedSrcSize;
+ fp.produced = cctx->producedCSize;
+ fp.flushed = cctx->producedCSize; /* simplified; some data might still be left within streaming output buffer */
+ fp.currentJobID = 0;
+ fp.nbActiveWorkers = 0;
+ return fp;
+} }
+
+/*! ZSTD_toFlushNow()
+ * Only useful for multithreading scenarios currently (nbWorkers >= 1).
+ */
+size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx)
+{
+#ifdef ZSTD_MULTITHREAD
+ if (cctx->appliedParams.nbWorkers > 0) {
+ return ZSTDMT_toFlushNow(cctx->mtctx);
+ }
+#endif
+ (void)cctx;
+ return 0; /* over-simplification; could also check if context is currently running in streaming mode, and in which case, report how many bytes are left to be flushed within output buffer */
+}
+
+
+
+static U32 ZSTD_equivalentCParams(ZSTD_compressionParameters cParams1,
+ ZSTD_compressionParameters cParams2)
+{
+ return (cParams1.hashLog == cParams2.hashLog)
+ & (cParams1.chainLog == cParams2.chainLog)
+ & (cParams1.strategy == cParams2.strategy) /* opt parser space */
+ & ((cParams1.minMatch==3) == (cParams2.minMatch==3)); /* hashlog3 space */
+}
+
+static void ZSTD_assertEqualCParams(ZSTD_compressionParameters cParams1,
+ ZSTD_compressionParameters cParams2)
+{
+ (void)cParams1;
+ (void)cParams2;
+ assert(cParams1.windowLog == cParams2.windowLog);
+ assert(cParams1.chainLog == cParams2.chainLog);
+ assert(cParams1.hashLog == cParams2.hashLog);
+ assert(cParams1.searchLog == cParams2.searchLog);
+ assert(cParams1.minMatch == cParams2.minMatch);
+ assert(cParams1.targetLength == cParams2.targetLength);
+ assert(cParams1.strategy == cParams2.strategy);
+}
+
+/** The parameters are equivalent if ldm is not enabled in both sets or
+ * all the parameters are equivalent. */
+static U32 ZSTD_equivalentLdmParams(ldmParams_t ldmParams1,
+ ldmParams_t ldmParams2)
+{
+ return (!ldmParams1.enableLdm && !ldmParams2.enableLdm) ||
+ (ldmParams1.enableLdm == ldmParams2.enableLdm &&
+ ldmParams1.hashLog == ldmParams2.hashLog &&
+ ldmParams1.bucketSizeLog == ldmParams2.bucketSizeLog &&
+ ldmParams1.minMatchLength == ldmParams2.minMatchLength &&
+ ldmParams1.hashRateLog == ldmParams2.hashRateLog);
+}
+
+typedef enum { ZSTDb_not_buffered, ZSTDb_buffered } ZSTD_buffered_policy_e;
+
+/* ZSTD_sufficientBuff() :
+ * check internal buffers exist for streaming if buffPol == ZSTDb_buffered .
+ * Note : they are assumed to be correctly sized if ZSTD_equivalentCParams()==1 */
+static U32 ZSTD_sufficientBuff(size_t bufferSize1, size_t maxNbSeq1,
+ size_t maxNbLit1,
+ ZSTD_buffered_policy_e buffPol2,
+ ZSTD_compressionParameters cParams2,
+ U64 pledgedSrcSize)
+{
+ size_t const windowSize2 = MAX(1, (size_t)MIN(((U64)1 << cParams2.windowLog), pledgedSrcSize));
+ size_t const blockSize2 = MIN(ZSTD_BLOCKSIZE_MAX, windowSize2);
+ size_t const maxNbSeq2 = blockSize2 / ((cParams2.minMatch == 3) ? 3 : 4);
+ size_t const maxNbLit2 = blockSize2;
+ size_t const neededBufferSize2 = (buffPol2==ZSTDb_buffered) ? windowSize2 + blockSize2 : 0;
+ DEBUGLOG(4, "ZSTD_sufficientBuff: is neededBufferSize2=%u <= bufferSize1=%u",
+ (U32)neededBufferSize2, (U32)bufferSize1);
+ DEBUGLOG(4, "ZSTD_sufficientBuff: is maxNbSeq2=%u <= maxNbSeq1=%u",
+ (U32)maxNbSeq2, (U32)maxNbSeq1);
+ DEBUGLOG(4, "ZSTD_sufficientBuff: is maxNbLit2=%u <= maxNbLit1=%u",
+ (U32)maxNbLit2, (U32)maxNbLit1);
+ return (maxNbLit2 <= maxNbLit1)
+ & (maxNbSeq2 <= maxNbSeq1)
+ & (neededBufferSize2 <= bufferSize1);
+}
+
+/** Equivalence for resetCCtx purposes */
+static U32 ZSTD_equivalentParams(ZSTD_CCtx_params params1,
+ ZSTD_CCtx_params params2,
+ size_t buffSize1,
+ size_t maxNbSeq1, size_t maxNbLit1,
+ ZSTD_buffered_policy_e buffPol2,
+ U64 pledgedSrcSize)
+{
+ DEBUGLOG(4, "ZSTD_equivalentParams: pledgedSrcSize=%u", (U32)pledgedSrcSize);
+ if (!ZSTD_equivalentCParams(params1.cParams, params2.cParams)) {
+ DEBUGLOG(4, "ZSTD_equivalentCParams() == 0");
+ return 0;
+ }
+ if (!ZSTD_equivalentLdmParams(params1.ldmParams, params2.ldmParams)) {
+ DEBUGLOG(4, "ZSTD_equivalentLdmParams() == 0");
+ return 0;
+ }
+ if (!ZSTD_sufficientBuff(buffSize1, maxNbSeq1, maxNbLit1, buffPol2,
+ params2.cParams, pledgedSrcSize)) {
+ DEBUGLOG(4, "ZSTD_sufficientBuff() == 0");
+ return 0;
+ }
+ return 1;
+}
+
+static void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs)
+{
+ int i;
+ for (i = 0; i < ZSTD_REP_NUM; ++i)
+ bs->rep[i] = repStartValue[i];
+ bs->entropy.huf.repeatMode = HUF_repeat_none;
+ bs->entropy.fse.offcode_repeatMode = FSE_repeat_none;
+ bs->entropy.fse.matchlength_repeatMode = FSE_repeat_none;
+ bs->entropy.fse.litlength_repeatMode = FSE_repeat_none;
+}
+
+/*! ZSTD_invalidateMatchState()
+ * Invalidate all the matches in the match finder tables.
+ * Requires nextSrc and base to be set (can be NULL).
+ */
+static void ZSTD_invalidateMatchState(ZSTD_matchState_t* ms)
+{
+ ZSTD_window_clear(&ms->window);
+
+ ms->nextToUpdate = ms->window.dictLimit;
+ ms->loadedDictEnd = 0;
+ ms->opt.litLengthSum = 0; /* force reset of btopt stats */
+ ms->dictMatchState = NULL;
+}
+
+/*! ZSTD_continueCCtx() :
+ * reuse CCtx without reset (note : requires no dictionary) */
+static size_t ZSTD_continueCCtx(ZSTD_CCtx* cctx, ZSTD_CCtx_params params, U64 pledgedSrcSize)
+{
+ size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize));
+ size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
+ DEBUGLOG(4, "ZSTD_continueCCtx: re-use context in place");
+
+ cctx->blockSize = blockSize; /* previous block size could be different even for same windowLog, due to pledgedSrcSize */
+ cctx->appliedParams = params;
+ cctx->blockState.matchState.cParams = params.cParams;
+ cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1;
+ cctx->consumedSrcSize = 0;
+ cctx->producedCSize = 0;
+ if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)
+ cctx->appliedParams.fParams.contentSizeFlag = 0;
+ DEBUGLOG(4, "pledged content size : %u ; flag : %u",
+ (U32)pledgedSrcSize, cctx->appliedParams.fParams.contentSizeFlag);
+ cctx->stage = ZSTDcs_init;
+ cctx->dictID = 0;
+ if (params.ldmParams.enableLdm)
+ ZSTD_window_clear(&cctx->ldmState.window);
+ ZSTD_referenceExternalSequences(cctx, NULL, 0);
+ ZSTD_invalidateMatchState(&cctx->blockState.matchState);
+ ZSTD_reset_compressedBlockState(cctx->blockState.prevCBlock);
+ XXH64_reset(&cctx->xxhState, 0);
+ return 0;
+}
+
+typedef enum { ZSTDcrp_continue, ZSTDcrp_noMemset } ZSTD_compResetPolicy_e;
+
+typedef enum { ZSTD_resetTarget_CDict, ZSTD_resetTarget_CCtx } ZSTD_resetTarget_e;
+
+static void*
+ZSTD_reset_matchState(ZSTD_matchState_t* ms,
+ void* ptr,
+ const ZSTD_compressionParameters* cParams,
+ ZSTD_compResetPolicy_e const crp, ZSTD_resetTarget_e const forWho)
+{
+ size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog);
+ size_t const hSize = ((size_t)1) << cParams->hashLog;
+ U32 const hashLog3 = ((forWho == ZSTD_resetTarget_CCtx) && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0;
+ size_t const h3Size = ((size_t)1) << hashLog3;
+ size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
+
+ assert(((size_t)ptr & 3) == 0);
+
+ ms->hashLog3 = hashLog3;
+ memset(&ms->window, 0, sizeof(ms->window));
+ ms->window.dictLimit = 1; /* start from 1, so that 1st position is valid */
+ ms->window.lowLimit = 1; /* it ensures first and later CCtx usages compress the same */
+ ms->window.nextSrc = ms->window.base + 1; /* see issue #1241 */
+ ZSTD_invalidateMatchState(ms);
+
+ /* opt parser space */
+ if ((forWho == ZSTD_resetTarget_CCtx) && (cParams->strategy >= ZSTD_btopt)) {
+ DEBUGLOG(4, "reserving optimal parser space");
+ ms->opt.litFreq = (unsigned*)ptr;
+ ms->opt.litLengthFreq = ms->opt.litFreq + (1<<Litbits);
+ ms->opt.matchLengthFreq = ms->opt.litLengthFreq + (MaxLL+1);
+ ms->opt.offCodeFreq = ms->opt.matchLengthFreq + (MaxML+1);
+ ptr = ms->opt.offCodeFreq + (MaxOff+1);
+ ms->opt.matchTable = (ZSTD_match_t*)ptr;
+ ptr = ms->opt.matchTable + ZSTD_OPT_NUM+1;
+ ms->opt.priceTable = (ZSTD_optimal_t*)ptr;
+ ptr = ms->opt.priceTable + ZSTD_OPT_NUM+1;
+ }
+
+ /* table Space */
+ DEBUGLOG(4, "reset table : %u", crp!=ZSTDcrp_noMemset);
+ assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */
+ if (crp!=ZSTDcrp_noMemset) memset(ptr, 0, tableSpace); /* reset tables only */
+ ms->hashTable = (U32*)(ptr);
+ ms->chainTable = ms->hashTable + hSize;
+ ms->hashTable3 = ms->chainTable + chainSize;
+ ptr = ms->hashTable3 + h3Size;
+
+ ms->cParams = *cParams;
+
+ assert(((size_t)ptr & 3) == 0);
+ return ptr;
+}
+
+/* ZSTD_indexTooCloseToMax() :
+ * minor optimization : prefer memset() rather than reduceIndex()
+ * which is measurably slow in some circumstances (reported for Visual Studio).
+ * Works when re-using a context for a lot of smallish inputs :
+ * if all inputs are smaller than ZSTD_INDEXOVERFLOW_MARGIN,
+ * memset() will be triggered before reduceIndex().
+ */
+#define ZSTD_INDEXOVERFLOW_MARGIN (16 MB)
+static int ZSTD_indexTooCloseToMax(ZSTD_window_t w)
+{
+ return (size_t)(w.nextSrc - w.base) > (ZSTD_CURRENT_MAX - ZSTD_INDEXOVERFLOW_MARGIN);
+}
+
+#define ZSTD_WORKSPACETOOLARGE_FACTOR 3 /* define "workspace is too large" as this number of times larger than needed */
+#define ZSTD_WORKSPACETOOLARGE_MAXDURATION 128 /* when workspace is continuously too large
+ * during at least this number of times,
+ * context's memory usage is considered wasteful,
+ * because it's sized to handle a worst case scenario which rarely happens.
+ * In which case, resize it down to free some memory */
+
+/*! ZSTD_resetCCtx_internal() :
+ note : `params` are assumed fully validated at this stage */
+static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc,
+ ZSTD_CCtx_params params,
+ U64 const pledgedSrcSize,
+ ZSTD_compResetPolicy_e const crp,
+ ZSTD_buffered_policy_e const zbuff)
+{
+ DEBUGLOG(4, "ZSTD_resetCCtx_internal: pledgedSrcSize=%u, wlog=%u",
+ (U32)pledgedSrcSize, params.cParams.windowLog);
+ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
+
+ if (crp == ZSTDcrp_continue) {
+ if (ZSTD_equivalentParams(zc->appliedParams, params,
+ zc->inBuffSize,
+ zc->seqStore.maxNbSeq, zc->seqStore.maxNbLit,
+ zbuff, pledgedSrcSize) ) {
+ DEBUGLOG(4, "ZSTD_equivalentParams()==1 -> consider continue mode");
+ zc->workSpaceOversizedDuration += (zc->workSpaceOversizedDuration > 0); /* if it was too large, it still is */
+ if (zc->workSpaceOversizedDuration <= ZSTD_WORKSPACETOOLARGE_MAXDURATION) {
+ DEBUGLOG(4, "continue mode confirmed (wLog1=%u, blockSize1=%zu)",
+ zc->appliedParams.cParams.windowLog, zc->blockSize);
+ if (ZSTD_indexTooCloseToMax(zc->blockState.matchState.window)) {
+ /* prefer a reset, faster than a rescale */
+ ZSTD_reset_matchState(&zc->blockState.matchState,
+ zc->entropyWorkspace + HUF_WORKSPACE_SIZE_U32,
+ ¶ms.cParams,
+ crp, ZSTD_resetTarget_CCtx);
+ }
+ return ZSTD_continueCCtx(zc, params, pledgedSrcSize);
+ } } }
+ DEBUGLOG(4, "ZSTD_equivalentParams()==0 -> reset CCtx");
+
+ if (params.ldmParams.enableLdm) {
+ /* Adjust long distance matching parameters */
+ ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams);
+ assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
+ assert(params.ldmParams.hashRateLog < 32);
+ zc->ldmState.hashPower = ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength);
+ }
+
+ { size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize));
+ size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
+ U32 const divider = (params.cParams.minMatch==3) ? 3 : 4;
+ size_t const maxNbSeq = blockSize / divider;
+ size_t const tokenSpace = WILDCOPY_OVERLENGTH + blockSize + 11*maxNbSeq;
+ size_t const buffOutSize = (zbuff==ZSTDb_buffered) ? ZSTD_compressBound(blockSize)+1 : 0;
+ size_t const buffInSize = (zbuff==ZSTDb_buffered) ? windowSize + blockSize : 0;
+ size_t const matchStateSize = ZSTD_sizeof_matchState(¶ms.cParams, /* forCCtx */ 1);
+ size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(params.ldmParams, blockSize);
+ void* ptr; /* used to partition workSpace */
+
+ /* Check if workSpace is large enough, alloc a new one if needed */
+ { size_t const entropySpace = HUF_WORKSPACE_SIZE;
+ size_t const blockStateSpace = 2 * sizeof(ZSTD_compressedBlockState_t);
+ size_t const bufferSpace = buffInSize + buffOutSize;
+ size_t const ldmSpace = ZSTD_ldm_getTableSize(params.ldmParams);
+ size_t const ldmSeqSpace = maxNbLdmSeq * sizeof(rawSeq);
+
+ size_t const neededSpace = entropySpace + blockStateSpace + ldmSpace +
+ ldmSeqSpace + matchStateSize + tokenSpace +
+ bufferSpace;
+
+ int const workSpaceTooSmall = zc->workSpaceSize < neededSpace;
+ int const workSpaceTooLarge = zc->workSpaceSize > ZSTD_WORKSPACETOOLARGE_FACTOR * neededSpace;
+ int const workSpaceWasteful = workSpaceTooLarge && (zc->workSpaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION);
+ zc->workSpaceOversizedDuration = workSpaceTooLarge ? zc->workSpaceOversizedDuration+1 : 0;
+
+ DEBUGLOG(4, "Need %zuKB workspace, including %zuKB for match state, and %zuKB for buffers",
+ neededSpace>>10, matchStateSize>>10, bufferSpace>>10);
+ DEBUGLOG(4, "windowSize: %zu - blockSize: %zu", windowSize, blockSize);
+
+ if (workSpaceTooSmall || workSpaceWasteful) {
+ DEBUGLOG(4, "Resize workSpaceSize from %zuKB to %zuKB",
+ zc->workSpaceSize >> 10,
+ neededSpace >> 10);
+
+ RETURN_ERROR_IF(zc->staticSize, memory_allocation, "static cctx : no resize");
+
+ zc->workSpaceSize = 0;
+ ZSTD_free(zc->workSpace, zc->customMem);
+ zc->workSpace = ZSTD_malloc(neededSpace, zc->customMem);
+ RETURN_ERROR_IF(zc->workSpace == NULL, memory_allocation);
+ zc->workSpaceSize = neededSpace;
+ zc->workSpaceOversizedDuration = 0;
+
+ /* Statically sized space.
+ * entropyWorkspace never moves,
+ * though prev/next block swap places */
+ assert(((size_t)zc->workSpace & 3) == 0); /* ensure correct alignment */
+ assert(zc->workSpaceSize >= 2 * sizeof(ZSTD_compressedBlockState_t));
+ zc->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)zc->workSpace;
+ zc->blockState.nextCBlock = zc->blockState.prevCBlock + 1;
+ ptr = zc->blockState.nextCBlock + 1;
+ zc->entropyWorkspace = (U32*)ptr;
+ } }
+
+ /* init params */
+ zc->appliedParams = params;
+ zc->blockState.matchState.cParams = params.cParams;
+ zc->pledgedSrcSizePlusOne = pledgedSrcSize+1;
+ zc->consumedSrcSize = 0;
+ zc->producedCSize = 0;
+ if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)
+ zc->appliedParams.fParams.contentSizeFlag = 0;
+ DEBUGLOG(4, "pledged content size : %u ; flag : %u",
+ (unsigned)pledgedSrcSize, zc->appliedParams.fParams.contentSizeFlag);
+ zc->blockSize = blockSize;
+
+ XXH64_reset(&zc->xxhState, 0);
+ zc->stage = ZSTDcs_init;
+ zc->dictID = 0;
+
+ ZSTD_reset_compressedBlockState(zc->blockState.prevCBlock);
+
+ ptr = ZSTD_reset_matchState(&zc->blockState.matchState,
+ zc->entropyWorkspace + HUF_WORKSPACE_SIZE_U32,
+ ¶ms.cParams,
+ crp, ZSTD_resetTarget_CCtx);
+
+ /* ldm hash table */
+ /* initialize bucketOffsets table later for pointer alignment */
+ if (params.ldmParams.enableLdm) {
+ size_t const ldmHSize = ((size_t)1) << params.ldmParams.hashLog;
+ memset(ptr, 0, ldmHSize * sizeof(ldmEntry_t));
+ assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */
+ zc->ldmState.hashTable = (ldmEntry_t*)ptr;
+ ptr = zc->ldmState.hashTable + ldmHSize;
+ zc->ldmSequences = (rawSeq*)ptr;
+ ptr = zc->ldmSequences + maxNbLdmSeq;
+ zc->maxNbLdmSequences = maxNbLdmSeq;
+
+ memset(&zc->ldmState.window, 0, sizeof(zc->ldmState.window));
+ }
+ assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */
+
+ /* sequences storage */
+ zc->seqStore.maxNbSeq = maxNbSeq;
+ zc->seqStore.sequencesStart = (seqDef*)ptr;
+ ptr = zc->seqStore.sequencesStart + maxNbSeq;
+ zc->seqStore.llCode = (BYTE*) ptr;
+ zc->seqStore.mlCode = zc->seqStore.llCode + maxNbSeq;
+ zc->seqStore.ofCode = zc->seqStore.mlCode + maxNbSeq;
+ zc->seqStore.litStart = zc->seqStore.ofCode + maxNbSeq;
+ /* ZSTD_wildcopy() is used to copy into the literals buffer,
+ * so we have to oversize the buffer by WILDCOPY_OVERLENGTH bytes.
+ */
+ zc->seqStore.maxNbLit = blockSize;
+ ptr = zc->seqStore.litStart + blockSize + WILDCOPY_OVERLENGTH;
+
+ /* ldm bucketOffsets table */
+ if (params.ldmParams.enableLdm) {
+ size_t const ldmBucketSize =
+ ((size_t)1) << (params.ldmParams.hashLog -
+ params.ldmParams.bucketSizeLog);
+ memset(ptr, 0, ldmBucketSize);
+ zc->ldmState.bucketOffsets = (BYTE*)ptr;
+ ptr = zc->ldmState.bucketOffsets + ldmBucketSize;
+ ZSTD_window_clear(&zc->ldmState.window);
+ }
+ ZSTD_referenceExternalSequences(zc, NULL, 0);
+
+ /* buffers */
+ zc->inBuffSize = buffInSize;
+ zc->inBuff = (char*)ptr;
+ zc->outBuffSize = buffOutSize;
+ zc->outBuff = zc->inBuff + buffInSize;
+
+ return 0;
+ }
+}
+
+/* ZSTD_invalidateRepCodes() :
+ * ensures next compression will not use repcodes from previous block.
+ * Note : only works with regular variant;
+ * do not use with extDict variant ! */
+void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) {
+ int i;
+ for (i=0; i<ZSTD_REP_NUM; i++) cctx->blockState.prevCBlock->rep[i] = 0;
+ assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
+}
+
+/* These are the approximate sizes for each strategy past which copying the
+ * dictionary tables into the working context is faster than using them
+ * in-place.
+ */
+static const size_t attachDictSizeCutoffs[ZSTD_STRATEGY_MAX+1] = {
+ 8 KB, /* unused */
+ 8 KB, /* ZSTD_fast */
+ 16 KB, /* ZSTD_dfast */
+ 32 KB, /* ZSTD_greedy */
+ 32 KB, /* ZSTD_lazy */
+ 32 KB, /* ZSTD_lazy2 */
+ 32 KB, /* ZSTD_btlazy2 */
+ 32 KB, /* ZSTD_btopt */
+ 8 KB, /* ZSTD_btultra */
+ 8 KB /* ZSTD_btultra2 */
+};
+
+static int ZSTD_shouldAttachDict(const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params,
+ U64 pledgedSrcSize)
+{
+ size_t cutoff = attachDictSizeCutoffs[cdict->matchState.cParams.strategy];
+ return ( pledgedSrcSize <= cutoff
+ || pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN
+ || params.attachDictPref == ZSTD_dictForceAttach )
+ && params.attachDictPref != ZSTD_dictForceCopy
+ && !params.forceWindow; /* dictMatchState isn't correctly
+ * handled in _enforceMaxDist */
+}
+
+static size_t
+ZSTD_resetCCtx_byAttachingCDict(ZSTD_CCtx* cctx,
+ const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params,
+ U64 pledgedSrcSize,
+ ZSTD_buffered_policy_e zbuff)
+{
+ { const ZSTD_compressionParameters* const cdict_cParams = &cdict->matchState.cParams;
+ unsigned const windowLog = params.cParams.windowLog;
+ assert(windowLog != 0);
+ /* Resize working context table params for input only, since the dict
+ * has its own tables. */
+ params.cParams = ZSTD_adjustCParams_internal(*cdict_cParams, pledgedSrcSize, 0);
+ params.cParams.windowLog = windowLog;
+ ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
+ ZSTDcrp_continue, zbuff);
+ assert(cctx->appliedParams.cParams.strategy == cdict_cParams->strategy);
+ }
+
+ { const U32 cdictEnd = (U32)( cdict->matchState.window.nextSrc
+ - cdict->matchState.window.base);
+ const U32 cdictLen = cdictEnd - cdict->matchState.window.dictLimit;
+ if (cdictLen == 0) {
+ /* don't even attach dictionaries with no contents */
+ DEBUGLOG(4, "skipping attaching empty dictionary");
+ } else {
+ DEBUGLOG(4, "attaching dictionary into context");
+ cctx->blockState.matchState.dictMatchState = &cdict->matchState;
+
+ /* prep working match state so dict matches never have negative indices
+ * when they are translated to the working context's index space. */
+ if (cctx->blockState.matchState.window.dictLimit < cdictEnd) {
+ cctx->blockState.matchState.window.nextSrc =
+ cctx->blockState.matchState.window.base + cdictEnd;
+ ZSTD_window_clear(&cctx->blockState.matchState.window);
+ }
+ /* loadedDictEnd is expressed within the referential of the active context */
+ cctx->blockState.matchState.loadedDictEnd = cctx->blockState.matchState.window.dictLimit;
+ } }
+
+ cctx->dictID = cdict->dictID;
+
+ /* copy block state */
+ memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState));
+
+ return 0;
+}
+
+static size_t ZSTD_resetCCtx_byCopyingCDict(ZSTD_CCtx* cctx,
+ const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params,
+ U64 pledgedSrcSize,
+ ZSTD_buffered_policy_e zbuff)
+{
+ const ZSTD_compressionParameters *cdict_cParams = &cdict->matchState.cParams;
+
+ DEBUGLOG(4, "copying dictionary into context");
+
+ { unsigned const windowLog = params.cParams.windowLog;
+ assert(windowLog != 0);
+ /* Copy only compression parameters related to tables. */
+ params.cParams = *cdict_cParams;
+ params.cParams.windowLog = windowLog;
+ ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
+ ZSTDcrp_noMemset, zbuff);
+ assert(cctx->appliedParams.cParams.strategy == cdict_cParams->strategy);
+ assert(cctx->appliedParams.cParams.hashLog == cdict_cParams->hashLog);
+ assert(cctx->appliedParams.cParams.chainLog == cdict_cParams->chainLog);
+ }
+
+ /* copy tables */
+ { size_t const chainSize = (cdict_cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cdict_cParams->chainLog);
+ size_t const hSize = (size_t)1 << cdict_cParams->hashLog;
+ size_t const tableSpace = (chainSize + hSize) * sizeof(U32);
+ assert((U32*)cctx->blockState.matchState.chainTable == (U32*)cctx->blockState.matchState.hashTable + hSize); /* chainTable must follow hashTable */
+ assert((U32*)cctx->blockState.matchState.hashTable3 == (U32*)cctx->blockState.matchState.chainTable + chainSize);
+ assert((U32*)cdict->matchState.chainTable == (U32*)cdict->matchState.hashTable + hSize); /* chainTable must follow hashTable */
+ assert((U32*)cdict->matchState.hashTable3 == (U32*)cdict->matchState.chainTable + chainSize);
+ memcpy(cctx->blockState.matchState.hashTable, cdict->matchState.hashTable, tableSpace); /* presumes all tables follow each other */
+ }
+
+ /* Zero the hashTable3, since the cdict never fills it */
+ { size_t const h3Size = (size_t)1 << cctx->blockState.matchState.hashLog3;
+ assert(cdict->matchState.hashLog3 == 0);
+ memset(cctx->blockState.matchState.hashTable3, 0, h3Size * sizeof(U32));
+ }
+
+ /* copy dictionary offsets */
+ { ZSTD_matchState_t const* srcMatchState = &cdict->matchState;
+ ZSTD_matchState_t* dstMatchState = &cctx->blockState.matchState;
+ dstMatchState->window = srcMatchState->window;
+ dstMatchState->nextToUpdate = srcMatchState->nextToUpdate;
+ dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd;
+ }
+
+ cctx->dictID = cdict->dictID;
+
+ /* copy block state */
+ memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState));
+
+ return 0;
+}
+
+/* We have a choice between copying the dictionary context into the working
+ * context, or referencing the dictionary context from the working context
+ * in-place. We decide here which strategy to use. */
+static size_t ZSTD_resetCCtx_usingCDict(ZSTD_CCtx* cctx,
+ const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params,
+ U64 pledgedSrcSize,
+ ZSTD_buffered_policy_e zbuff)
+{
+
+ DEBUGLOG(4, "ZSTD_resetCCtx_usingCDict (pledgedSrcSize=%u)",
+ (unsigned)pledgedSrcSize);
+
+ if (ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize)) {
+ return ZSTD_resetCCtx_byAttachingCDict(
+ cctx, cdict, params, pledgedSrcSize, zbuff);
+ } else {
+ return ZSTD_resetCCtx_byCopyingCDict(
+ cctx, cdict, params, pledgedSrcSize, zbuff);
+ }
+}
+
+/*! ZSTD_copyCCtx_internal() :
+ * Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
+ * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
+ * The "context", in this case, refers to the hash and chain tables,
+ * entropy tables, and dictionary references.
+ * `windowLog` value is enforced if != 0, otherwise value is copied from srcCCtx.
+ * @return : 0, or an error code */
+static size_t ZSTD_copyCCtx_internal(ZSTD_CCtx* dstCCtx,
+ const ZSTD_CCtx* srcCCtx,
+ ZSTD_frameParameters fParams,
+ U64 pledgedSrcSize,
+ ZSTD_buffered_policy_e zbuff)
+{
+ DEBUGLOG(5, "ZSTD_copyCCtx_internal");
+ RETURN_ERROR_IF(srcCCtx->stage!=ZSTDcs_init, stage_wrong);
+
+ memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem));
+ { ZSTD_CCtx_params params = dstCCtx->requestedParams;
+ /* Copy only compression parameters related to tables. */
+ params.cParams = srcCCtx->appliedParams.cParams;
+ params.fParams = fParams;
+ ZSTD_resetCCtx_internal(dstCCtx, params, pledgedSrcSize,
+ ZSTDcrp_noMemset, zbuff);
+ assert(dstCCtx->appliedParams.cParams.windowLog == srcCCtx->appliedParams.cParams.windowLog);
+ assert(dstCCtx->appliedParams.cParams.strategy == srcCCtx->appliedParams.cParams.strategy);
+ assert(dstCCtx->appliedParams.cParams.hashLog == srcCCtx->appliedParams.cParams.hashLog);
+ assert(dstCCtx->appliedParams.cParams.chainLog == srcCCtx->appliedParams.cParams.chainLog);
+ assert(dstCCtx->blockState.matchState.hashLog3 == srcCCtx->blockState.matchState.hashLog3);
+ }
+
+ /* copy tables */
+ { size_t const chainSize = (srcCCtx->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << srcCCtx->appliedParams.cParams.chainLog);
+ size_t const hSize = (size_t)1 << srcCCtx->appliedParams.cParams.hashLog;
+ size_t const h3Size = (size_t)1 << srcCCtx->blockState.matchState.hashLog3;
+ size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
+ assert((U32*)dstCCtx->blockState.matchState.chainTable == (U32*)dstCCtx->blockState.matchState.hashTable + hSize); /* chainTable must follow hashTable */
+ assert((U32*)dstCCtx->blockState.matchState.hashTable3 == (U32*)dstCCtx->blockState.matchState.chainTable + chainSize);
+ memcpy(dstCCtx->blockState.matchState.hashTable, srcCCtx->blockState.matchState.hashTable, tableSpace); /* presumes all tables follow each other */
+ }
+
+ /* copy dictionary offsets */
+ {
+ const ZSTD_matchState_t* srcMatchState = &srcCCtx->blockState.matchState;
+ ZSTD_matchState_t* dstMatchState = &dstCCtx->blockState.matchState;
+ dstMatchState->window = srcMatchState->window;
+ dstMatchState->nextToUpdate = srcMatchState->nextToUpdate;
+ dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd;
+ }
+ dstCCtx->dictID = srcCCtx->dictID;
+
+ /* copy block state */
+ memcpy(dstCCtx->blockState.prevCBlock, srcCCtx->blockState.prevCBlock, sizeof(*srcCCtx->blockState.prevCBlock));
+
+ return 0;
+}
+
+/*! ZSTD_copyCCtx() :
+ * Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
+ * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
+ * pledgedSrcSize==0 means "unknown".
+* @return : 0, or an error code */
+size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize)
+{
+ ZSTD_frameParameters fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
+ ZSTD_buffered_policy_e const zbuff = (ZSTD_buffered_policy_e)(srcCCtx->inBuffSize>0);
+ ZSTD_STATIC_ASSERT((U32)ZSTDb_buffered==1);
+ if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN;
+ fParams.contentSizeFlag = (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN);
+
+ return ZSTD_copyCCtx_internal(dstCCtx, srcCCtx,
+ fParams, pledgedSrcSize,
+ zbuff);
+}
+
+
+#define ZSTD_ROWSIZE 16
+/*! ZSTD_reduceTable() :
+ * reduce table indexes by `reducerValue`, or squash to zero.
+ * PreserveMark preserves "unsorted mark" for btlazy2 strategy.
+ * It must be set to a clear 0/1 value, to remove branch during inlining.
+ * Presume table size is a multiple of ZSTD_ROWSIZE
+ * to help auto-vectorization */
+FORCE_INLINE_TEMPLATE void
+ZSTD_reduceTable_internal (U32* const table, U32 const size, U32 const reducerValue, int const preserveMark)
+{
+ int const nbRows = (int)size / ZSTD_ROWSIZE;
+ int cellNb = 0;
+ int rowNb;
+ assert((size & (ZSTD_ROWSIZE-1)) == 0); /* multiple of ZSTD_ROWSIZE */
+ assert(size < (1U<<31)); /* can be casted to int */
+ for (rowNb=0 ; rowNb < nbRows ; rowNb++) {
+ int column;
+ for (column=0; column<ZSTD_ROWSIZE; column++) {
+ if (preserveMark) {
+ U32 const adder = (table[cellNb] == ZSTD_DUBT_UNSORTED_MARK) ? reducerValue : 0;
+ table[cellNb] += adder;
+ }
+ if (table[cellNb] < reducerValue) table[cellNb] = 0;
+ else table[cellNb] -= reducerValue;
+ cellNb++;
+ } }
+}
+
+static void ZSTD_reduceTable(U32* const table, U32 const size, U32 const reducerValue)
+{
+ ZSTD_reduceTable_internal(table, size, reducerValue, 0);
+}
+
+static void ZSTD_reduceTable_btlazy2(U32* const table, U32 const size, U32 const reducerValue)
+{
+ ZSTD_reduceTable_internal(table, size, reducerValue, 1);
+}
+
+/*! ZSTD_reduceIndex() :
+* rescale all indexes to avoid future overflow (indexes are U32) */
+static void ZSTD_reduceIndex (ZSTD_matchState_t* ms, ZSTD_CCtx_params const* params, const U32 reducerValue)
+{
+ { U32 const hSize = (U32)1 << params->cParams.hashLog;
+ ZSTD_reduceTable(ms->hashTable, hSize, reducerValue);
+ }
+
+ if (params->cParams.strategy != ZSTD_fast) {
+ U32 const chainSize = (U32)1 << params->cParams.chainLog;
+ if (params->cParams.strategy == ZSTD_btlazy2)
+ ZSTD_reduceTable_btlazy2(ms->chainTable, chainSize, reducerValue);
+ else
+ ZSTD_reduceTable(ms->chainTable, chainSize, reducerValue);
+ }
+
+ if (ms->hashLog3) {
+ U32 const h3Size = (U32)1 << ms->hashLog3;
+ ZSTD_reduceTable(ms->hashTable3, h3Size, reducerValue);
+ }
+}
+
+
+/*-*******************************************************
+* Block entropic compression
+*********************************************************/
+
+/* See doc/zstd_compression_format.md for detailed format description */
+
+static size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock)
+{
+ U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3);
+ RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity,
+ dstSize_tooSmall);
+ MEM_writeLE24(dst, cBlockHeader24);
+ memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize);
+ return ZSTD_blockHeaderSize + srcSize;
+}
+
+static size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ BYTE* const ostart = (BYTE* const)dst;
+ U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
+
+ RETURN_ERROR_IF(srcSize + flSize > dstCapacity, dstSize_tooSmall);
+
+ switch(flSize)
+ {
+ case 1: /* 2 - 1 - 5 */
+ ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3));
+ break;
+ case 2: /* 2 - 2 - 12 */
+ MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4)));
+ break;
+ case 3: /* 2 - 2 - 20 */
+ MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4)));
+ break;
+ default: /* not necessary : flSize is {1,2,3} */
+ assert(0);
+ }
+
+ memcpy(ostart + flSize, src, srcSize);
+ return srcSize + flSize;
+}
+
+static size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ BYTE* const ostart = (BYTE* const)dst;
+ U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
+
+ (void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */
+
+ switch(flSize)
+ {
+ case 1: /* 2 - 1 - 5 */
+ ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3));
+ break;
+ case 2: /* 2 - 2 - 12 */
+ MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4)));
+ break;
+ case 3: /* 2 - 2 - 20 */
+ MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4)));
+ break;
+ default: /* not necessary : flSize is {1,2,3} */
+ assert(0);
+ }
+
+ ostart[flSize] = *(const BYTE*)src;
+ return flSize+1;
+}
+
+
+/* ZSTD_minGain() :
+ * minimum compression required
+ * to generate a compress block or a compressed literals section.
+ * note : use same formula for both situations */
+static size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat)
+{
+ U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6;
+ ZSTD_STATIC_ASSERT(ZSTD_btultra == 8);
+ assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
+ return (srcSize >> minlog) + 2;
+}
+
+static size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
+ ZSTD_hufCTables_t* nextHuf,
+ ZSTD_strategy strategy, int disableLiteralCompression,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ void* workspace, size_t wkspSize,
+ const int bmi2)
+{
+ size_t const minGain = ZSTD_minGain(srcSize, strategy);
+ size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
+ BYTE* const ostart = (BYTE*)dst;
+ U32 singleStream = srcSize < 256;
+ symbolEncodingType_e hType = set_compressed;
+ size_t cLitSize;
+
+ DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i)",
+ disableLiteralCompression);
+
+ /* Prepare nextEntropy assuming reusing the existing table */
+ memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
+
+ if (disableLiteralCompression)
+ return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
+
+ /* small ? don't even attempt compression (speed opt) */
+# define COMPRESS_LITERALS_SIZE_MIN 63
+ { size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN;
+ if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
+ }
+
+ RETURN_ERROR_IF(dstCapacity < lhSize+1, dstSize_tooSmall, "not enough space for compression");
+ { HUF_repeat repeat = prevHuf->repeatMode;
+ int const preferRepeat = strategy < ZSTD_lazy ? srcSize <= 1024 : 0;
+ if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1;
+ cLitSize = singleStream ? HUF_compress1X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11,
+ workspace, wkspSize, (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2)
+ : HUF_compress4X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11,
+ workspace, wkspSize, (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2);
+ if (repeat != HUF_repeat_none) {
+ /* reused the existing table */
+ hType = set_repeat;
+ }
+ }
+
+ if ((cLitSize==0) | (cLitSize >= srcSize - minGain) | ERR_isError(cLitSize)) {
+ memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
+ return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
+ }
+ if (cLitSize==1) {
+ memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
+ return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
+ }
+
+ if (hType == set_compressed) {
+ /* using a newly constructed table */
+ nextHuf->repeatMode = HUF_repeat_check;
+ }
+
+ /* Build header */
+ switch(lhSize)
+ {
+ case 3: /* 2 - 2 - 10 - 10 */
+ { U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
+ MEM_writeLE24(ostart, lhc);
+ break;
+ }
+ case 4: /* 2 - 2 - 14 - 14 */
+ { U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18);
+ MEM_writeLE32(ostart, lhc);
+ break;
+ }
+ case 5: /* 2 - 2 - 18 - 18 */
+ { U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22);
+ MEM_writeLE32(ostart, lhc);
+ ostart[4] = (BYTE)(cLitSize >> 10);
+ break;
+ }
+ default: /* not possible : lhSize is {3,4,5} */
+ assert(0);
+ }
+ return lhSize+cLitSize;
+}
+
+
+void ZSTD_seqToCodes(const seqStore_t* seqStorePtr)
+{
+ const seqDef* const sequences = seqStorePtr->sequencesStart;
+ BYTE* const llCodeTable = seqStorePtr->llCode;
+ BYTE* const ofCodeTable = seqStorePtr->ofCode;
+ BYTE* const mlCodeTable = seqStorePtr->mlCode;
+ U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
+ U32 u;
+ assert(nbSeq <= seqStorePtr->maxNbSeq);
+ for (u=0; u<nbSeq; u++) {
+ U32 const llv = sequences[u].litLength;
+ U32 const mlv = sequences[u].matchLength;
+ llCodeTable[u] = (BYTE)ZSTD_LLcode(llv);
+ ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset);
+ mlCodeTable[u] = (BYTE)ZSTD_MLcode(mlv);
+ }
+ if (seqStorePtr->longLengthID==1)
+ llCodeTable[seqStorePtr->longLengthPos] = MaxLL;
+ if (seqStorePtr->longLengthID==2)
+ mlCodeTable[seqStorePtr->longLengthPos] = MaxML;
+}
+
+
+/**
+ * -log2(x / 256) lookup table for x in [0, 256).
+ * If x == 0: Return 0
+ * Else: Return floor(-log2(x / 256) * 256)
+ */
+static unsigned const kInverseProbabilityLog256[256] = {
+ 0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
+ 1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889,
+ 874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734,
+ 724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626,
+ 618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542,
+ 535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473,
+ 468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415,
+ 411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366,
+ 362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322,
+ 318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282,
+ 279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247,
+ 244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215,
+ 212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185,
+ 182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157,
+ 155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132,
+ 130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108,
+ 106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85,
+ 83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64,
+ 62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44,
+ 42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25,
+ 23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7,
+ 5, 4, 2, 1,
+};
+
+
+/**
+ * Returns the cost in bits of encoding the distribution described by count
+ * using the entropy bound.
+ */
+static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
+{
+ unsigned cost = 0;
+ unsigned s;
+ for (s = 0; s <= max; ++s) {
+ unsigned norm = (unsigned)((256 * count[s]) / total);
+ if (count[s] != 0 && norm == 0)
+ norm = 1;
+ assert(count[s] < total);
+ cost += count[s] * kInverseProbabilityLog256[norm];
+ }
+ return cost >> 8;
+}
+
+
+/**
+ * Returns the cost in bits of encoding the distribution in count using the
+ * table described by norm. The max symbol support by norm is assumed >= max.
+ * norm must be valid for every symbol with non-zero probability in count.
+ */
+static size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
+ unsigned const* count, unsigned const max)
+{
+ unsigned const shift = 8 - accuracyLog;
+ size_t cost = 0;
+ unsigned s;
+ assert(accuracyLog <= 8);
+ for (s = 0; s <= max; ++s) {
+ unsigned const normAcc = norm[s] != -1 ? norm[s] : 1;
+ unsigned const norm256 = normAcc << shift;
+ assert(norm256 > 0);
+ assert(norm256 < 256);
+ cost += count[s] * kInverseProbabilityLog256[norm256];
+ }
+ return cost >> 8;
+}
+
+
+static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
+ void const* ptr = ctable;
+ U16 const* u16ptr = (U16 const*)ptr;
+ U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
+ return maxSymbolValue;
+}
+
+
+/**
+ * Returns the cost in bits of encoding the distribution in count using ctable.
+ * Returns an error if ctable cannot represent all the symbols in count.
+ */
+static size_t ZSTD_fseBitCost(
+ FSE_CTable const* ctable,
+ unsigned const* count,
+ unsigned const max)
+{
+ unsigned const kAccuracyLog = 8;
+ size_t cost = 0;
+ unsigned s;
+ FSE_CState_t cstate;
+ FSE_initCState(&cstate, ctable);
+ RETURN_ERROR_IF(ZSTD_getFSEMaxSymbolValue(ctable) < max, GENERIC,
+ "Repeat FSE_CTable has maxSymbolValue %u < %u",
+ ZSTD_getFSEMaxSymbolValue(ctable), max);
+ for (s = 0; s <= max; ++s) {
+ unsigned const tableLog = cstate.stateLog;
+ unsigned const badCost = (tableLog + 1) << kAccuracyLog;
+ unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
+ if (count[s] == 0)
+ continue;
+ RETURN_ERROR_IF(bitCost >= badCost, GENERIC,
+ "Repeat FSE_CTable has Prob[%u] == 0", s);
+ cost += count[s] * bitCost;
+ }
+ return cost >> kAccuracyLog;
+}
+
+/**
+ * Returns the cost in bytes of encoding the normalized count header.
+ * Returns an error if any of the helper functions return an error.
+ */
+static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
+ size_t const nbSeq, unsigned const FSELog)
+{
+ BYTE wksp[FSE_NCOUNTBOUND];
+ S16 norm[MaxSeq + 1];
+ const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
+ FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max));
+ return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
+}
+
+
+typedef enum {
+ ZSTD_defaultDisallowed = 0,
+ ZSTD_defaultAllowed = 1
+} ZSTD_defaultPolicy_e;
+
+MEM_STATIC symbolEncodingType_e
+ZSTD_selectEncodingType(
+ FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
+ size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
+ FSE_CTable const* prevCTable,
+ short const* defaultNorm, U32 defaultNormLog,
+ ZSTD_defaultPolicy_e const isDefaultAllowed,
+ ZSTD_strategy const strategy)
+{
+ ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
+ if (mostFrequent == nbSeq) {
+ *repeatMode = FSE_repeat_none;
+ if (isDefaultAllowed && nbSeq <= 2) {
+ /* Prefer set_basic over set_rle when there are 2 or less symbols,
+ * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
+ * If basic encoding isn't possible, always choose RLE.
+ */
+ DEBUGLOG(5, "Selected set_basic");
+ return set_basic;
+ }
+ DEBUGLOG(5, "Selected set_rle");
+ return set_rle;
+ }
+ if (strategy < ZSTD_lazy) {
+ if (isDefaultAllowed) {
+ size_t const staticFse_nbSeq_max = 1000;
+ size_t const mult = 10 - strategy;
+ size_t const baseLog = 3;
+ size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */
+ assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */
+ assert(mult <= 9 && mult >= 7);
+ if ( (*repeatMode == FSE_repeat_valid)
+ && (nbSeq < staticFse_nbSeq_max) ) {
+ DEBUGLOG(5, "Selected set_repeat");
+ return set_repeat;
+ }
+ if ( (nbSeq < dynamicFse_nbSeq_min)
+ || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
+ DEBUGLOG(5, "Selected set_basic");
+ /* The format allows default tables to be repeated, but it isn't useful.
+ * When using simple heuristics to select encoding type, we don't want
+ * to confuse these tables with dictionaries. When running more careful
+ * analysis, we don't need to waste time checking both repeating tables
+ * and default tables.
+ */
+ *repeatMode = FSE_repeat_none;
+ return set_basic;
+ }
+ }
+ } else {
+ size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
+ size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
+ size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
+ size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
+
+ if (isDefaultAllowed) {
+ assert(!ZSTD_isError(basicCost));
+ assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
+ }
+ assert(!ZSTD_isError(NCountCost));
+ assert(compressedCost < ERROR(maxCode));
+ DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
+ (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
+ if (basicCost <= repeatCost && basicCost <= compressedCost) {
+ DEBUGLOG(5, "Selected set_basic");
+ assert(isDefaultAllowed);
+ *repeatMode = FSE_repeat_none;
+ return set_basic;
+ }
+ if (repeatCost <= compressedCost) {
+ DEBUGLOG(5, "Selected set_repeat");
+ assert(!ZSTD_isError(repeatCost));
+ return set_repeat;
+ }
+ assert(compressedCost < basicCost && compressedCost < repeatCost);
+ }
+ DEBUGLOG(5, "Selected set_compressed");
+ *repeatMode = FSE_repeat_check;
+ return set_compressed;
+}
+
+MEM_STATIC size_t
+ZSTD_buildCTable(void* dst, size_t dstCapacity,
+ FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
+ unsigned* count, U32 max,
+ const BYTE* codeTable, size_t nbSeq,
+ const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
+ const FSE_CTable* prevCTable, size_t prevCTableSize,
+ void* workspace, size_t workspaceSize)
+{
+ BYTE* op = (BYTE*)dst;
+ const BYTE* const oend = op + dstCapacity;
+ DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
+
+ switch (type) {
+ case set_rle:
+ FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max));
+ RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall);
+ *op = codeTable[0];
+ return 1;
+ case set_repeat:
+ memcpy(nextCTable, prevCTable, prevCTableSize);
+ return 0;
+ case set_basic:
+ FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, workspace, workspaceSize)); /* note : could be pre-calculated */
+ return 0;
+ case set_compressed: {
+ S16 norm[MaxSeq + 1];
+ size_t nbSeq_1 = nbSeq;
+ const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
+ if (count[codeTable[nbSeq-1]] > 1) {
+ count[codeTable[nbSeq-1]]--;
+ nbSeq_1--;
+ }
+ assert(nbSeq_1 > 1);
+ FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max));
+ { size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
+ FORWARD_IF_ERROR(NCountSize);
+ FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, workspace, workspaceSize));
+ return NCountSize;
+ }
+ }
+ default: assert(0); RETURN_ERROR(GENERIC);
+ }
+}
+
+FORCE_INLINE_TEMPLATE size_t
+ZSTD_encodeSequences_body(
+ void* dst, size_t dstCapacity,
+ FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
+ FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
+ FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
+ seqDef const* sequences, size_t nbSeq, int longOffsets)
+{
+ BIT_CStream_t blockStream;
+ FSE_CState_t stateMatchLength;
+ FSE_CState_t stateOffsetBits;
+ FSE_CState_t stateLitLength;
+
+ RETURN_ERROR_IF(
+ ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
+ dstSize_tooSmall, "not enough space remaining");
+ DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)",
+ (int)(blockStream.endPtr - blockStream.startPtr),
+ (unsigned)dstCapacity);
+
+ /* first symbols */
+ FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
+ FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
+ FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
+ BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
+ if (MEM_32bits()) BIT_flushBits(&blockStream);
+ BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
+ if (MEM_32bits()) BIT_flushBits(&blockStream);
+ if (longOffsets) {
+ U32 const ofBits = ofCodeTable[nbSeq-1];
+ int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
+ if (extraBits) {
+ BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
+ BIT_flushBits(&blockStream);
+ }
+ BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
+ ofBits - extraBits);
+ } else {
+ BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
+ }
+ BIT_flushBits(&blockStream);
+
+ { size_t n;
+ for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
+ BYTE const llCode = llCodeTable[n];
+ BYTE const ofCode = ofCodeTable[n];
+ BYTE const mlCode = mlCodeTable[n];
+ U32 const llBits = LL_bits[llCode];
+ U32 const ofBits = ofCode;
+ U32 const mlBits = ML_bits[mlCode];
+ DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
+ (unsigned)sequences[n].litLength,
+ (unsigned)sequences[n].matchLength + MINMATCH,
+ (unsigned)sequences[n].offset);
+ /* 32b*/ /* 64b*/
+ /* (7)*/ /* (7)*/
+ FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
+ FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
+ if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
+ FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
+ if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
+ BIT_flushBits(&blockStream); /* (7)*/
+ BIT_addBits(&blockStream, sequences[n].litLength, llBits);
+ if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
+ BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
+ if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
+ if (longOffsets) {
+ int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
+ if (extraBits) {
+ BIT_addBits(&blockStream, sequences[n].offset, extraBits);
+ BIT_flushBits(&blockStream); /* (7)*/
+ }
+ BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
+ ofBits - extraBits); /* 31 */
+ } else {
+ BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
+ }
+ BIT_flushBits(&blockStream); /* (7)*/
+ DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
+ } }
+
+ DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
+ FSE_flushCState(&blockStream, &stateMatchLength);
+ DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
+ FSE_flushCState(&blockStream, &stateOffsetBits);
+ DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
+ FSE_flushCState(&blockStream, &stateLitLength);
+
+ { size_t const streamSize = BIT_closeCStream(&blockStream);
+ RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
+ return streamSize;
+ }
+}
+
+static size_t
+ZSTD_encodeSequences_default(
+ void* dst, size_t dstCapacity,
+ FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
+ FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
+ FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
+ seqDef const* sequences, size_t nbSeq, int longOffsets)
+{
+ return ZSTD_encodeSequences_body(dst, dstCapacity,
+ CTable_MatchLength, mlCodeTable,
+ CTable_OffsetBits, ofCodeTable,
+ CTable_LitLength, llCodeTable,
+ sequences, nbSeq, longOffsets);
+}
+
+
+#if DYNAMIC_BMI2
+
+static TARGET_ATTRIBUTE("bmi2") size_t
+ZSTD_encodeSequences_bmi2(
+ void* dst, size_t dstCapacity,
+ FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
+ FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
+ FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
+ seqDef const* sequences, size_t nbSeq, int longOffsets)
+{
+ return ZSTD_encodeSequences_body(dst, dstCapacity,
+ CTable_MatchLength, mlCodeTable,
+ CTable_OffsetBits, ofCodeTable,
+ CTable_LitLength, llCodeTable,
+ sequences, nbSeq, longOffsets);
+}
+
+#endif
+
+static size_t ZSTD_encodeSequences(
+ void* dst, size_t dstCapacity,
+ FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
+ FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
+ FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
+ seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
+{
+ DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
+#if DYNAMIC_BMI2
+ if (bmi2) {
+ return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
+ CTable_MatchLength, mlCodeTable,
+ CTable_OffsetBits, ofCodeTable,
+ CTable_LitLength, llCodeTable,
+ sequences, nbSeq, longOffsets);
+ }
+#endif
+ (void)bmi2;
+ return ZSTD_encodeSequences_default(dst, dstCapacity,
+ CTable_MatchLength, mlCodeTable,
+ CTable_OffsetBits, ofCodeTable,
+ CTable_LitLength, llCodeTable,
+ sequences, nbSeq, longOffsets);
+}
+
+static int ZSTD_disableLiteralsCompression(const ZSTD_CCtx_params* cctxParams)
+{
+ switch (cctxParams->literalCompressionMode) {
+ case ZSTD_lcm_huffman:
+ return 0;
+ case ZSTD_lcm_uncompressed:
+ return 1;
+ default:
+ assert(0 /* impossible: pre-validated */);
+ /* fall-through */
+ case ZSTD_lcm_auto:
+ return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0);
+ }
+}
+
+/* ZSTD_compressSequences_internal():
+ * actually compresses both literals and sequences */
+MEM_STATIC size_t
+ZSTD_compressSequences_internal(seqStore_t* seqStorePtr,
+ const ZSTD_entropyCTables_t* prevEntropy,
+ ZSTD_entropyCTables_t* nextEntropy,
+ const ZSTD_CCtx_params* cctxParams,
+ void* dst, size_t dstCapacity,
+ void* workspace, size_t wkspSize,
+ const int bmi2)
+{
+ const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN;
+ ZSTD_strategy const strategy = cctxParams->cParams.strategy;
+ unsigned count[MaxSeq+1];
+ FSE_CTable* CTable_LitLength = nextEntropy->fse.litlengthCTable;
+ FSE_CTable* CTable_OffsetBits = nextEntropy->fse.offcodeCTable;
+ FSE_CTable* CTable_MatchLength = nextEntropy->fse.matchlengthCTable;
+ U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */
+ const seqDef* const sequences = seqStorePtr->sequencesStart;
+ const BYTE* const ofCodeTable = seqStorePtr->ofCode;
+ const BYTE* const llCodeTable = seqStorePtr->llCode;
+ const BYTE* const mlCodeTable = seqStorePtr->mlCode;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = ostart + dstCapacity;
+ BYTE* op = ostart;
+ size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart;
+ BYTE* seqHead;
+ BYTE* lastNCount = NULL;
+
+ ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<<MAX(MLFSELog,LLFSELog)));
+ DEBUGLOG(5, "ZSTD_compressSequences_internal");
+
+ /* Compress literals */
+ { const BYTE* const literals = seqStorePtr->litStart;
+ size_t const litSize = seqStorePtr->lit - literals;
+ size_t const cSize = ZSTD_compressLiterals(
+ &prevEntropy->huf, &nextEntropy->huf,
+ cctxParams->cParams.strategy,
+ ZSTD_disableLiteralsCompression(cctxParams),
+ op, dstCapacity,
+ literals, litSize,
+ workspace, wkspSize,
+ bmi2);
+ FORWARD_IF_ERROR(cSize);
+ assert(cSize <= dstCapacity);
+ op += cSize;
+ }
+
+ /* Sequences Header */
+ RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/,
+ dstSize_tooSmall);
+ if (nbSeq < 0x7F)
+ *op++ = (BYTE)nbSeq;
+ else if (nbSeq < LONGNBSEQ)
+ op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2;
+ else
+ op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3;
+ assert(op <= oend);
+ if (nbSeq==0) {
+ /* Copy the old tables over as if we repeated them */
+ memcpy(&nextEntropy->fse, &prevEntropy->fse, sizeof(prevEntropy->fse));
+ return op - ostart;
+ }
+
+ /* seqHead : flags for FSE encoding type */
+ seqHead = op++;
+ assert(op <= oend);
+
+ /* convert length/distances into codes */
+ ZSTD_seqToCodes(seqStorePtr);
+ /* build CTable for Literal Lengths */
+ { unsigned max = MaxLL;
+ size_t const mostFrequent = HIST_countFast_wksp(count, &max, llCodeTable, nbSeq, workspace, wkspSize); /* can't fail */
+ DEBUGLOG(5, "Building LL table");
+ nextEntropy->fse.litlength_repeatMode = prevEntropy->fse.litlength_repeatMode;
+ LLtype = ZSTD_selectEncodingType(&nextEntropy->fse.litlength_repeatMode,
+ count, max, mostFrequent, nbSeq,
+ LLFSELog, prevEntropy->fse.litlengthCTable,
+ LL_defaultNorm, LL_defaultNormLog,
+ ZSTD_defaultAllowed, strategy);
+ assert(set_basic < set_compressed && set_rle < set_compressed);
+ assert(!(LLtype < set_compressed && nextEntropy->fse.litlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
+ { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_LitLength, LLFSELog, (symbolEncodingType_e)LLtype,
+ count, max, llCodeTable, nbSeq, LL_defaultNorm, LL_defaultNormLog, MaxLL,
+ prevEntropy->fse.litlengthCTable, sizeof(prevEntropy->fse.litlengthCTable),
+ workspace, wkspSize);
+ FORWARD_IF_ERROR(countSize);
+ if (LLtype == set_compressed)
+ lastNCount = op;
+ op += countSize;
+ assert(op <= oend);
+ } }
+ /* build CTable for Offsets */
+ { unsigned max = MaxOff;
+ size_t const mostFrequent = HIST_countFast_wksp(count, &max, ofCodeTable, nbSeq, workspace, wkspSize); /* can't fail */
+ /* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */
+ ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed;
+ DEBUGLOG(5, "Building OF table");
+ nextEntropy->fse.offcode_repeatMode = prevEntropy->fse.offcode_repeatMode;
+ Offtype = ZSTD_selectEncodingType(&nextEntropy->fse.offcode_repeatMode,
+ count, max, mostFrequent, nbSeq,
+ OffFSELog, prevEntropy->fse.offcodeCTable,
+ OF_defaultNorm, OF_defaultNormLog,
+ defaultPolicy, strategy);
+ assert(!(Offtype < set_compressed && nextEntropy->fse.offcode_repeatMode != FSE_repeat_none)); /* We don't copy tables */
+ { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)Offtype,
+ count, max, ofCodeTable, nbSeq, OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
+ prevEntropy->fse.offcodeCTable, sizeof(prevEntropy->fse.offcodeCTable),
+ workspace, wkspSize);
+ FORWARD_IF_ERROR(countSize);
+ if (Offtype == set_compressed)
+ lastNCount = op;
+ op += countSize;
+ assert(op <= oend);
+ } }
+ /* build CTable for MatchLengths */
+ { unsigned max = MaxML;
+ size_t const mostFrequent = HIST_countFast_wksp(count, &max, mlCodeTable, nbSeq, workspace, wkspSize); /* can't fail */
+ DEBUGLOG(5, "Building ML table (remaining space : %i)", (int)(oend-op));
+ nextEntropy->fse.matchlength_repeatMode = prevEntropy->fse.matchlength_repeatMode;
+ MLtype = ZSTD_selectEncodingType(&nextEntropy->fse.matchlength_repeatMode,
+ count, max, mostFrequent, nbSeq,
+ MLFSELog, prevEntropy->fse.matchlengthCTable,
+ ML_defaultNorm, ML_defaultNormLog,
+ ZSTD_defaultAllowed, strategy);
+ assert(!(MLtype < set_compressed && nextEntropy->fse.matchlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
+ { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_MatchLength, MLFSELog, (symbolEncodingType_e)MLtype,
+ count, max, mlCodeTable, nbSeq, ML_defaultNorm, ML_defaultNormLog, MaxML,
+ prevEntropy->fse.matchlengthCTable, sizeof(prevEntropy->fse.matchlengthCTable),
+ workspace, wkspSize);
+ FORWARD_IF_ERROR(countSize);
+ if (MLtype == set_compressed)
+ lastNCount = op;
+ op += countSize;
+ assert(op <= oend);
+ } }
+
+ *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
+
+ { size_t const bitstreamSize = ZSTD_encodeSequences(
+ op, oend - op,
+ CTable_MatchLength, mlCodeTable,
+ CTable_OffsetBits, ofCodeTable,
+ CTable_LitLength, llCodeTable,
+ sequences, nbSeq,
+ longOffsets, bmi2);
+ FORWARD_IF_ERROR(bitstreamSize);
+ op += bitstreamSize;
+ assert(op <= oend);
+ /* zstd versions <= 1.3.4 mistakenly report corruption when
+ * FSE_readNCount() receives a buffer < 4 bytes.
+ * Fixed by https://github.com/facebook/zstd/pull/1146.
+ * This can happen when the last set_compressed table present is 2
+ * bytes and the bitstream is only one byte.
+ * In this exceedingly rare case, we will simply emit an uncompressed
+ * block, since it isn't worth optimizing.
+ */
+ if (lastNCount && (op - lastNCount) < 4) {
+ /* NCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */
+ assert(op - lastNCount == 3);
+ DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by "
+ "emitting an uncompressed block.");
+ return 0;
+ }
+ }
+
+ DEBUGLOG(5, "compressed block size : %u", (unsigned)(op - ostart));
+ return op - ostart;
+}
+
+MEM_STATIC size_t
+ZSTD_compressSequences(seqStore_t* seqStorePtr,
+ const ZSTD_entropyCTables_t* prevEntropy,
+ ZSTD_entropyCTables_t* nextEntropy,
+ const ZSTD_CCtx_params* cctxParams,
+ void* dst, size_t dstCapacity,
+ size_t srcSize,
+ void* workspace, size_t wkspSize,
+ int bmi2)
+{
+ size_t const cSize = ZSTD_compressSequences_internal(
+ seqStorePtr, prevEntropy, nextEntropy, cctxParams,
+ dst, dstCapacity,
+ workspace, wkspSize, bmi2);
+ if (cSize == 0) return 0;
+ /* When srcSize <= dstCapacity, there is enough space to write a raw uncompressed block.
+ * Since we ran out of space, block must be not compressible, so fall back to raw uncompressed block.
+ */
+ if ((cSize == ERROR(dstSize_tooSmall)) & (srcSize <= dstCapacity))
+ return 0; /* block not compressed */
+ FORWARD_IF_ERROR(cSize);
+
+ /* Check compressibility */
+ { size_t const maxCSize = srcSize - ZSTD_minGain(srcSize, cctxParams->cParams.strategy);
+ if (cSize >= maxCSize) return 0; /* block not compressed */
+ }
+
+ return cSize;
+}
+
+/* ZSTD_selectBlockCompressor() :
+ * Not static, but internal use only (used by long distance matcher)
+ * assumption : strat is a valid strategy */
+ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode)
+{
+ static const ZSTD_blockCompressor blockCompressor[3][ZSTD_STRATEGY_MAX+1] = {
+ { ZSTD_compressBlock_fast /* default for 0 */,
+ ZSTD_compressBlock_fast,
+ ZSTD_compressBlock_doubleFast,
+ ZSTD_compressBlock_greedy,
+ ZSTD_compressBlock_lazy,
+ ZSTD_compressBlock_lazy2,
+ ZSTD_compressBlock_btlazy2,
+ ZSTD_compressBlock_btopt,
+ ZSTD_compressBlock_btultra,
+ ZSTD_compressBlock_btultra2 },
+ { ZSTD_compressBlock_fast_extDict /* default for 0 */,
+ ZSTD_compressBlock_fast_extDict,
+ ZSTD_compressBlock_doubleFast_extDict,
+ ZSTD_compressBlock_greedy_extDict,
+ ZSTD_compressBlock_lazy_extDict,
+ ZSTD_compressBlock_lazy2_extDict,
+ ZSTD_compressBlock_btlazy2_extDict,
+ ZSTD_compressBlock_btopt_extDict,
+ ZSTD_compressBlock_btultra_extDict,
+ ZSTD_compressBlock_btultra_extDict },
+ { ZSTD_compressBlock_fast_dictMatchState /* default for 0 */,
+ ZSTD_compressBlock_fast_dictMatchState,
+ ZSTD_compressBlock_doubleFast_dictMatchState,
+ ZSTD_compressBlock_greedy_dictMatchState,
+ ZSTD_compressBlock_lazy_dictMatchState,
+ ZSTD_compressBlock_lazy2_dictMatchState,
+ ZSTD_compressBlock_btlazy2_dictMatchState,
+ ZSTD_compressBlock_btopt_dictMatchState,
+ ZSTD_compressBlock_btultra_dictMatchState,
+ ZSTD_compressBlock_btultra_dictMatchState }
+ };
+ ZSTD_blockCompressor selectedCompressor;
+ ZSTD_STATIC_ASSERT((unsigned)ZSTD_fast == 1);
+
+ assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
+ selectedCompressor = blockCompressor[(int)dictMode][(int)strat];
+ assert(selectedCompressor != NULL);
+ return selectedCompressor;
+}
+
+static void ZSTD_storeLastLiterals(seqStore_t* seqStorePtr,
+ const BYTE* anchor, size_t lastLLSize)
+{
+ memcpy(seqStorePtr->lit, anchor, lastLLSize);
+ seqStorePtr->lit += lastLLSize;
+}
+
+void ZSTD_resetSeqStore(seqStore_t* ssPtr)
+{
+ ssPtr->lit = ssPtr->litStart;
+ ssPtr->sequences = ssPtr->sequencesStart;
+ ssPtr->longLengthID = 0;
+}
+
+typedef enum { ZSTDbss_compress, ZSTDbss_noCompress } ZSTD_buildSeqStore_e;
+
+static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize)
+{
+ ZSTD_matchState_t* const ms = &zc->blockState.matchState;
+ DEBUGLOG(5, "ZSTD_buildSeqStore (srcSize=%zu)", srcSize);
+ assert(srcSize <= ZSTD_BLOCKSIZE_MAX);
+ /* Assert that we have correctly flushed the ctx params into the ms's copy */
+ ZSTD_assertEqualCParams(zc->appliedParams.cParams, ms->cParams);
+ if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) {
+ ZSTD_ldm_skipSequences(&zc->externSeqStore, srcSize, zc->appliedParams.cParams.minMatch);
+ return ZSTDbss_noCompress; /* don't even attempt compression below a certain srcSize */
+ }
+ ZSTD_resetSeqStore(&(zc->seqStore));
+ /* required for optimal parser to read stats from dictionary */
+ ms->opt.symbolCosts = &zc->blockState.prevCBlock->entropy;
+ /* tell the optimal parser how we expect to compress literals */
+ ms->opt.literalCompressionMode = zc->appliedParams.literalCompressionMode;
+ /* a gap between an attached dict and the current window is not safe,
+ * they must remain adjacent,
+ * and when that stops being the case, the dict must be unset */
+ assert(ms->dictMatchState == NULL || ms->loadedDictEnd == ms->window.dictLimit);
+
+ /* limited update after a very long match */
+ { const BYTE* const base = ms->window.base;
+ const BYTE* const istart = (const BYTE*)src;
+ const U32 current = (U32)(istart-base);
+ if (sizeof(ptrdiff_t)==8) assert(istart - base < (ptrdiff_t)(U32)(-1)); /* ensure no overflow */
+ if (current > ms->nextToUpdate + 384)
+ ms->nextToUpdate = current - MIN(192, (U32)(current - ms->nextToUpdate - 384));
+ }
+
+ /* select and store sequences */
+ { ZSTD_dictMode_e const dictMode = ZSTD_matchState_dictMode(ms);
+ size_t lastLLSize;
+ { int i;
+ for (i = 0; i < ZSTD_REP_NUM; ++i)
+ zc->blockState.nextCBlock->rep[i] = zc->blockState.prevCBlock->rep[i];
+ }
+ if (zc->externSeqStore.pos < zc->externSeqStore.size) {
+ assert(!zc->appliedParams.ldmParams.enableLdm);
+ /* Updates ldmSeqStore.pos */
+ lastLLSize =
+ ZSTD_ldm_blockCompress(&zc->externSeqStore,
+ ms, &zc->seqStore,
+ zc->blockState.nextCBlock->rep,
+ src, srcSize);
+ assert(zc->externSeqStore.pos <= zc->externSeqStore.size);
+ } else if (zc->appliedParams.ldmParams.enableLdm) {
+ rawSeqStore_t ldmSeqStore = {NULL, 0, 0, 0};
+
+ ldmSeqStore.seq = zc->ldmSequences;
+ ldmSeqStore.capacity = zc->maxNbLdmSequences;
+ /* Updates ldmSeqStore.size */
+ FORWARD_IF_ERROR(ZSTD_ldm_generateSequences(&zc->ldmState, &ldmSeqStore,
+ &zc->appliedParams.ldmParams,
+ src, srcSize));
+ /* Updates ldmSeqStore.pos */
+ lastLLSize =
+ ZSTD_ldm_blockCompress(&ldmSeqStore,
+ ms, &zc->seqStore,
+ zc->blockState.nextCBlock->rep,
+ src, srcSize);
+ assert(ldmSeqStore.pos == ldmSeqStore.size);
+ } else { /* not long range mode */
+ ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy, dictMode);
+ lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize);
+ }
+ { const BYTE* const lastLiterals = (const BYTE*)src + srcSize - lastLLSize;
+ ZSTD_storeLastLiterals(&zc->seqStore, lastLiterals, lastLLSize);
+ } }
+ return ZSTDbss_compress;
+}
+
+static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ size_t cSize;
+ DEBUGLOG(5, "ZSTD_compressBlock_internal (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u)",
+ (unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit, (unsigned)zc->blockState.matchState.nextToUpdate);
+
+ { const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize);
+ FORWARD_IF_ERROR(bss);
+ if (bss == ZSTDbss_noCompress) { cSize = 0; goto out; }
+ }
+
+ /* encode sequences and literals */
+ cSize = ZSTD_compressSequences(&zc->seqStore,
+ &zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy,
+ &zc->appliedParams,
+ dst, dstCapacity,
+ srcSize,
+ zc->entropyWorkspace, HUF_WORKSPACE_SIZE /* statically allocated in resetCCtx */,
+ zc->bmi2);
+
+out:
+ if (!ZSTD_isError(cSize) && cSize != 0) {
+ /* confirm repcodes and entropy tables when emitting a compressed block */
+ ZSTD_compressedBlockState_t* const tmp = zc->blockState.prevCBlock;
+ zc->blockState.prevCBlock = zc->blockState.nextCBlock;
+ zc->blockState.nextCBlock = tmp;
+ }
+ /* We check that dictionaries have offset codes available for the first
+ * block. After the first block, the offcode table might not have large
+ * enough codes to represent the offsets in the data.
+ */
+ if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
+ zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
+
+ return cSize;
+}
+
+
+static void ZSTD_overflowCorrectIfNeeded(ZSTD_matchState_t* ms, ZSTD_CCtx_params const* params, void const* ip, void const* iend)
+{
+ if (ZSTD_window_needOverflowCorrection(ms->window, iend)) {
+ U32 const maxDist = (U32)1 << params->cParams.windowLog;
+ U32 const cycleLog = ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy);
+ U32 const correction = ZSTD_window_correctOverflow(&ms->window, cycleLog, maxDist, ip);
+ ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30);
+ ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30);
+ ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31);
+ ZSTD_reduceIndex(ms, params, correction);
+ if (ms->nextToUpdate < correction) ms->nextToUpdate = 0;
+ else ms->nextToUpdate -= correction;
+ /* invalidate dictionaries on overflow correction */
+ ms->loadedDictEnd = 0;
+ ms->dictMatchState = NULL;
+ }
+}
+
+
+/*! ZSTD_compress_frameChunk() :
+* Compress a chunk of data into one or multiple blocks.
+* All blocks will be terminated, all input will be consumed.
+* Function will issue an error if there is not enough `dstCapacity` to hold the compressed content.
+* Frame is supposed already started (header already produced)
+* @return : compressed size, or an error code
+*/
+static size_t ZSTD_compress_frameChunk (ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ U32 lastFrameChunk)
+{
+ size_t blockSize = cctx->blockSize;
+ size_t remaining = srcSize;
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* op = ostart;
+ U32 const maxDist = (U32)1 << cctx->appliedParams.cParams.windowLog;
+ assert(cctx->appliedParams.cParams.windowLog <= ZSTD_WINDOWLOG_MAX);
+
+ DEBUGLOG(5, "ZSTD_compress_frameChunk (blockSize=%u)", (unsigned)blockSize);
+ if (cctx->appliedParams.fParams.checksumFlag && srcSize)
+ XXH64_update(&cctx->xxhState, src, srcSize);
+
+ while (remaining) {
+ ZSTD_matchState_t* const ms = &cctx->blockState.matchState;
+ U32 const lastBlock = lastFrameChunk & (blockSize >= remaining);
+
+ RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE,
+ dstSize_tooSmall,
+ "not enough space to store compressed block");
+ if (remaining < blockSize) blockSize = remaining;
+
+ ZSTD_overflowCorrectIfNeeded(ms, &cctx->appliedParams, ip, ip + blockSize);
+ ZSTD_checkDictValidity(&ms->window, ip + blockSize, maxDist, &ms->loadedDictEnd, &ms->dictMatchState);
+
+ /* Ensure hash/chain table insertion resumes no sooner than lowlimit */
+ if (ms->nextToUpdate < ms->window.lowLimit) ms->nextToUpdate = ms->window.lowLimit;
+
+ { size_t cSize = ZSTD_compressBlock_internal(cctx,
+ op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize,
+ ip, blockSize);
+ FORWARD_IF_ERROR(cSize);
+
+ if (cSize == 0) { /* block is not compressible */
+ cSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock);
+ FORWARD_IF_ERROR(cSize);
+ } else {
+ U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
+ MEM_writeLE24(op, cBlockHeader24);
+ cSize += ZSTD_blockHeaderSize;
+ }
+
+ ip += blockSize;
+ assert(remaining >= blockSize);
+ remaining -= blockSize;
+ op += cSize;
+ assert(dstCapacity >= cSize);
+ dstCapacity -= cSize;
+ DEBUGLOG(5, "ZSTD_compress_frameChunk: adding a block of size %u",
+ (unsigned)cSize);
+ } }
+
+ if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending;
+ return (size_t)(op-ostart);
+}
+
+
+static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity,
+ ZSTD_CCtx_params params, U64 pledgedSrcSize, U32 dictID)
+{ BYTE* const op = (BYTE*)dst;
+ U32 const dictIDSizeCodeLength = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */
+ U32 const dictIDSizeCode = params.fParams.noDictIDFlag ? 0 : dictIDSizeCodeLength; /* 0-3 */
+ U32 const checksumFlag = params.fParams.checksumFlag>0;
+ U32 const windowSize = (U32)1 << params.cParams.windowLog;
+ U32 const singleSegment = params.fParams.contentSizeFlag && (windowSize >= pledgedSrcSize);
+ BYTE const windowLogByte = (BYTE)((params.cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3);
+ U32 const fcsCode = params.fParams.contentSizeFlag ?
+ (pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : 0; /* 0-3 */
+ BYTE const frameHeaderDescriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) );
+ size_t pos=0;
+
+ assert(!(params.fParams.contentSizeFlag && pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN));
+ RETURN_ERROR_IF(dstCapacity < ZSTD_FRAMEHEADERSIZE_MAX, dstSize_tooSmall);
+ DEBUGLOG(4, "ZSTD_writeFrameHeader : dictIDFlag : %u ; dictID : %u ; dictIDSizeCode : %u",
+ !params.fParams.noDictIDFlag, (unsigned)dictID, (unsigned)dictIDSizeCode);
+
+ if (params.format == ZSTD_f_zstd1) {
+ MEM_writeLE32(dst, ZSTD_MAGICNUMBER);
+ pos = 4;
+ }
+ op[pos++] = frameHeaderDescriptionByte;
+ if (!singleSegment) op[pos++] = windowLogByte;
+ switch(dictIDSizeCode)
+ {
+ default: assert(0); /* impossible */
+ case 0 : break;
+ case 1 : op[pos] = (BYTE)(dictID); pos++; break;
+ case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break;
+ case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break;
+ }
+ switch(fcsCode)
+ {
+ default: assert(0); /* impossible */
+ case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break;
+ case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break;
+ case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break;
+ case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break;
+ }
+ return pos;
+}
+
+/* ZSTD_writeLastEmptyBlock() :
+ * output an empty Block with end-of-frame mark to complete a frame
+ * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
+ * or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
+ */
+size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity)
+{
+ RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize, dstSize_tooSmall);
+ { U32 const cBlockHeader24 = 1 /*lastBlock*/ + (((U32)bt_raw)<<1); /* 0 size */
+ MEM_writeLE24(dst, cBlockHeader24);
+ return ZSTD_blockHeaderSize;
+ }
+}
+
+size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq)
+{
+ RETURN_ERROR_IF(cctx->stage != ZSTDcs_init, stage_wrong);
+ RETURN_ERROR_IF(cctx->appliedParams.ldmParams.enableLdm,
+ parameter_unsupported);
+ cctx->externSeqStore.seq = seq;
+ cctx->externSeqStore.size = nbSeq;
+ cctx->externSeqStore.capacity = nbSeq;
+ cctx->externSeqStore.pos = 0;
+ return 0;
+}
+
+
+static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ U32 frame, U32 lastFrameChunk)
+{
+ ZSTD_matchState_t* const ms = &cctx->blockState.matchState;
+ size_t fhSize = 0;
+
+ DEBUGLOG(5, "ZSTD_compressContinue_internal, stage: %u, srcSize: %u",
+ cctx->stage, (unsigned)srcSize);
+ RETURN_ERROR_IF(cctx->stage==ZSTDcs_created, stage_wrong,
+ "missing init (ZSTD_compressBegin)");
+
+ if (frame && (cctx->stage==ZSTDcs_init)) {
+ fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams,
+ cctx->pledgedSrcSizePlusOne-1, cctx->dictID);
+ FORWARD_IF_ERROR(fhSize);
+ assert(fhSize <= dstCapacity);
+ dstCapacity -= fhSize;
+ dst = (char*)dst + fhSize;
+ cctx->stage = ZSTDcs_ongoing;
+ }
+
+ if (!srcSize) return fhSize; /* do not generate an empty block if no input */
+
+ if (!ZSTD_window_update(&ms->window, src, srcSize)) {
+ ms->nextToUpdate = ms->window.dictLimit;
+ }
+ if (cctx->appliedParams.ldmParams.enableLdm) {
+ ZSTD_window_update(&cctx->ldmState.window, src, srcSize);
+ }
+
+ if (!frame) {
+ /* overflow check and correction for block mode */
+ ZSTD_overflowCorrectIfNeeded(ms, &cctx->appliedParams, src, (BYTE const*)src + srcSize);
+ }
+
+ DEBUGLOG(5, "ZSTD_compressContinue_internal (blockSize=%u)", (unsigned)cctx->blockSize);
+ { size_t const cSize = frame ?
+ ZSTD_compress_frameChunk (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) :
+ ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize);
+ FORWARD_IF_ERROR(cSize);
+ cctx->consumedSrcSize += srcSize;
+ cctx->producedCSize += (cSize + fhSize);
+ assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0));
+ if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */
+ ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1);
+ RETURN_ERROR_IF(
+ cctx->consumedSrcSize+1 > cctx->pledgedSrcSizePlusOne,
+ srcSize_wrong,
+ "error : pledgedSrcSize = %u, while realSrcSize >= %u",
+ (unsigned)cctx->pledgedSrcSizePlusOne-1,
+ (unsigned)cctx->consumedSrcSize);
+ }
+ return cSize + fhSize;
+ }
+}
+
+size_t ZSTD_compressContinue (ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ DEBUGLOG(5, "ZSTD_compressContinue (srcSize=%u)", (unsigned)srcSize);
+ return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 0 /* last chunk */);
+}
+
+
+size_t ZSTD_getBlockSize(const ZSTD_CCtx* cctx)
+{
+ ZSTD_compressionParameters const cParams = cctx->appliedParams.cParams;
+ assert(!ZSTD_checkCParams(cParams));
+ return MIN (ZSTD_BLOCKSIZE_MAX, (U32)1 << cParams.windowLog);
+}
+
+size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ size_t const blockSizeMax = ZSTD_getBlockSize(cctx);
+ RETURN_ERROR_IF(srcSize > blockSizeMax, srcSize_wrong);
+
+ return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0 /* frame mode */, 0 /* last chunk */);
+}
+
+/*! ZSTD_loadDictionaryContent() :
+ * @return : 0, or an error code
+ */
+static size_t ZSTD_loadDictionaryContent(ZSTD_matchState_t* ms,
+ ZSTD_CCtx_params const* params,
+ const void* src, size_t srcSize,
+ ZSTD_dictTableLoadMethod_e dtlm)
+{
+ const BYTE* ip = (const BYTE*) src;
+ const BYTE* const iend = ip + srcSize;
+
+ ZSTD_window_update(&ms->window, src, srcSize);
+ ms->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ms->window.base);
+
+ /* Assert that we the ms params match the params we're being given */
+ ZSTD_assertEqualCParams(params->cParams, ms->cParams);
+
+ if (srcSize <= HASH_READ_SIZE) return 0;
+
+ while (iend - ip > HASH_READ_SIZE) {
+ size_t const remaining = iend - ip;
+ size_t const chunk = MIN(remaining, ZSTD_CHUNKSIZE_MAX);
+ const BYTE* const ichunk = ip + chunk;
+
+ ZSTD_overflowCorrectIfNeeded(ms, params, ip, ichunk);
+
+ switch(params->cParams.strategy)
+ {
+ case ZSTD_fast:
+ ZSTD_fillHashTable(ms, ichunk, dtlm);
+ break;
+ case ZSTD_dfast:
+ ZSTD_fillDoubleHashTable(ms, ichunk, dtlm);
+ break;
+
+ case ZSTD_greedy:
+ case ZSTD_lazy:
+ case ZSTD_lazy2:
+ if (chunk >= HASH_READ_SIZE)
+ ZSTD_insertAndFindFirstIndex(ms, ichunk-HASH_READ_SIZE);
+ break;
+
+ case ZSTD_btlazy2: /* we want the dictionary table fully sorted */
+ case ZSTD_btopt:
+ case ZSTD_btultra:
+ case ZSTD_btultra2:
+ if (chunk >= HASH_READ_SIZE)
+ ZSTD_updateTree(ms, ichunk-HASH_READ_SIZE, ichunk);
+ break;
+
+ default:
+ assert(0); /* not possible : not a valid strategy id */
+ }
+
+ ip = ichunk;
+ }
+
+ ms->nextToUpdate = (U32)(iend - ms->window.base);
+ return 0;
+}
+
+
+/* Dictionaries that assign zero probability to symbols that show up causes problems
+ when FSE encoding. Refuse dictionaries that assign zero probability to symbols
+ that we may encounter during compression.
+ NOTE: This behavior is not standard and could be improved in the future. */
+static size_t ZSTD_checkDictNCount(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue) {
+ U32 s;
+ RETURN_ERROR_IF(dictMaxSymbolValue < maxSymbolValue, dictionary_corrupted);
+ for (s = 0; s <= maxSymbolValue; ++s) {
+ RETURN_ERROR_IF(normalizedCounter[s] == 0, dictionary_corrupted);
+ }
+ return 0;
+}
+
+
+/* Dictionary format :
+ * See :
+ * https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#dictionary-format
+ */
+/*! ZSTD_loadZstdDictionary() :
+ * @return : dictID, or an error code
+ * assumptions : magic number supposed already checked
+ * dictSize supposed > 8
+ */
+static size_t ZSTD_loadZstdDictionary(ZSTD_compressedBlockState_t* bs,
+ ZSTD_matchState_t* ms,
+ ZSTD_CCtx_params const* params,
+ const void* dict, size_t dictSize,
+ ZSTD_dictTableLoadMethod_e dtlm,
+ void* workspace)
+{
+ const BYTE* dictPtr = (const BYTE*)dict;
+ const BYTE* const dictEnd = dictPtr + dictSize;
+ short offcodeNCount[MaxOff+1];
+ unsigned offcodeMaxValue = MaxOff;
+ size_t dictID;
+
+ ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<<MAX(MLFSELog,LLFSELog)));
+ assert(dictSize > 8);
+ assert(MEM_readLE32(dictPtr) == ZSTD_MAGIC_DICTIONARY);
+
+ dictPtr += 4; /* skip magic number */
+ dictID = params->fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr);
+ dictPtr += 4;
+
+ { unsigned maxSymbolValue = 255;
+ size_t const hufHeaderSize = HUF_readCTable((HUF_CElt*)bs->entropy.huf.CTable, &maxSymbolValue, dictPtr, dictEnd-dictPtr);
+ RETURN_ERROR_IF(HUF_isError(hufHeaderSize), dictionary_corrupted);
+ RETURN_ERROR_IF(maxSymbolValue < 255, dictionary_corrupted);
+ dictPtr += hufHeaderSize;
+ }
+
+ { unsigned offcodeLog;
+ size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
+ RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted);
+ RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted);
+ /* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */
+ /* fill all offset symbols to avoid garbage at end of table */
+ RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp(
+ bs->entropy.fse.offcodeCTable,
+ offcodeNCount, MaxOff, offcodeLog,
+ workspace, HUF_WORKSPACE_SIZE)),
+ dictionary_corrupted);
+ dictPtr += offcodeHeaderSize;
+ }
+
+ { short matchlengthNCount[MaxML+1];
+ unsigned matchlengthMaxValue = MaxML, matchlengthLog;
+ size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
+ RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted);
+ RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted);
+ /* Every match length code must have non-zero probability */
+ FORWARD_IF_ERROR( ZSTD_checkDictNCount(matchlengthNCount, matchlengthMaxValue, MaxML));
+ RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp(
+ bs->entropy.fse.matchlengthCTable,
+ matchlengthNCount, matchlengthMaxValue, matchlengthLog,
+ workspace, HUF_WORKSPACE_SIZE)),
+ dictionary_corrupted);
+ dictPtr += matchlengthHeaderSize;
+ }
+
+ { short litlengthNCount[MaxLL+1];
+ unsigned litlengthMaxValue = MaxLL, litlengthLog;
+ size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
+ RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted);
+ RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted);
+ /* Every literal length code must have non-zero probability */
+ FORWARD_IF_ERROR( ZSTD_checkDictNCount(litlengthNCount, litlengthMaxValue, MaxLL));
+ RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp(
+ bs->entropy.fse.litlengthCTable,
+ litlengthNCount, litlengthMaxValue, litlengthLog,
+ workspace, HUF_WORKSPACE_SIZE)),
+ dictionary_corrupted);
+ dictPtr += litlengthHeaderSize;
+ }
+
+ RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted);
+ bs->rep[0] = MEM_readLE32(dictPtr+0);
+ bs->rep[1] = MEM_readLE32(dictPtr+4);
+ bs->rep[2] = MEM_readLE32(dictPtr+8);
+ dictPtr += 12;
+
+ { size_t const dictContentSize = (size_t)(dictEnd - dictPtr);
+ U32 offcodeMax = MaxOff;
+ if (dictContentSize <= ((U32)-1) - 128 KB) {
+ U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */
+ offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */
+ }
+ /* All offset values <= dictContentSize + 128 KB must be representable */
+ FORWARD_IF_ERROR(ZSTD_checkDictNCount(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff)));
+ /* All repCodes must be <= dictContentSize and != 0*/
+ { U32 u;
+ for (u=0; u<3; u++) {
+ RETURN_ERROR_IF(bs->rep[u] == 0, dictionary_corrupted);
+ RETURN_ERROR_IF(bs->rep[u] > dictContentSize, dictionary_corrupted);
+ } }
+
+ bs->entropy.huf.repeatMode = HUF_repeat_valid;
+ bs->entropy.fse.offcode_repeatMode = FSE_repeat_valid;
+ bs->entropy.fse.matchlength_repeatMode = FSE_repeat_valid;
+ bs->entropy.fse.litlength_repeatMode = FSE_repeat_valid;
+ FORWARD_IF_ERROR(ZSTD_loadDictionaryContent(ms, params, dictPtr, dictContentSize, dtlm));
+ return dictID;
+ }
+}
+
+/** ZSTD_compress_insertDictionary() :
+* @return : dictID, or an error code */
+static size_t
+ZSTD_compress_insertDictionary(ZSTD_compressedBlockState_t* bs,
+ ZSTD_matchState_t* ms,
+ const ZSTD_CCtx_params* params,
+ const void* dict, size_t dictSize,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_dictTableLoadMethod_e dtlm,
+ void* workspace)
+{
+ DEBUGLOG(4, "ZSTD_compress_insertDictionary (dictSize=%u)", (U32)dictSize);
+ if ((dict==NULL) || (dictSize<=8)) return 0;
+
+ ZSTD_reset_compressedBlockState(bs);
+
+ /* dict restricted modes */
+ if (dictContentType == ZSTD_dct_rawContent)
+ return ZSTD_loadDictionaryContent(ms, params, dict, dictSize, dtlm);
+
+ if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) {
+ if (dictContentType == ZSTD_dct_auto) {
+ DEBUGLOG(4, "raw content dictionary detected");
+ return ZSTD_loadDictionaryContent(ms, params, dict, dictSize, dtlm);
+ }
+ RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong);
+ assert(0); /* impossible */
+ }
+
+ /* dict as full zstd dictionary */
+ return ZSTD_loadZstdDictionary(bs, ms, params, dict, dictSize, dtlm, workspace);
+}
+
+/*! ZSTD_compressBegin_internal() :
+ * @return : 0, or an error code */
+static size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx,
+ const void* dict, size_t dictSize,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_dictTableLoadMethod_e dtlm,
+ const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params, U64 pledgedSrcSize,
+ ZSTD_buffered_policy_e zbuff)
+{
+ DEBUGLOG(4, "ZSTD_compressBegin_internal: wlog=%u", params.cParams.windowLog);
+ /* params are supposed to be fully validated at this point */
+ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
+ assert(!((dict) && (cdict))); /* either dict or cdict, not both */
+
+ if (cdict && cdict->dictContentSize>0) {
+ return ZSTD_resetCCtx_usingCDict(cctx, cdict, params, pledgedSrcSize, zbuff);
+ }
+
+ FORWARD_IF_ERROR( ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
+ ZSTDcrp_continue, zbuff) );
+ { size_t const dictID = ZSTD_compress_insertDictionary(
+ cctx->blockState.prevCBlock, &cctx->blockState.matchState,
+ ¶ms, dict, dictSize, dictContentType, dtlm, cctx->entropyWorkspace);
+ FORWARD_IF_ERROR(dictID);
+ assert(dictID <= UINT_MAX);
+ cctx->dictID = (U32)dictID;
+ }
+ return 0;
+}
+
+size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
+ const void* dict, size_t dictSize,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_dictTableLoadMethod_e dtlm,
+ const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params,
+ unsigned long long pledgedSrcSize)
+{
+ DEBUGLOG(4, "ZSTD_compressBegin_advanced_internal: wlog=%u", params.cParams.windowLog);
+ /* compression parameters verification and optimization */
+ FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) );
+ return ZSTD_compressBegin_internal(cctx,
+ dict, dictSize, dictContentType, dtlm,
+ cdict,
+ params, pledgedSrcSize,
+ ZSTDb_not_buffered);
+}
+
+/*! ZSTD_compressBegin_advanced() :
+* @return : 0, or an error code */
+size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx,
+ const void* dict, size_t dictSize,
+ ZSTD_parameters params, unsigned long long pledgedSrcSize)
+{
+ ZSTD_CCtx_params const cctxParams =
+ ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params);
+ return ZSTD_compressBegin_advanced_internal(cctx,
+ dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast,
+ NULL /*cdict*/,
+ cctxParams, pledgedSrcSize);
+}
+
+size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel)
+{
+ ZSTD_parameters const params = ZSTD_getParams(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize);
+ ZSTD_CCtx_params const cctxParams =
+ ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params);
+ DEBUGLOG(4, "ZSTD_compressBegin_usingDict (dictSize=%u)", (unsigned)dictSize);
+ return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL,
+ cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered);
+}
+
+size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel)
+{
+ return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel);
+}
+
+
+/*! ZSTD_writeEpilogue() :
+* Ends a frame.
+* @return : nb of bytes written into dst (or an error code) */
+static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity)
+{
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* op = ostart;
+ size_t fhSize = 0;
+
+ DEBUGLOG(4, "ZSTD_writeEpilogue");
+ RETURN_ERROR_IF(cctx->stage == ZSTDcs_created, stage_wrong, "init missing");
+
+ /* special case : empty frame */
+ if (cctx->stage == ZSTDcs_init) {
+ fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams, 0, 0);
+ FORWARD_IF_ERROR(fhSize);
+ dstCapacity -= fhSize;
+ op += fhSize;
+ cctx->stage = ZSTDcs_ongoing;
+ }
+
+ if (cctx->stage != ZSTDcs_ending) {
+ /* write one last empty block, make it the "last" block */
+ U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0;
+ RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall);
+ MEM_writeLE32(op, cBlockHeader24);
+ op += ZSTD_blockHeaderSize;
+ dstCapacity -= ZSTD_blockHeaderSize;
+ }
+
+ if (cctx->appliedParams.fParams.checksumFlag) {
+ U32 const checksum = (U32) XXH64_digest(&cctx->xxhState);
+ RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall);
+ DEBUGLOG(4, "ZSTD_writeEpilogue: write checksum : %08X", (unsigned)checksum);
+ MEM_writeLE32(op, checksum);
+ op += 4;
+ }
+
+ cctx->stage = ZSTDcs_created; /* return to "created but no init" status */
+ return op-ostart;
+}
+
+size_t ZSTD_compressEnd (ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ size_t endResult;
+ size_t const cSize = ZSTD_compressContinue_internal(cctx,
+ dst, dstCapacity, src, srcSize,
+ 1 /* frame mode */, 1 /* last chunk */);
+ FORWARD_IF_ERROR(cSize);
+ endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize);
+ FORWARD_IF_ERROR(endResult);
+ assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0));
+ if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */
+ ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1);
+ DEBUGLOG(4, "end of frame : controlling src size");
+ RETURN_ERROR_IF(
+ cctx->pledgedSrcSizePlusOne != cctx->consumedSrcSize+1,
+ srcSize_wrong,
+ "error : pledgedSrcSize = %u, while realSrcSize = %u",
+ (unsigned)cctx->pledgedSrcSizePlusOne-1,
+ (unsigned)cctx->consumedSrcSize);
+ }
+ return cSize + endResult;
+}
+
+
+static size_t ZSTD_compress_internal (ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize,
+ ZSTD_parameters params)
+{
+ ZSTD_CCtx_params const cctxParams =
+ ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params);
+ DEBUGLOG(4, "ZSTD_compress_internal");
+ return ZSTD_compress_advanced_internal(cctx,
+ dst, dstCapacity,
+ src, srcSize,
+ dict, dictSize,
+ cctxParams);
+}
+
+size_t ZSTD_compress_advanced (ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize,
+ ZSTD_parameters params)
+{
+ DEBUGLOG(4, "ZSTD_compress_advanced");
+ FORWARD_IF_ERROR(ZSTD_checkCParams(params.cParams));
+ return ZSTD_compress_internal(cctx,
+ dst, dstCapacity,
+ src, srcSize,
+ dict, dictSize,
+ params);
+}
+
+/* Internal */
+size_t ZSTD_compress_advanced_internal(
+ ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize,
+ ZSTD_CCtx_params params)
+{
+ DEBUGLOG(4, "ZSTD_compress_advanced_internal (srcSize:%u)", (unsigned)srcSize);
+ FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx,
+ dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL,
+ params, srcSize, ZSTDb_not_buffered) );
+ return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
+}
+
+size_t ZSTD_compress_usingDict(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict, size_t dictSize,
+ int compressionLevel)
+{
+ ZSTD_parameters const params = ZSTD_getParams(compressionLevel, srcSize + (!srcSize), dict ? dictSize : 0);
+ ZSTD_CCtx_params cctxParams = ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params);
+ assert(params.fParams.contentSizeFlag == 1);
+ return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, cctxParams);
+}
+
+size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ int compressionLevel)
+{
+ DEBUGLOG(4, "ZSTD_compressCCtx (srcSize=%u)", (unsigned)srcSize);
+ assert(cctx != NULL);
+ return ZSTD_compress_usingDict(cctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel);
+}
+
+size_t ZSTD_compress(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ int compressionLevel)
+{
+ size_t result;
+ ZSTD_CCtx ctxBody;
+ ZSTD_initCCtx(&ctxBody, ZSTD_defaultCMem);
+ result = ZSTD_compressCCtx(&ctxBody, dst, dstCapacity, src, srcSize, compressionLevel);
+ ZSTD_freeCCtxContent(&ctxBody); /* can't free ctxBody itself, as it's on stack; free only heap content */
+ return result;
+}
+
+
+/* ===== Dictionary API ===== */
+
+/*! ZSTD_estimateCDictSize_advanced() :
+ * Estimate amount of memory that will be needed to create a dictionary with following arguments */
+size_t ZSTD_estimateCDictSize_advanced(
+ size_t dictSize, ZSTD_compressionParameters cParams,
+ ZSTD_dictLoadMethod_e dictLoadMethod)
+{
+ DEBUGLOG(5, "sizeof(ZSTD_CDict) : %u", (unsigned)sizeof(ZSTD_CDict));
+ return sizeof(ZSTD_CDict) + HUF_WORKSPACE_SIZE + ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0)
+ + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
+}
+
+size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel)
+{
+ ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, dictSize);
+ return ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy);
+}
+
+size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict)
+{
+ if (cdict==NULL) return 0; /* support sizeof on NULL */
+ DEBUGLOG(5, "sizeof(*cdict) : %u", (unsigned)sizeof(*cdict));
+ return cdict->workspaceSize + (cdict->dictBuffer ? cdict->dictContentSize : 0) + sizeof(*cdict);
+}
+
+static size_t ZSTD_initCDict_internal(
+ ZSTD_CDict* cdict,
+ const void* dictBuffer, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_compressionParameters cParams)
+{
+ DEBUGLOG(3, "ZSTD_initCDict_internal (dictContentType:%u)", (unsigned)dictContentType);
+ assert(!ZSTD_checkCParams(cParams));
+ cdict->matchState.cParams = cParams;
+ if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dictBuffer) || (!dictSize)) {
+ cdict->dictBuffer = NULL;
+ cdict->dictContent = dictBuffer;
+ } else {
+ void* const internalBuffer = ZSTD_malloc(dictSize, cdict->customMem);
+ cdict->dictBuffer = internalBuffer;
+ cdict->dictContent = internalBuffer;
+ RETURN_ERROR_IF(!internalBuffer, memory_allocation);
+ memcpy(internalBuffer, dictBuffer, dictSize);
+ }
+ cdict->dictContentSize = dictSize;
+
+ /* Reset the state to no dictionary */
+ ZSTD_reset_compressedBlockState(&cdict->cBlockState);
+ { void* const end = ZSTD_reset_matchState(&cdict->matchState,
+ (U32*)cdict->workspace + HUF_WORKSPACE_SIZE_U32,
+ &cParams,
+ ZSTDcrp_continue, ZSTD_resetTarget_CDict);
+ assert(end == (char*)cdict->workspace + cdict->workspaceSize);
+ (void)end;
+ }
+ /* (Maybe) load the dictionary
+ * Skips loading the dictionary if it is <= 8 bytes.
+ */
+ { ZSTD_CCtx_params params;
+ memset(¶ms, 0, sizeof(params));
+ params.compressionLevel = ZSTD_CLEVEL_DEFAULT;
+ params.fParams.contentSizeFlag = 1;
+ params.cParams = cParams;
+ { size_t const dictID = ZSTD_compress_insertDictionary(
+ &cdict->cBlockState, &cdict->matchState, ¶ms,
+ cdict->dictContent, cdict->dictContentSize,
+ dictContentType, ZSTD_dtlm_full, cdict->workspace);
+ FORWARD_IF_ERROR(dictID);
+ assert(dictID <= (size_t)(U32)-1);
+ cdict->dictID = (U32)dictID;
+ }
+ }
+
+ return 0;
+}
+
+ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_compressionParameters cParams, ZSTD_customMem customMem)
+{
+ DEBUGLOG(3, "ZSTD_createCDict_advanced, mode %u", (unsigned)dictContentType);
+ if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
+
+ { ZSTD_CDict* const cdict = (ZSTD_CDict*)ZSTD_malloc(sizeof(ZSTD_CDict), customMem);
+ size_t const workspaceSize = HUF_WORKSPACE_SIZE + ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0);
+ void* const workspace = ZSTD_malloc(workspaceSize, customMem);
+
+ if (!cdict || !workspace) {
+ ZSTD_free(cdict, customMem);
+ ZSTD_free(workspace, customMem);
+ return NULL;
+ }
+ cdict->customMem = customMem;
+ cdict->workspace = workspace;
+ cdict->workspaceSize = workspaceSize;
+ if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
+ dictBuffer, dictSize,
+ dictLoadMethod, dictContentType,
+ cParams) )) {
+ ZSTD_freeCDict(cdict);
+ return NULL;
+ }
+
+ return cdict;
+ }
+}
+
+ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel)
+{
+ ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize);
+ return ZSTD_createCDict_advanced(dict, dictSize,
+ ZSTD_dlm_byCopy, ZSTD_dct_auto,
+ cParams, ZSTD_defaultCMem);
+}
+
+ZSTD_CDict* ZSTD_createCDict_byReference(const void* dict, size_t dictSize, int compressionLevel)
+{
+ ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize);
+ return ZSTD_createCDict_advanced(dict, dictSize,
+ ZSTD_dlm_byRef, ZSTD_dct_auto,
+ cParams, ZSTD_defaultCMem);
+}
+
+size_t ZSTD_freeCDict(ZSTD_CDict* cdict)
+{
+ if (cdict==NULL) return 0; /* support free on NULL */
+ { ZSTD_customMem const cMem = cdict->customMem;
+ ZSTD_free(cdict->workspace, cMem);
+ ZSTD_free(cdict->dictBuffer, cMem);
+ ZSTD_free(cdict, cMem);
+ return 0;
+ }
+}
+
+/*! ZSTD_initStaticCDict_advanced() :
+ * Generate a digested dictionary in provided memory area.
+ * workspace: The memory area to emplace the dictionary into.
+ * Provided pointer must 8-bytes aligned.
+ * It must outlive dictionary usage.
+ * workspaceSize: Use ZSTD_estimateCDictSize()
+ * to determine how large workspace must be.
+ * cParams : use ZSTD_getCParams() to transform a compression level
+ * into its relevants cParams.
+ * @return : pointer to ZSTD_CDict*, or NULL if error (size too small)
+ * Note : there is no corresponding "free" function.
+ * Since workspace was allocated externally, it must be freed externally.
+ */
+const ZSTD_CDict* ZSTD_initStaticCDict(
+ void* workspace, size_t workspaceSize,
+ const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_compressionParameters cParams)
+{
+ size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0);
+ size_t const neededSize = sizeof(ZSTD_CDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize)
+ + HUF_WORKSPACE_SIZE + matchStateSize;
+ ZSTD_CDict* const cdict = (ZSTD_CDict*) workspace;
+ void* ptr;
+ if ((size_t)workspace & 7) return NULL; /* 8-aligned */
+ DEBUGLOG(4, "(workspaceSize < neededSize) : (%u < %u) => %u",
+ (unsigned)workspaceSize, (unsigned)neededSize, (unsigned)(workspaceSize < neededSize));
+ if (workspaceSize < neededSize) return NULL;
+
+ if (dictLoadMethod == ZSTD_dlm_byCopy) {
+ memcpy(cdict+1, dict, dictSize);
+ dict = cdict+1;
+ ptr = (char*)workspace + sizeof(ZSTD_CDict) + dictSize;
+ } else {
+ ptr = cdict+1;
+ }
+ cdict->workspace = ptr;
+ cdict->workspaceSize = HUF_WORKSPACE_SIZE + matchStateSize;
+
+ if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
+ dict, dictSize,
+ ZSTD_dlm_byRef, dictContentType,
+ cParams) ))
+ return NULL;
+
+ return cdict;
+}
+
+ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict)
+{
+ assert(cdict != NULL);
+ return cdict->matchState.cParams;
+}
+
+/* ZSTD_compressBegin_usingCDict_advanced() :
+ * cdict must be != NULL */
+size_t ZSTD_compressBegin_usingCDict_advanced(
+ ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict,
+ ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize)
+{
+ DEBUGLOG(4, "ZSTD_compressBegin_usingCDict_advanced");
+ RETURN_ERROR_IF(cdict==NULL, dictionary_wrong);
+ { ZSTD_CCtx_params params = cctx->requestedParams;
+ params.cParams = ZSTD_getCParamsFromCDict(cdict);
+ /* Increase window log to fit the entire dictionary and source if the
+ * source size is known. Limit the increase to 19, which is the
+ * window log for compression level 1 with the largest source size.
+ */
+ if (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN) {
+ U32 const limitedSrcSize = (U32)MIN(pledgedSrcSize, 1U << 19);
+ U32 const limitedSrcLog = limitedSrcSize > 1 ? ZSTD_highbit32(limitedSrcSize - 1) + 1 : 1;
+ params.cParams.windowLog = MAX(params.cParams.windowLog, limitedSrcLog);
+ }
+ params.fParams = fParams;
+ return ZSTD_compressBegin_internal(cctx,
+ NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast,
+ cdict,
+ params, pledgedSrcSize,
+ ZSTDb_not_buffered);
+ }
+}
+
+/* ZSTD_compressBegin_usingCDict() :
+ * pledgedSrcSize=0 means "unknown"
+ * if pledgedSrcSize>0, it will enable contentSizeFlag */
+size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict)
+{
+ ZSTD_frameParameters const fParams = { 0 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
+ DEBUGLOG(4, "ZSTD_compressBegin_usingCDict : dictIDFlag == %u", !fParams.noDictIDFlag);
+ return ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, ZSTD_CONTENTSIZE_UNKNOWN);
+}
+
+size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_CDict* cdict, ZSTD_frameParameters fParams)
+{
+ FORWARD_IF_ERROR(ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, srcSize)); /* will check if cdict != NULL */
+ return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
+}
+
+/*! ZSTD_compress_usingCDict() :
+ * Compression using a digested Dictionary.
+ * Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times.
+ * Note that compression parameters are decided at CDict creation time
+ * while frame parameters are hardcoded */
+size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_CDict* cdict)
+{
+ ZSTD_frameParameters const fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
+ return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, fParams);
+}
+
+
+
+/* ******************************************************************
+* Streaming
+********************************************************************/
+
+ZSTD_CStream* ZSTD_createCStream(void)
+{
+ DEBUGLOG(3, "ZSTD_createCStream");
+ return ZSTD_createCStream_advanced(ZSTD_defaultCMem);
+}
+
+ZSTD_CStream* ZSTD_initStaticCStream(void *workspace, size_t workspaceSize)
+{
+ return ZSTD_initStaticCCtx(workspace, workspaceSize);
+}
+
+ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem)
+{ /* CStream and CCtx are now same object */
+ return ZSTD_createCCtx_advanced(customMem);
+}
+
+size_t ZSTD_freeCStream(ZSTD_CStream* zcs)
+{
+ return ZSTD_freeCCtx(zcs); /* same object */
+}
+
+
+
+/*====== Initialization ======*/
+
+size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX; }
+
+size_t ZSTD_CStreamOutSize(void)
+{
+ return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ;
+}
+
+static size_t ZSTD_resetCStream_internal(ZSTD_CStream* cctx,
+ const void* const dict, size_t const dictSize, ZSTD_dictContentType_e const dictContentType,
+ const ZSTD_CDict* const cdict,
+ ZSTD_CCtx_params params, unsigned long long const pledgedSrcSize)
+{
+ DEBUGLOG(4, "ZSTD_resetCStream_internal");
+ /* Finalize the compression parameters */
+ params.cParams = ZSTD_getCParamsFromCCtxParams(¶ms, pledgedSrcSize, dictSize);
+ /* params are supposed to be fully validated at this point */
+ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
+ assert(!((dict) && (cdict))); /* either dict or cdict, not both */
+
+ FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx,
+ dict, dictSize, dictContentType, ZSTD_dtlm_fast,
+ cdict,
+ params, pledgedSrcSize,
+ ZSTDb_buffered) );
+
+ cctx->inToCompress = 0;
+ cctx->inBuffPos = 0;
+ cctx->inBuffTarget = cctx->blockSize
+ + (cctx->blockSize == pledgedSrcSize); /* for small input: avoid automatic flush on reaching end of block, since it would require to add a 3-bytes null block to end frame */
+ cctx->outBuffContentSize = cctx->outBuffFlushedSize = 0;
+ cctx->streamStage = zcss_load;
+ cctx->frameEnded = 0;
+ return 0; /* ready to go */
+}
+
+/* ZSTD_resetCStream():
+ * pledgedSrcSize == 0 means "unknown" */
+size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pss)
+{
+ /* temporary : 0 interpreted as "unknown" during transition period.
+ * Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN.
+ * 0 will be interpreted as "empty" in the future.
+ */
+ U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss;
+ DEBUGLOG(4, "ZSTD_resetCStream: pledgedSrcSize = %u", (unsigned)pledgedSrcSize);
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) );
+ FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) );
+ return 0;
+}
+
+/*! ZSTD_initCStream_internal() :
+ * Note : for lib/compress only. Used by zstdmt_compress.c.
+ * Assumption 1 : params are valid
+ * Assumption 2 : either dict, or cdict, is defined, not both */
+size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
+ const void* dict, size_t dictSize, const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params, unsigned long long pledgedSrcSize)
+{
+ DEBUGLOG(4, "ZSTD_initCStream_internal");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) );
+ FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) );
+ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
+ zcs->requestedParams = params;
+ assert(!((dict) && (cdict))); /* either dict or cdict, not both */
+ if (dict) {
+ FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) );
+ } else {
+ /* Dictionary is cleared if !cdict */
+ FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) );
+ }
+ return 0;
+}
+
+/* ZSTD_initCStream_usingCDict_advanced() :
+ * same as ZSTD_initCStream_usingCDict(), with control over frame parameters */
+size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs,
+ const ZSTD_CDict* cdict,
+ ZSTD_frameParameters fParams,
+ unsigned long long pledgedSrcSize)
+{
+ DEBUGLOG(4, "ZSTD_initCStream_usingCDict_advanced");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) );
+ FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) );
+ zcs->requestedParams.fParams = fParams;
+ FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) );
+ return 0;
+}
+
+/* note : cdict must outlive compression session */
+size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict)
+{
+ DEBUGLOG(4, "ZSTD_initCStream_usingCDict");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) );
+ FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) );
+ return 0;
+}
+
+
+/* ZSTD_initCStream_advanced() :
+ * pledgedSrcSize must be exact.
+ * if srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN.
+ * dict is loaded with default parameters ZSTD_dm_auto and ZSTD_dlm_byCopy. */
+size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
+ const void* dict, size_t dictSize,
+ ZSTD_parameters params, unsigned long long pss)
+{
+ /* for compatibility with older programs relying on this behavior.
+ * Users should now specify ZSTD_CONTENTSIZE_UNKNOWN.
+ * This line will be removed in the future.
+ */
+ U64 const pledgedSrcSize = (pss==0 && params.fParams.contentSizeFlag==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss;
+ DEBUGLOG(4, "ZSTD_initCStream_advanced");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) );
+ FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) );
+ FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) );
+ zcs->requestedParams = ZSTD_assignParamsToCCtxParams(zcs->requestedParams, params);
+ FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) );
+ return 0;
+}
+
+size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel)
+{
+ DEBUGLOG(4, "ZSTD_initCStream_usingDict");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) );
+ FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) );
+ FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) );
+ return 0;
+}
+
+size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pss)
+{
+ /* temporary : 0 interpreted as "unknown" during transition period.
+ * Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN.
+ * 0 will be interpreted as "empty" in the future.
+ */
+ U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss;
+ DEBUGLOG(4, "ZSTD_initCStream_srcSize");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) );
+ FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) );
+ FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) );
+ FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) );
+ return 0;
+}
+
+size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel)
+{
+ DEBUGLOG(4, "ZSTD_initCStream");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) );
+ FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) );
+ FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) );
+ return 0;
+}
+
+/*====== Compression ======*/
+
+static size_t ZSTD_nextInputSizeHint(const ZSTD_CCtx* cctx)
+{
+ size_t hintInSize = cctx->inBuffTarget - cctx->inBuffPos;
+ if (hintInSize==0) hintInSize = cctx->blockSize;
+ return hintInSize;
+}
+
+static size_t ZSTD_limitCopy(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ size_t const length = MIN(dstCapacity, srcSize);
+ if (length) memcpy(dst, src, length);
+ return length;
+}
+
+/** ZSTD_compressStream_generic():
+ * internal function for all *compressStream*() variants
+ * non-static, because can be called from zstdmt_compress.c
+ * @return : hint size for next input */
+static size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
+ ZSTD_outBuffer* output,
+ ZSTD_inBuffer* input,
+ ZSTD_EndDirective const flushMode)
+{
+ const char* const istart = (const char*)input->src;
+ const char* const iend = istart + input->size;
+ const char* ip = istart + input->pos;
+ char* const ostart = (char*)output->dst;
+ char* const oend = ostart + output->size;
+ char* op = ostart + output->pos;
+ U32 someMoreWork = 1;
+
+ /* check expectations */
+ DEBUGLOG(5, "ZSTD_compressStream_generic, flush=%u", (unsigned)flushMode);
+ assert(zcs->inBuff != NULL);
+ assert(zcs->inBuffSize > 0);
+ assert(zcs->outBuff != NULL);
+ assert(zcs->outBuffSize > 0);
+ assert(output->pos <= output->size);
+ assert(input->pos <= input->size);
+
+ while (someMoreWork) {
+ switch(zcs->streamStage)
+ {
+ case zcss_init:
+ RETURN_ERROR(init_missing, "call ZSTD_initCStream() first!");
+
+ case zcss_load:
+ if ( (flushMode == ZSTD_e_end)
+ && ((size_t)(oend-op) >= ZSTD_compressBound(iend-ip)) /* enough dstCapacity */
+ && (zcs->inBuffPos == 0) ) {
+ /* shortcut to compression pass directly into output buffer */
+ size_t const cSize = ZSTD_compressEnd(zcs,
+ op, oend-op, ip, iend-ip);
+ DEBUGLOG(4, "ZSTD_compressEnd : cSize=%u", (unsigned)cSize);
+ FORWARD_IF_ERROR(cSize);
+ ip = iend;
+ op += cSize;
+ zcs->frameEnded = 1;
+ ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ someMoreWork = 0; break;
+ }
+ /* complete loading into inBuffer */
+ { size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos;
+ size_t const loaded = ZSTD_limitCopy(
+ zcs->inBuff + zcs->inBuffPos, toLoad,
+ ip, iend-ip);
+ zcs->inBuffPos += loaded;
+ ip += loaded;
+ if ( (flushMode == ZSTD_e_continue)
+ && (zcs->inBuffPos < zcs->inBuffTarget) ) {
+ /* not enough input to fill full block : stop here */
+ someMoreWork = 0; break;
+ }
+ if ( (flushMode == ZSTD_e_flush)
+ && (zcs->inBuffPos == zcs->inToCompress) ) {
+ /* empty */
+ someMoreWork = 0; break;
+ }
+ }
+ /* compress current block (note : this stage cannot be stopped in the middle) */
+ DEBUGLOG(5, "stream compression stage (flushMode==%u)", flushMode);
+ { void* cDst;
+ size_t cSize;
+ size_t const iSize = zcs->inBuffPos - zcs->inToCompress;
+ size_t oSize = oend-op;
+ unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip==iend);
+ if (oSize >= ZSTD_compressBound(iSize))
+ cDst = op; /* compress into output buffer, to skip flush stage */
+ else
+ cDst = zcs->outBuff, oSize = zcs->outBuffSize;
+ cSize = lastBlock ?
+ ZSTD_compressEnd(zcs, cDst, oSize,
+ zcs->inBuff + zcs->inToCompress, iSize) :
+ ZSTD_compressContinue(zcs, cDst, oSize,
+ zcs->inBuff + zcs->inToCompress, iSize);
+ FORWARD_IF_ERROR(cSize);
+ zcs->frameEnded = lastBlock;
+ /* prepare next block */
+ zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize;
+ if (zcs->inBuffTarget > zcs->inBuffSize)
+ zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize;
+ DEBUGLOG(5, "inBuffTarget:%u / inBuffSize:%u",
+ (unsigned)zcs->inBuffTarget, (unsigned)zcs->inBuffSize);
+ if (!lastBlock)
+ assert(zcs->inBuffTarget <= zcs->inBuffSize);
+ zcs->inToCompress = zcs->inBuffPos;
+ if (cDst == op) { /* no need to flush */
+ op += cSize;
+ if (zcs->frameEnded) {
+ DEBUGLOG(5, "Frame completed directly in outBuffer");
+ someMoreWork = 0;
+ ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ }
+ break;
+ }
+ zcs->outBuffContentSize = cSize;
+ zcs->outBuffFlushedSize = 0;
+ zcs->streamStage = zcss_flush; /* pass-through to flush stage */
+ }
+ /* fall-through */
+ case zcss_flush:
+ DEBUGLOG(5, "flush stage");
+ { size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
+ size_t const flushed = ZSTD_limitCopy(op, (size_t)(oend-op),
+ zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
+ DEBUGLOG(5, "toFlush: %u into %u ==> flushed: %u",
+ (unsigned)toFlush, (unsigned)(oend-op), (unsigned)flushed);
+ op += flushed;
+ zcs->outBuffFlushedSize += flushed;
+ if (toFlush!=flushed) {
+ /* flush not fully completed, presumably because dst is too small */
+ assert(op==oend);
+ someMoreWork = 0;
+ break;
+ }
+ zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
+ if (zcs->frameEnded) {
+ DEBUGLOG(5, "Frame completed on flush");
+ someMoreWork = 0;
+ ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ break;
+ }
+ zcs->streamStage = zcss_load;
+ break;
+ }
+
+ default: /* impossible */
+ assert(0);
+ }
+ }
+
+ input->pos = ip - istart;
+ output->pos = op - ostart;
+ if (zcs->frameEnded) return 0;
+ return ZSTD_nextInputSizeHint(zcs);
+}
+
+static size_t ZSTD_nextInputSizeHint_MTorST(const ZSTD_CCtx* cctx)
+{
+#ifdef ZSTD_MULTITHREAD
+ if (cctx->appliedParams.nbWorkers >= 1) {
+ assert(cctx->mtctx != NULL);
+ return ZSTDMT_nextInputSizeHint(cctx->mtctx);
+ }
+#endif
+ return ZSTD_nextInputSizeHint(cctx);
+
+}
+
+size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
+{
+ FORWARD_IF_ERROR( ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue) );
+ return ZSTD_nextInputSizeHint_MTorST(zcs);
+}
+
+
+size_t ZSTD_compressStream2( ZSTD_CCtx* cctx,
+ ZSTD_outBuffer* output,
+ ZSTD_inBuffer* input,
+ ZSTD_EndDirective endOp)
+{
+ DEBUGLOG(5, "ZSTD_compressStream2, endOp=%u ", (unsigned)endOp);
+ /* check conditions */
+ RETURN_ERROR_IF(output->pos > output->size, GENERIC);
+ RETURN_ERROR_IF(input->pos > input->size, GENERIC);
+ assert(cctx!=NULL);
+
+ /* transparent initialization stage */
+ if (cctx->streamStage == zcss_init) {
+ ZSTD_CCtx_params params = cctx->requestedParams;
+ ZSTD_prefixDict const prefixDict = cctx->prefixDict;
+ FORWARD_IF_ERROR( ZSTD_initLocalDict(cctx) ); /* Init the local dict if present. */
+ memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* single usage */
+ assert(prefixDict.dict==NULL || cctx->cdict==NULL); /* only one can be set */
+ DEBUGLOG(4, "ZSTD_compressStream2 : transparent init stage");
+ if (endOp == ZSTD_e_end) cctx->pledgedSrcSizePlusOne = input->size + 1; /* auto-fix pledgedSrcSize */
+ params.cParams = ZSTD_getCParamsFromCCtxParams(
+ &cctx->requestedParams, cctx->pledgedSrcSizePlusOne-1, 0 /*dictSize*/);
+
+
+#ifdef ZSTD_MULTITHREAD
+ if ((cctx->pledgedSrcSizePlusOne-1) <= ZSTDMT_JOBSIZE_MIN) {
+ params.nbWorkers = 0; /* do not invoke multi-threading when src size is too small */
+ }
+ if (params.nbWorkers > 0) {
+ /* mt context creation */
+ if (cctx->mtctx == NULL) {
+ DEBUGLOG(4, "ZSTD_compressStream2: creating new mtctx for nbWorkers=%u",
+ params.nbWorkers);
+ cctx->mtctx = ZSTDMT_createCCtx_advanced(params.nbWorkers, cctx->customMem);
+ RETURN_ERROR_IF(cctx->mtctx == NULL, memory_allocation);
+ }
+ /* mt compression */
+ DEBUGLOG(4, "call ZSTDMT_initCStream_internal as nbWorkers=%u", params.nbWorkers);
+ FORWARD_IF_ERROR( ZSTDMT_initCStream_internal(
+ cctx->mtctx,
+ prefixDict.dict, prefixDict.dictSize, ZSTD_dct_rawContent,
+ cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) );
+ cctx->streamStage = zcss_load;
+ cctx->appliedParams.nbWorkers = params.nbWorkers;
+ } else
+#endif
+ { FORWARD_IF_ERROR( ZSTD_resetCStream_internal(cctx,
+ prefixDict.dict, prefixDict.dictSize, prefixDict.dictContentType,
+ cctx->cdict,
+ params, cctx->pledgedSrcSizePlusOne-1) );
+ assert(cctx->streamStage == zcss_load);
+ assert(cctx->appliedParams.nbWorkers == 0);
+ } }
+ /* end of transparent initialization stage */
+
+ /* compression stage */
+#ifdef ZSTD_MULTITHREAD
+ if (cctx->appliedParams.nbWorkers > 0) {
+ int const forceMaxProgress = (endOp == ZSTD_e_flush || endOp == ZSTD_e_end);
+ size_t flushMin;
+ assert(forceMaxProgress || endOp == ZSTD_e_continue /* Protection for a new flush type */);
+ if (cctx->cParamsChanged) {
+ ZSTDMT_updateCParams_whileCompressing(cctx->mtctx, &cctx->requestedParams);
+ cctx->cParamsChanged = 0;
+ }
+ do {
+ flushMin = ZSTDMT_compressStream_generic(cctx->mtctx, output, input, endOp);
+ if ( ZSTD_isError(flushMin)
+ || (endOp == ZSTD_e_end && flushMin == 0) ) { /* compression completed */
+ ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only);
+ }
+ FORWARD_IF_ERROR(flushMin);
+ } while (forceMaxProgress && flushMin != 0 && output->pos < output->size);
+ DEBUGLOG(5, "completed ZSTD_compressStream2 delegating to ZSTDMT_compressStream_generic");
+ /* Either we don't require maximum forward progress, we've finished the
+ * flush, or we are out of output space.
+ */
+ assert(!forceMaxProgress || flushMin == 0 || output->pos == output->size);
+ return flushMin;
+ }
+#endif
+ FORWARD_IF_ERROR( ZSTD_compressStream_generic(cctx, output, input, endOp) );
+ DEBUGLOG(5, "completed ZSTD_compressStream2");
+ return cctx->outBuffContentSize - cctx->outBuffFlushedSize; /* remaining to flush */
+}
+
+size_t ZSTD_compressStream2_simpleArgs (
+ ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity, size_t* dstPos,
+ const void* src, size_t srcSize, size_t* srcPos,
+ ZSTD_EndDirective endOp)
+{
+ ZSTD_outBuffer output = { dst, dstCapacity, *dstPos };
+ ZSTD_inBuffer input = { src, srcSize, *srcPos };
+ /* ZSTD_compressStream2() will check validity of dstPos and srcPos */
+ size_t const cErr = ZSTD_compressStream2(cctx, &output, &input, endOp);
+ *dstPos = output.pos;
+ *srcPos = input.pos;
+ return cErr;
+}
+
+size_t ZSTD_compress2(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only);
+ { size_t oPos = 0;
+ size_t iPos = 0;
+ size_t const result = ZSTD_compressStream2_simpleArgs(cctx,
+ dst, dstCapacity, &oPos,
+ src, srcSize, &iPos,
+ ZSTD_e_end);
+ FORWARD_IF_ERROR(result);
+ if (result != 0) { /* compression not completed, due to lack of output space */
+ assert(oPos == dstCapacity);
+ RETURN_ERROR(dstSize_tooSmall);
+ }
+ assert(iPos == srcSize); /* all input is expected consumed */
+ return oPos;
+ }
+}
+
+/*====== Finalize ======*/
+
+/*! ZSTD_flushStream() :
+ * @return : amount of data remaining to flush */
+size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
+{
+ ZSTD_inBuffer input = { NULL, 0, 0 };
+ return ZSTD_compressStream2(zcs, output, &input, ZSTD_e_flush);
+}
+
+
+size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
+{
+ ZSTD_inBuffer input = { NULL, 0, 0 };
+ size_t const remainingToFlush = ZSTD_compressStream2(zcs, output, &input, ZSTD_e_end);
+ FORWARD_IF_ERROR( remainingToFlush );
+ if (zcs->appliedParams.nbWorkers > 0) return remainingToFlush; /* minimal estimation */
+ /* single thread mode : attempt to calculate remaining to flush more precisely */
+ { size_t const lastBlockSize = zcs->frameEnded ? 0 : ZSTD_BLOCKHEADERSIZE;
+ size_t const checksumSize = (size_t)(zcs->frameEnded ? 0 : zcs->appliedParams.fParams.checksumFlag * 4);
+ size_t const toFlush = remainingToFlush + lastBlockSize + checksumSize;
+ DEBUGLOG(4, "ZSTD_endStream : remaining to flush : %u", (unsigned)toFlush);
+ return toFlush;
+ }
+}
+
+
+/*-===== Pre-defined compression levels =====-*/
+
+#define ZSTD_MAX_CLEVEL 22
+int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; }
+int ZSTD_minCLevel(void) { return (int)-ZSTD_TARGETLENGTH_MAX; }
+
+static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = {
+{ /* "default" - for any srcSize > 256 KB */
+ /* W, C, H, S, L, TL, strat */
+ { 19, 12, 13, 1, 6, 1, ZSTD_fast }, /* base for negative levels */
+ { 19, 13, 14, 1, 7, 0, ZSTD_fast }, /* level 1 */
+ { 20, 15, 16, 1, 6, 0, ZSTD_fast }, /* level 2 */
+ { 21, 16, 17, 1, 5, 1, ZSTD_dfast }, /* level 3 */
+ { 21, 18, 18, 1, 5, 1, ZSTD_dfast }, /* level 4 */
+ { 21, 18, 19, 2, 5, 2, ZSTD_greedy }, /* level 5 */
+ { 21, 19, 19, 3, 5, 4, ZSTD_greedy }, /* level 6 */
+ { 21, 19, 19, 3, 5, 8, ZSTD_lazy }, /* level 7 */
+ { 21, 19, 19, 3, 5, 16, ZSTD_lazy2 }, /* level 8 */
+ { 21, 19, 20, 4, 5, 16, ZSTD_lazy2 }, /* level 9 */
+ { 22, 20, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 10 */
+ { 22, 21, 22, 4, 5, 16, ZSTD_lazy2 }, /* level 11 */
+ { 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 12 */
+ { 22, 21, 22, 5, 5, 32, ZSTD_btlazy2 }, /* level 13 */
+ { 22, 22, 23, 5, 5, 32, ZSTD_btlazy2 }, /* level 14 */
+ { 22, 23, 23, 6, 5, 32, ZSTD_btlazy2 }, /* level 15 */
+ { 22, 22, 22, 5, 5, 48, ZSTD_btopt }, /* level 16 */
+ { 23, 23, 22, 5, 4, 64, ZSTD_btopt }, /* level 17 */
+ { 23, 23, 22, 6, 3, 64, ZSTD_btultra }, /* level 18 */
+ { 23, 24, 22, 7, 3,256, ZSTD_btultra2}, /* level 19 */
+ { 25, 25, 23, 7, 3,256, ZSTD_btultra2}, /* level 20 */
+ { 26, 26, 24, 7, 3,512, ZSTD_btultra2}, /* level 21 */
+ { 27, 27, 25, 9, 3,999, ZSTD_btultra2}, /* level 22 */
+},
+{ /* for srcSize <= 256 KB */
+ /* W, C, H, S, L, T, strat */
+ { 18, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
+ { 18, 13, 14, 1, 6, 0, ZSTD_fast }, /* level 1 */
+ { 18, 14, 14, 1, 5, 1, ZSTD_dfast }, /* level 2 */
+ { 18, 16, 16, 1, 4, 1, ZSTD_dfast }, /* level 3 */
+ { 18, 16, 17, 2, 5, 2, ZSTD_greedy }, /* level 4.*/
+ { 18, 18, 18, 3, 5, 2, ZSTD_greedy }, /* level 5.*/
+ { 18, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6.*/
+ { 18, 18, 19, 4, 4, 4, ZSTD_lazy }, /* level 7 */
+ { 18, 18, 19, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
+ { 18, 18, 19, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
+ { 18, 18, 19, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
+ { 18, 18, 19, 5, 4, 12, ZSTD_btlazy2 }, /* level 11.*/
+ { 18, 19, 19, 7, 4, 12, ZSTD_btlazy2 }, /* level 12.*/
+ { 18, 18, 19, 4, 4, 16, ZSTD_btopt }, /* level 13 */
+ { 18, 18, 19, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
+ { 18, 18, 19, 6, 3,128, ZSTD_btopt }, /* level 15.*/
+ { 18, 19, 19, 6, 3,128, ZSTD_btultra }, /* level 16.*/
+ { 18, 19, 19, 8, 3,256, ZSTD_btultra }, /* level 17.*/
+ { 18, 19, 19, 6, 3,128, ZSTD_btultra2}, /* level 18.*/
+ { 18, 19, 19, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
+ { 18, 19, 19, 10, 3,512, ZSTD_btultra2}, /* level 20.*/
+ { 18, 19, 19, 12, 3,512, ZSTD_btultra2}, /* level 21.*/
+ { 18, 19, 19, 13, 3,999, ZSTD_btultra2}, /* level 22.*/
+},
+{ /* for srcSize <= 128 KB */
+ /* W, C, H, S, L, T, strat */
+ { 17, 12, 12, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
+ { 17, 12, 13, 1, 6, 0, ZSTD_fast }, /* level 1 */
+ { 17, 13, 15, 1, 5, 0, ZSTD_fast }, /* level 2 */
+ { 17, 15, 16, 2, 5, 1, ZSTD_dfast }, /* level 3 */
+ { 17, 17, 17, 2, 4, 1, ZSTD_dfast }, /* level 4 */
+ { 17, 16, 17, 3, 4, 2, ZSTD_greedy }, /* level 5 */
+ { 17, 17, 17, 3, 4, 4, ZSTD_lazy }, /* level 6 */
+ { 17, 17, 17, 3, 4, 8, ZSTD_lazy2 }, /* level 7 */
+ { 17, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
+ { 17, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
+ { 17, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
+ { 17, 17, 17, 5, 4, 8, ZSTD_btlazy2 }, /* level 11 */
+ { 17, 18, 17, 7, 4, 12, ZSTD_btlazy2 }, /* level 12 */
+ { 17, 18, 17, 3, 4, 12, ZSTD_btopt }, /* level 13.*/
+ { 17, 18, 17, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
+ { 17, 18, 17, 6, 3,256, ZSTD_btopt }, /* level 15.*/
+ { 17, 18, 17, 6, 3,128, ZSTD_btultra }, /* level 16.*/
+ { 17, 18, 17, 8, 3,256, ZSTD_btultra }, /* level 17.*/
+ { 17, 18, 17, 10, 3,512, ZSTD_btultra }, /* level 18.*/
+ { 17, 18, 17, 5, 3,256, ZSTD_btultra2}, /* level 19.*/
+ { 17, 18, 17, 7, 3,512, ZSTD_btultra2}, /* level 20.*/
+ { 17, 18, 17, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
+ { 17, 18, 17, 11, 3,999, ZSTD_btultra2}, /* level 22.*/
+},
+{ /* for srcSize <= 16 KB */
+ /* W, C, H, S, L, T, strat */
+ { 14, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
+ { 14, 14, 15, 1, 5, 0, ZSTD_fast }, /* level 1 */
+ { 14, 14, 15, 1, 4, 0, ZSTD_fast }, /* level 2 */
+ { 14, 14, 15, 2, 4, 1, ZSTD_dfast }, /* level 3 */
+ { 14, 14, 14, 4, 4, 2, ZSTD_greedy }, /* level 4 */
+ { 14, 14, 14, 3, 4, 4, ZSTD_lazy }, /* level 5.*/
+ { 14, 14, 14, 4, 4, 8, ZSTD_lazy2 }, /* level 6 */
+ { 14, 14, 14, 6, 4, 8, ZSTD_lazy2 }, /* level 7 */
+ { 14, 14, 14, 8, 4, 8, ZSTD_lazy2 }, /* level 8.*/
+ { 14, 15, 14, 5, 4, 8, ZSTD_btlazy2 }, /* level 9.*/
+ { 14, 15, 14, 9, 4, 8, ZSTD_btlazy2 }, /* level 10.*/
+ { 14, 15, 14, 3, 4, 12, ZSTD_btopt }, /* level 11.*/
+ { 14, 15, 14, 4, 3, 24, ZSTD_btopt }, /* level 12.*/
+ { 14, 15, 14, 5, 3, 32, ZSTD_btultra }, /* level 13.*/
+ { 14, 15, 15, 6, 3, 64, ZSTD_btultra }, /* level 14.*/
+ { 14, 15, 15, 7, 3,256, ZSTD_btultra }, /* level 15.*/
+ { 14, 15, 15, 5, 3, 48, ZSTD_btultra2}, /* level 16.*/
+ { 14, 15, 15, 6, 3,128, ZSTD_btultra2}, /* level 17.*/
+ { 14, 15, 15, 7, 3,256, ZSTD_btultra2}, /* level 18.*/
+ { 14, 15, 15, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
+ { 14, 15, 15, 8, 3,512, ZSTD_btultra2}, /* level 20.*/
+ { 14, 15, 15, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
+ { 14, 15, 15, 10, 3,999, ZSTD_btultra2}, /* level 22.*/
+},
+};
+
+/*! ZSTD_getCParams() :
+ * @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize.
+ * Size values are optional, provide 0 if not known or unused */
+ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize)
+{
+ size_t const addedSize = srcSizeHint ? 0 : 500;
+ U64 const rSize = srcSizeHint+dictSize ? srcSizeHint+dictSize+addedSize : ZSTD_CONTENTSIZE_UNKNOWN; /* intentional overflow for srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN */
+ U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB);
+ int row = compressionLevel;
+ DEBUGLOG(5, "ZSTD_getCParams (cLevel=%i)", compressionLevel);
+ if (compressionLevel == 0) row = ZSTD_CLEVEL_DEFAULT; /* 0 == default */
+ if (compressionLevel < 0) row = 0; /* entry 0 is baseline for fast mode */
+ if (compressionLevel > ZSTD_MAX_CLEVEL) row = ZSTD_MAX_CLEVEL;
+ { ZSTD_compressionParameters cp = ZSTD_defaultCParameters[tableID][row];
+ if (compressionLevel < 0) cp.targetLength = (unsigned)(-compressionLevel); /* acceleration factor */
+ return ZSTD_adjustCParams_internal(cp, srcSizeHint, dictSize); /* refine parameters based on srcSize & dictSize */
+ }
+}
+
+/*! ZSTD_getParams() :
+ * same idea as ZSTD_getCParams()
+ * @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`).
+ * Fields of `ZSTD_frameParameters` are set to default values */
+ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) {
+ ZSTD_parameters params;
+ ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, srcSizeHint, dictSize);
+ DEBUGLOG(5, "ZSTD_getParams (cLevel=%i)", compressionLevel);
+ memset(¶ms, 0, sizeof(params));
+ params.cParams = cParams;
+ params.fParams.contentSizeFlag = 1;
+ return params;
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_compress_internal.h b/vendor/github.com/DataDog/zstd/zstd_compress_internal.h
new file mode 100644
index 0000000..5495899
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_compress_internal.h
@@ -0,0 +1,907 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/* This header contains definitions
+ * that shall **only** be used by modules within lib/compress.
+ */
+
+#ifndef ZSTD_COMPRESS_H
+#define ZSTD_COMPRESS_H
+
+/*-*************************************
+* Dependencies
+***************************************/
+#include "zstd_internal.h"
+#ifdef ZSTD_MULTITHREAD
+# include "zstdmt_compress.h"
+#endif
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*-*************************************
+* Constants
+***************************************/
+#define kSearchStrength 8
+#define HASH_READ_SIZE 8
+#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted".
+ It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
+ It's not a big deal though : candidate will just be sorted again.
+ Additionally, candidate position 1 will be lost.
+ But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
+ The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy.
+ This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
+
+
+/*-*************************************
+* Context memory management
+***************************************/
+typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
+typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
+
+typedef struct ZSTD_prefixDict_s {
+ const void* dict;
+ size_t dictSize;
+ ZSTD_dictContentType_e dictContentType;
+} ZSTD_prefixDict;
+
+typedef struct {
+ void* dictBuffer;
+ void const* dict;
+ size_t dictSize;
+ ZSTD_dictContentType_e dictContentType;
+ ZSTD_CDict* cdict;
+} ZSTD_localDict;
+
+typedef struct {
+ U32 CTable[HUF_CTABLE_SIZE_U32(255)];
+ HUF_repeat repeatMode;
+} ZSTD_hufCTables_t;
+
+typedef struct {
+ FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
+ FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
+ FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
+ FSE_repeat offcode_repeatMode;
+ FSE_repeat matchlength_repeatMode;
+ FSE_repeat litlength_repeatMode;
+} ZSTD_fseCTables_t;
+
+typedef struct {
+ ZSTD_hufCTables_t huf;
+ ZSTD_fseCTables_t fse;
+} ZSTD_entropyCTables_t;
+
+typedef struct {
+ U32 off;
+ U32 len;
+} ZSTD_match_t;
+
+typedef struct {
+ int price;
+ U32 off;
+ U32 mlen;
+ U32 litlen;
+ U32 rep[ZSTD_REP_NUM];
+} ZSTD_optimal_t;
+
+typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;
+
+typedef struct {
+ /* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
+ unsigned* litFreq; /* table of literals statistics, of size 256 */
+ unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */
+ unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */
+ unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */
+ ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */
+ ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */
+
+ U32 litSum; /* nb of literals */
+ U32 litLengthSum; /* nb of litLength codes */
+ U32 matchLengthSum; /* nb of matchLength codes */
+ U32 offCodeSum; /* nb of offset codes */
+ U32 litSumBasePrice; /* to compare to log2(litfreq) */
+ U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */
+ U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */
+ U32 offCodeSumBasePrice; /* to compare to log2(offreq) */
+ ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */
+ const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */
+ ZSTD_literalCompressionMode_e literalCompressionMode;
+} optState_t;
+
+typedef struct {
+ ZSTD_entropyCTables_t entropy;
+ U32 rep[ZSTD_REP_NUM];
+} ZSTD_compressedBlockState_t;
+
+typedef struct {
+ BYTE const* nextSrc; /* next block here to continue on current prefix */
+ BYTE const* base; /* All regular indexes relative to this position */
+ BYTE const* dictBase; /* extDict indexes relative to this position */
+ U32 dictLimit; /* below that point, need extDict */
+ U32 lowLimit; /* below that point, no more valid data */
+} ZSTD_window_t;
+
+typedef struct ZSTD_matchState_t ZSTD_matchState_t;
+struct ZSTD_matchState_t {
+ ZSTD_window_t window; /* State for window round buffer management */
+ U32 loadedDictEnd; /* index of end of dictionary, within context's referential. When dict referential is copied into active context (i.e. not attached), effectively same value as dictSize, since referential starts from zero */
+ U32 nextToUpdate; /* index from which to continue table update */
+ U32 hashLog3; /* dispatch table : larger == faster, more memory */
+ U32* hashTable;
+ U32* hashTable3;
+ U32* chainTable;
+ optState_t opt; /* optimal parser state */
+ const ZSTD_matchState_t* dictMatchState;
+ ZSTD_compressionParameters cParams;
+};
+
+typedef struct {
+ ZSTD_compressedBlockState_t* prevCBlock;
+ ZSTD_compressedBlockState_t* nextCBlock;
+ ZSTD_matchState_t matchState;
+} ZSTD_blockState_t;
+
+typedef struct {
+ U32 offset;
+ U32 checksum;
+} ldmEntry_t;
+
+typedef struct {
+ ZSTD_window_t window; /* State for the window round buffer management */
+ ldmEntry_t* hashTable;
+ BYTE* bucketOffsets; /* Next position in bucket to insert entry */
+ U64 hashPower; /* Used to compute the rolling hash.
+ * Depends on ldmParams.minMatchLength */
+} ldmState_t;
+
+typedef struct {
+ U32 enableLdm; /* 1 if enable long distance matching */
+ U32 hashLog; /* Log size of hashTable */
+ U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
+ U32 minMatchLength; /* Minimum match length */
+ U32 hashRateLog; /* Log number of entries to skip */
+ U32 windowLog; /* Window log for the LDM */
+} ldmParams_t;
+
+typedef struct {
+ U32 offset;
+ U32 litLength;
+ U32 matchLength;
+} rawSeq;
+
+typedef struct {
+ rawSeq* seq; /* The start of the sequences */
+ size_t pos; /* The position where reading stopped. <= size. */
+ size_t size; /* The number of sequences. <= capacity. */
+ size_t capacity; /* The capacity starting from `seq` pointer */
+} rawSeqStore_t;
+
+struct ZSTD_CCtx_params_s {
+ ZSTD_format_e format;
+ ZSTD_compressionParameters cParams;
+ ZSTD_frameParameters fParams;
+
+ int compressionLevel;
+ int forceWindow; /* force back-references to respect limit of
+ * 1<<wLog, even for dictionary */
+ size_t targetCBlockSize; /* Tries to fit compressed block size to be around targetCBlockSize.
+ * No target when targetCBlockSize == 0.
+ * There is no guarantee on compressed block size */
+
+ ZSTD_dictAttachPref_e attachDictPref;
+ ZSTD_literalCompressionMode_e literalCompressionMode;
+
+ /* Multithreading: used to pass parameters to mtctx */
+ int nbWorkers;
+ size_t jobSize;
+ int overlapLog;
+ int rsyncable;
+
+ /* Long distance matching parameters */
+ ldmParams_t ldmParams;
+
+ /* Internal use, for createCCtxParams() and freeCCtxParams() only */
+ ZSTD_customMem customMem;
+}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
+
+struct ZSTD_CCtx_s {
+ ZSTD_compressionStage_e stage;
+ int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
+ int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
+ ZSTD_CCtx_params requestedParams;
+ ZSTD_CCtx_params appliedParams;
+ U32 dictID;
+
+ int workSpaceOversizedDuration;
+ void* workSpace;
+ size_t workSpaceSize;
+ size_t blockSize;
+ unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
+ unsigned long long consumedSrcSize;
+ unsigned long long producedCSize;
+ XXH64_state_t xxhState;
+ ZSTD_customMem customMem;
+ size_t staticSize;
+
+ seqStore_t seqStore; /* sequences storage ptrs */
+ ldmState_t ldmState; /* long distance matching state */
+ rawSeq* ldmSequences; /* Storage for the ldm output sequences */
+ size_t maxNbLdmSequences;
+ rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
+ ZSTD_blockState_t blockState;
+ U32* entropyWorkspace; /* entropy workspace of HUF_WORKSPACE_SIZE bytes */
+
+ /* streaming */
+ char* inBuff;
+ size_t inBuffSize;
+ size_t inToCompress;
+ size_t inBuffPos;
+ size_t inBuffTarget;
+ char* outBuff;
+ size_t outBuffSize;
+ size_t outBuffContentSize;
+ size_t outBuffFlushedSize;
+ ZSTD_cStreamStage streamStage;
+ U32 frameEnded;
+
+ /* Dictionary */
+ ZSTD_localDict localDict;
+ const ZSTD_CDict* cdict;
+ ZSTD_prefixDict prefixDict; /* single-usage dictionary */
+
+ /* Multi-threading */
+#ifdef ZSTD_MULTITHREAD
+ ZSTDMT_CCtx* mtctx;
+#endif
+};
+
+typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
+
+typedef enum { ZSTD_noDict = 0, ZSTD_extDict = 1, ZSTD_dictMatchState = 2 } ZSTD_dictMode_e;
+
+
+typedef size_t (*ZSTD_blockCompressor) (
+ ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode);
+
+
+MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
+{
+ static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 16, 17, 17, 18, 18, 19, 19,
+ 20, 20, 20, 20, 21, 21, 21, 21,
+ 22, 22, 22, 22, 22, 22, 22, 22,
+ 23, 23, 23, 23, 23, 23, 23, 23,
+ 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24 };
+ static const U32 LL_deltaCode = 19;
+ return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
+}
+
+/* ZSTD_MLcode() :
+ * note : mlBase = matchLength - MINMATCH;
+ * because it's the format it's stored in seqStore->sequences */
+MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
+{
+ static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
+ 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
+ 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
+ 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
+ 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
+ 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
+ static const U32 ML_deltaCode = 36;
+ return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
+}
+
+/*! ZSTD_storeSeq() :
+ * Store a sequence (literal length, literals, offset code and match length code) into seqStore_t.
+ * `offsetCode` : distance to match + 3 (values 1-3 are repCodes).
+ * `mlBase` : matchLength - MINMATCH
+*/
+MEM_STATIC void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const void* literals, U32 offsetCode, size_t mlBase)
+{
+#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
+ static const BYTE* g_start = NULL;
+ if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
+ { U32 const pos = (U32)((const BYTE*)literals - g_start);
+ DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
+ pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offsetCode);
+ }
+#endif
+ assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
+ /* copy Literals */
+ assert(seqStorePtr->maxNbLit <= 128 KB);
+ assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit);
+ ZSTD_wildcopy(seqStorePtr->lit, literals, litLength, ZSTD_no_overlap);
+ seqStorePtr->lit += litLength;
+
+ /* literal Length */
+ if (litLength>0xFFFF) {
+ assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
+ seqStorePtr->longLengthID = 1;
+ seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
+ }
+ seqStorePtr->sequences[0].litLength = (U16)litLength;
+
+ /* match offset */
+ seqStorePtr->sequences[0].offset = offsetCode + 1;
+
+ /* match Length */
+ if (mlBase>0xFFFF) {
+ assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
+ seqStorePtr->longLengthID = 2;
+ seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
+ }
+ seqStorePtr->sequences[0].matchLength = (U16)mlBase;
+
+ seqStorePtr->sequences++;
+}
+
+
+/*-*************************************
+* Match length counter
+***************************************/
+static unsigned ZSTD_NbCommonBytes (size_t val)
+{
+ if (MEM_isLittleEndian()) {
+ if (MEM_64bits()) {
+# if defined(_MSC_VER) && defined(_WIN64)
+ unsigned long r = 0;
+ _BitScanForward64( &r, (U64)val );
+ return (unsigned)(r>>3);
+# elif defined(__GNUC__) && (__GNUC__ >= 4)
+ return (__builtin_ctzll((U64)val) >> 3);
+# else
+ static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
+ 0, 3, 1, 3, 1, 4, 2, 7,
+ 0, 2, 3, 6, 1, 5, 3, 5,
+ 1, 3, 4, 4, 2, 5, 6, 7,
+ 7, 0, 1, 2, 3, 3, 4, 6,
+ 2, 6, 5, 5, 3, 4, 5, 6,
+ 7, 1, 2, 4, 6, 4, 4, 5,
+ 7, 2, 6, 5, 7, 6, 7, 7 };
+ return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
+# endif
+ } else { /* 32 bits */
+# if defined(_MSC_VER)
+ unsigned long r=0;
+ _BitScanForward( &r, (U32)val );
+ return (unsigned)(r>>3);
+# elif defined(__GNUC__) && (__GNUC__ >= 3)
+ return (__builtin_ctz((U32)val) >> 3);
+# else
+ static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
+ 3, 2, 2, 1, 3, 2, 0, 1,
+ 3, 3, 1, 2, 2, 2, 2, 0,
+ 3, 1, 2, 0, 1, 0, 1, 1 };
+ return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
+# endif
+ }
+ } else { /* Big Endian CPU */
+ if (MEM_64bits()) {
+# if defined(_MSC_VER) && defined(_WIN64)
+ unsigned long r = 0;
+ _BitScanReverse64( &r, val );
+ return (unsigned)(r>>3);
+# elif defined(__GNUC__) && (__GNUC__ >= 4)
+ return (__builtin_clzll(val) >> 3);
+# else
+ unsigned r;
+ const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
+ if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
+ if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
+ r += (!val);
+ return r;
+# endif
+ } else { /* 32 bits */
+# if defined(_MSC_VER)
+ unsigned long r = 0;
+ _BitScanReverse( &r, (unsigned long)val );
+ return (unsigned)(r>>3);
+# elif defined(__GNUC__) && (__GNUC__ >= 3)
+ return (__builtin_clz((U32)val) >> 3);
+# else
+ unsigned r;
+ if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
+ r += (!val);
+ return r;
+# endif
+ } }
+}
+
+
+MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
+{
+ const BYTE* const pStart = pIn;
+ const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
+
+ if (pIn < pInLoopLimit) {
+ { size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
+ if (diff) return ZSTD_NbCommonBytes(diff); }
+ pIn+=sizeof(size_t); pMatch+=sizeof(size_t);
+ while (pIn < pInLoopLimit) {
+ size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
+ if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
+ pIn += ZSTD_NbCommonBytes(diff);
+ return (size_t)(pIn - pStart);
+ } }
+ if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
+ if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
+ if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
+ return (size_t)(pIn - pStart);
+}
+
+/** ZSTD_count_2segments() :
+ * can count match length with `ip` & `match` in 2 different segments.
+ * convention : on reaching mEnd, match count continue starting from iStart
+ */
+MEM_STATIC size_t
+ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
+ const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
+{
+ const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
+ size_t const matchLength = ZSTD_count(ip, match, vEnd);
+ if (match + matchLength != mEnd) return matchLength;
+ DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength);
+ DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match);
+ DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip);
+ DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart);
+ DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd));
+ return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
+}
+
+
+/*-*************************************
+ * Hashes
+ ***************************************/
+static const U32 prime3bytes = 506832829U;
+static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
+MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
+
+static const U32 prime4bytes = 2654435761U;
+static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
+static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
+
+static const U64 prime5bytes = 889523592379ULL;
+static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
+static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
+
+static const U64 prime6bytes = 227718039650203ULL;
+static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
+static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
+
+static const U64 prime7bytes = 58295818150454627ULL;
+static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
+static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
+
+static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
+static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
+static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
+
+MEM_STATIC size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
+{
+ switch(mls)
+ {
+ default:
+ case 4: return ZSTD_hash4Ptr(p, hBits);
+ case 5: return ZSTD_hash5Ptr(p, hBits);
+ case 6: return ZSTD_hash6Ptr(p, hBits);
+ case 7: return ZSTD_hash7Ptr(p, hBits);
+ case 8: return ZSTD_hash8Ptr(p, hBits);
+ }
+}
+
+/** ZSTD_ipow() :
+ * Return base^exponent.
+ */
+static U64 ZSTD_ipow(U64 base, U64 exponent)
+{
+ U64 power = 1;
+ while (exponent) {
+ if (exponent & 1) power *= base;
+ exponent >>= 1;
+ base *= base;
+ }
+ return power;
+}
+
+#define ZSTD_ROLL_HASH_CHAR_OFFSET 10
+
+/** ZSTD_rollingHash_append() :
+ * Add the buffer to the hash value.
+ */
+static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size)
+{
+ BYTE const* istart = (BYTE const*)buf;
+ size_t pos;
+ for (pos = 0; pos < size; ++pos) {
+ hash *= prime8bytes;
+ hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET;
+ }
+ return hash;
+}
+
+/** ZSTD_rollingHash_compute() :
+ * Compute the rolling hash value of the buffer.
+ */
+MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size)
+{
+ return ZSTD_rollingHash_append(0, buf, size);
+}
+
+/** ZSTD_rollingHash_primePower() :
+ * Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash
+ * over a window of length bytes.
+ */
+MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length)
+{
+ return ZSTD_ipow(prime8bytes, length - 1);
+}
+
+/** ZSTD_rollingHash_rotate() :
+ * Rotate the rolling hash by one byte.
+ */
+MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower)
+{
+ hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower;
+ hash *= prime8bytes;
+ hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET;
+ return hash;
+}
+
+/*-*************************************
+* Round buffer management
+***************************************/
+#if (ZSTD_WINDOWLOG_MAX_64 > 31)
+# error "ZSTD_WINDOWLOG_MAX is too large : would overflow ZSTD_CURRENT_MAX"
+#endif
+/* Max current allowed */
+#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
+/* Maximum chunk size before overflow correction needs to be called again */
+#define ZSTD_CHUNKSIZE_MAX \
+ ( ((U32)-1) /* Maximum ending current index */ \
+ - ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */
+
+/**
+ * ZSTD_window_clear():
+ * Clears the window containing the history by simply setting it to empty.
+ */
+MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
+{
+ size_t const endT = (size_t)(window->nextSrc - window->base);
+ U32 const end = (U32)endT;
+
+ window->lowLimit = end;
+ window->dictLimit = end;
+}
+
+/**
+ * ZSTD_window_hasExtDict():
+ * Returns non-zero if the window has a non-empty extDict.
+ */
+MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
+{
+ return window.lowLimit < window.dictLimit;
+}
+
+/**
+ * ZSTD_matchState_dictMode():
+ * Inspects the provided matchState and figures out what dictMode should be
+ * passed to the compressor.
+ */
+MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms)
+{
+ return ZSTD_window_hasExtDict(ms->window) ?
+ ZSTD_extDict :
+ ms->dictMatchState != NULL ?
+ ZSTD_dictMatchState :
+ ZSTD_noDict;
+}
+
+/**
+ * ZSTD_window_needOverflowCorrection():
+ * Returns non-zero if the indices are getting too large and need overflow
+ * protection.
+ */
+MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
+ void const* srcEnd)
+{
+ U32 const current = (U32)((BYTE const*)srcEnd - window.base);
+ return current > ZSTD_CURRENT_MAX;
+}
+
+/**
+ * ZSTD_window_correctOverflow():
+ * Reduces the indices to protect from index overflow.
+ * Returns the correction made to the indices, which must be applied to every
+ * stored index.
+ *
+ * The least significant cycleLog bits of the indices must remain the same,
+ * which may be 0. Every index up to maxDist in the past must be valid.
+ * NOTE: (maxDist & cycleMask) must be zero.
+ */
+MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
+ U32 maxDist, void const* src)
+{
+ /* preemptive overflow correction:
+ * 1. correction is large enough:
+ * lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
+ * 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
+ *
+ * current - newCurrent
+ * > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
+ * > (3<<29) - (1<<chainLog)
+ * > (3<<29) - (1<<30) (NOTE: chainLog <= 30)
+ * > 1<<29
+ *
+ * 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
+ * After correction, current is less than (1<<chainLog + 1<<windowLog).
+ * In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
+ * In 32-bit mode we are safe, because (chainLog <= 29), so
+ * ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
+ * 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
+ * windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
+ */
+ U32 const cycleMask = (1U << cycleLog) - 1;
+ U32 const current = (U32)((BYTE const*)src - window->base);
+ U32 const newCurrent = (current & cycleMask) + maxDist;
+ U32 const correction = current - newCurrent;
+ assert((maxDist & cycleMask) == 0);
+ assert(current > newCurrent);
+ /* Loose bound, should be around 1<<29 (see above) */
+ assert(correction > 1<<28);
+
+ window->base += correction;
+ window->dictBase += correction;
+ window->lowLimit -= correction;
+ window->dictLimit -= correction;
+
+ DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
+ window->lowLimit);
+ return correction;
+}
+
+/**
+ * ZSTD_window_enforceMaxDist():
+ * Updates lowLimit so that:
+ * (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
+ *
+ * It ensures index is valid as long as index >= lowLimit.
+ * This must be called before a block compression call.
+ *
+ * loadedDictEnd is only defined if a dictionary is in use for current compression.
+ * As the name implies, loadedDictEnd represents the index at end of dictionary.
+ * The value lies within context's referential, it can be directly compared to blockEndIdx.
+ *
+ * If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0.
+ * If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit.
+ * This is because dictionaries are allowed to be referenced fully
+ * as long as the last byte of the dictionary is in the window.
+ * Once input has progressed beyond window size, dictionary cannot be referenced anymore.
+ *
+ * In normal dict mode, the dictionary lies between lowLimit and dictLimit.
+ * In dictMatchState mode, lowLimit and dictLimit are the same,
+ * and the dictionary is below them.
+ * forceWindow and dictMatchState are therefore incompatible.
+ */
+MEM_STATIC void
+ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
+ const void* blockEnd,
+ U32 maxDist,
+ U32* loadedDictEndPtr,
+ const ZSTD_matchState_t** dictMatchStatePtr)
+{
+ U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
+ U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
+ DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
+ (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
+
+ /* - When there is no dictionary : loadedDictEnd == 0.
+ In which case, the test (blockEndIdx > maxDist) is merely to avoid
+ overflowing next operation `newLowLimit = blockEndIdx - maxDist`.
+ - When there is a standard dictionary :
+ Index referential is copied from the dictionary,
+ which means it starts from 0.
+ In which case, loadedDictEnd == dictSize,
+ and it makes sense to compare `blockEndIdx > maxDist + dictSize`
+ since `blockEndIdx` also starts from zero.
+ - When there is an attached dictionary :
+ loadedDictEnd is expressed within the referential of the context,
+ so it can be directly compared against blockEndIdx.
+ */
+ if (blockEndIdx > maxDist + loadedDictEnd) {
+ U32 const newLowLimit = blockEndIdx - maxDist;
+ if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
+ if (window->dictLimit < window->lowLimit) {
+ DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u",
+ (unsigned)window->dictLimit, (unsigned)window->lowLimit);
+ window->dictLimit = window->lowLimit;
+ }
+ /* On reaching window size, dictionaries are invalidated */
+ if (loadedDictEndPtr) *loadedDictEndPtr = 0;
+ if (dictMatchStatePtr) *dictMatchStatePtr = NULL;
+ }
+}
+
+/* Similar to ZSTD_window_enforceMaxDist(),
+ * but only invalidates dictionary
+ * when input progresses beyond window size. */
+MEM_STATIC void
+ZSTD_checkDictValidity(ZSTD_window_t* window,
+ const void* blockEnd,
+ U32 maxDist,
+ U32* loadedDictEndPtr,
+ const ZSTD_matchState_t** dictMatchStatePtr)
+{
+ U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
+ U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
+ DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
+ (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
+
+ if (loadedDictEnd && (blockEndIdx > maxDist + loadedDictEnd)) {
+ /* On reaching window size, dictionaries are invalidated */
+ if (loadedDictEndPtr) *loadedDictEndPtr = 0;
+ if (dictMatchStatePtr) *dictMatchStatePtr = NULL;
+ }
+}
+
+/**
+ * ZSTD_window_update():
+ * Updates the window by appending [src, src + srcSize) to the window.
+ * If it is not contiguous, the current prefix becomes the extDict, and we
+ * forget about the extDict. Handles overlap of the prefix and extDict.
+ * Returns non-zero if the segment is contiguous.
+ */
+MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
+ void const* src, size_t srcSize)
+{
+ BYTE const* const ip = (BYTE const*)src;
+ U32 contiguous = 1;
+ DEBUGLOG(5, "ZSTD_window_update");
+ /* Check if blocks follow each other */
+ if (src != window->nextSrc) {
+ /* not contiguous */
+ size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
+ DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit);
+ window->lowLimit = window->dictLimit;
+ assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */
+ window->dictLimit = (U32)distanceFromBase;
+ window->dictBase = window->base;
+ window->base = ip - distanceFromBase;
+ // ms->nextToUpdate = window->dictLimit;
+ if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */
+ contiguous = 0;
+ }
+ window->nextSrc = ip + srcSize;
+ /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
+ if ( (ip+srcSize > window->dictBase + window->lowLimit)
+ & (ip < window->dictBase + window->dictLimit)) {
+ ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
+ U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
+ window->lowLimit = lowLimitMax;
+ DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit);
+ }
+ return contiguous;
+}
+
+
+/* debug functions */
+#if (DEBUGLEVEL>=2)
+
+MEM_STATIC double ZSTD_fWeight(U32 rawStat)
+{
+ U32 const fp_accuracy = 8;
+ U32 const fp_multiplier = (1 << fp_accuracy);
+ U32 const newStat = rawStat + 1;
+ U32 const hb = ZSTD_highbit32(newStat);
+ U32 const BWeight = hb * fp_multiplier;
+ U32 const FWeight = (newStat << fp_accuracy) >> hb;
+ U32 const weight = BWeight + FWeight;
+ assert(hb + fp_accuracy < 31);
+ return (double)weight / fp_multiplier;
+}
+
+/* display a table content,
+ * listing each element, its frequency, and its predicted bit cost */
+MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
+{
+ unsigned u, sum;
+ for (u=0, sum=0; u<=max; u++) sum += table[u];
+ DEBUGLOG(2, "total nb elts: %u", sum);
+ for (u=0; u<=max; u++) {
+ DEBUGLOG(2, "%2u: %5u (%.2f)",
+ u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) );
+ }
+}
+
+#endif
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+
+/* ==============================================================
+ * Private declarations
+ * These prototypes shall only be called from within lib/compress
+ * ============================================================== */
+
+/* ZSTD_getCParamsFromCCtxParams() :
+ * cParams are built depending on compressionLevel, src size hints,
+ * LDM and manually set compression parameters.
+ */
+ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
+ const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize);
+
+/*! ZSTD_initCStream_internal() :
+ * Private use only. Init streaming operation.
+ * expects params to be valid.
+ * must receive dict, or cdict, or none, but not both.
+ * @return : 0, or an error code */
+size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
+ const void* dict, size_t dictSize,
+ const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);
+
+void ZSTD_resetSeqStore(seqStore_t* ssPtr);
+
+/*! ZSTD_getCParamsFromCDict() :
+ * as the name implies */
+ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
+
+/* ZSTD_compressBegin_advanced_internal() :
+ * Private use only. To be called from zstdmt_compress.c. */
+size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
+ const void* dict, size_t dictSize,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_dictTableLoadMethod_e dtlm,
+ const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params,
+ unsigned long long pledgedSrcSize);
+
+/* ZSTD_compress_advanced_internal() :
+ * Private use only. To be called from zstdmt_compress.c. */
+size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize,
+ ZSTD_CCtx_params params);
+
+
+/* ZSTD_writeLastEmptyBlock() :
+ * output an empty Block with end-of-frame mark to complete a frame
+ * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
+ * or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
+ */
+size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
+
+
+/* ZSTD_referenceExternalSequences() :
+ * Must be called before starting a compression operation.
+ * seqs must parse a prefix of the source.
+ * This cannot be used when long range matching is enabled.
+ * Zstd will use these sequences, and pass the literals to a secondary block
+ * compressor.
+ * @return : An error code on failure.
+ * NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
+ * access and data corruption.
+ */
+size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
+
+
+#endif /* ZSTD_COMPRESS_H */
diff --git a/vendor/github.com/DataDog/zstd/zstd_ddict.c b/vendor/github.com/DataDog/zstd/zstd_ddict.c
new file mode 100644
index 0000000..0af3d23
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_ddict.c
@@ -0,0 +1,240 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/* zstd_ddict.c :
+ * concentrates all logic that needs to know the internals of ZSTD_DDict object */
+
+/*-*******************************************************
+* Dependencies
+*********************************************************/
+#include <string.h> /* memcpy, memmove, memset */
+#include "cpu.h" /* bmi2 */
+#include "mem.h" /* low level memory routines */
+#define FSE_STATIC_LINKING_ONLY
+#include "fse.h"
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+#include "zstd_decompress_internal.h"
+#include "zstd_ddict.h"
+
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
+# include "zstd_legacy.h"
+#endif
+
+
+
+/*-*******************************************************
+* Types
+*********************************************************/
+struct ZSTD_DDict_s {
+ void* dictBuffer;
+ const void* dictContent;
+ size_t dictSize;
+ ZSTD_entropyDTables_t entropy;
+ U32 dictID;
+ U32 entropyPresent;
+ ZSTD_customMem cMem;
+}; /* typedef'd to ZSTD_DDict within "zstd.h" */
+
+const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict)
+{
+ assert(ddict != NULL);
+ return ddict->dictContent;
+}
+
+size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict)
+{
+ assert(ddict != NULL);
+ return ddict->dictSize;
+}
+
+void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
+{
+ DEBUGLOG(4, "ZSTD_copyDDictParameters");
+ assert(dctx != NULL);
+ assert(ddict != NULL);
+ dctx->dictID = ddict->dictID;
+ dctx->prefixStart = ddict->dictContent;
+ dctx->virtualStart = ddict->dictContent;
+ dctx->dictEnd = (const BYTE*)ddict->dictContent + ddict->dictSize;
+ dctx->previousDstEnd = dctx->dictEnd;
+ if (ddict->entropyPresent) {
+ dctx->litEntropy = 1;
+ dctx->fseEntropy = 1;
+ dctx->LLTptr = ddict->entropy.LLTable;
+ dctx->MLTptr = ddict->entropy.MLTable;
+ dctx->OFTptr = ddict->entropy.OFTable;
+ dctx->HUFptr = ddict->entropy.hufTable;
+ dctx->entropy.rep[0] = ddict->entropy.rep[0];
+ dctx->entropy.rep[1] = ddict->entropy.rep[1];
+ dctx->entropy.rep[2] = ddict->entropy.rep[2];
+ } else {
+ dctx->litEntropy = 0;
+ dctx->fseEntropy = 0;
+ }
+}
+
+
+static size_t
+ZSTD_loadEntropy_intoDDict(ZSTD_DDict* ddict,
+ ZSTD_dictContentType_e dictContentType)
+{
+ ddict->dictID = 0;
+ ddict->entropyPresent = 0;
+ if (dictContentType == ZSTD_dct_rawContent) return 0;
+
+ if (ddict->dictSize < 8) {
+ if (dictContentType == ZSTD_dct_fullDict)
+ return ERROR(dictionary_corrupted); /* only accept specified dictionaries */
+ return 0; /* pure content mode */
+ }
+ { U32 const magic = MEM_readLE32(ddict->dictContent);
+ if (magic != ZSTD_MAGIC_DICTIONARY) {
+ if (dictContentType == ZSTD_dct_fullDict)
+ return ERROR(dictionary_corrupted); /* only accept specified dictionaries */
+ return 0; /* pure content mode */
+ }
+ }
+ ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + ZSTD_FRAMEIDSIZE);
+
+ /* load entropy tables */
+ RETURN_ERROR_IF(ZSTD_isError(ZSTD_loadDEntropy(
+ &ddict->entropy, ddict->dictContent, ddict->dictSize)),
+ dictionary_corrupted);
+ ddict->entropyPresent = 1;
+ return 0;
+}
+
+
+static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict,
+ const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType)
+{
+ if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dict) || (!dictSize)) {
+ ddict->dictBuffer = NULL;
+ ddict->dictContent = dict;
+ if (!dict) dictSize = 0;
+ } else {
+ void* const internalBuffer = ZSTD_malloc(dictSize, ddict->cMem);
+ ddict->dictBuffer = internalBuffer;
+ ddict->dictContent = internalBuffer;
+ if (!internalBuffer) return ERROR(memory_allocation);
+ memcpy(internalBuffer, dict, dictSize);
+ }
+ ddict->dictSize = dictSize;
+ ddict->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
+
+ /* parse dictionary content */
+ FORWARD_IF_ERROR( ZSTD_loadEntropy_intoDDict(ddict, dictContentType) );
+
+ return 0;
+}
+
+ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_customMem customMem)
+{
+ if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
+
+ { ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_malloc(sizeof(ZSTD_DDict), customMem);
+ if (ddict == NULL) return NULL;
+ ddict->cMem = customMem;
+ { size_t const initResult = ZSTD_initDDict_internal(ddict,
+ dict, dictSize,
+ dictLoadMethod, dictContentType);
+ if (ZSTD_isError(initResult)) {
+ ZSTD_freeDDict(ddict);
+ return NULL;
+ } }
+ return ddict;
+ }
+}
+
+/*! ZSTD_createDDict() :
+* Create a digested dictionary, to start decompression without startup delay.
+* `dict` content is copied inside DDict.
+* Consequently, `dict` can be released after `ZSTD_DDict` creation */
+ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize)
+{
+ ZSTD_customMem const allocator = { NULL, NULL, NULL };
+ return ZSTD_createDDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto, allocator);
+}
+
+/*! ZSTD_createDDict_byReference() :
+ * Create a digested dictionary, to start decompression without startup delay.
+ * Dictionary content is simply referenced, it will be accessed during decompression.
+ * Warning : dictBuffer must outlive DDict (DDict must be freed before dictBuffer) */
+ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize)
+{
+ ZSTD_customMem const allocator = { NULL, NULL, NULL };
+ return ZSTD_createDDict_advanced(dictBuffer, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, allocator);
+}
+
+
+const ZSTD_DDict* ZSTD_initStaticDDict(
+ void* sBuffer, size_t sBufferSize,
+ const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType)
+{
+ size_t const neededSpace = sizeof(ZSTD_DDict)
+ + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
+ ZSTD_DDict* const ddict = (ZSTD_DDict*)sBuffer;
+ assert(sBuffer != NULL);
+ assert(dict != NULL);
+ if ((size_t)sBuffer & 7) return NULL; /* 8-aligned */
+ if (sBufferSize < neededSpace) return NULL;
+ if (dictLoadMethod == ZSTD_dlm_byCopy) {
+ memcpy(ddict+1, dict, dictSize); /* local copy */
+ dict = ddict+1;
+ }
+ if (ZSTD_isError( ZSTD_initDDict_internal(ddict,
+ dict, dictSize,
+ ZSTD_dlm_byRef, dictContentType) ))
+ return NULL;
+ return ddict;
+}
+
+
+size_t ZSTD_freeDDict(ZSTD_DDict* ddict)
+{
+ if (ddict==NULL) return 0; /* support free on NULL */
+ { ZSTD_customMem const cMem = ddict->cMem;
+ ZSTD_free(ddict->dictBuffer, cMem);
+ ZSTD_free(ddict, cMem);
+ return 0;
+ }
+}
+
+/*! ZSTD_estimateDDictSize() :
+ * Estimate amount of memory that will be needed to create a dictionary for decompression.
+ * Note : dictionary created by reference using ZSTD_dlm_byRef are smaller */
+size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod)
+{
+ return sizeof(ZSTD_DDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
+}
+
+size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict)
+{
+ if (ddict==NULL) return 0; /* support sizeof on NULL */
+ return sizeof(*ddict) + (ddict->dictBuffer ? ddict->dictSize : 0) ;
+}
+
+/*! ZSTD_getDictID_fromDDict() :
+ * Provides the dictID of the dictionary loaded into `ddict`.
+ * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
+ * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
+unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict)
+{
+ if (ddict==NULL) return 0;
+ return ZSTD_getDictID_fromDict(ddict->dictContent, ddict->dictSize);
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_ddict.h b/vendor/github.com/DataDog/zstd/zstd_ddict.h
new file mode 100644
index 0000000..0479d11
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_ddict.h
@@ -0,0 +1,44 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+#ifndef ZSTD_DDICT_H
+#define ZSTD_DDICT_H
+
+/*-*******************************************************
+ * Dependencies
+ *********************************************************/
+#include <stddef.h> /* size_t */
+#include "zstd.h" /* ZSTD_DDict, and several public functions */
+
+
+/*-*******************************************************
+ * Interface
+ *********************************************************/
+
+/* note: several prototypes are already published in `zstd.h` :
+ * ZSTD_createDDict()
+ * ZSTD_createDDict_byReference()
+ * ZSTD_createDDict_advanced()
+ * ZSTD_freeDDict()
+ * ZSTD_initStaticDDict()
+ * ZSTD_sizeof_DDict()
+ * ZSTD_estimateDDictSize()
+ * ZSTD_getDictID_fromDict()
+ */
+
+const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict);
+size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict);
+
+void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
+
+
+
+#endif /* ZSTD_DDICT_H */
diff --git a/vendor/github.com/DataDog/zstd/zstd_decompress.c b/vendor/github.com/DataDog/zstd/zstd_decompress.c
new file mode 100644
index 0000000..e42872a
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_decompress.c
@@ -0,0 +1,1768 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+/* ***************************************************************
+* Tuning parameters
+*****************************************************************/
+/*!
+ * HEAPMODE :
+ * Select how default decompression function ZSTD_decompress() allocates its context,
+ * on stack (0), or into heap (1, default; requires malloc()).
+ * Note that functions with explicit context such as ZSTD_decompressDCtx() are unaffected.
+ */
+#ifndef ZSTD_HEAPMODE
+# define ZSTD_HEAPMODE 1
+#endif
+
+/*!
+* LEGACY_SUPPORT :
+* if set to 1+, ZSTD_decompress() can decode older formats (v0.1+)
+*/
+#ifndef ZSTD_LEGACY_SUPPORT
+# define ZSTD_LEGACY_SUPPORT 0
+#endif
+
+/*!
+ * MAXWINDOWSIZE_DEFAULT :
+ * maximum window size accepted by DStream __by default__.
+ * Frames requiring more memory will be rejected.
+ * It's possible to set a different limit using ZSTD_DCtx_setMaxWindowSize().
+ */
+#ifndef ZSTD_MAXWINDOWSIZE_DEFAULT
+# define ZSTD_MAXWINDOWSIZE_DEFAULT (((U32)1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) + 1)
+#endif
+
+/*!
+ * NO_FORWARD_PROGRESS_MAX :
+ * maximum allowed nb of calls to ZSTD_decompressStream()
+ * without any forward progress
+ * (defined as: no byte read from input, and no byte flushed to output)
+ * before triggering an error.
+ */
+#ifndef ZSTD_NO_FORWARD_PROGRESS_MAX
+# define ZSTD_NO_FORWARD_PROGRESS_MAX 16
+#endif
+
+
+/*-*******************************************************
+* Dependencies
+*********************************************************/
+#include <string.h> /* memcpy, memmove, memset */
+#include "cpu.h" /* bmi2 */
+#include "mem.h" /* low level memory routines */
+#define FSE_STATIC_LINKING_ONLY
+#include "fse.h"
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+#include "zstd_internal.h" /* blockProperties_t */
+#include "zstd_decompress_internal.h" /* ZSTD_DCtx */
+#include "zstd_ddict.h" /* ZSTD_DDictDictContent */
+#include "zstd_decompress_block.h" /* ZSTD_decompressBlock_internal */
+
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
+# include "zstd_legacy.h"
+#endif
+
+
+/*-*************************************************************
+* Context management
+***************************************************************/
+size_t ZSTD_sizeof_DCtx (const ZSTD_DCtx* dctx)
+{
+ if (dctx==NULL) return 0; /* support sizeof NULL */
+ return sizeof(*dctx)
+ + ZSTD_sizeof_DDict(dctx->ddictLocal)
+ + dctx->inBuffSize + dctx->outBuffSize;
+}
+
+size_t ZSTD_estimateDCtxSize(void) { return sizeof(ZSTD_DCtx); }
+
+
+static size_t ZSTD_startingInputLength(ZSTD_format_e format)
+{
+ size_t const startingInputLength = (format==ZSTD_f_zstd1_magicless) ?
+ ZSTD_FRAMEHEADERSIZE_PREFIX - ZSTD_FRAMEIDSIZE :
+ ZSTD_FRAMEHEADERSIZE_PREFIX;
+ ZSTD_STATIC_ASSERT(ZSTD_FRAMEHEADERSIZE_PREFIX >= ZSTD_FRAMEIDSIZE);
+ /* only supports formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless */
+ assert( (format == ZSTD_f_zstd1) || (format == ZSTD_f_zstd1_magicless) );
+ return startingInputLength;
+}
+
+static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx)
+{
+ dctx->format = ZSTD_f_zstd1; /* ZSTD_decompressBegin() invokes ZSTD_startingInputLength() with argument dctx->format */
+ dctx->staticSize = 0;
+ dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT;
+ dctx->ddict = NULL;
+ dctx->ddictLocal = NULL;
+ dctx->dictEnd = NULL;
+ dctx->ddictIsCold = 0;
+ dctx->dictUses = ZSTD_dont_use;
+ dctx->inBuff = NULL;
+ dctx->inBuffSize = 0;
+ dctx->outBuffSize = 0;
+ dctx->streamStage = zdss_init;
+ dctx->legacyContext = NULL;
+ dctx->previousLegacyVersion = 0;
+ dctx->noForwardProgress = 0;
+ dctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
+}
+
+ZSTD_DCtx* ZSTD_initStaticDCtx(void *workspace, size_t workspaceSize)
+{
+ ZSTD_DCtx* const dctx = (ZSTD_DCtx*) workspace;
+
+ if ((size_t)workspace & 7) return NULL; /* 8-aligned */
+ if (workspaceSize < sizeof(ZSTD_DCtx)) return NULL; /* minimum size */
+
+ ZSTD_initDCtx_internal(dctx);
+ dctx->staticSize = workspaceSize;
+ dctx->inBuff = (char*)(dctx+1);
+ return dctx;
+}
+
+ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem)
+{
+ if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
+
+ { ZSTD_DCtx* const dctx = (ZSTD_DCtx*)ZSTD_malloc(sizeof(*dctx), customMem);
+ if (!dctx) return NULL;
+ dctx->customMem = customMem;
+ ZSTD_initDCtx_internal(dctx);
+ return dctx;
+ }
+}
+
+ZSTD_DCtx* ZSTD_createDCtx(void)
+{
+ DEBUGLOG(3, "ZSTD_createDCtx");
+ return ZSTD_createDCtx_advanced(ZSTD_defaultCMem);
+}
+
+static void ZSTD_clearDict(ZSTD_DCtx* dctx)
+{
+ ZSTD_freeDDict(dctx->ddictLocal);
+ dctx->ddictLocal = NULL;
+ dctx->ddict = NULL;
+ dctx->dictUses = ZSTD_dont_use;
+}
+
+size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
+{
+ if (dctx==NULL) return 0; /* support free on NULL */
+ RETURN_ERROR_IF(dctx->staticSize, memory_allocation, "not compatible with static DCtx");
+ { ZSTD_customMem const cMem = dctx->customMem;
+ ZSTD_clearDict(dctx);
+ ZSTD_free(dctx->inBuff, cMem);
+ dctx->inBuff = NULL;
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
+ if (dctx->legacyContext)
+ ZSTD_freeLegacyStreamContext(dctx->legacyContext, dctx->previousLegacyVersion);
+#endif
+ ZSTD_free(dctx, cMem);
+ return 0;
+ }
+}
+
+/* no longer useful */
+void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx)
+{
+ size_t const toCopy = (size_t)((char*)(&dstDCtx->inBuff) - (char*)dstDCtx);
+ memcpy(dstDCtx, srcDCtx, toCopy); /* no need to copy workspace */
+}
+
+
+/*-*************************************************************
+ * Frame header decoding
+ ***************************************************************/
+
+/*! ZSTD_isFrame() :
+ * Tells if the content of `buffer` starts with a valid Frame Identifier.
+ * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
+ * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled.
+ * Note 3 : Skippable Frame Identifiers are considered valid. */
+unsigned ZSTD_isFrame(const void* buffer, size_t size)
+{
+ if (size < ZSTD_FRAMEIDSIZE) return 0;
+ { U32 const magic = MEM_readLE32(buffer);
+ if (magic == ZSTD_MAGICNUMBER) return 1;
+ if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1;
+ }
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
+ if (ZSTD_isLegacy(buffer, size)) return 1;
+#endif
+ return 0;
+}
+
+/** ZSTD_frameHeaderSize_internal() :
+ * srcSize must be large enough to reach header size fields.
+ * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless.
+ * @return : size of the Frame Header
+ * or an error code, which can be tested with ZSTD_isError() */
+static size_t ZSTD_frameHeaderSize_internal(const void* src, size_t srcSize, ZSTD_format_e format)
+{
+ size_t const minInputSize = ZSTD_startingInputLength(format);
+ RETURN_ERROR_IF(srcSize < minInputSize, srcSize_wrong);
+
+ { BYTE const fhd = ((const BYTE*)src)[minInputSize-1];
+ U32 const dictID= fhd & 3;
+ U32 const singleSegment = (fhd >> 5) & 1;
+ U32 const fcsId = fhd >> 6;
+ return minInputSize + !singleSegment
+ + ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId]
+ + (singleSegment && !fcsId);
+ }
+}
+
+/** ZSTD_frameHeaderSize() :
+ * srcSize must be >= ZSTD_frameHeaderSize_prefix.
+ * @return : size of the Frame Header,
+ * or an error code (if srcSize is too small) */
+size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize)
+{
+ return ZSTD_frameHeaderSize_internal(src, srcSize, ZSTD_f_zstd1);
+}
+
+
+/** ZSTD_getFrameHeader_advanced() :
+ * decode Frame Header, or require larger `srcSize`.
+ * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless
+ * @return : 0, `zfhPtr` is correctly filled,
+ * >0, `srcSize` is too small, value is wanted `srcSize` amount,
+ * or an error code, which can be tested using ZSTD_isError() */
+size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format)
+{
+ const BYTE* ip = (const BYTE*)src;
+ size_t const minInputSize = ZSTD_startingInputLength(format);
+
+ memset(zfhPtr, 0, sizeof(*zfhPtr)); /* not strictly necessary, but static analyzer do not understand that zfhPtr is only going to be read only if return value is zero, since they are 2 different signals */
+ if (srcSize < minInputSize) return minInputSize;
+ RETURN_ERROR_IF(src==NULL, GENERIC, "invalid parameter");
+
+ if ( (format != ZSTD_f_zstd1_magicless)
+ && (MEM_readLE32(src) != ZSTD_MAGICNUMBER) ) {
+ if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
+ /* skippable frame */
+ if (srcSize < ZSTD_SKIPPABLEHEADERSIZE)
+ return ZSTD_SKIPPABLEHEADERSIZE; /* magic number + frame length */
+ memset(zfhPtr, 0, sizeof(*zfhPtr));
+ zfhPtr->frameContentSize = MEM_readLE32((const char *)src + ZSTD_FRAMEIDSIZE);
+ zfhPtr->frameType = ZSTD_skippableFrame;
+ return 0;
+ }
+ RETURN_ERROR(prefix_unknown);
+ }
+
+ /* ensure there is enough `srcSize` to fully read/decode frame header */
+ { size_t const fhsize = ZSTD_frameHeaderSize_internal(src, srcSize, format);
+ if (srcSize < fhsize) return fhsize;
+ zfhPtr->headerSize = (U32)fhsize;
+ }
+
+ { BYTE const fhdByte = ip[minInputSize-1];
+ size_t pos = minInputSize;
+ U32 const dictIDSizeCode = fhdByte&3;
+ U32 const checksumFlag = (fhdByte>>2)&1;
+ U32 const singleSegment = (fhdByte>>5)&1;
+ U32 const fcsID = fhdByte>>6;
+ U64 windowSize = 0;
+ U32 dictID = 0;
+ U64 frameContentSize = ZSTD_CONTENTSIZE_UNKNOWN;
+ RETURN_ERROR_IF((fhdByte & 0x08) != 0, frameParameter_unsupported,
+ "reserved bits, must be zero");
+
+ if (!singleSegment) {
+ BYTE const wlByte = ip[pos++];
+ U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN;
+ RETURN_ERROR_IF(windowLog > ZSTD_WINDOWLOG_MAX, frameParameter_windowTooLarge);
+ windowSize = (1ULL << windowLog);
+ windowSize += (windowSize >> 3) * (wlByte&7);
+ }
+ switch(dictIDSizeCode)
+ {
+ default: assert(0); /* impossible */
+ case 0 : break;
+ case 1 : dictID = ip[pos]; pos++; break;
+ case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break;
+ case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break;
+ }
+ switch(fcsID)
+ {
+ default: assert(0); /* impossible */
+ case 0 : if (singleSegment) frameContentSize = ip[pos]; break;
+ case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break;
+ case 2 : frameContentSize = MEM_readLE32(ip+pos); break;
+ case 3 : frameContentSize = MEM_readLE64(ip+pos); break;
+ }
+ if (singleSegment) windowSize = frameContentSize;
+
+ zfhPtr->frameType = ZSTD_frame;
+ zfhPtr->frameContentSize = frameContentSize;
+ zfhPtr->windowSize = windowSize;
+ zfhPtr->blockSizeMax = (unsigned) MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
+ zfhPtr->dictID = dictID;
+ zfhPtr->checksumFlag = checksumFlag;
+ }
+ return 0;
+}
+
+/** ZSTD_getFrameHeader() :
+ * decode Frame Header, or require larger `srcSize`.
+ * note : this function does not consume input, it only reads it.
+ * @return : 0, `zfhPtr` is correctly filled,
+ * >0, `srcSize` is too small, value is wanted `srcSize` amount,
+ * or an error code, which can be tested using ZSTD_isError() */
+size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize)
+{
+ return ZSTD_getFrameHeader_advanced(zfhPtr, src, srcSize, ZSTD_f_zstd1);
+}
+
+
+/** ZSTD_getFrameContentSize() :
+ * compatible with legacy mode
+ * @return : decompressed size of the single frame pointed to be `src` if known, otherwise
+ * - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined
+ * - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) */
+unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize)
+{
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
+ if (ZSTD_isLegacy(src, srcSize)) {
+ unsigned long long const ret = ZSTD_getDecompressedSize_legacy(src, srcSize);
+ return ret == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : ret;
+ }
+#endif
+ { ZSTD_frameHeader zfh;
+ if (ZSTD_getFrameHeader(&zfh, src, srcSize) != 0)
+ return ZSTD_CONTENTSIZE_ERROR;
+ if (zfh.frameType == ZSTD_skippableFrame) {
+ return 0;
+ } else {
+ return zfh.frameContentSize;
+ } }
+}
+
+static size_t readSkippableFrameSize(void const* src, size_t srcSize)
+{
+ size_t const skippableHeaderSize = ZSTD_SKIPPABLEHEADERSIZE;
+ U32 sizeU32;
+
+ RETURN_ERROR_IF(srcSize < ZSTD_SKIPPABLEHEADERSIZE, srcSize_wrong);
+
+ sizeU32 = MEM_readLE32((BYTE const*)src + ZSTD_FRAMEIDSIZE);
+ RETURN_ERROR_IF((U32)(sizeU32 + ZSTD_SKIPPABLEHEADERSIZE) < sizeU32,
+ frameParameter_unsupported);
+ {
+ size_t const skippableSize = skippableHeaderSize + sizeU32;
+ RETURN_ERROR_IF(skippableSize > srcSize, srcSize_wrong);
+ return skippableSize;
+ }
+}
+
+/** ZSTD_findDecompressedSize() :
+ * compatible with legacy mode
+ * `srcSize` must be the exact length of some number of ZSTD compressed and/or
+ * skippable frames
+ * @return : decompressed size of the frames contained */
+unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize)
+{
+ unsigned long long totalDstSize = 0;
+
+ while (srcSize >= ZSTD_FRAMEHEADERSIZE_PREFIX) {
+ U32 const magicNumber = MEM_readLE32(src);
+
+ if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
+ size_t const skippableSize = readSkippableFrameSize(src, srcSize);
+ if (ZSTD_isError(skippableSize)) {
+ return ZSTD_CONTENTSIZE_ERROR;
+ }
+ assert(skippableSize <= srcSize);
+
+ src = (const BYTE *)src + skippableSize;
+ srcSize -= skippableSize;
+ continue;
+ }
+
+ { unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize);
+ if (ret >= ZSTD_CONTENTSIZE_ERROR) return ret;
+
+ /* check for overflow */
+ if (totalDstSize + ret < totalDstSize) return ZSTD_CONTENTSIZE_ERROR;
+ totalDstSize += ret;
+ }
+ { size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize);
+ if (ZSTD_isError(frameSrcSize)) {
+ return ZSTD_CONTENTSIZE_ERROR;
+ }
+
+ src = (const BYTE *)src + frameSrcSize;
+ srcSize -= frameSrcSize;
+ }
+ } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */
+
+ if (srcSize) return ZSTD_CONTENTSIZE_ERROR;
+
+ return totalDstSize;
+}
+
+/** ZSTD_getDecompressedSize() :
+ * compatible with legacy mode
+ * @return : decompressed size if known, 0 otherwise
+ note : 0 can mean any of the following :
+ - frame content is empty
+ - decompressed size field is not present in frame header
+ - frame header unknown / not supported
+ - frame header not complete (`srcSize` too small) */
+unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize)
+{
+ unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize);
+ ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_ERROR < ZSTD_CONTENTSIZE_UNKNOWN);
+ return (ret >= ZSTD_CONTENTSIZE_ERROR) ? 0 : ret;
+}
+
+
+/** ZSTD_decodeFrameHeader() :
+ * `headerSize` must be the size provided by ZSTD_frameHeaderSize().
+ * @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */
+static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t headerSize)
+{
+ size_t const result = ZSTD_getFrameHeader_advanced(&(dctx->fParams), src, headerSize, dctx->format);
+ if (ZSTD_isError(result)) return result; /* invalid header */
+ RETURN_ERROR_IF(result>0, srcSize_wrong, "headerSize too small");
+#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
+ /* Skip the dictID check in fuzzing mode, because it makes the search
+ * harder.
+ */
+ RETURN_ERROR_IF(dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID),
+ dictionary_wrong);
+#endif
+ if (dctx->fParams.checksumFlag) XXH64_reset(&dctx->xxhState, 0);
+ return 0;
+}
+
+static ZSTD_frameSizeInfo ZSTD_errorFrameSizeInfo(size_t ret)
+{
+ ZSTD_frameSizeInfo frameSizeInfo;
+ frameSizeInfo.compressedSize = ret;
+ frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR;
+ return frameSizeInfo;
+}
+
+static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize)
+{
+ ZSTD_frameSizeInfo frameSizeInfo;
+ memset(&frameSizeInfo, 0, sizeof(ZSTD_frameSizeInfo));
+
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
+ if (ZSTD_isLegacy(src, srcSize))
+ return ZSTD_findFrameSizeInfoLegacy(src, srcSize);
+#endif
+
+ if ((srcSize >= ZSTD_SKIPPABLEHEADERSIZE)
+ && (MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
+ frameSizeInfo.compressedSize = readSkippableFrameSize(src, srcSize);
+ assert(ZSTD_isError(frameSizeInfo.compressedSize) ||
+ frameSizeInfo.compressedSize <= srcSize);
+ return frameSizeInfo;
+ } else {
+ const BYTE* ip = (const BYTE*)src;
+ const BYTE* const ipstart = ip;
+ size_t remainingSize = srcSize;
+ size_t nbBlocks = 0;
+ ZSTD_frameHeader zfh;
+
+ /* Extract Frame Header */
+ { size_t const ret = ZSTD_getFrameHeader(&zfh, src, srcSize);
+ if (ZSTD_isError(ret))
+ return ZSTD_errorFrameSizeInfo(ret);
+ if (ret > 0)
+ return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong));
+ }
+
+ ip += zfh.headerSize;
+ remainingSize -= zfh.headerSize;
+
+ /* Iterate over each block */
+ while (1) {
+ blockProperties_t blockProperties;
+ size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
+ if (ZSTD_isError(cBlockSize))
+ return ZSTD_errorFrameSizeInfo(cBlockSize);
+
+ if (ZSTD_blockHeaderSize + cBlockSize > remainingSize)
+ return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong));
+
+ ip += ZSTD_blockHeaderSize + cBlockSize;
+ remainingSize -= ZSTD_blockHeaderSize + cBlockSize;
+ nbBlocks++;
+
+ if (blockProperties.lastBlock) break;
+ }
+
+ /* Final frame content checksum */
+ if (zfh.checksumFlag) {
+ if (remainingSize < 4)
+ return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong));
+ ip += 4;
+ }
+
+ frameSizeInfo.compressedSize = ip - ipstart;
+ frameSizeInfo.decompressedBound = (zfh.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN)
+ ? zfh.frameContentSize
+ : nbBlocks * zfh.blockSizeMax;
+ return frameSizeInfo;
+ }
+}
+
+/** ZSTD_findFrameCompressedSize() :
+ * compatible with legacy mode
+ * `src` must point to the start of a ZSTD frame, ZSTD legacy frame, or skippable frame
+ * `srcSize` must be at least as large as the frame contained
+ * @return : the compressed size of the frame starting at `src` */
+size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize)
+{
+ ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize);
+ return frameSizeInfo.compressedSize;
+}
+
+/** ZSTD_decompressBound() :
+ * compatible with legacy mode
+ * `src` must point to the start of a ZSTD frame or a skippeable frame
+ * `srcSize` must be at least as large as the frame contained
+ * @return : the maximum decompressed size of the compressed source
+ */
+unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize)
+{
+ unsigned long long bound = 0;
+ /* Iterate over each frame */
+ while (srcSize > 0) {
+ ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize);
+ size_t const compressedSize = frameSizeInfo.compressedSize;
+ unsigned long long const decompressedBound = frameSizeInfo.decompressedBound;
+ if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR)
+ return ZSTD_CONTENTSIZE_ERROR;
+ assert(srcSize >= compressedSize);
+ src = (const BYTE*)src + compressedSize;
+ srcSize -= compressedSize;
+ bound += decompressedBound;
+ }
+ return bound;
+}
+
+
+/*-*************************************************************
+ * Frame decoding
+ ***************************************************************/
+
+
+void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst)
+{
+ if (dst != dctx->previousDstEnd) { /* not contiguous */
+ dctx->dictEnd = dctx->previousDstEnd;
+ dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
+ dctx->prefixStart = dst;
+ dctx->previousDstEnd = dst;
+ }
+}
+
+/** ZSTD_insertBlock() :
+ insert `src` block into `dctx` history. Useful to track uncompressed blocks. */
+size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize)
+{
+ ZSTD_checkContinuity(dctx, blockStart);
+ dctx->previousDstEnd = (const char*)blockStart + blockSize;
+ return blockSize;
+}
+
+
+static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ DEBUGLOG(5, "ZSTD_copyRawBlock");
+ if (dst == NULL) {
+ if (srcSize == 0) return 0;
+ RETURN_ERROR(dstBuffer_null);
+ }
+ RETURN_ERROR_IF(srcSize > dstCapacity, dstSize_tooSmall);
+ memcpy(dst, src, srcSize);
+ return srcSize;
+}
+
+static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity,
+ BYTE b,
+ size_t regenSize)
+{
+ if (dst == NULL) {
+ if (regenSize == 0) return 0;
+ RETURN_ERROR(dstBuffer_null);
+ }
+ RETURN_ERROR_IF(regenSize > dstCapacity, dstSize_tooSmall);
+ memset(dst, b, regenSize);
+ return regenSize;
+}
+
+
+/*! ZSTD_decompressFrame() :
+ * @dctx must be properly initialized
+ * will update *srcPtr and *srcSizePtr,
+ * to make *srcPtr progress by one frame. */
+static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void** srcPtr, size_t *srcSizePtr)
+{
+ const BYTE* ip = (const BYTE*)(*srcPtr);
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const oend = ostart + dstCapacity;
+ BYTE* op = ostart;
+ size_t remainingSrcSize = *srcSizePtr;
+
+ DEBUGLOG(4, "ZSTD_decompressFrame (srcSize:%i)", (int)*srcSizePtr);
+
+ /* check */
+ RETURN_ERROR_IF(
+ remainingSrcSize < ZSTD_FRAMEHEADERSIZE_MIN+ZSTD_blockHeaderSize,
+ srcSize_wrong);
+
+ /* Frame Header */
+ { size_t const frameHeaderSize = ZSTD_frameHeaderSize(ip, ZSTD_FRAMEHEADERSIZE_PREFIX);
+ if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
+ RETURN_ERROR_IF(remainingSrcSize < frameHeaderSize+ZSTD_blockHeaderSize,
+ srcSize_wrong);
+ FORWARD_IF_ERROR( ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize) );
+ ip += frameHeaderSize; remainingSrcSize -= frameHeaderSize;
+ }
+
+ /* Loop on each block */
+ while (1) {
+ size_t decodedSize;
+ blockProperties_t blockProperties;
+ size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSrcSize, &blockProperties);
+ if (ZSTD_isError(cBlockSize)) return cBlockSize;
+
+ ip += ZSTD_blockHeaderSize;
+ remainingSrcSize -= ZSTD_blockHeaderSize;
+ RETURN_ERROR_IF(cBlockSize > remainingSrcSize, srcSize_wrong);
+
+ switch(blockProperties.blockType)
+ {
+ case bt_compressed:
+ decodedSize = ZSTD_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize, /* frame */ 1);
+ break;
+ case bt_raw :
+ decodedSize = ZSTD_copyRawBlock(op, oend-op, ip, cBlockSize);
+ break;
+ case bt_rle :
+ decodedSize = ZSTD_setRleBlock(op, oend-op, *ip, blockProperties.origSize);
+ break;
+ case bt_reserved :
+ default:
+ RETURN_ERROR(corruption_detected);
+ }
+
+ if (ZSTD_isError(decodedSize)) return decodedSize;
+ if (dctx->fParams.checksumFlag)
+ XXH64_update(&dctx->xxhState, op, decodedSize);
+ op += decodedSize;
+ ip += cBlockSize;
+ remainingSrcSize -= cBlockSize;
+ if (blockProperties.lastBlock) break;
+ }
+
+ if (dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) {
+ RETURN_ERROR_IF((U64)(op-ostart) != dctx->fParams.frameContentSize,
+ corruption_detected);
+ }
+ if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */
+ U32 const checkCalc = (U32)XXH64_digest(&dctx->xxhState);
+ U32 checkRead;
+ RETURN_ERROR_IF(remainingSrcSize<4, checksum_wrong);
+ checkRead = MEM_readLE32(ip);
+ RETURN_ERROR_IF(checkRead != checkCalc, checksum_wrong);
+ ip += 4;
+ remainingSrcSize -= 4;
+ }
+
+ /* Allow caller to get size read */
+ *srcPtr = ip;
+ *srcSizePtr = remainingSrcSize;
+ return op-ostart;
+}
+
+static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict, size_t dictSize,
+ const ZSTD_DDict* ddict)
+{
+ void* const dststart = dst;
+ int moreThan1Frame = 0;
+
+ DEBUGLOG(5, "ZSTD_decompressMultiFrame");
+ assert(dict==NULL || ddict==NULL); /* either dict or ddict set, not both */
+
+ if (ddict) {
+ dict = ZSTD_DDict_dictContent(ddict);
+ dictSize = ZSTD_DDict_dictSize(ddict);
+ }
+
+ while (srcSize >= ZSTD_FRAMEHEADERSIZE_PREFIX) {
+
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
+ if (ZSTD_isLegacy(src, srcSize)) {
+ size_t decodedSize;
+ size_t const frameSize = ZSTD_findFrameCompressedSizeLegacy(src, srcSize);
+ if (ZSTD_isError(frameSize)) return frameSize;
+ RETURN_ERROR_IF(dctx->staticSize, memory_allocation,
+ "legacy support is not compatible with static dctx");
+
+ decodedSize = ZSTD_decompressLegacy(dst, dstCapacity, src, frameSize, dict, dictSize);
+ if (ZSTD_isError(decodedSize)) return decodedSize;
+
+ assert(decodedSize <=- dstCapacity);
+ dst = (BYTE*)dst + decodedSize;
+ dstCapacity -= decodedSize;
+
+ src = (const BYTE*)src + frameSize;
+ srcSize -= frameSize;
+
+ continue;
+ }
+#endif
+
+ { U32 const magicNumber = MEM_readLE32(src);
+ DEBUGLOG(4, "reading magic number %08X (expecting %08X)",
+ (unsigned)magicNumber, ZSTD_MAGICNUMBER);
+ if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
+ size_t const skippableSize = readSkippableFrameSize(src, srcSize);
+ FORWARD_IF_ERROR(skippableSize);
+ assert(skippableSize <= srcSize);
+
+ src = (const BYTE *)src + skippableSize;
+ srcSize -= skippableSize;
+ continue;
+ } }
+
+ if (ddict) {
+ /* we were called from ZSTD_decompress_usingDDict */
+ FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(dctx, ddict));
+ } else {
+ /* this will initialize correctly with no dict if dict == NULL, so
+ * use this in all cases but ddict */
+ FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize));
+ }
+ ZSTD_checkContinuity(dctx, dst);
+
+ { const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity,
+ &src, &srcSize);
+ RETURN_ERROR_IF(
+ (ZSTD_getErrorCode(res) == ZSTD_error_prefix_unknown)
+ && (moreThan1Frame==1),
+ srcSize_wrong,
+ "at least one frame successfully completed, but following "
+ "bytes are garbage: it's more likely to be a srcSize error, "
+ "specifying more bytes than compressed size of frame(s). This "
+ "error message replaces ERROR(prefix_unknown), which would be "
+ "confusing, as the first header is actually correct. Note that "
+ "one could be unlucky, it might be a corruption error instead, "
+ "happening right at the place where we expect zstd magic "
+ "bytes. But this is _much_ less likely than a srcSize field "
+ "error.");
+ if (ZSTD_isError(res)) return res;
+ assert(res <= dstCapacity);
+ dst = (BYTE*)dst + res;
+ dstCapacity -= res;
+ }
+ moreThan1Frame = 1;
+ } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */
+
+ RETURN_ERROR_IF(srcSize, srcSize_wrong, "input not entirely consumed");
+
+ return (BYTE*)dst - (BYTE*)dststart;
+}
+
+size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict, size_t dictSize)
+{
+ return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, dict, dictSize, NULL);
+}
+
+
+static ZSTD_DDict const* ZSTD_getDDict(ZSTD_DCtx* dctx)
+{
+ switch (dctx->dictUses) {
+ default:
+ assert(0 /* Impossible */);
+ /* fall-through */
+ case ZSTD_dont_use:
+ ZSTD_clearDict(dctx);
+ return NULL;
+ case ZSTD_use_indefinitely:
+ return dctx->ddict;
+ case ZSTD_use_once:
+ dctx->dictUses = ZSTD_dont_use;
+ return dctx->ddict;
+ }
+}
+
+size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ return ZSTD_decompress_usingDDict(dctx, dst, dstCapacity, src, srcSize, ZSTD_getDDict(dctx));
+}
+
+
+size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+#if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1)
+ size_t regenSize;
+ ZSTD_DCtx* const dctx = ZSTD_createDCtx();
+ RETURN_ERROR_IF(dctx==NULL, memory_allocation);
+ regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize);
+ ZSTD_freeDCtx(dctx);
+ return regenSize;
+#else /* stack mode */
+ ZSTD_DCtx dctx;
+ ZSTD_initDCtx_internal(&dctx);
+ return ZSTD_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize);
+#endif
+}
+
+
+/*-**************************************
+* Advanced Streaming Decompression API
+* Bufferless and synchronous
+****************************************/
+size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; }
+
+ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) {
+ switch(dctx->stage)
+ {
+ default: /* should not happen */
+ assert(0);
+ case ZSTDds_getFrameHeaderSize:
+ case ZSTDds_decodeFrameHeader:
+ return ZSTDnit_frameHeader;
+ case ZSTDds_decodeBlockHeader:
+ return ZSTDnit_blockHeader;
+ case ZSTDds_decompressBlock:
+ return ZSTDnit_block;
+ case ZSTDds_decompressLastBlock:
+ return ZSTDnit_lastBlock;
+ case ZSTDds_checkChecksum:
+ return ZSTDnit_checksum;
+ case ZSTDds_decodeSkippableHeader:
+ case ZSTDds_skipFrame:
+ return ZSTDnit_skippableFrame;
+ }
+}
+
+static int ZSTD_isSkipFrame(ZSTD_DCtx* dctx) { return dctx->stage == ZSTDds_skipFrame; }
+
+/** ZSTD_decompressContinue() :
+ * srcSize : must be the exact nb of bytes expected (see ZSTD_nextSrcSizeToDecompress())
+ * @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity)
+ * or an error code, which can be tested using ZSTD_isError() */
+size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ DEBUGLOG(5, "ZSTD_decompressContinue (srcSize:%u)", (unsigned)srcSize);
+ /* Sanity check */
+ RETURN_ERROR_IF(srcSize != dctx->expected, srcSize_wrong, "not allowed");
+ if (dstCapacity) ZSTD_checkContinuity(dctx, dst);
+
+ switch (dctx->stage)
+ {
+ case ZSTDds_getFrameHeaderSize :
+ assert(src != NULL);
+ if (dctx->format == ZSTD_f_zstd1) { /* allows header */
+ assert(srcSize >= ZSTD_FRAMEIDSIZE); /* to read skippable magic number */
+ if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
+ memcpy(dctx->headerBuffer, src, srcSize);
+ dctx->expected = ZSTD_SKIPPABLEHEADERSIZE - srcSize; /* remaining to load to get full skippable frame header */
+ dctx->stage = ZSTDds_decodeSkippableHeader;
+ return 0;
+ } }
+ dctx->headerSize = ZSTD_frameHeaderSize_internal(src, srcSize, dctx->format);
+ if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize;
+ memcpy(dctx->headerBuffer, src, srcSize);
+ dctx->expected = dctx->headerSize - srcSize;
+ dctx->stage = ZSTDds_decodeFrameHeader;
+ return 0;
+
+ case ZSTDds_decodeFrameHeader:
+ assert(src != NULL);
+ memcpy(dctx->headerBuffer + (dctx->headerSize - srcSize), src, srcSize);
+ FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize));
+ dctx->expected = ZSTD_blockHeaderSize;
+ dctx->stage = ZSTDds_decodeBlockHeader;
+ return 0;
+
+ case ZSTDds_decodeBlockHeader:
+ { blockProperties_t bp;
+ size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
+ if (ZSTD_isError(cBlockSize)) return cBlockSize;
+ dctx->expected = cBlockSize;
+ dctx->bType = bp.blockType;
+ dctx->rleSize = bp.origSize;
+ if (cBlockSize) {
+ dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock;
+ return 0;
+ }
+ /* empty block */
+ if (bp.lastBlock) {
+ if (dctx->fParams.checksumFlag) {
+ dctx->expected = 4;
+ dctx->stage = ZSTDds_checkChecksum;
+ } else {
+ dctx->expected = 0; /* end of frame */
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ }
+ } else {
+ dctx->expected = ZSTD_blockHeaderSize; /* jump to next header */
+ dctx->stage = ZSTDds_decodeBlockHeader;
+ }
+ return 0;
+ }
+
+ case ZSTDds_decompressLastBlock:
+ case ZSTDds_decompressBlock:
+ DEBUGLOG(5, "ZSTD_decompressContinue: case ZSTDds_decompressBlock");
+ { size_t rSize;
+ switch(dctx->bType)
+ {
+ case bt_compressed:
+ DEBUGLOG(5, "ZSTD_decompressContinue: case bt_compressed");
+ rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 1);
+ break;
+ case bt_raw :
+ rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize);
+ break;
+ case bt_rle :
+ rSize = ZSTD_setRleBlock(dst, dstCapacity, *(const BYTE*)src, dctx->rleSize);
+ break;
+ case bt_reserved : /* should never happen */
+ default:
+ RETURN_ERROR(corruption_detected);
+ }
+ if (ZSTD_isError(rSize)) return rSize;
+ DEBUGLOG(5, "ZSTD_decompressContinue: decoded size from block : %u", (unsigned)rSize);
+ dctx->decodedSize += rSize;
+ if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, dst, rSize);
+
+ if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */
+ DEBUGLOG(4, "ZSTD_decompressContinue: decoded size from frame : %u", (unsigned)dctx->decodedSize);
+ RETURN_ERROR_IF(
+ dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN
+ && dctx->decodedSize != dctx->fParams.frameContentSize,
+ corruption_detected);
+ if (dctx->fParams.checksumFlag) { /* another round for frame checksum */
+ dctx->expected = 4;
+ dctx->stage = ZSTDds_checkChecksum;
+ } else {
+ dctx->expected = 0; /* ends here */
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ }
+ } else {
+ dctx->stage = ZSTDds_decodeBlockHeader;
+ dctx->expected = ZSTD_blockHeaderSize;
+ dctx->previousDstEnd = (char*)dst + rSize;
+ }
+ return rSize;
+ }
+
+ case ZSTDds_checkChecksum:
+ assert(srcSize == 4); /* guaranteed by dctx->expected */
+ { U32 const h32 = (U32)XXH64_digest(&dctx->xxhState);
+ U32 const check32 = MEM_readLE32(src);
+ DEBUGLOG(4, "ZSTD_decompressContinue: checksum : calculated %08X :: %08X read", (unsigned)h32, (unsigned)check32);
+ RETURN_ERROR_IF(check32 != h32, checksum_wrong);
+ dctx->expected = 0;
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ return 0;
+ }
+
+ case ZSTDds_decodeSkippableHeader:
+ assert(src != NULL);
+ assert(srcSize <= ZSTD_SKIPPABLEHEADERSIZE);
+ memcpy(dctx->headerBuffer + (ZSTD_SKIPPABLEHEADERSIZE - srcSize), src, srcSize); /* complete skippable header */
+ dctx->expected = MEM_readLE32(dctx->headerBuffer + ZSTD_FRAMEIDSIZE); /* note : dctx->expected can grow seriously large, beyond local buffer size */
+ dctx->stage = ZSTDds_skipFrame;
+ return 0;
+
+ case ZSTDds_skipFrame:
+ dctx->expected = 0;
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ return 0;
+
+ default:
+ assert(0); /* impossible */
+ RETURN_ERROR(GENERIC); /* some compiler require default to do something */
+ }
+}
+
+
+static size_t ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ dctx->dictEnd = dctx->previousDstEnd;
+ dctx->virtualStart = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
+ dctx->prefixStart = dict;
+ dctx->previousDstEnd = (const char*)dict + dictSize;
+ return 0;
+}
+
+/*! ZSTD_loadDEntropy() :
+ * dict : must point at beginning of a valid zstd dictionary.
+ * @return : size of entropy tables read */
+size_t
+ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
+ const void* const dict, size_t const dictSize)
+{
+ const BYTE* dictPtr = (const BYTE*)dict;
+ const BYTE* const dictEnd = dictPtr + dictSize;
+
+ RETURN_ERROR_IF(dictSize <= 8, dictionary_corrupted);
+ assert(MEM_readLE32(dict) == ZSTD_MAGIC_DICTIONARY); /* dict must be valid */
+ dictPtr += 8; /* skip header = magic + dictID */
+
+ ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, OFTable) == offsetof(ZSTD_entropyDTables_t, LLTable) + sizeof(entropy->LLTable));
+ ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, MLTable) == offsetof(ZSTD_entropyDTables_t, OFTable) + sizeof(entropy->OFTable));
+ ZSTD_STATIC_ASSERT(sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable) >= HUF_DECOMPRESS_WORKSPACE_SIZE);
+ { void* const workspace = &entropy->LLTable; /* use fse tables as temporary workspace; implies fse tables are grouped together */
+ size_t const workspaceSize = sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable);
+#ifdef HUF_FORCE_DECOMPRESS_X1
+ /* in minimal huffman, we always use X1 variants */
+ size_t const hSize = HUF_readDTableX1_wksp(entropy->hufTable,
+ dictPtr, dictEnd - dictPtr,
+ workspace, workspaceSize);
+#else
+ size_t const hSize = HUF_readDTableX2_wksp(entropy->hufTable,
+ dictPtr, dictEnd - dictPtr,
+ workspace, workspaceSize);
+#endif
+ RETURN_ERROR_IF(HUF_isError(hSize), dictionary_corrupted);
+ dictPtr += hSize;
+ }
+
+ { short offcodeNCount[MaxOff+1];
+ unsigned offcodeMaxValue = MaxOff, offcodeLog;
+ size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
+ RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted);
+ RETURN_ERROR_IF(offcodeMaxValue > MaxOff, dictionary_corrupted);
+ RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted);
+ ZSTD_buildFSETable( entropy->OFTable,
+ offcodeNCount, offcodeMaxValue,
+ OF_base, OF_bits,
+ offcodeLog);
+ dictPtr += offcodeHeaderSize;
+ }
+
+ { short matchlengthNCount[MaxML+1];
+ unsigned matchlengthMaxValue = MaxML, matchlengthLog;
+ size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
+ RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted);
+ RETURN_ERROR_IF(matchlengthMaxValue > MaxML, dictionary_corrupted);
+ RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted);
+ ZSTD_buildFSETable( entropy->MLTable,
+ matchlengthNCount, matchlengthMaxValue,
+ ML_base, ML_bits,
+ matchlengthLog);
+ dictPtr += matchlengthHeaderSize;
+ }
+
+ { short litlengthNCount[MaxLL+1];
+ unsigned litlengthMaxValue = MaxLL, litlengthLog;
+ size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
+ RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted);
+ RETURN_ERROR_IF(litlengthMaxValue > MaxLL, dictionary_corrupted);
+ RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted);
+ ZSTD_buildFSETable( entropy->LLTable,
+ litlengthNCount, litlengthMaxValue,
+ LL_base, LL_bits,
+ litlengthLog);
+ dictPtr += litlengthHeaderSize;
+ }
+
+ RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted);
+ { int i;
+ size_t const dictContentSize = (size_t)(dictEnd - (dictPtr+12));
+ for (i=0; i<3; i++) {
+ U32 const rep = MEM_readLE32(dictPtr); dictPtr += 4;
+ RETURN_ERROR_IF(rep==0 || rep >= dictContentSize,
+ dictionary_corrupted);
+ entropy->rep[i] = rep;
+ } }
+
+ return dictPtr - (const BYTE*)dict;
+}
+
+static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ if (dictSize < 8) return ZSTD_refDictContent(dctx, dict, dictSize);
+ { U32 const magic = MEM_readLE32(dict);
+ if (magic != ZSTD_MAGIC_DICTIONARY) {
+ return ZSTD_refDictContent(dctx, dict, dictSize); /* pure content mode */
+ } }
+ dctx->dictID = MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE);
+
+ /* load entropy tables */
+ { size_t const eSize = ZSTD_loadDEntropy(&dctx->entropy, dict, dictSize);
+ RETURN_ERROR_IF(ZSTD_isError(eSize), dictionary_corrupted);
+ dict = (const char*)dict + eSize;
+ dictSize -= eSize;
+ }
+ dctx->litEntropy = dctx->fseEntropy = 1;
+
+ /* reference dictionary content */
+ return ZSTD_refDictContent(dctx, dict, dictSize);
+}
+
+size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx)
+{
+ assert(dctx != NULL);
+ dctx->expected = ZSTD_startingInputLength(dctx->format); /* dctx->format must be properly set */
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ dctx->decodedSize = 0;
+ dctx->previousDstEnd = NULL;
+ dctx->prefixStart = NULL;
+ dctx->virtualStart = NULL;
+ dctx->dictEnd = NULL;
+ dctx->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
+ dctx->litEntropy = dctx->fseEntropy = 0;
+ dctx->dictID = 0;
+ ZSTD_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue));
+ memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */
+ dctx->LLTptr = dctx->entropy.LLTable;
+ dctx->MLTptr = dctx->entropy.MLTable;
+ dctx->OFTptr = dctx->entropy.OFTable;
+ dctx->HUFptr = dctx->entropy.hufTable;
+ return 0;
+}
+
+size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) );
+ if (dict && dictSize)
+ RETURN_ERROR_IF(
+ ZSTD_isError(ZSTD_decompress_insertDictionary(dctx, dict, dictSize)),
+ dictionary_corrupted);
+ return 0;
+}
+
+
+/* ====== ZSTD_DDict ====== */
+
+size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
+{
+ DEBUGLOG(4, "ZSTD_decompressBegin_usingDDict");
+ assert(dctx != NULL);
+ if (ddict) {
+ const char* const dictStart = (const char*)ZSTD_DDict_dictContent(ddict);
+ size_t const dictSize = ZSTD_DDict_dictSize(ddict);
+ const void* const dictEnd = dictStart + dictSize;
+ dctx->ddictIsCold = (dctx->dictEnd != dictEnd);
+ DEBUGLOG(4, "DDict is %s",
+ dctx->ddictIsCold ? "~cold~" : "hot!");
+ }
+ FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) );
+ if (ddict) { /* NULL ddict is equivalent to no dictionary */
+ ZSTD_copyDDictParameters(dctx, ddict);
+ }
+ return 0;
+}
+
+/*! ZSTD_getDictID_fromDict() :
+ * Provides the dictID stored within dictionary.
+ * if @return == 0, the dictionary is not conformant with Zstandard specification.
+ * It can still be loaded, but as a content-only dictionary. */
+unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize)
+{
+ if (dictSize < 8) return 0;
+ if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) return 0;
+ return MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE);
+}
+
+/*! ZSTD_getDictID_fromFrame() :
+ * Provides the dictID required to decompress frame stored within `src`.
+ * If @return == 0, the dictID could not be decoded.
+ * This could for one of the following reasons :
+ * - The frame does not require a dictionary (most common case).
+ * - The frame was built with dictID intentionally removed.
+ * Needed dictionary is a hidden information.
+ * Note : this use case also happens when using a non-conformant dictionary.
+ * - `srcSize` is too small, and as a result, frame header could not be decoded.
+ * Note : possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`.
+ * - This is not a Zstandard frame.
+ * When identifying the exact failure cause, it's possible to use
+ * ZSTD_getFrameHeader(), which will provide a more precise error code. */
+unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize)
+{
+ ZSTD_frameHeader zfp = { 0, 0, 0, ZSTD_frame, 0, 0, 0 };
+ size_t const hError = ZSTD_getFrameHeader(&zfp, src, srcSize);
+ if (ZSTD_isError(hError)) return 0;
+ return zfp.dictID;
+}
+
+
+/*! ZSTD_decompress_usingDDict() :
+* Decompression using a pre-digested Dictionary
+* Use dictionary without significant overhead. */
+size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_DDict* ddict)
+{
+ /* pass content and size in case legacy frames are encountered */
+ return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize,
+ NULL, 0,
+ ddict);
+}
+
+
+/*=====================================
+* Streaming decompression
+*====================================*/
+
+ZSTD_DStream* ZSTD_createDStream(void)
+{
+ DEBUGLOG(3, "ZSTD_createDStream");
+ return ZSTD_createDStream_advanced(ZSTD_defaultCMem);
+}
+
+ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize)
+{
+ return ZSTD_initStaticDCtx(workspace, workspaceSize);
+}
+
+ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem)
+{
+ return ZSTD_createDCtx_advanced(customMem);
+}
+
+size_t ZSTD_freeDStream(ZSTD_DStream* zds)
+{
+ return ZSTD_freeDCtx(zds);
+}
+
+
+/* *** Initialization *** */
+
+size_t ZSTD_DStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize; }
+size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_MAX; }
+
+size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx,
+ const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType)
+{
+ RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong);
+ ZSTD_clearDict(dctx);
+ if (dict && dictSize >= 8) {
+ dctx->ddictLocal = ZSTD_createDDict_advanced(dict, dictSize, dictLoadMethod, dictContentType, dctx->customMem);
+ RETURN_ERROR_IF(dctx->ddictLocal == NULL, memory_allocation);
+ dctx->ddict = dctx->ddictLocal;
+ dctx->dictUses = ZSTD_use_indefinitely;
+ }
+ return 0;
+}
+
+size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto);
+}
+
+size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto);
+}
+
+size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType)
+{
+ FORWARD_IF_ERROR(ZSTD_DCtx_loadDictionary_advanced(dctx, prefix, prefixSize, ZSTD_dlm_byRef, dictContentType));
+ dctx->dictUses = ZSTD_use_once;
+ return 0;
+}
+
+size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize)
+{
+ return ZSTD_DCtx_refPrefix_advanced(dctx, prefix, prefixSize, ZSTD_dct_rawContent);
+}
+
+
+/* ZSTD_initDStream_usingDict() :
+ * return : expected size, aka ZSTD_FRAMEHEADERSIZE_PREFIX.
+ * this function cannot fail */
+size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize)
+{
+ DEBUGLOG(4, "ZSTD_initDStream_usingDict");
+ FORWARD_IF_ERROR( ZSTD_DCtx_reset(zds, ZSTD_reset_session_only) );
+ FORWARD_IF_ERROR( ZSTD_DCtx_loadDictionary(zds, dict, dictSize) );
+ return ZSTD_FRAMEHEADERSIZE_PREFIX;
+}
+
+/* note : this variant can't fail */
+size_t ZSTD_initDStream(ZSTD_DStream* zds)
+{
+ DEBUGLOG(4, "ZSTD_initDStream");
+ return ZSTD_initDStream_usingDDict(zds, NULL);
+}
+
+/* ZSTD_initDStream_usingDDict() :
+ * ddict will just be referenced, and must outlive decompression session
+ * this function cannot fail */
+size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* dctx, const ZSTD_DDict* ddict)
+{
+ FORWARD_IF_ERROR( ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only) );
+ FORWARD_IF_ERROR( ZSTD_DCtx_refDDict(dctx, ddict) );
+ return ZSTD_FRAMEHEADERSIZE_PREFIX;
+}
+
+/* ZSTD_resetDStream() :
+ * return : expected size, aka ZSTD_FRAMEHEADERSIZE_PREFIX.
+ * this function cannot fail */
+size_t ZSTD_resetDStream(ZSTD_DStream* dctx)
+{
+ FORWARD_IF_ERROR(ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only));
+ return ZSTD_FRAMEHEADERSIZE_PREFIX;
+}
+
+
+size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
+{
+ RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong);
+ ZSTD_clearDict(dctx);
+ if (ddict) {
+ dctx->ddict = ddict;
+ dctx->dictUses = ZSTD_use_indefinitely;
+ }
+ return 0;
+}
+
+/* ZSTD_DCtx_setMaxWindowSize() :
+ * note : no direct equivalence in ZSTD_DCtx_setParameter,
+ * since this version sets windowSize, and the other sets windowLog */
+size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize)
+{
+ ZSTD_bounds const bounds = ZSTD_dParam_getBounds(ZSTD_d_windowLogMax);
+ size_t const min = (size_t)1 << bounds.lowerBound;
+ size_t const max = (size_t)1 << bounds.upperBound;
+ RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong);
+ RETURN_ERROR_IF(maxWindowSize < min, parameter_outOfBound);
+ RETURN_ERROR_IF(maxWindowSize > max, parameter_outOfBound);
+ dctx->maxWindowSize = maxWindowSize;
+ return 0;
+}
+
+size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format)
+{
+ return ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, format);
+}
+
+ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam)
+{
+ ZSTD_bounds bounds = { 0, 0, 0 };
+ switch(dParam) {
+ case ZSTD_d_windowLogMax:
+ bounds.lowerBound = ZSTD_WINDOWLOG_ABSOLUTEMIN;
+ bounds.upperBound = ZSTD_WINDOWLOG_MAX;
+ return bounds;
+ case ZSTD_d_format:
+ bounds.lowerBound = (int)ZSTD_f_zstd1;
+ bounds.upperBound = (int)ZSTD_f_zstd1_magicless;
+ ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless);
+ return bounds;
+ default:;
+ }
+ bounds.error = ERROR(parameter_unsupported);
+ return bounds;
+}
+
+/* ZSTD_dParam_withinBounds:
+ * @return 1 if value is within dParam bounds,
+ * 0 otherwise */
+static int ZSTD_dParam_withinBounds(ZSTD_dParameter dParam, int value)
+{
+ ZSTD_bounds const bounds = ZSTD_dParam_getBounds(dParam);
+ if (ZSTD_isError(bounds.error)) return 0;
+ if (value < bounds.lowerBound) return 0;
+ if (value > bounds.upperBound) return 0;
+ return 1;
+}
+
+#define CHECK_DBOUNDS(p,v) { \
+ RETURN_ERROR_IF(!ZSTD_dParam_withinBounds(p, v), parameter_outOfBound); \
+}
+
+size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter dParam, int value)
+{
+ RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong);
+ switch(dParam) {
+ case ZSTD_d_windowLogMax:
+ if (value == 0) value = ZSTD_WINDOWLOG_LIMIT_DEFAULT;
+ CHECK_DBOUNDS(ZSTD_d_windowLogMax, value);
+ dctx->maxWindowSize = ((size_t)1) << value;
+ return 0;
+ case ZSTD_d_format:
+ CHECK_DBOUNDS(ZSTD_d_format, value);
+ dctx->format = (ZSTD_format_e)value;
+ return 0;
+ default:;
+ }
+ RETURN_ERROR(parameter_unsupported);
+}
+
+size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset)
+{
+ if ( (reset == ZSTD_reset_session_only)
+ || (reset == ZSTD_reset_session_and_parameters) ) {
+ dctx->streamStage = zdss_init;
+ dctx->noForwardProgress = 0;
+ }
+ if ( (reset == ZSTD_reset_parameters)
+ || (reset == ZSTD_reset_session_and_parameters) ) {
+ RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong);
+ ZSTD_clearDict(dctx);
+ dctx->format = ZSTD_f_zstd1;
+ dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT;
+ }
+ return 0;
+}
+
+
+size_t ZSTD_sizeof_DStream(const ZSTD_DStream* dctx)
+{
+ return ZSTD_sizeof_DCtx(dctx);
+}
+
+size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize)
+{
+ size_t const blockSize = (size_t) MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
+ unsigned long long const neededRBSize = windowSize + blockSize + (WILDCOPY_OVERLENGTH * 2);
+ unsigned long long const neededSize = MIN(frameContentSize, neededRBSize);
+ size_t const minRBSize = (size_t) neededSize;
+ RETURN_ERROR_IF((unsigned long long)minRBSize != neededSize,
+ frameParameter_windowTooLarge);
+ return minRBSize;
+}
+
+size_t ZSTD_estimateDStreamSize(size_t windowSize)
+{
+ size_t const blockSize = MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
+ size_t const inBuffSize = blockSize; /* no block can be larger */
+ size_t const outBuffSize = ZSTD_decodingBufferSize_min(windowSize, ZSTD_CONTENTSIZE_UNKNOWN);
+ return ZSTD_estimateDCtxSize() + inBuffSize + outBuffSize;
+}
+
+size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize)
+{
+ U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX; /* note : should be user-selectable, but requires an additional parameter (or a dctx) */
+ ZSTD_frameHeader zfh;
+ size_t const err = ZSTD_getFrameHeader(&zfh, src, srcSize);
+ if (ZSTD_isError(err)) return err;
+ RETURN_ERROR_IF(err>0, srcSize_wrong);
+ RETURN_ERROR_IF(zfh.windowSize > windowSizeMax,
+ frameParameter_windowTooLarge);
+ return ZSTD_estimateDStreamSize((size_t)zfh.windowSize);
+}
+
+
+/* ***** Decompression ***** */
+
+MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ size_t const length = MIN(dstCapacity, srcSize);
+ memcpy(dst, src, length);
+ return length;
+}
+
+
+size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
+{
+ const char* const istart = (const char*)(input->src) + input->pos;
+ const char* const iend = (const char*)(input->src) + input->size;
+ const char* ip = istart;
+ char* const ostart = (char*)(output->dst) + output->pos;
+ char* const oend = (char*)(output->dst) + output->size;
+ char* op = ostart;
+ U32 someMoreWork = 1;
+
+ DEBUGLOG(5, "ZSTD_decompressStream");
+ RETURN_ERROR_IF(
+ input->pos > input->size,
+ srcSize_wrong,
+ "forbidden. in: pos: %u vs size: %u",
+ (U32)input->pos, (U32)input->size);
+ RETURN_ERROR_IF(
+ output->pos > output->size,
+ dstSize_tooSmall,
+ "forbidden. out: pos: %u vs size: %u",
+ (U32)output->pos, (U32)output->size);
+ DEBUGLOG(5, "input size : %u", (U32)(input->size - input->pos));
+
+ while (someMoreWork) {
+ switch(zds->streamStage)
+ {
+ case zdss_init :
+ DEBUGLOG(5, "stage zdss_init => transparent reset ");
+ zds->streamStage = zdss_loadHeader;
+ zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0;
+ zds->legacyVersion = 0;
+ zds->hostageByte = 0;
+ /* fall-through */
+
+ case zdss_loadHeader :
+ DEBUGLOG(5, "stage zdss_loadHeader (srcSize : %u)", (U32)(iend - ip));
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
+ if (zds->legacyVersion) {
+ RETURN_ERROR_IF(zds->staticSize, memory_allocation,
+ "legacy support is incompatible with static dctx");
+ { size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, zds->legacyVersion, output, input);
+ if (hint==0) zds->streamStage = zdss_init;
+ return hint;
+ } }
+#endif
+ { size_t const hSize = ZSTD_getFrameHeader_advanced(&zds->fParams, zds->headerBuffer, zds->lhSize, zds->format);
+ DEBUGLOG(5, "header size : %u", (U32)hSize);
+ if (ZSTD_isError(hSize)) {
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
+ U32 const legacyVersion = ZSTD_isLegacy(istart, iend-istart);
+ if (legacyVersion) {
+ ZSTD_DDict const* const ddict = ZSTD_getDDict(zds);
+ const void* const dict = ddict ? ZSTD_DDict_dictContent(ddict) : NULL;
+ size_t const dictSize = ddict ? ZSTD_DDict_dictSize(ddict) : 0;
+ DEBUGLOG(5, "ZSTD_decompressStream: detected legacy version v0.%u", legacyVersion);
+ RETURN_ERROR_IF(zds->staticSize, memory_allocation,
+ "legacy support is incompatible with static dctx");
+ FORWARD_IF_ERROR(ZSTD_initLegacyStream(&zds->legacyContext,
+ zds->previousLegacyVersion, legacyVersion,
+ dict, dictSize));
+ zds->legacyVersion = zds->previousLegacyVersion = legacyVersion;
+ { size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, legacyVersion, output, input);
+ if (hint==0) zds->streamStage = zdss_init; /* or stay in stage zdss_loadHeader */
+ return hint;
+ } }
+#endif
+ return hSize; /* error */
+ }
+ if (hSize != 0) { /* need more input */
+ size_t const toLoad = hSize - zds->lhSize; /* if hSize!=0, hSize > zds->lhSize */
+ size_t const remainingInput = (size_t)(iend-ip);
+ assert(iend >= ip);
+ if (toLoad > remainingInput) { /* not enough input to load full header */
+ if (remainingInput > 0) {
+ memcpy(zds->headerBuffer + zds->lhSize, ip, remainingInput);
+ zds->lhSize += remainingInput;
+ }
+ input->pos = input->size;
+ return (MAX(ZSTD_FRAMEHEADERSIZE_MIN, hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */
+ }
+ assert(ip != NULL);
+ memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad;
+ break;
+ } }
+
+ /* check for single-pass mode opportunity */
+ if (zds->fParams.frameContentSize && zds->fParams.windowSize /* skippable frame if == 0 */
+ && (U64)(size_t)(oend-op) >= zds->fParams.frameContentSize) {
+ size_t const cSize = ZSTD_findFrameCompressedSize(istart, iend-istart);
+ if (cSize <= (size_t)(iend-istart)) {
+ /* shortcut : using single-pass mode */
+ size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, oend-op, istart, cSize, ZSTD_getDDict(zds));
+ if (ZSTD_isError(decompressedSize)) return decompressedSize;
+ DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()")
+ ip = istart + cSize;
+ op += decompressedSize;
+ zds->expected = 0;
+ zds->streamStage = zdss_init;
+ someMoreWork = 0;
+ break;
+ } }
+
+ /* Consume header (see ZSTDds_decodeFrameHeader) */
+ DEBUGLOG(4, "Consume header");
+ FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(zds, ZSTD_getDDict(zds)));
+
+ if ((MEM_readLE32(zds->headerBuffer) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
+ zds->expected = MEM_readLE32(zds->headerBuffer + ZSTD_FRAMEIDSIZE);
+ zds->stage = ZSTDds_skipFrame;
+ } else {
+ FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(zds, zds->headerBuffer, zds->lhSize));
+ zds->expected = ZSTD_blockHeaderSize;
+ zds->stage = ZSTDds_decodeBlockHeader;
+ }
+
+ /* control buffer memory usage */
+ DEBUGLOG(4, "Control max memory usage (%u KB <= max %u KB)",
+ (U32)(zds->fParams.windowSize >>10),
+ (U32)(zds->maxWindowSize >> 10) );
+ zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN);
+ RETURN_ERROR_IF(zds->fParams.windowSize > zds->maxWindowSize,
+ frameParameter_windowTooLarge);
+
+ /* Adapt buffer sizes to frame header instructions */
+ { size_t const neededInBuffSize = MAX(zds->fParams.blockSizeMax, 4 /* frame checksum */);
+ size_t const neededOutBuffSize = ZSTD_decodingBufferSize_min(zds->fParams.windowSize, zds->fParams.frameContentSize);
+ if ((zds->inBuffSize < neededInBuffSize) || (zds->outBuffSize < neededOutBuffSize)) {
+ size_t const bufferSize = neededInBuffSize + neededOutBuffSize;
+ DEBUGLOG(4, "inBuff : from %u to %u",
+ (U32)zds->inBuffSize, (U32)neededInBuffSize);
+ DEBUGLOG(4, "outBuff : from %u to %u",
+ (U32)zds->outBuffSize, (U32)neededOutBuffSize);
+ if (zds->staticSize) { /* static DCtx */
+ DEBUGLOG(4, "staticSize : %u", (U32)zds->staticSize);
+ assert(zds->staticSize >= sizeof(ZSTD_DCtx)); /* controlled at init */
+ RETURN_ERROR_IF(
+ bufferSize > zds->staticSize - sizeof(ZSTD_DCtx),
+ memory_allocation);
+ } else {
+ ZSTD_free(zds->inBuff, zds->customMem);
+ zds->inBuffSize = 0;
+ zds->outBuffSize = 0;
+ zds->inBuff = (char*)ZSTD_malloc(bufferSize, zds->customMem);
+ RETURN_ERROR_IF(zds->inBuff == NULL, memory_allocation);
+ }
+ zds->inBuffSize = neededInBuffSize;
+ zds->outBuff = zds->inBuff + zds->inBuffSize;
+ zds->outBuffSize = neededOutBuffSize;
+ } }
+ zds->streamStage = zdss_read;
+ /* fall-through */
+
+ case zdss_read:
+ DEBUGLOG(5, "stage zdss_read");
+ { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds);
+ DEBUGLOG(5, "neededInSize = %u", (U32)neededInSize);
+ if (neededInSize==0) { /* end of frame */
+ zds->streamStage = zdss_init;
+ someMoreWork = 0;
+ break;
+ }
+ if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */
+ int const isSkipFrame = ZSTD_isSkipFrame(zds);
+ size_t const decodedSize = ZSTD_decompressContinue(zds,
+ zds->outBuff + zds->outStart, (isSkipFrame ? 0 : zds->outBuffSize - zds->outStart),
+ ip, neededInSize);
+ if (ZSTD_isError(decodedSize)) return decodedSize;
+ ip += neededInSize;
+ if (!decodedSize && !isSkipFrame) break; /* this was just a header */
+ zds->outEnd = zds->outStart + decodedSize;
+ zds->streamStage = zdss_flush;
+ break;
+ } }
+ if (ip==iend) { someMoreWork = 0; break; } /* no more input */
+ zds->streamStage = zdss_load;
+ /* fall-through */
+
+ case zdss_load:
+ { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds);
+ size_t const toLoad = neededInSize - zds->inPos;
+ int const isSkipFrame = ZSTD_isSkipFrame(zds);
+ size_t loadedSize;
+ if (isSkipFrame) {
+ loadedSize = MIN(toLoad, (size_t)(iend-ip));
+ } else {
+ RETURN_ERROR_IF(toLoad > zds->inBuffSize - zds->inPos,
+ corruption_detected,
+ "should never happen");
+ loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, iend-ip);
+ }
+ ip += loadedSize;
+ zds->inPos += loadedSize;
+ if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */
+
+ /* decode loaded input */
+ { size_t const decodedSize = ZSTD_decompressContinue(zds,
+ zds->outBuff + zds->outStart, zds->outBuffSize - zds->outStart,
+ zds->inBuff, neededInSize);
+ if (ZSTD_isError(decodedSize)) return decodedSize;
+ zds->inPos = 0; /* input is consumed */
+ if (!decodedSize && !isSkipFrame) { zds->streamStage = zdss_read; break; } /* this was just a header */
+ zds->outEnd = zds->outStart + decodedSize;
+ } }
+ zds->streamStage = zdss_flush;
+ /* fall-through */
+
+ case zdss_flush:
+ { size_t const toFlushSize = zds->outEnd - zds->outStart;
+ size_t const flushedSize = ZSTD_limitCopy(op, oend-op, zds->outBuff + zds->outStart, toFlushSize);
+ op += flushedSize;
+ zds->outStart += flushedSize;
+ if (flushedSize == toFlushSize) { /* flush completed */
+ zds->streamStage = zdss_read;
+ if ( (zds->outBuffSize < zds->fParams.frameContentSize)
+ && (zds->outStart + zds->fParams.blockSizeMax > zds->outBuffSize) ) {
+ DEBUGLOG(5, "restart filling outBuff from beginning (left:%i, needed:%u)",
+ (int)(zds->outBuffSize - zds->outStart),
+ (U32)zds->fParams.blockSizeMax);
+ zds->outStart = zds->outEnd = 0;
+ }
+ break;
+ } }
+ /* cannot complete flush */
+ someMoreWork = 0;
+ break;
+
+ default:
+ assert(0); /* impossible */
+ RETURN_ERROR(GENERIC); /* some compiler require default to do something */
+ } }
+
+ /* result */
+ input->pos = (size_t)(ip - (const char*)(input->src));
+ output->pos = (size_t)(op - (char*)(output->dst));
+ if ((ip==istart) && (op==ostart)) { /* no forward progress */
+ zds->noForwardProgress ++;
+ if (zds->noForwardProgress >= ZSTD_NO_FORWARD_PROGRESS_MAX) {
+ RETURN_ERROR_IF(op==oend, dstSize_tooSmall);
+ RETURN_ERROR_IF(ip==iend, srcSize_wrong);
+ assert(0);
+ }
+ } else {
+ zds->noForwardProgress = 0;
+ }
+ { size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds);
+ if (!nextSrcSizeHint) { /* frame fully decoded */
+ if (zds->outEnd == zds->outStart) { /* output fully flushed */
+ if (zds->hostageByte) {
+ if (input->pos >= input->size) {
+ /* can't release hostage (not present) */
+ zds->streamStage = zdss_read;
+ return 1;
+ }
+ input->pos++; /* release hostage */
+ } /* zds->hostageByte */
+ return 0;
+ } /* zds->outEnd == zds->outStart */
+ if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */
+ input->pos--; /* note : pos > 0, otherwise, impossible to finish reading last block */
+ zds->hostageByte=1;
+ }
+ return 1;
+ } /* nextSrcSizeHint==0 */
+ nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds) == ZSTDnit_block); /* preload header of next block */
+ assert(zds->inPos <= nextSrcSizeHint);
+ nextSrcSizeHint -= zds->inPos; /* part already loaded*/
+ return nextSrcSizeHint;
+ }
+}
+
+size_t ZSTD_decompressStream_simpleArgs (
+ ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity, size_t* dstPos,
+ const void* src, size_t srcSize, size_t* srcPos)
+{
+ ZSTD_outBuffer output = { dst, dstCapacity, *dstPos };
+ ZSTD_inBuffer input = { src, srcSize, *srcPos };
+ /* ZSTD_compress_generic() will check validity of dstPos and srcPos */
+ size_t const cErr = ZSTD_decompressStream(dctx, &output, &input);
+ *dstPos = output.pos;
+ *srcPos = input.pos;
+ return cErr;
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_decompress_block.c b/vendor/github.com/DataDog/zstd/zstd_decompress_block.c
new file mode 100644
index 0000000..24f4859
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_decompress_block.c
@@ -0,0 +1,1322 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/* zstd_decompress_block :
+ * this module takes care of decompressing _compressed_ block */
+
+/*-*******************************************************
+* Dependencies
+*********************************************************/
+#include <string.h> /* memcpy, memmove, memset */
+#include "compiler.h" /* prefetch */
+#include "cpu.h" /* bmi2 */
+#include "mem.h" /* low level memory routines */
+#define FSE_STATIC_LINKING_ONLY
+#include "fse.h"
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+#include "zstd_internal.h"
+#include "zstd_decompress_internal.h" /* ZSTD_DCtx */
+#include "zstd_ddict.h" /* ZSTD_DDictDictContent */
+#include "zstd_decompress_block.h"
+
+/*_*******************************************************
+* Macros
+**********************************************************/
+
+/* These two optional macros force the use one way or another of the two
+ * ZSTD_decompressSequences implementations. You can't force in both directions
+ * at the same time.
+ */
+#if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
+ defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
+#error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
+#endif
+
+
+/*_*******************************************************
+* Memory operations
+**********************************************************/
+static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
+
+
+/*-*************************************************************
+ * Block decoding
+ ***************************************************************/
+
+/*! ZSTD_getcBlockSize() :
+ * Provides the size of compressed block from block header `src` */
+size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
+ blockProperties_t* bpPtr)
+{
+ RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong);
+
+ { U32 const cBlockHeader = MEM_readLE24(src);
+ U32 const cSize = cBlockHeader >> 3;
+ bpPtr->lastBlock = cBlockHeader & 1;
+ bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
+ bpPtr->origSize = cSize; /* only useful for RLE */
+ if (bpPtr->blockType == bt_rle) return 1;
+ RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected);
+ return cSize;
+ }
+}
+
+
+/* Hidden declaration for fullbench */
+size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
+ const void* src, size_t srcSize);
+/*! ZSTD_decodeLiteralsBlock() :
+ * @return : nb of bytes read from src (< srcSize )
+ * note : symbol not declared but exposed for fullbench */
+size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
+ const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
+{
+ RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected);
+
+ { const BYTE* const istart = (const BYTE*) src;
+ symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
+
+ switch(litEncType)
+ {
+ case set_repeat:
+ RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted);
+ /* fall-through */
+
+ case set_compressed:
+ RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
+ { size_t lhSize, litSize, litCSize;
+ U32 singleStream=0;
+ U32 const lhlCode = (istart[0] >> 2) & 3;
+ U32 const lhc = MEM_readLE32(istart);
+ size_t hufSuccess;
+ switch(lhlCode)
+ {
+ case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */
+ /* 2 - 2 - 10 - 10 */
+ singleStream = !lhlCode;
+ lhSize = 3;
+ litSize = (lhc >> 4) & 0x3FF;
+ litCSize = (lhc >> 14) & 0x3FF;
+ break;
+ case 2:
+ /* 2 - 2 - 14 - 14 */
+ lhSize = 4;
+ litSize = (lhc >> 4) & 0x3FFF;
+ litCSize = lhc >> 18;
+ break;
+ case 3:
+ /* 2 - 2 - 18 - 18 */
+ lhSize = 5;
+ litSize = (lhc >> 4) & 0x3FFFF;
+ litCSize = (lhc >> 22) + (istart[4] << 10);
+ break;
+ }
+ RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected);
+ RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected);
+
+ /* prefetch huffman table if cold */
+ if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
+ PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
+ }
+
+ if (litEncType==set_repeat) {
+ if (singleStream) {
+ hufSuccess = HUF_decompress1X_usingDTable_bmi2(
+ dctx->litBuffer, litSize, istart+lhSize, litCSize,
+ dctx->HUFptr, dctx->bmi2);
+ } else {
+ hufSuccess = HUF_decompress4X_usingDTable_bmi2(
+ dctx->litBuffer, litSize, istart+lhSize, litCSize,
+ dctx->HUFptr, dctx->bmi2);
+ }
+ } else {
+ if (singleStream) {
+#if defined(HUF_FORCE_DECOMPRESS_X2)
+ hufSuccess = HUF_decompress1X_DCtx_wksp(
+ dctx->entropy.hufTable, dctx->litBuffer, litSize,
+ istart+lhSize, litCSize, dctx->workspace,
+ sizeof(dctx->workspace));
+#else
+ hufSuccess = HUF_decompress1X1_DCtx_wksp_bmi2(
+ dctx->entropy.hufTable, dctx->litBuffer, litSize,
+ istart+lhSize, litCSize, dctx->workspace,
+ sizeof(dctx->workspace), dctx->bmi2);
+#endif
+ } else {
+ hufSuccess = HUF_decompress4X_hufOnly_wksp_bmi2(
+ dctx->entropy.hufTable, dctx->litBuffer, litSize,
+ istart+lhSize, litCSize, dctx->workspace,
+ sizeof(dctx->workspace), dctx->bmi2);
+ }
+ }
+
+ RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected);
+
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ dctx->litEntropy = 1;
+ if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return litCSize + lhSize;
+ }
+
+ case set_basic:
+ { size_t litSize, lhSize;
+ U32 const lhlCode = ((istart[0]) >> 2) & 3;
+ switch(lhlCode)
+ {
+ case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
+ lhSize = 1;
+ litSize = istart[0] >> 3;
+ break;
+ case 1:
+ lhSize = 2;
+ litSize = MEM_readLE16(istart) >> 4;
+ break;
+ case 3:
+ lhSize = 3;
+ litSize = MEM_readLE24(istart) >> 4;
+ break;
+ }
+
+ if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
+ RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected);
+ memcpy(dctx->litBuffer, istart+lhSize, litSize);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return lhSize+litSize;
+ }
+ /* direct reference into compressed stream */
+ dctx->litPtr = istart+lhSize;
+ dctx->litSize = litSize;
+ return lhSize+litSize;
+ }
+
+ case set_rle:
+ { U32 const lhlCode = ((istart[0]) >> 2) & 3;
+ size_t litSize, lhSize;
+ switch(lhlCode)
+ {
+ case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
+ lhSize = 1;
+ litSize = istart[0] >> 3;
+ break;
+ case 1:
+ lhSize = 2;
+ litSize = MEM_readLE16(istart) >> 4;
+ break;
+ case 3:
+ lhSize = 3;
+ litSize = MEM_readLE24(istart) >> 4;
+ RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4");
+ break;
+ }
+ RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected);
+ memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ return lhSize+1;
+ }
+ default:
+ RETURN_ERROR(corruption_detected, "impossible");
+ }
+ }
+}
+
+/* Default FSE distribution tables.
+ * These are pre-calculated FSE decoding tables using default distributions as defined in specification :
+ * https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#default-distributions
+ * They were generated programmatically with following method :
+ * - start from default distributions, present in /lib/common/zstd_internal.h
+ * - generate tables normally, using ZSTD_buildFSETable()
+ * - printout the content of tables
+ * - pretify output, report below, test with fuzzer to ensure it's correct */
+
+/* Default FSE distribution table for Literal Lengths */
+static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
+ { 1, 1, 1, LL_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
+ /* nextState, nbAddBits, nbBits, baseVal */
+ { 0, 0, 4, 0}, { 16, 0, 4, 0},
+ { 32, 0, 5, 1}, { 0, 0, 5, 3},
+ { 0, 0, 5, 4}, { 0, 0, 5, 6},
+ { 0, 0, 5, 7}, { 0, 0, 5, 9},
+ { 0, 0, 5, 10}, { 0, 0, 5, 12},
+ { 0, 0, 6, 14}, { 0, 1, 5, 16},
+ { 0, 1, 5, 20}, { 0, 1, 5, 22},
+ { 0, 2, 5, 28}, { 0, 3, 5, 32},
+ { 0, 4, 5, 48}, { 32, 6, 5, 64},
+ { 0, 7, 5, 128}, { 0, 8, 6, 256},
+ { 0, 10, 6, 1024}, { 0, 12, 6, 4096},
+ { 32, 0, 4, 0}, { 0, 0, 4, 1},
+ { 0, 0, 5, 2}, { 32, 0, 5, 4},
+ { 0, 0, 5, 5}, { 32, 0, 5, 7},
+ { 0, 0, 5, 8}, { 32, 0, 5, 10},
+ { 0, 0, 5, 11}, { 0, 0, 6, 13},
+ { 32, 1, 5, 16}, { 0, 1, 5, 18},
+ { 32, 1, 5, 22}, { 0, 2, 5, 24},
+ { 32, 3, 5, 32}, { 0, 3, 5, 40},
+ { 0, 6, 4, 64}, { 16, 6, 4, 64},
+ { 32, 7, 5, 128}, { 0, 9, 6, 512},
+ { 0, 11, 6, 2048}, { 48, 0, 4, 0},
+ { 16, 0, 4, 1}, { 32, 0, 5, 2},
+ { 32, 0, 5, 3}, { 32, 0, 5, 5},
+ { 32, 0, 5, 6}, { 32, 0, 5, 8},
+ { 32, 0, 5, 9}, { 32, 0, 5, 11},
+ { 32, 0, 5, 12}, { 0, 0, 6, 15},
+ { 32, 1, 5, 18}, { 32, 1, 5, 20},
+ { 32, 2, 5, 24}, { 32, 2, 5, 28},
+ { 32, 3, 5, 40}, { 32, 4, 5, 48},
+ { 0, 16, 6,65536}, { 0, 15, 6,32768},
+ { 0, 14, 6,16384}, { 0, 13, 6, 8192},
+}; /* LL_defaultDTable */
+
+/* Default FSE distribution table for Offset Codes */
+static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
+ { 1, 1, 1, OF_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
+ /* nextState, nbAddBits, nbBits, baseVal */
+ { 0, 0, 5, 0}, { 0, 6, 4, 61},
+ { 0, 9, 5, 509}, { 0, 15, 5,32765},
+ { 0, 21, 5,2097149}, { 0, 3, 5, 5},
+ { 0, 7, 4, 125}, { 0, 12, 5, 4093},
+ { 0, 18, 5,262141}, { 0, 23, 5,8388605},
+ { 0, 5, 5, 29}, { 0, 8, 4, 253},
+ { 0, 14, 5,16381}, { 0, 20, 5,1048573},
+ { 0, 2, 5, 1}, { 16, 7, 4, 125},
+ { 0, 11, 5, 2045}, { 0, 17, 5,131069},
+ { 0, 22, 5,4194301}, { 0, 4, 5, 13},
+ { 16, 8, 4, 253}, { 0, 13, 5, 8189},
+ { 0, 19, 5,524285}, { 0, 1, 5, 1},
+ { 16, 6, 4, 61}, { 0, 10, 5, 1021},
+ { 0, 16, 5,65533}, { 0, 28, 5,268435453},
+ { 0, 27, 5,134217725}, { 0, 26, 5,67108861},
+ { 0, 25, 5,33554429}, { 0, 24, 5,16777213},
+}; /* OF_defaultDTable */
+
+
+/* Default FSE distribution table for Match Lengths */
+static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
+ { 1, 1, 1, ML_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
+ /* nextState, nbAddBits, nbBits, baseVal */
+ { 0, 0, 6, 3}, { 0, 0, 4, 4},
+ { 32, 0, 5, 5}, { 0, 0, 5, 6},
+ { 0, 0, 5, 8}, { 0, 0, 5, 9},
+ { 0, 0, 5, 11}, { 0, 0, 6, 13},
+ { 0, 0, 6, 16}, { 0, 0, 6, 19},
+ { 0, 0, 6, 22}, { 0, 0, 6, 25},
+ { 0, 0, 6, 28}, { 0, 0, 6, 31},
+ { 0, 0, 6, 34}, { 0, 1, 6, 37},
+ { 0, 1, 6, 41}, { 0, 2, 6, 47},
+ { 0, 3, 6, 59}, { 0, 4, 6, 83},
+ { 0, 7, 6, 131}, { 0, 9, 6, 515},
+ { 16, 0, 4, 4}, { 0, 0, 4, 5},
+ { 32, 0, 5, 6}, { 0, 0, 5, 7},
+ { 32, 0, 5, 9}, { 0, 0, 5, 10},
+ { 0, 0, 6, 12}, { 0, 0, 6, 15},
+ { 0, 0, 6, 18}, { 0, 0, 6, 21},
+ { 0, 0, 6, 24}, { 0, 0, 6, 27},
+ { 0, 0, 6, 30}, { 0, 0, 6, 33},
+ { 0, 1, 6, 35}, { 0, 1, 6, 39},
+ { 0, 2, 6, 43}, { 0, 3, 6, 51},
+ { 0, 4, 6, 67}, { 0, 5, 6, 99},
+ { 0, 8, 6, 259}, { 32, 0, 4, 4},
+ { 48, 0, 4, 4}, { 16, 0, 4, 5},
+ { 32, 0, 5, 7}, { 32, 0, 5, 8},
+ { 32, 0, 5, 10}, { 32, 0, 5, 11},
+ { 0, 0, 6, 14}, { 0, 0, 6, 17},
+ { 0, 0, 6, 20}, { 0, 0, 6, 23},
+ { 0, 0, 6, 26}, { 0, 0, 6, 29},
+ { 0, 0, 6, 32}, { 0, 16, 6,65539},
+ { 0, 15, 6,32771}, { 0, 14, 6,16387},
+ { 0, 13, 6, 8195}, { 0, 12, 6, 4099},
+ { 0, 11, 6, 2051}, { 0, 10, 6, 1027},
+}; /* ML_defaultDTable */
+
+
+static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U32 nbAddBits)
+{
+ void* ptr = dt;
+ ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
+ ZSTD_seqSymbol* const cell = dt + 1;
+
+ DTableH->tableLog = 0;
+ DTableH->fastMode = 0;
+
+ cell->nbBits = 0;
+ cell->nextState = 0;
+ assert(nbAddBits < 255);
+ cell->nbAdditionalBits = (BYTE)nbAddBits;
+ cell->baseValue = baseValue;
+}
+
+
+/* ZSTD_buildFSETable() :
+ * generate FSE decoding table for one symbol (ll, ml or off)
+ * cannot fail if input is valid =>
+ * all inputs are presumed validated at this stage */
+void
+ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
+ const short* normalizedCounter, unsigned maxSymbolValue,
+ const U32* baseValue, const U32* nbAdditionalBits,
+ unsigned tableLog)
+{
+ ZSTD_seqSymbol* const tableDecode = dt+1;
+ U16 symbolNext[MaxSeq+1];
+
+ U32 const maxSV1 = maxSymbolValue + 1;
+ U32 const tableSize = 1 << tableLog;
+ U32 highThreshold = tableSize-1;
+
+ /* Sanity Checks */
+ assert(maxSymbolValue <= MaxSeq);
+ assert(tableLog <= MaxFSELog);
+
+ /* Init, lay down lowprob symbols */
+ { ZSTD_seqSymbol_header DTableH;
+ DTableH.tableLog = tableLog;
+ DTableH.fastMode = 1;
+ { S16 const largeLimit= (S16)(1 << (tableLog-1));
+ U32 s;
+ for (s=0; s<maxSV1; s++) {
+ if (normalizedCounter[s]==-1) {
+ tableDecode[highThreshold--].baseValue = s;
+ symbolNext[s] = 1;
+ } else {
+ if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
+ symbolNext[s] = normalizedCounter[s];
+ } } }
+ memcpy(dt, &DTableH, sizeof(DTableH));
+ }
+
+ /* Spread symbols */
+ { U32 const tableMask = tableSize-1;
+ U32 const step = FSE_TABLESTEP(tableSize);
+ U32 s, position = 0;
+ for (s=0; s<maxSV1; s++) {
+ int i;
+ for (i=0; i<normalizedCounter[s]; i++) {
+ tableDecode[position].baseValue = s;
+ position = (position + step) & tableMask;
+ while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
+ } }
+ assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
+ }
+
+ /* Build Decoding table */
+ { U32 u;
+ for (u=0; u<tableSize; u++) {
+ U32 const symbol = tableDecode[u].baseValue;
+ U32 const nextState = symbolNext[symbol]++;
+ tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
+ tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
+ assert(nbAdditionalBits[symbol] < 255);
+ tableDecode[u].nbAdditionalBits = (BYTE)nbAdditionalBits[symbol];
+ tableDecode[u].baseValue = baseValue[symbol];
+ } }
+}
+
+
+/*! ZSTD_buildSeqTable() :
+ * @return : nb bytes read from src,
+ * or an error code if it fails */
+static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
+ symbolEncodingType_e type, unsigned max, U32 maxLog,
+ const void* src, size_t srcSize,
+ const U32* baseValue, const U32* nbAdditionalBits,
+ const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
+ int ddictIsCold, int nbSeq)
+{
+ switch(type)
+ {
+ case set_rle :
+ RETURN_ERROR_IF(!srcSize, srcSize_wrong);
+ RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected);
+ { U32 const symbol = *(const BYTE*)src;
+ U32 const baseline = baseValue[symbol];
+ U32 const nbBits = nbAdditionalBits[symbol];
+ ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
+ }
+ *DTablePtr = DTableSpace;
+ return 1;
+ case set_basic :
+ *DTablePtr = defaultTable;
+ return 0;
+ case set_repeat:
+ RETURN_ERROR_IF(!flagRepeatTable, corruption_detected);
+ /* prefetch FSE table if used */
+ if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
+ const void* const pStart = *DTablePtr;
+ size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
+ PREFETCH_AREA(pStart, pSize);
+ }
+ return 0;
+ case set_compressed :
+ { unsigned tableLog;
+ S16 norm[MaxSeq+1];
+ size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
+ RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected);
+ RETURN_ERROR_IF(tableLog > maxLog, corruption_detected);
+ ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog);
+ *DTablePtr = DTableSpace;
+ return headerSize;
+ }
+ default :
+ assert(0);
+ RETURN_ERROR(GENERIC, "impossible");
+ }
+}
+
+size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
+ const void* src, size_t srcSize)
+{
+ const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* ip = istart;
+ int nbSeq;
+ DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
+
+ /* check */
+ RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong);
+
+ /* SeqHead */
+ nbSeq = *ip++;
+ if (!nbSeq) {
+ *nbSeqPtr=0;
+ RETURN_ERROR_IF(srcSize != 1, srcSize_wrong);
+ return 1;
+ }
+ if (nbSeq > 0x7F) {
+ if (nbSeq == 0xFF) {
+ RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong);
+ nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2;
+ } else {
+ RETURN_ERROR_IF(ip >= iend, srcSize_wrong);
+ nbSeq = ((nbSeq-0x80)<<8) + *ip++;
+ }
+ }
+ *nbSeqPtr = nbSeq;
+
+ /* FSE table descriptors */
+ RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong); /* minimum possible size: 1 byte for symbol encoding types */
+ { symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
+ symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
+ symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
+ ip++;
+
+ /* Build DTables */
+ { size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
+ LLtype, MaxLL, LLFSELog,
+ ip, iend-ip,
+ LL_base, LL_bits,
+ LL_defaultDTable, dctx->fseEntropy,
+ dctx->ddictIsCold, nbSeq);
+ RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected);
+ ip += llhSize;
+ }
+
+ { size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
+ OFtype, MaxOff, OffFSELog,
+ ip, iend-ip,
+ OF_base, OF_bits,
+ OF_defaultDTable, dctx->fseEntropy,
+ dctx->ddictIsCold, nbSeq);
+ RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected);
+ ip += ofhSize;
+ }
+
+ { size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
+ MLtype, MaxML, MLFSELog,
+ ip, iend-ip,
+ ML_base, ML_bits,
+ ML_defaultDTable, dctx->fseEntropy,
+ dctx->ddictIsCold, nbSeq);
+ RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected);
+ ip += mlhSize;
+ }
+ }
+
+ return ip-istart;
+}
+
+
+typedef struct {
+ size_t litLength;
+ size_t matchLength;
+ size_t offset;
+ const BYTE* match;
+} seq_t;
+
+typedef struct {
+ size_t state;
+ const ZSTD_seqSymbol* table;
+} ZSTD_fseState;
+
+typedef struct {
+ BIT_DStream_t DStream;
+ ZSTD_fseState stateLL;
+ ZSTD_fseState stateOffb;
+ ZSTD_fseState stateML;
+ size_t prevOffset[ZSTD_REP_NUM];
+ const BYTE* prefixStart;
+ const BYTE* dictEnd;
+ size_t pos;
+} seqState_t;
+
+
+/* ZSTD_execSequenceLast7():
+ * exceptional case : decompress a match starting within last 7 bytes of output buffer.
+ * requires more careful checks, to ensure there is no overflow.
+ * performance does not matter though.
+ * note : this case is supposed to be never generated "naturally" by reference encoder,
+ * since in most cases it needs at least 8 bytes to look for a match.
+ * but it's allowed by the specification. */
+FORCE_NOINLINE
+size_t ZSTD_execSequenceLast7(BYTE* op,
+ BYTE* const oend, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
+{
+ BYTE* const oLitEnd = op + sequence.litLength;
+ size_t const sequenceLength = sequence.litLength + sequence.matchLength;
+ BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
+ const BYTE* const iLitEnd = *litPtr + sequence.litLength;
+ const BYTE* match = oLitEnd - sequence.offset;
+
+ /* check */
+ RETURN_ERROR_IF(oMatchEnd>oend, dstSize_tooSmall, "last match must fit within dstBuffer");
+ RETURN_ERROR_IF(iLitEnd > litLimit, corruption_detected, "try to read beyond literal buffer");
+
+ /* copy literals */
+ while (op < oLitEnd) *op++ = *(*litPtr)++;
+
+ /* copy Match */
+ if (sequence.offset > (size_t)(oLitEnd - base)) {
+ /* offset beyond prefix */
+ RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - vBase),corruption_detected);
+ match = dictEnd - (base-match);
+ if (match + sequence.matchLength <= dictEnd) {
+ memmove(oLitEnd, match, sequence.matchLength);
+ return sequenceLength;
+ }
+ /* span extDict & currentPrefixSegment */
+ { size_t const length1 = dictEnd - match;
+ memmove(oLitEnd, match, length1);
+ op = oLitEnd + length1;
+ sequence.matchLength -= length1;
+ match = base;
+ } }
+ while (op < oMatchEnd) *op++ = *match++;
+ return sequenceLength;
+}
+
+
+HINT_INLINE
+size_t ZSTD_execSequence(BYTE* op,
+ BYTE* const oend, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
+{
+ BYTE* const oLitEnd = op + sequence.litLength;
+ size_t const sequenceLength = sequence.litLength + sequence.matchLength;
+ BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
+ BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
+ const BYTE* const iLitEnd = *litPtr + sequence.litLength;
+ const BYTE* match = oLitEnd - sequence.offset;
+
+ /* check */
+ RETURN_ERROR_IF(oMatchEnd>oend, dstSize_tooSmall, "last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend");
+ RETURN_ERROR_IF(iLitEnd > litLimit, corruption_detected, "over-read beyond lit buffer");
+ if (oLitEnd>oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
+
+ /* copy Literals */
+ if (sequence.litLength > 8)
+ ZSTD_wildcopy_16min(op, (*litPtr), sequence.litLength, ZSTD_no_overlap); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
+ else
+ ZSTD_copy8(op, *litPtr);
+ op = oLitEnd;
+ *litPtr = iLitEnd; /* update for next sequence */
+
+ /* copy Match */
+ if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
+ /* offset beyond prefix -> go into extDict */
+ RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected);
+ match = dictEnd + (match - prefixStart);
+ if (match + sequence.matchLength <= dictEnd) {
+ memmove(oLitEnd, match, sequence.matchLength);
+ return sequenceLength;
+ }
+ /* span extDict & currentPrefixSegment */
+ { size_t const length1 = dictEnd - match;
+ memmove(oLitEnd, match, length1);
+ op = oLitEnd + length1;
+ sequence.matchLength -= length1;
+ match = prefixStart;
+ if (op > oend_w || sequence.matchLength < MINMATCH) {
+ U32 i;
+ for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i];
+ return sequenceLength;
+ }
+ } }
+ /* Requirement: op <= oend_w && sequence.matchLength >= MINMATCH */
+
+ /* match within prefix */
+ if (sequence.offset < 8) {
+ /* close range match, overlap */
+ static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
+ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
+ int const sub2 = dec64table[sequence.offset];
+ op[0] = match[0];
+ op[1] = match[1];
+ op[2] = match[2];
+ op[3] = match[3];
+ match += dec32table[sequence.offset];
+ ZSTD_copy4(op+4, match);
+ match -= sub2;
+ } else {
+ ZSTD_copy8(op, match);
+ }
+ op += 8; match += 8;
+
+ if (oMatchEnd > oend-(16-MINMATCH)) {
+ if (op < oend_w) {
+ ZSTD_wildcopy(op, match, oend_w - op, ZSTD_overlap_src_before_dst);
+ match += oend_w - op;
+ op = oend_w;
+ }
+ while (op < oMatchEnd) *op++ = *match++;
+ } else {
+ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst); /* works even if matchLength < 8 */
+ }
+ return sequenceLength;
+}
+
+
+HINT_INLINE
+size_t ZSTD_execSequenceLong(BYTE* op,
+ BYTE* const oend, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const prefixStart, const BYTE* const dictStart, const BYTE* const dictEnd)
+{
+ BYTE* const oLitEnd = op + sequence.litLength;
+ size_t const sequenceLength = sequence.litLength + sequence.matchLength;
+ BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
+ BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
+ const BYTE* const iLitEnd = *litPtr + sequence.litLength;
+ const BYTE* match = sequence.match;
+
+ /* check */
+ RETURN_ERROR_IF(oMatchEnd > oend, dstSize_tooSmall, "last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend");
+ RETURN_ERROR_IF(iLitEnd > litLimit, corruption_detected, "over-read beyond lit buffer");
+ if (oLitEnd > oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, prefixStart, dictStart, dictEnd);
+
+ /* copy Literals */
+ if (sequence.litLength > 8)
+ ZSTD_wildcopy_16min(op, *litPtr, sequence.litLength, ZSTD_no_overlap); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
+ else
+ ZSTD_copy8(op, *litPtr); /* note : op <= oLitEnd <= oend_w == oend - 8 */
+
+ op = oLitEnd;
+ *litPtr = iLitEnd; /* update for next sequence */
+
+ /* copy Match */
+ if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
+ /* offset beyond prefix */
+ RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - dictStart), corruption_detected);
+ if (match + sequence.matchLength <= dictEnd) {
+ memmove(oLitEnd, match, sequence.matchLength);
+ return sequenceLength;
+ }
+ /* span extDict & currentPrefixSegment */
+ { size_t const length1 = dictEnd - match;
+ memmove(oLitEnd, match, length1);
+ op = oLitEnd + length1;
+ sequence.matchLength -= length1;
+ match = prefixStart;
+ if (op > oend_w || sequence.matchLength < MINMATCH) {
+ U32 i;
+ for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i];
+ return sequenceLength;
+ }
+ } }
+ assert(op <= oend_w);
+ assert(sequence.matchLength >= MINMATCH);
+
+ /* match within prefix */
+ if (sequence.offset < 8) {
+ /* close range match, overlap */
+ static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
+ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
+ int const sub2 = dec64table[sequence.offset];
+ op[0] = match[0];
+ op[1] = match[1];
+ op[2] = match[2];
+ op[3] = match[3];
+ match += dec32table[sequence.offset];
+ ZSTD_copy4(op+4, match);
+ match -= sub2;
+ } else {
+ ZSTD_copy8(op, match);
+ }
+ op += 8; match += 8;
+
+ if (oMatchEnd > oend-(16-MINMATCH)) {
+ if (op < oend_w) {
+ ZSTD_wildcopy(op, match, oend_w - op, ZSTD_overlap_src_before_dst);
+ match += oend_w - op;
+ op = oend_w;
+ }
+ while (op < oMatchEnd) *op++ = *match++;
+ } else {
+ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst); /* works even if matchLength < 8 */
+ }
+ return sequenceLength;
+}
+
+static void
+ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
+{
+ const void* ptr = dt;
+ const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
+ DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
+ DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
+ (U32)DStatePtr->state, DTableH->tableLog);
+ BIT_reloadDStream(bitD);
+ DStatePtr->table = dt + 1;
+}
+
+FORCE_INLINE_TEMPLATE void
+ZSTD_updateFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD)
+{
+ ZSTD_seqSymbol const DInfo = DStatePtr->table[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ size_t const lowBits = BIT_readBits(bitD, nbBits);
+ DStatePtr->state = DInfo.nextState + lowBits;
+}
+
+/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
+ * offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1)
+ * bits before reloading. This value is the maximum number of bytes we read
+ * after reloading when we are decoding long offsets.
+ */
+#define LONG_OFFSETS_MAX_EXTRA_BITS_32 \
+ (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32 \
+ ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32 \
+ : 0)
+
+typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
+FORCE_INLINE_TEMPLATE seq_t
+ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
+{
+ seq_t seq;
+ U32 const llBits = seqState->stateLL.table[seqState->stateLL.state].nbAdditionalBits;
+ U32 const mlBits = seqState->stateML.table[seqState->stateML.state].nbAdditionalBits;
+ U32 const ofBits = seqState->stateOffb.table[seqState->stateOffb.state].nbAdditionalBits;
+ U32 const totalBits = llBits+mlBits+ofBits;
+ U32 const llBase = seqState->stateLL.table[seqState->stateLL.state].baseValue;
+ U32 const mlBase = seqState->stateML.table[seqState->stateML.state].baseValue;
+ U32 const ofBase = seqState->stateOffb.table[seqState->stateOffb.state].baseValue;
+
+ /* sequence */
+ { size_t offset;
+ if (!ofBits)
+ offset = 0;
+ else {
+ ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
+ ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
+ assert(ofBits <= MaxOff);
+ if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
+ U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed);
+ offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
+ BIT_reloadDStream(&seqState->DStream);
+ if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
+ assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32); /* to avoid another reload */
+ } else {
+ offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
+ }
+ }
+
+ if (ofBits <= 1) {
+ offset += (llBase==0);
+ if (offset) {
+ size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
+ temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
+ if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset = temp;
+ } else { /* offset == 0 */
+ offset = seqState->prevOffset[0];
+ }
+ } else {
+ seqState->prevOffset[2] = seqState->prevOffset[1];
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset;
+ }
+ seq.offset = offset;
+ }
+
+ seq.matchLength = mlBase
+ + ((mlBits>0) ? BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/) : 0); /* <= 16 bits */
+ if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
+ BIT_reloadDStream(&seqState->DStream);
+ if (MEM_64bits() && (totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
+ BIT_reloadDStream(&seqState->DStream);
+ /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
+ ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
+
+ seq.litLength = llBase
+ + ((llBits>0) ? BIT_readBitsFast(&seqState->DStream, llBits/*>0*/) : 0); /* <= 16 bits */
+ if (MEM_32bits())
+ BIT_reloadDStream(&seqState->DStream);
+
+ DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
+ (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
+
+ /* ANS state update */
+ ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */
+ ZSTD_updateFseState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
+ ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */
+
+ return seq;
+}
+
+FORCE_INLINE_TEMPLATE size_t
+DONT_VECTORIZE
+ZSTD_decompressSequences_body( ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset)
+{
+ const BYTE* ip = (const BYTE*)seqStart;
+ const BYTE* const iend = ip + seqSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const oend = ostart + maxDstSize;
+ BYTE* op = ostart;
+ const BYTE* litPtr = dctx->litPtr;
+ const BYTE* const litEnd = litPtr + dctx->litSize;
+ const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
+ const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
+ const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
+ DEBUGLOG(5, "ZSTD_decompressSequences_body");
+
+ /* Regen sequences */
+ if (nbSeq) {
+ seqState_t seqState;
+ dctx->fseEntropy = 1;
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
+ RETURN_ERROR_IF(
+ ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
+ corruption_detected);
+ ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
+ ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
+ ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
+
+ ZSTD_STATIC_ASSERT(
+ BIT_DStream_unfinished < BIT_DStream_completed &&
+ BIT_DStream_endOfBuffer < BIT_DStream_completed &&
+ BIT_DStream_completed < BIT_DStream_overflow);
+
+ for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; ) {
+ nbSeq--;
+ { seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
+ size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
+ DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+ op += oneSeqSize;
+ } }
+
+ /* check if reached exact end */
+ DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
+ RETURN_ERROR_IF(nbSeq, corruption_detected);
+ RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected);
+ /* save reps for next block */
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
+ }
+
+ /* last literal segment */
+ { size_t const lastLLSize = litEnd - litPtr;
+ RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall);
+ memcpy(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+
+ return op-ostart;
+}
+
+static size_t
+ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset)
+{
+ return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
+}
+#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
+
+
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
+FORCE_INLINE_TEMPLATE seq_t
+ZSTD_decodeSequenceLong(seqState_t* seqState, ZSTD_longOffset_e const longOffsets)
+{
+ seq_t seq;
+ U32 const llBits = seqState->stateLL.table[seqState->stateLL.state].nbAdditionalBits;
+ U32 const mlBits = seqState->stateML.table[seqState->stateML.state].nbAdditionalBits;
+ U32 const ofBits = seqState->stateOffb.table[seqState->stateOffb.state].nbAdditionalBits;
+ U32 const totalBits = llBits+mlBits+ofBits;
+ U32 const llBase = seqState->stateLL.table[seqState->stateLL.state].baseValue;
+ U32 const mlBase = seqState->stateML.table[seqState->stateML.state].baseValue;
+ U32 const ofBase = seqState->stateOffb.table[seqState->stateOffb.state].baseValue;
+
+ /* sequence */
+ { size_t offset;
+ if (!ofBits)
+ offset = 0;
+ else {
+ ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
+ ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
+ assert(ofBits <= MaxOff);
+ if (MEM_32bits() && longOffsets) {
+ U32 const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN_32-1);
+ offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
+ if (MEM_32bits() || extraBits) BIT_reloadDStream(&seqState->DStream);
+ if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
+ } else {
+ offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
+ }
+ }
+
+ if (ofBits <= 1) {
+ offset += (llBase==0);
+ if (offset) {
+ size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
+ temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
+ if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset = temp;
+ } else {
+ offset = seqState->prevOffset[0];
+ }
+ } else {
+ seqState->prevOffset[2] = seqState->prevOffset[1];
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset;
+ }
+ seq.offset = offset;
+ }
+
+ seq.matchLength = mlBase + ((mlBits>0) ? BIT_readBitsFast(&seqState->DStream, mlBits) : 0); /* <= 16 bits */
+ if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
+ BIT_reloadDStream(&seqState->DStream);
+ if (MEM_64bits() && (totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
+ BIT_reloadDStream(&seqState->DStream);
+ /* Verify that there is enough bits to read the rest of the data in 64-bit mode. */
+ ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
+
+ seq.litLength = llBase + ((llBits>0) ? BIT_readBitsFast(&seqState->DStream, llBits) : 0); /* <= 16 bits */
+ if (MEM_32bits())
+ BIT_reloadDStream(&seqState->DStream);
+
+ { size_t const pos = seqState->pos + seq.litLength;
+ const BYTE* const matchBase = (seq.offset > pos) ? seqState->dictEnd : seqState->prefixStart;
+ seq.match = matchBase + pos - seq.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
+ * No consequence though : no memory access will occur, overly large offset will be detected in ZSTD_execSequenceLong() */
+ seqState->pos = pos + seq.matchLength;
+ }
+
+ /* ANS state update */
+ ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */
+ ZSTD_updateFseState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
+ ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */
+
+ return seq;
+}
+
+FORCE_INLINE_TEMPLATE size_t
+ZSTD_decompressSequencesLong_body(
+ ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset)
+{
+ const BYTE* ip = (const BYTE*)seqStart;
+ const BYTE* const iend = ip + seqSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const oend = ostart + maxDstSize;
+ BYTE* op = ostart;
+ const BYTE* litPtr = dctx->litPtr;
+ const BYTE* const litEnd = litPtr + dctx->litSize;
+ const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
+ const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
+ const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
+
+ /* Regen sequences */
+ if (nbSeq) {
+#define STORED_SEQS 4
+#define STORED_SEQS_MASK (STORED_SEQS-1)
+#define ADVANCED_SEQS 4
+ seq_t sequences[STORED_SEQS];
+ int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
+ seqState_t seqState;
+ int seqNb;
+ dctx->fseEntropy = 1;
+ { int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
+ seqState.prefixStart = prefixStart;
+ seqState.pos = (size_t)(op-prefixStart);
+ seqState.dictEnd = dictEnd;
+ assert(iend >= ip);
+ RETURN_ERROR_IF(
+ ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
+ corruption_detected);
+ ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
+ ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
+ ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
+
+ /* prepare in advance */
+ for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) {
+ sequences[seqNb] = ZSTD_decodeSequenceLong(&seqState, isLongOffset);
+ PREFETCH_L1(sequences[seqNb].match); PREFETCH_L1(sequences[seqNb].match + sequences[seqNb].matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
+ }
+ RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected);
+
+ /* decode and decompress */
+ for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb<nbSeq) ; seqNb++) {
+ seq_t const sequence = ZSTD_decodeSequenceLong(&seqState, isLongOffset);
+ size_t const oneSeqSize = ZSTD_execSequenceLong(op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+ PREFETCH_L1(sequence.match); PREFETCH_L1(sequence.match + sequence.matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
+ sequences[seqNb & STORED_SEQS_MASK] = sequence;
+ op += oneSeqSize;
+ }
+ RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected);
+
+ /* finish queue */
+ seqNb -= seqAdvance;
+ for ( ; seqNb<nbSeq ; seqNb++) {
+ size_t const oneSeqSize = ZSTD_execSequenceLong(op, oend, sequences[seqNb&STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+ op += oneSeqSize;
+ }
+
+ /* save reps for next block */
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
+ }
+
+ /* last literal segment */
+ { size_t const lastLLSize = litEnd - litPtr;
+ RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall);
+ memcpy(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+
+ return op-ostart;
+}
+
+static size_t
+ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset)
+{
+ return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
+}
+#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
+
+
+
+#if DYNAMIC_BMI2
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
+static TARGET_ATTRIBUTE("bmi2") size_t
+DONT_VECTORIZE
+ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset)
+{
+ return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
+}
+#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
+static TARGET_ATTRIBUTE("bmi2") size_t
+ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset)
+{
+ return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
+}
+#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
+
+#endif /* DYNAMIC_BMI2 */
+
+typedef size_t (*ZSTD_decompressSequences_t)(
+ ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset);
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
+static size_t
+ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset)
+{
+ DEBUGLOG(5, "ZSTD_decompressSequences");
+#if DYNAMIC_BMI2
+ if (dctx->bmi2) {
+ return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
+ }
+#endif
+ return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
+}
+#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
+
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
+/* ZSTD_decompressSequencesLong() :
+ * decompression function triggered when a minimum share of offsets is considered "long",
+ * aka out of cache.
+ * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
+ * This function will try to mitigate main memory latency through the use of prefetching */
+static size_t
+ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset)
+{
+ DEBUGLOG(5, "ZSTD_decompressSequencesLong");
+#if DYNAMIC_BMI2
+ if (dctx->bmi2) {
+ return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
+ }
+#endif
+ return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
+}
+#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
+
+
+
+#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
+ !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
+/* ZSTD_getLongOffsetsShare() :
+ * condition : offTable must be valid
+ * @return : "share" of long offsets (arbitrarily defined as > (1<<23))
+ * compared to maximum possible of (1<<OffFSELog) */
+static unsigned
+ZSTD_getLongOffsetsShare(const ZSTD_seqSymbol* offTable)
+{
+ const void* ptr = offTable;
+ U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
+ const ZSTD_seqSymbol* table = offTable + 1;
+ U32 const max = 1 << tableLog;
+ U32 u, total = 0;
+ DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
+
+ assert(max <= (1 << OffFSELog)); /* max not too large */
+ for (u=0; u<max; u++) {
+ if (table[u].nbAdditionalBits > 22) total += 1;
+ }
+
+ assert(tableLog <= OffFSELog);
+ total <<= (OffFSELog - tableLog); /* scale to OffFSELog */
+
+ return total;
+}
+#endif
+
+
+size_t
+ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize, const int frame)
+{ /* blockType == blockCompressed */
+ const BYTE* ip = (const BYTE*)src;
+ /* isLongOffset must be true if there are long offsets.
+ * Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN.
+ * We don't expect that to be the case in 64-bit mode.
+ * In block mode, window size is not known, so we have to be conservative.
+ * (note: but it could be evaluated from current-lowLimit)
+ */
+ ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN))));
+ DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);
+
+ RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong);
+
+ /* Decode literals section */
+ { size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
+ DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize);
+ if (ZSTD_isError(litCSize)) return litCSize;
+ ip += litCSize;
+ srcSize -= litCSize;
+ }
+
+ /* Build Decoding Tables */
+ {
+ /* These macros control at build-time which decompressor implementation
+ * we use. If neither is defined, we do some inspection and dispatch at
+ * runtime.
+ */
+#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
+ !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
+ int usePrefetchDecoder = dctx->ddictIsCold;
+#endif
+ int nbSeq;
+ size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
+ if (ZSTD_isError(seqHSize)) return seqHSize;
+ ip += seqHSize;
+ srcSize -= seqHSize;
+
+#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
+ !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
+ if ( !usePrefetchDecoder
+ && (!frame || (dctx->fParams.windowSize > (1<<24)))
+ && (nbSeq>ADVANCED_SEQS) ) { /* could probably use a larger nbSeq limit */
+ U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr);
+ U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
+ usePrefetchDecoder = (shareLongOffsets >= minShare);
+ }
+#endif
+
+ dctx->ddictIsCold = 0;
+
+#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
+ !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
+ if (usePrefetchDecoder)
+#endif
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
+ return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
+#endif
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
+ /* else */
+ return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
+#endif
+ }
+}
+
+
+size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ size_t dSize;
+ ZSTD_checkContinuity(dctx, dst);
+ dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0);
+ dctx->previousDstEnd = (char*)dst + dSize;
+ return dSize;
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_decompress_block.h b/vendor/github.com/DataDog/zstd/zstd_decompress_block.h
new file mode 100644
index 0000000..7e92960
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_decompress_block.h
@@ -0,0 +1,59 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+#ifndef ZSTD_DEC_BLOCK_H
+#define ZSTD_DEC_BLOCK_H
+
+/*-*******************************************************
+ * Dependencies
+ *********************************************************/
+#include <stddef.h> /* size_t */
+#include "zstd.h" /* DCtx, and some public functions */
+#include "zstd_internal.h" /* blockProperties_t, and some public functions */
+#include "zstd_decompress_internal.h" /* ZSTD_seqSymbol */
+
+
+/* === Prototypes === */
+
+/* note: prototypes already published within `zstd.h` :
+ * ZSTD_decompressBlock()
+ */
+
+/* note: prototypes already published within `zstd_internal.h` :
+ * ZSTD_getcBlockSize()
+ * ZSTD_decodeSeqHeaders()
+ */
+
+
+/* ZSTD_decompressBlock_internal() :
+ * decompress block, starting at `src`,
+ * into destination buffer `dst`.
+ * @return : decompressed block size,
+ * or an error code (which can be tested using ZSTD_isError())
+ */
+size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize, const int frame);
+
+/* ZSTD_buildFSETable() :
+ * generate FSE decoding table for one symbol (ll, ml or off)
+ * this function must be called with valid parameters only
+ * (dt is large enough, normalizedCounter distribution total is a power of 2, max is within range, etc.)
+ * in which case it cannot fail.
+ * Internal use only.
+ */
+void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
+ const short* normalizedCounter, unsigned maxSymbolValue,
+ const U32* baseValue, const U32* nbAdditionalBits,
+ unsigned tableLog);
+
+
+#endif /* ZSTD_DEC_BLOCK_H */
diff --git a/vendor/github.com/DataDog/zstd/zstd_decompress_internal.h b/vendor/github.com/DataDog/zstd/zstd_decompress_internal.h
new file mode 100644
index 0000000..ccbdfa0
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_decompress_internal.h
@@ -0,0 +1,175 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+/* zstd_decompress_internal:
+ * objects and definitions shared within lib/decompress modules */
+
+ #ifndef ZSTD_DECOMPRESS_INTERNAL_H
+ #define ZSTD_DECOMPRESS_INTERNAL_H
+
+
+/*-*******************************************************
+ * Dependencies
+ *********************************************************/
+#include "mem.h" /* BYTE, U16, U32 */
+#include "zstd_internal.h" /* ZSTD_seqSymbol */
+
+
+
+/*-*******************************************************
+ * Constants
+ *********************************************************/
+static const U32 LL_base[MaxLL+1] = {
+ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 18, 20, 22, 24, 28, 32, 40,
+ 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
+ 0x2000, 0x4000, 0x8000, 0x10000 };
+
+static const U32 OF_base[MaxOff+1] = {
+ 0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D,
+ 0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD,
+ 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD,
+ 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD, 0x1FFFFFFD, 0x3FFFFFFD, 0x7FFFFFFD };
+
+static const U32 OF_bits[MaxOff+1] = {
+ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31 };
+
+static const U32 ML_base[MaxML+1] = {
+ 3, 4, 5, 6, 7, 8, 9, 10,
+ 11, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26,
+ 27, 28, 29, 30, 31, 32, 33, 34,
+ 35, 37, 39, 41, 43, 47, 51, 59,
+ 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803,
+ 0x1003, 0x2003, 0x4003, 0x8003, 0x10003 };
+
+
+/*-*******************************************************
+ * Decompression types
+ *********************************************************/
+ typedef struct {
+ U32 fastMode;
+ U32 tableLog;
+ } ZSTD_seqSymbol_header;
+
+ typedef struct {
+ U16 nextState;
+ BYTE nbAdditionalBits;
+ BYTE nbBits;
+ U32 baseValue;
+ } ZSTD_seqSymbol;
+
+ #define SEQSYMBOL_TABLE_SIZE(log) (1 + (1 << (log)))
+
+typedef struct {
+ ZSTD_seqSymbol LLTable[SEQSYMBOL_TABLE_SIZE(LLFSELog)]; /* Note : Space reserved for FSE Tables */
+ ZSTD_seqSymbol OFTable[SEQSYMBOL_TABLE_SIZE(OffFSELog)]; /* is also used as temporary workspace while building hufTable during DDict creation */
+ ZSTD_seqSymbol MLTable[SEQSYMBOL_TABLE_SIZE(MLFSELog)]; /* and therefore must be at least HUF_DECOMPRESS_WORKSPACE_SIZE large */
+ HUF_DTable hufTable[HUF_DTABLE_SIZE(HufLog)]; /* can accommodate HUF_decompress4X */
+ U32 rep[ZSTD_REP_NUM];
+} ZSTD_entropyDTables_t;
+
+typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
+ ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock,
+ ZSTDds_decompressLastBlock, ZSTDds_checkChecksum,
+ ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage;
+
+typedef enum { zdss_init=0, zdss_loadHeader,
+ zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage;
+
+typedef enum {
+ ZSTD_use_indefinitely = -1, /* Use the dictionary indefinitely */
+ ZSTD_dont_use = 0, /* Do not use the dictionary (if one exists free it) */
+ ZSTD_use_once = 1 /* Use the dictionary once and set to ZSTD_dont_use */
+} ZSTD_dictUses_e;
+
+struct ZSTD_DCtx_s
+{
+ const ZSTD_seqSymbol* LLTptr;
+ const ZSTD_seqSymbol* MLTptr;
+ const ZSTD_seqSymbol* OFTptr;
+ const HUF_DTable* HUFptr;
+ ZSTD_entropyDTables_t entropy;
+ U32 workspace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; /* space needed when building huffman tables */
+ const void* previousDstEnd; /* detect continuity */
+ const void* prefixStart; /* start of current segment */
+ const void* virtualStart; /* virtual start of previous segment if it was just before current one */
+ const void* dictEnd; /* end of previous segment */
+ size_t expected;
+ ZSTD_frameHeader fParams;
+ U64 decodedSize;
+ blockType_e bType; /* used in ZSTD_decompressContinue(), store blockType between block header decoding and block decompression stages */
+ ZSTD_dStage stage;
+ U32 litEntropy;
+ U32 fseEntropy;
+ XXH64_state_t xxhState;
+ size_t headerSize;
+ ZSTD_format_e format;
+ const BYTE* litPtr;
+ ZSTD_customMem customMem;
+ size_t litSize;
+ size_t rleSize;
+ size_t staticSize;
+ int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
+
+ /* dictionary */
+ ZSTD_DDict* ddictLocal;
+ const ZSTD_DDict* ddict; /* set by ZSTD_initDStream_usingDDict(), or ZSTD_DCtx_refDDict() */
+ U32 dictID;
+ int ddictIsCold; /* if == 1 : dictionary is "new" for working context, and presumed "cold" (not in cpu cache) */
+ ZSTD_dictUses_e dictUses;
+
+ /* streaming */
+ ZSTD_dStreamStage streamStage;
+ char* inBuff;
+ size_t inBuffSize;
+ size_t inPos;
+ size_t maxWindowSize;
+ char* outBuff;
+ size_t outBuffSize;
+ size_t outStart;
+ size_t outEnd;
+ size_t lhSize;
+ void* legacyContext;
+ U32 previousLegacyVersion;
+ U32 legacyVersion;
+ U32 hostageByte;
+ int noForwardProgress;
+
+ /* workspace */
+ BYTE litBuffer[ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH];
+ BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
+}; /* typedef'd to ZSTD_DCtx within "zstd.h" */
+
+
+/*-*******************************************************
+ * Shared internal functions
+ *********************************************************/
+
+/*! ZSTD_loadDEntropy() :
+ * dict : must point at beginning of a valid zstd dictionary.
+ * @return : size of entropy tables read */
+size_t ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
+ const void* const dict, size_t const dictSize);
+
+/*! ZSTD_checkContinuity() :
+ * check if next `dst` follows previous position, where decompression ended.
+ * If yes, do nothing (continue on current segment).
+ * If not, classify previous segment as "external dictionary", and start a new segment.
+ * This function cannot fail. */
+void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst);
+
+
+#endif /* ZSTD_DECOMPRESS_INTERNAL_H */
diff --git a/vendor/github.com/DataDog/zstd/zstd_double_fast.c b/vendor/github.com/DataDog/zstd/zstd_double_fast.c
new file mode 100644
index 0000000..5957255
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_double_fast.c
@@ -0,0 +1,519 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include "zstd_compress_internal.h"
+#include "zstd_double_fast.h"
+
+
+void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
+ void const* end, ZSTD_dictTableLoadMethod_e dtlm)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashLarge = ms->hashTable;
+ U32 const hBitsL = cParams->hashLog;
+ U32 const mls = cParams->minMatch;
+ U32* const hashSmall = ms->chainTable;
+ U32 const hBitsS = cParams->chainLog;
+ const BYTE* const base = ms->window.base;
+ const BYTE* ip = base + ms->nextToUpdate;
+ const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
+ const U32 fastHashFillStep = 3;
+
+ /* Always insert every fastHashFillStep position into the hash tables.
+ * Insert the other positions into the large hash table if their entry
+ * is empty.
+ */
+ for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
+ U32 const current = (U32)(ip - base);
+ U32 i;
+ for (i = 0; i < fastHashFillStep; ++i) {
+ size_t const smHash = ZSTD_hashPtr(ip + i, hBitsS, mls);
+ size_t const lgHash = ZSTD_hashPtr(ip + i, hBitsL, 8);
+ if (i == 0)
+ hashSmall[smHash] = current + i;
+ if (i == 0 || hashLarge[lgHash] == 0)
+ hashLarge[lgHash] = current + i;
+ /* Only load extra positions for ZSTD_dtlm_full */
+ if (dtlm == ZSTD_dtlm_fast)
+ break;
+ } }
+}
+
+
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_compressBlock_doubleFast_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize,
+ U32 const mls /* template */, ZSTD_dictMode_e const dictMode)
+{
+ ZSTD_compressionParameters const* cParams = &ms->cParams;
+ U32* const hashLong = ms->hashTable;
+ const U32 hBitsL = cParams->hashLog;
+ U32* const hashSmall = ms->chainTable;
+ const U32 hBitsS = cParams->chainLog;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
+ const U32 lowestValid = ms->window.dictLimit;
+ const U32 maxDistance = 1U << cParams->windowLog;
+ const U32 prefixLowestIndex = (endIndex - lowestValid > maxDistance) ? endIndex - maxDistance : lowestValid;
+ const BYTE* const prefixLowest = base + prefixLowestIndex;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - HASH_READ_SIZE;
+ U32 offset_1=rep[0], offset_2=rep[1];
+ U32 offsetSaved = 0;
+
+ const ZSTD_matchState_t* const dms = ms->dictMatchState;
+ const ZSTD_compressionParameters* const dictCParams =
+ dictMode == ZSTD_dictMatchState ?
+ &dms->cParams : NULL;
+ const U32* const dictHashLong = dictMode == ZSTD_dictMatchState ?
+ dms->hashTable : NULL;
+ const U32* const dictHashSmall = dictMode == ZSTD_dictMatchState ?
+ dms->chainTable : NULL;
+ const U32 dictStartIndex = dictMode == ZSTD_dictMatchState ?
+ dms->window.dictLimit : 0;
+ const BYTE* const dictBase = dictMode == ZSTD_dictMatchState ?
+ dms->window.base : NULL;
+ const BYTE* const dictStart = dictMode == ZSTD_dictMatchState ?
+ dictBase + dictStartIndex : NULL;
+ const BYTE* const dictEnd = dictMode == ZSTD_dictMatchState ?
+ dms->window.nextSrc : NULL;
+ const U32 dictIndexDelta = dictMode == ZSTD_dictMatchState ?
+ prefixLowestIndex - (U32)(dictEnd - dictBase) :
+ 0;
+ const U32 dictHBitsL = dictMode == ZSTD_dictMatchState ?
+ dictCParams->hashLog : hBitsL;
+ const U32 dictHBitsS = dictMode == ZSTD_dictMatchState ?
+ dictCParams->chainLog : hBitsS;
+ const U32 dictAndPrefixLength = (U32)(ip - prefixLowest + dictEnd - dictStart);
+
+ DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_generic");
+
+ assert(dictMode == ZSTD_noDict || dictMode == ZSTD_dictMatchState);
+
+ /* if a dictionary is attached, it must be within window range */
+ if (dictMode == ZSTD_dictMatchState) {
+ assert(lowestValid + maxDistance >= endIndex);
+ }
+
+ /* init */
+ ip += (dictAndPrefixLength == 0);
+ if (dictMode == ZSTD_noDict) {
+ U32 const maxRep = (U32)(ip - prefixLowest);
+ if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
+ if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
+ }
+ if (dictMode == ZSTD_dictMatchState) {
+ /* dictMatchState repCode checks don't currently handle repCode == 0
+ * disabling. */
+ assert(offset_1 <= dictAndPrefixLength);
+ assert(offset_2 <= dictAndPrefixLength);
+ }
+
+ /* Main Search Loop */
+ while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
+ size_t mLength;
+ U32 offset;
+ size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
+ size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
+ size_t const dictHL = ZSTD_hashPtr(ip, dictHBitsL, 8);
+ size_t const dictHS = ZSTD_hashPtr(ip, dictHBitsS, mls);
+ U32 const current = (U32)(ip-base);
+ U32 const matchIndexL = hashLong[h2];
+ U32 matchIndexS = hashSmall[h];
+ const BYTE* matchLong = base + matchIndexL;
+ const BYTE* match = base + matchIndexS;
+ const U32 repIndex = current + 1 - offset_1;
+ const BYTE* repMatch = (dictMode == ZSTD_dictMatchState
+ && repIndex < prefixLowestIndex) ?
+ dictBase + (repIndex - dictIndexDelta) :
+ base + repIndex;
+ hashLong[h2] = hashSmall[h] = current; /* update hash tables */
+
+ /* check dictMatchState repcode */
+ if (dictMode == ZSTD_dictMatchState
+ && ((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
+ && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
+ const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
+ mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
+ ip++;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, 0, mLength-MINMATCH);
+ goto _match_stored;
+ }
+
+ /* check noDict repcode */
+ if ( dictMode == ZSTD_noDict
+ && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
+ mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
+ ip++;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, 0, mLength-MINMATCH);
+ goto _match_stored;
+ }
+
+ if (matchIndexL > prefixLowestIndex) {
+ /* check prefix long match */
+ if (MEM_read64(matchLong) == MEM_read64(ip)) {
+ mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8;
+ offset = (U32)(ip-matchLong);
+ while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
+ goto _match_found;
+ }
+ } else if (dictMode == ZSTD_dictMatchState) {
+ /* check dictMatchState long match */
+ U32 const dictMatchIndexL = dictHashLong[dictHL];
+ const BYTE* dictMatchL = dictBase + dictMatchIndexL;
+ assert(dictMatchL < dictEnd);
+
+ if (dictMatchL > dictStart && MEM_read64(dictMatchL) == MEM_read64(ip)) {
+ mLength = ZSTD_count_2segments(ip+8, dictMatchL+8, iend, dictEnd, prefixLowest) + 8;
+ offset = (U32)(current - dictMatchIndexL - dictIndexDelta);
+ while (((ip>anchor) & (dictMatchL>dictStart)) && (ip[-1] == dictMatchL[-1])) { ip--; dictMatchL--; mLength++; } /* catch up */
+ goto _match_found;
+ } }
+
+ if (matchIndexS > prefixLowestIndex) {
+ /* check prefix short match */
+ if (MEM_read32(match) == MEM_read32(ip)) {
+ goto _search_next_long;
+ }
+ } else if (dictMode == ZSTD_dictMatchState) {
+ /* check dictMatchState short match */
+ U32 const dictMatchIndexS = dictHashSmall[dictHS];
+ match = dictBase + dictMatchIndexS;
+ matchIndexS = dictMatchIndexS + dictIndexDelta;
+
+ if (match > dictStart && MEM_read32(match) == MEM_read32(ip)) {
+ goto _search_next_long;
+ } }
+
+ ip += ((ip-anchor) >> kSearchStrength) + 1;
+ continue;
+
+_search_next_long:
+
+ { size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
+ size_t const dictHLNext = ZSTD_hashPtr(ip+1, dictHBitsL, 8);
+ U32 const matchIndexL3 = hashLong[hl3];
+ const BYTE* matchL3 = base + matchIndexL3;
+ hashLong[hl3] = current + 1;
+
+ /* check prefix long +1 match */
+ if (matchIndexL3 > prefixLowestIndex) {
+ if (MEM_read64(matchL3) == MEM_read64(ip+1)) {
+ mLength = ZSTD_count(ip+9, matchL3+8, iend) + 8;
+ ip++;
+ offset = (U32)(ip-matchL3);
+ while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */
+ goto _match_found;
+ }
+ } else if (dictMode == ZSTD_dictMatchState) {
+ /* check dict long +1 match */
+ U32 const dictMatchIndexL3 = dictHashLong[dictHLNext];
+ const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3;
+ assert(dictMatchL3 < dictEnd);
+ if (dictMatchL3 > dictStart && MEM_read64(dictMatchL3) == MEM_read64(ip+1)) {
+ mLength = ZSTD_count_2segments(ip+1+8, dictMatchL3+8, iend, dictEnd, prefixLowest) + 8;
+ ip++;
+ offset = (U32)(current + 1 - dictMatchIndexL3 - dictIndexDelta);
+ while (((ip>anchor) & (dictMatchL3>dictStart)) && (ip[-1] == dictMatchL3[-1])) { ip--; dictMatchL3--; mLength++; } /* catch up */
+ goto _match_found;
+ } } }
+
+ /* if no long +1 match, explore the short match we found */
+ if (dictMode == ZSTD_dictMatchState && matchIndexS < prefixLowestIndex) {
+ mLength = ZSTD_count_2segments(ip+4, match+4, iend, dictEnd, prefixLowest) + 4;
+ offset = (U32)(current - matchIndexS);
+ while (((ip>anchor) & (match>dictStart)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
+ } else {
+ mLength = ZSTD_count(ip+4, match+4, iend) + 4;
+ offset = (U32)(ip - match);
+ while (((ip>anchor) & (match>prefixLowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
+ }
+
+ /* fall-through */
+
+_match_found:
+ offset_2 = offset_1;
+ offset_1 = offset;
+
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+
+_match_stored:
+ /* match found */
+ ip += mLength;
+ anchor = ip;
+
+ if (ip <= ilimit) {
+ /* Complementary insertion */
+ /* done after iLimit test, as candidates could be > iend-8 */
+ { U32 const indexToInsert = current+2;
+ hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
+ hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
+ hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
+ hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
+ }
+
+ /* check immediate repcode */
+ if (dictMode == ZSTD_dictMatchState) {
+ while (ip <= ilimit) {
+ U32 const current2 = (U32)(ip-base);
+ U32 const repIndex2 = current2 - offset_2;
+ const BYTE* repMatch2 = dictMode == ZSTD_dictMatchState
+ && repIndex2 < prefixLowestIndex ?
+ dictBase - dictIndexDelta + repIndex2 :
+ base + repIndex2;
+ if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
+ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
+ const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend;
+ size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4;
+ U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
+ ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
+ hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
+ hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
+ ip += repLength2;
+ anchor = ip;
+ continue;
+ }
+ break;
+ } }
+
+ if (dictMode == ZSTD_noDict) {
+ while ( (ip <= ilimit)
+ && ( (offset_2>0)
+ & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
+ /* store sequence */
+ size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
+ U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
+ hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
+ hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
+ ZSTD_storeSeq(seqStore, 0, anchor, 0, rLength-MINMATCH);
+ ip += rLength;
+ anchor = ip;
+ continue; /* faster when present ... (?) */
+ } } }
+ } /* while (ip < ilimit) */
+
+ /* save reps for next block */
+ rep[0] = offset_1 ? offset_1 : offsetSaved;
+ rep[1] = offset_2 ? offset_2 : offsetSaved;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+
+size_t ZSTD_compressBlock_doubleFast(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ const U32 mls = ms->cParams.minMatch;
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_noDict);
+ case 5 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_noDict);
+ case 6 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_noDict);
+ case 7 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_noDict);
+ }
+}
+
+
+size_t ZSTD_compressBlock_doubleFast_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ const U32 mls = ms->cParams.minMatch;
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_dictMatchState);
+ case 5 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_dictMatchState);
+ case 6 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_dictMatchState);
+ case 7 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_dictMatchState);
+ }
+}
+
+
+static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize,
+ U32 const mls /* template */)
+{
+ ZSTD_compressionParameters const* cParams = &ms->cParams;
+ U32* const hashLong = ms->hashTable;
+ U32 const hBitsL = cParams->hashLog;
+ U32* const hashSmall = ms->chainTable;
+ U32 const hBitsS = cParams->chainLog;
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - 8;
+ const BYTE* const base = ms->window.base;
+ const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
+ const U32 maxDistance = 1U << cParams->windowLog;
+ const U32 lowestValid = ms->window.lowLimit;
+ const U32 lowLimit = (endIndex - lowestValid > maxDistance) ? endIndex - maxDistance : lowestValid;
+ const U32 dictStartIndex = lowLimit;
+ const U32 dictLimit = ms->window.dictLimit;
+ const U32 prefixStartIndex = (dictLimit > lowLimit) ? dictLimit : lowLimit;
+ const BYTE* const prefixStart = base + prefixStartIndex;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const BYTE* const dictStart = dictBase + dictStartIndex;
+ const BYTE* const dictEnd = dictBase + prefixStartIndex;
+ U32 offset_1=rep[0], offset_2=rep[1];
+
+ DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_extDict_generic (srcSize=%zu)", srcSize);
+
+ /* if extDict is invalidated due to maxDistance, switch to "regular" variant */
+ if (prefixStartIndex == dictStartIndex)
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, mls, ZSTD_noDict);
+
+ /* Search Loop */
+ while (ip < ilimit) { /* < instead of <=, because (ip+1) */
+ const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
+ const U32 matchIndex = hashSmall[hSmall];
+ const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
+ const BYTE* match = matchBase + matchIndex;
+
+ const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8);
+ const U32 matchLongIndex = hashLong[hLong];
+ const BYTE* const matchLongBase = matchLongIndex < prefixStartIndex ? dictBase : base;
+ const BYTE* matchLong = matchLongBase + matchLongIndex;
+
+ const U32 current = (U32)(ip-base);
+ const U32 repIndex = current + 1 - offset_1; /* offset_1 expected <= current +1 */
+ const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
+ const BYTE* const repMatch = repBase + repIndex;
+ size_t mLength;
+ hashSmall[hSmall] = hashLong[hLong] = current; /* update hash table */
+
+ if ((((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex doesn't overlap dict + prefix */
+ & (repIndex > dictStartIndex))
+ && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
+ const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
+ mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
+ ip++;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, 0, mLength-MINMATCH);
+ } else {
+ if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
+ const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend;
+ const BYTE* const lowMatchPtr = matchLongIndex < prefixStartIndex ? dictStart : prefixStart;
+ U32 offset;
+ mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, prefixStart) + 8;
+ offset = current - matchLongIndex;
+ while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
+ offset_2 = offset_1;
+ offset_1 = offset;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+
+ } else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) {
+ size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
+ U32 const matchIndex3 = hashLong[h3];
+ const BYTE* const match3Base = matchIndex3 < prefixStartIndex ? dictBase : base;
+ const BYTE* match3 = match3Base + matchIndex3;
+ U32 offset;
+ hashLong[h3] = current + 1;
+ if ( (matchIndex3 > dictStartIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
+ const BYTE* const matchEnd = matchIndex3 < prefixStartIndex ? dictEnd : iend;
+ const BYTE* const lowMatchPtr = matchIndex3 < prefixStartIndex ? dictStart : prefixStart;
+ mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, prefixStart) + 8;
+ ip++;
+ offset = current+1 - matchIndex3;
+ while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */
+ } else {
+ const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
+ const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
+ mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
+ offset = current - matchIndex;
+ while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
+ }
+ offset_2 = offset_1;
+ offset_1 = offset;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+
+ } else {
+ ip += ((ip-anchor) >> kSearchStrength) + 1;
+ continue;
+ } }
+
+ /* move to next sequence start */
+ ip += mLength;
+ anchor = ip;
+
+ if (ip <= ilimit) {
+ /* Complementary insertion */
+ /* done after iLimit test, as candidates could be > iend-8 */
+ { U32 const indexToInsert = current+2;
+ hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
+ hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
+ hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
+ hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
+ }
+
+ /* check immediate repcode */
+ while (ip <= ilimit) {
+ U32 const current2 = (U32)(ip-base);
+ U32 const repIndex2 = current2 - offset_2;
+ const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
+ if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) /* intentional overflow : ensure repIndex2 doesn't overlap dict + prefix */
+ & (repIndex2 > dictStartIndex))
+ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
+ const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
+ size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
+ U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
+ ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
+ hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
+ hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
+ ip += repLength2;
+ anchor = ip;
+ continue;
+ }
+ break;
+ } } }
+
+ /* save reps for next block */
+ rep[0] = offset_1;
+ rep[1] = offset_2;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+
+size_t ZSTD_compressBlock_doubleFast_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ U32 const mls = ms->cParams.minMatch;
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 4);
+ case 5 :
+ return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 5);
+ case 6 :
+ return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 6);
+ case 7 :
+ return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 7);
+ }
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_double_fast.h b/vendor/github.com/DataDog/zstd/zstd_double_fast.h
new file mode 100644
index 0000000..4fa31ac
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_double_fast.h
@@ -0,0 +1,38 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_DOUBLE_FAST_H
+#define ZSTD_DOUBLE_FAST_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#include "mem.h" /* U32 */
+#include "zstd_compress_internal.h" /* ZSTD_CCtx, size_t */
+
+void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
+ void const* end, ZSTD_dictTableLoadMethod_e dtlm);
+size_t ZSTD_compressBlock_doubleFast(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_doubleFast_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_doubleFast_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_DOUBLE_FAST_H */
diff --git a/vendor/github.com/DataDog/zstd/zstd_errors.h b/vendor/github.com/DataDog/zstd/zstd_errors.h
new file mode 100644
index 0000000..92a3433
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_errors.h
@@ -0,0 +1,93 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_ERRORS_H_398273423
+#define ZSTD_ERRORS_H_398273423
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/*===== dependency =====*/
+#include <stddef.h> /* size_t */
+
+
+/* ===== ZSTDERRORLIB_API : control library symbols visibility ===== */
+#ifndef ZSTDERRORLIB_VISIBILITY
+# if defined(__GNUC__) && (__GNUC__ >= 4)
+# define ZSTDERRORLIB_VISIBILITY __attribute__ ((visibility ("default")))
+# else
+# define ZSTDERRORLIB_VISIBILITY
+# endif
+#endif
+#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
+# define ZSTDERRORLIB_API __declspec(dllexport) ZSTDERRORLIB_VISIBILITY
+#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
+# define ZSTDERRORLIB_API __declspec(dllimport) ZSTDERRORLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
+#else
+# define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBILITY
+#endif
+
+/*-*********************************************
+ * Error codes list
+ *-*********************************************
+ * Error codes _values_ are pinned down since v1.3.1 only.
+ * Therefore, don't rely on values if you may link to any version < v1.3.1.
+ *
+ * Only values < 100 are considered stable.
+ *
+ * note 1 : this API shall be used with static linking only.
+ * dynamic linking is not yet officially supported.
+ * note 2 : Prefer relying on the enum than on its value whenever possible
+ * This is the only supported way to use the error list < v1.3.1
+ * note 3 : ZSTD_isError() is always correct, whatever the library version.
+ **********************************************/
+typedef enum {
+ ZSTD_error_no_error = 0,
+ ZSTD_error_GENERIC = 1,
+ ZSTD_error_prefix_unknown = 10,
+ ZSTD_error_version_unsupported = 12,
+ ZSTD_error_frameParameter_unsupported = 14,
+ ZSTD_error_frameParameter_windowTooLarge = 16,
+ ZSTD_error_corruption_detected = 20,
+ ZSTD_error_checksum_wrong = 22,
+ ZSTD_error_dictionary_corrupted = 30,
+ ZSTD_error_dictionary_wrong = 32,
+ ZSTD_error_dictionaryCreation_failed = 34,
+ ZSTD_error_parameter_unsupported = 40,
+ ZSTD_error_parameter_outOfBound = 42,
+ ZSTD_error_tableLog_tooLarge = 44,
+ ZSTD_error_maxSymbolValue_tooLarge = 46,
+ ZSTD_error_maxSymbolValue_tooSmall = 48,
+ ZSTD_error_stage_wrong = 60,
+ ZSTD_error_init_missing = 62,
+ ZSTD_error_memory_allocation = 64,
+ ZSTD_error_workSpace_tooSmall= 66,
+ ZSTD_error_dstSize_tooSmall = 70,
+ ZSTD_error_srcSize_wrong = 72,
+ ZSTD_error_dstBuffer_null = 74,
+ /* following error codes are __NOT STABLE__, they can be removed or changed in future versions */
+ ZSTD_error_frameIndex_tooLarge = 100,
+ ZSTD_error_seekableIO = 102,
+ ZSTD_error_maxCode = 120 /* never EVER use this value directly, it can change in future versions! Use ZSTD_isError() instead */
+} ZSTD_ErrorCode;
+
+/*! ZSTD_getErrorCode() :
+ convert a `size_t` function result into a `ZSTD_ErrorCode` enum type,
+ which can be used to compare with enum list published above */
+ZSTDERRORLIB_API ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult);
+ZSTDERRORLIB_API const char* ZSTD_getErrorString(ZSTD_ErrorCode code); /**< Same as ZSTD_getErrorName, but using a `ZSTD_ErrorCode` enum argument */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_ERRORS_H_398273423 */
diff --git a/vendor/github.com/DataDog/zstd/zstd_fast.c b/vendor/github.com/DataDog/zstd/zstd_fast.c
new file mode 100644
index 0000000..a05b8a4
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_fast.c
@@ -0,0 +1,491 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include "zstd_compress_internal.h"
+#include "zstd_fast.h"
+
+
+void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
+ const void* const end,
+ ZSTD_dictTableLoadMethod_e dtlm)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hBits = cParams->hashLog;
+ U32 const mls = cParams->minMatch;
+ const BYTE* const base = ms->window.base;
+ const BYTE* ip = base + ms->nextToUpdate;
+ const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
+ const U32 fastHashFillStep = 3;
+
+ /* Always insert every fastHashFillStep position into the hash table.
+ * Insert the other positions if their hash entry is empty.
+ */
+ for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) {
+ U32 const current = (U32)(ip - base);
+ size_t const hash0 = ZSTD_hashPtr(ip, hBits, mls);
+ hashTable[hash0] = current;
+ if (dtlm == ZSTD_dtlm_fast) continue;
+ /* Only load extra positions for ZSTD_dtlm_full */
+ { U32 p;
+ for (p = 1; p < fastHashFillStep; ++p) {
+ size_t const hash = ZSTD_hashPtr(ip + p, hBits, mls);
+ if (hashTable[hash] == 0) { /* not yet filled */
+ hashTable[hash] = current + p;
+ } } } }
+}
+
+
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_compressBlock_fast_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize,
+ U32 const mls)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hlog = cParams->hashLog;
+ /* support stepSize of 0 */
+ size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const istart = (const BYTE*)src;
+ /* We check ip0 (ip + 0) and ip1 (ip + 1) each loop */
+ const BYTE* ip0 = istart;
+ const BYTE* ip1;
+ const BYTE* anchor = istart;
+ const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
+ const U32 maxDistance = 1U << cParams->windowLog;
+ const U32 validStartIndex = ms->window.dictLimit;
+ const U32 prefixStartIndex = (endIndex - validStartIndex > maxDistance) ? endIndex - maxDistance : validStartIndex;
+ const BYTE* const prefixStart = base + prefixStartIndex;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - HASH_READ_SIZE;
+ U32 offset_1=rep[0], offset_2=rep[1];
+ U32 offsetSaved = 0;
+
+ /* init */
+ ip0 += (ip0 == prefixStart);
+ ip1 = ip0 + 1;
+ {
+ U32 const maxRep = (U32)(ip0 - prefixStart);
+ if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
+ if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
+ }
+
+ /* Main Search Loop */
+ while (ip1 < ilimit) { /* < instead of <=, because check at ip0+2 */
+ size_t mLength;
+ BYTE const* ip2 = ip0 + 2;
+ size_t const h0 = ZSTD_hashPtr(ip0, hlog, mls);
+ U32 const val0 = MEM_read32(ip0);
+ size_t const h1 = ZSTD_hashPtr(ip1, hlog, mls);
+ U32 const val1 = MEM_read32(ip1);
+ U32 const current0 = (U32)(ip0-base);
+ U32 const current1 = (U32)(ip1-base);
+ U32 const matchIndex0 = hashTable[h0];
+ U32 const matchIndex1 = hashTable[h1];
+ BYTE const* repMatch = ip2-offset_1;
+ const BYTE* match0 = base + matchIndex0;
+ const BYTE* match1 = base + matchIndex1;
+ U32 offcode;
+ hashTable[h0] = current0; /* update hash table */
+ hashTable[h1] = current1; /* update hash table */
+
+ assert(ip0 + 1 == ip1);
+
+ if ((offset_1 > 0) & (MEM_read32(repMatch) == MEM_read32(ip2))) {
+ mLength = ip2[-1] == repMatch[-1] ? 1 : 0;
+ ip0 = ip2 - mLength;
+ match0 = repMatch - mLength;
+ offcode = 0;
+ goto _match;
+ }
+ if ((matchIndex0 > prefixStartIndex) && MEM_read32(match0) == val0) {
+ /* found a regular match */
+ goto _offset;
+ }
+ if ((matchIndex1 > prefixStartIndex) && MEM_read32(match1) == val1) {
+ /* found a regular match after one literal */
+ ip0 = ip1;
+ match0 = match1;
+ goto _offset;
+ }
+ {
+ size_t const step = ((ip0-anchor) >> (kSearchStrength - 1)) + stepSize;
+ assert(step >= 2);
+ ip0 += step;
+ ip1 += step;
+ continue;
+ }
+_offset: /* Requires: ip0, match0 */
+ /* Compute the offset code */
+ offset_2 = offset_1;
+ offset_1 = (U32)(ip0-match0);
+ offcode = offset_1 + ZSTD_REP_MOVE;
+ mLength = 0;
+ /* Count the backwards match length */
+ while (((ip0>anchor) & (match0>prefixStart))
+ && (ip0[-1] == match0[-1])) { ip0--; match0--; mLength++; } /* catch up */
+
+_match: /* Requires: ip0, match0, offcode */
+ /* Count the forward length */
+ mLength += ZSTD_count(ip0+mLength+4, match0+mLength+4, iend) + 4;
+ ZSTD_storeSeq(seqStore, ip0-anchor, anchor, offcode, mLength-MINMATCH);
+ /* match found */
+ ip0 += mLength;
+ anchor = ip0;
+ ip1 = ip0 + 1;
+
+ if (ip0 <= ilimit) {
+ /* Fill Table */
+ assert(base+current0+2 > istart); /* check base overflow */
+ hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
+ hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
+
+ while ( (ip0 <= ilimit)
+ && ( (offset_2>0)
+ & (MEM_read32(ip0) == MEM_read32(ip0 - offset_2)) )) {
+ /* store sequence */
+ size_t const rLength = ZSTD_count(ip0+4, ip0+4-offset_2, iend) + 4;
+ U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
+ hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
+ ip0 += rLength;
+ ip1 = ip0 + 1;
+ ZSTD_storeSeq(seqStore, 0, anchor, 0, rLength-MINMATCH);
+ anchor = ip0;
+ continue; /* faster when present (confirmed on gcc-8) ... (?) */
+ }
+ }
+ }
+
+ /* save reps for next block */
+ rep[0] = offset_1 ? offset_1 : offsetSaved;
+ rep[1] = offset_2 ? offset_2 : offsetSaved;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+
+size_t ZSTD_compressBlock_fast(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ ZSTD_compressionParameters const* cParams = &ms->cParams;
+ U32 const mls = cParams->minMatch;
+ assert(ms->dictMatchState == NULL);
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 4);
+ case 5 :
+ return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 5);
+ case 6 :
+ return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 6);
+ case 7 :
+ return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 7);
+ }
+}
+
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_compressBlock_fast_dictMatchState_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize, U32 const mls)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hlog = cParams->hashLog;
+ /* support stepSize of 0 */
+ U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
+ const BYTE* const base = ms->window.base;
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const U32 prefixStartIndex = ms->window.dictLimit;
+ const BYTE* const prefixStart = base + prefixStartIndex;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - HASH_READ_SIZE;
+ U32 offset_1=rep[0], offset_2=rep[1];
+ U32 offsetSaved = 0;
+
+ const ZSTD_matchState_t* const dms = ms->dictMatchState;
+ const ZSTD_compressionParameters* const dictCParams = &dms->cParams ;
+ const U32* const dictHashTable = dms->hashTable;
+ const U32 dictStartIndex = dms->window.dictLimit;
+ const BYTE* const dictBase = dms->window.base;
+ const BYTE* const dictStart = dictBase + dictStartIndex;
+ const BYTE* const dictEnd = dms->window.nextSrc;
+ const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase);
+ const U32 dictAndPrefixLength = (U32)(ip - prefixStart + dictEnd - dictStart);
+ const U32 dictHLog = dictCParams->hashLog;
+
+ /* if a dictionary is still attached, it necessarily means that
+ * it is within window size. So we just check it. */
+ const U32 maxDistance = 1U << cParams->windowLog;
+ const U32 endIndex = (U32)((size_t)(ip - base) + srcSize);
+ assert(endIndex - prefixStartIndex <= maxDistance);
+ (void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */
+
+ /* ensure there will be no no underflow
+ * when translating a dict index into a local index */
+ assert(prefixStartIndex >= (U32)(dictEnd - dictBase));
+
+ /* init */
+ ip += (dictAndPrefixLength == 0);
+ /* dictMatchState repCode checks don't currently handle repCode == 0
+ * disabling. */
+ assert(offset_1 <= dictAndPrefixLength);
+ assert(offset_2 <= dictAndPrefixLength);
+
+ /* Main Search Loop */
+ while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
+ size_t mLength;
+ size_t const h = ZSTD_hashPtr(ip, hlog, mls);
+ U32 const current = (U32)(ip-base);
+ U32 const matchIndex = hashTable[h];
+ const BYTE* match = base + matchIndex;
+ const U32 repIndex = current + 1 - offset_1;
+ const BYTE* repMatch = (repIndex < prefixStartIndex) ?
+ dictBase + (repIndex - dictIndexDelta) :
+ base + repIndex;
+ hashTable[h] = current; /* update hash table */
+
+ if ( ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
+ && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
+ const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
+ mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
+ ip++;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, 0, mLength-MINMATCH);
+ } else if ( (matchIndex <= prefixStartIndex) ) {
+ size_t const dictHash = ZSTD_hashPtr(ip, dictHLog, mls);
+ U32 const dictMatchIndex = dictHashTable[dictHash];
+ const BYTE* dictMatch = dictBase + dictMatchIndex;
+ if (dictMatchIndex <= dictStartIndex ||
+ MEM_read32(dictMatch) != MEM_read32(ip)) {
+ assert(stepSize >= 1);
+ ip += ((ip-anchor) >> kSearchStrength) + stepSize;
+ continue;
+ } else {
+ /* found a dict match */
+ U32 const offset = (U32)(current-dictMatchIndex-dictIndexDelta);
+ mLength = ZSTD_count_2segments(ip+4, dictMatch+4, iend, dictEnd, prefixStart) + 4;
+ while (((ip>anchor) & (dictMatch>dictStart))
+ && (ip[-1] == dictMatch[-1])) {
+ ip--; dictMatch--; mLength++;
+ } /* catch up */
+ offset_2 = offset_1;
+ offset_1 = offset;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+ }
+ } else if (MEM_read32(match) != MEM_read32(ip)) {
+ /* it's not a match, and we're not going to check the dictionary */
+ assert(stepSize >= 1);
+ ip += ((ip-anchor) >> kSearchStrength) + stepSize;
+ continue;
+ } else {
+ /* found a regular match */
+ U32 const offset = (U32)(ip-match);
+ mLength = ZSTD_count(ip+4, match+4, iend) + 4;
+ while (((ip>anchor) & (match>prefixStart))
+ && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
+ offset_2 = offset_1;
+ offset_1 = offset;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+ }
+
+ /* match found */
+ ip += mLength;
+ anchor = ip;
+
+ if (ip <= ilimit) {
+ /* Fill Table */
+ assert(base+current+2 > istart); /* check base overflow */
+ hashTable[ZSTD_hashPtr(base+current+2, hlog, mls)] = current+2; /* here because current+2 could be > iend-8 */
+ hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
+
+ /* check immediate repcode */
+ while (ip <= ilimit) {
+ U32 const current2 = (U32)(ip-base);
+ U32 const repIndex2 = current2 - offset_2;
+ const BYTE* repMatch2 = repIndex2 < prefixStartIndex ?
+ dictBase - dictIndexDelta + repIndex2 :
+ base + repIndex2;
+ if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
+ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
+ const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
+ size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
+ U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
+ ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
+ hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
+ ip += repLength2;
+ anchor = ip;
+ continue;
+ }
+ break;
+ }
+ }
+ }
+
+ /* save reps for next block */
+ rep[0] = offset_1 ? offset_1 : offsetSaved;
+ rep[1] = offset_2 ? offset_2 : offsetSaved;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+size_t ZSTD_compressBlock_fast_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ ZSTD_compressionParameters const* cParams = &ms->cParams;
+ U32 const mls = cParams->minMatch;
+ assert(ms->dictMatchState != NULL);
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 4);
+ case 5 :
+ return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 5);
+ case 6 :
+ return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 6);
+ case 7 :
+ return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 7);
+ }
+}
+
+
+static size_t ZSTD_compressBlock_fast_extDict_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize, U32 const mls)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hlog = cParams->hashLog;
+ /* support stepSize of 0 */
+ U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
+ const BYTE* const base = ms->window.base;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
+ const U32 maxDistance = 1U << cParams->windowLog;
+ const U32 validLow = ms->window.lowLimit;
+ const U32 lowLimit = (endIndex - validLow > maxDistance) ? endIndex - maxDistance : validLow;
+ const U32 dictStartIndex = lowLimit;
+ const BYTE* const dictStart = dictBase + dictStartIndex;
+ const U32 dictLimit = ms->window.dictLimit;
+ const U32 prefixStartIndex = dictLimit < lowLimit ? lowLimit : dictLimit;
+ const BYTE* const prefixStart = base + prefixStartIndex;
+ const BYTE* const dictEnd = dictBase + prefixStartIndex;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - 8;
+ U32 offset_1=rep[0], offset_2=rep[1];
+
+ /* switch to "regular" variant if extDict is invalidated due to maxDistance */
+ if (prefixStartIndex == dictStartIndex)
+ return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, mls);
+
+ /* Search Loop */
+ while (ip < ilimit) { /* < instead of <=, because (ip+1) */
+ const size_t h = ZSTD_hashPtr(ip, hlog, mls);
+ const U32 matchIndex = hashTable[h];
+ const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
+ const BYTE* match = matchBase + matchIndex;
+ const U32 current = (U32)(ip-base);
+ const U32 repIndex = current + 1 - offset_1;
+ const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
+ const BYTE* const repMatch = repBase + repIndex;
+ size_t mLength;
+ hashTable[h] = current; /* update hash table */
+ assert(offset_1 <= current +1); /* check repIndex */
+
+ if ( (((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > dictStartIndex))
+ && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
+ const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
+ mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
+ ip++;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, 0, mLength-MINMATCH);
+ } else {
+ if ( (matchIndex < dictStartIndex) ||
+ (MEM_read32(match) != MEM_read32(ip)) ) {
+ assert(stepSize >= 1);
+ ip += ((ip-anchor) >> kSearchStrength) + stepSize;
+ continue;
+ }
+ { const BYTE* matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
+ const BYTE* lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
+ U32 offset;
+ mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
+ while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
+ offset = current - matchIndex;
+ offset_2 = offset_1;
+ offset_1 = offset;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+ } }
+
+ /* found a match : store it */
+ ip += mLength;
+ anchor = ip;
+
+ if (ip <= ilimit) {
+ /* Fill Table */
+ hashTable[ZSTD_hashPtr(base+current+2, hlog, mls)] = current+2;
+ hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
+ /* check immediate repcode */
+ while (ip <= ilimit) {
+ U32 const current2 = (U32)(ip-base);
+ U32 const repIndex2 = current2 - offset_2;
+ const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
+ if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (repIndex2 > dictStartIndex)) /* intentional overflow */
+ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
+ const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
+ size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
+ U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
+ ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
+ hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
+ ip += repLength2;
+ anchor = ip;
+ continue;
+ }
+ break;
+ } } }
+
+ /* save reps for next block */
+ rep[0] = offset_1;
+ rep[1] = offset_2;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+
+size_t ZSTD_compressBlock_fast_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ ZSTD_compressionParameters const* cParams = &ms->cParams;
+ U32 const mls = cParams->minMatch;
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 4);
+ case 5 :
+ return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 5);
+ case 6 :
+ return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 6);
+ case 7 :
+ return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 7);
+ }
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_fast.h b/vendor/github.com/DataDog/zstd/zstd_fast.h
new file mode 100644
index 0000000..b74a88c
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_fast.h
@@ -0,0 +1,37 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_FAST_H
+#define ZSTD_FAST_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#include "mem.h" /* U32 */
+#include "zstd_compress_internal.h"
+
+void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
+ void const* end, ZSTD_dictTableLoadMethod_e dtlm);
+size_t ZSTD_compressBlock_fast(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_fast_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_fast_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_FAST_H */
diff --git a/vendor/github.com/DataDog/zstd/zstd_internal.h b/vendor/github.com/DataDog/zstd/zstd_internal.h
new file mode 100644
index 0000000..81b16ea
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_internal.h
@@ -0,0 +1,371 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_CCOMMON_H_MODULE
+#define ZSTD_CCOMMON_H_MODULE
+
+/* this module contains definitions which must be identical
+ * across compression, decompression and dictBuilder.
+ * It also contains a few functions useful to at least 2 of them
+ * and which benefit from being inlined */
+
+/*-*************************************
+* Dependencies
+***************************************/
+#include "compiler.h"
+#include "mem.h"
+#include "debug.h" /* assert, DEBUGLOG, RAWLOG, g_debuglevel */
+#include "error_private.h"
+#define ZSTD_STATIC_LINKING_ONLY
+#include "zstd.h"
+#define FSE_STATIC_LINKING_ONLY
+#include "fse.h"
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+#ifndef XXH_STATIC_LINKING_ONLY
+# define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
+#endif
+#include "xxhash.h" /* XXH_reset, update, digest */
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/* ---- static assert (debug) --- */
+#define ZSTD_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)
+#define ZSTD_isError ERR_isError /* for inlining */
+#define FSE_isError ERR_isError
+#define HUF_isError ERR_isError
+
+
+/*-*************************************
+* shared macros
+***************************************/
+#undef MIN
+#undef MAX
+#define MIN(a,b) ((a)<(b) ? (a) : (b))
+#define MAX(a,b) ((a)>(b) ? (a) : (b))
+
+/**
+ * Return the specified error if the condition evaluates to true.
+ *
+ * In debug modes, prints additional information. In order to do that
+ * (particularly, printing the conditional that failed), this can't just wrap
+ * RETURN_ERROR().
+ */
+#define RETURN_ERROR_IF(cond, err, ...) \
+ if (cond) { \
+ RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", __FILE__, __LINE__, ZSTD_QUOTE(cond), ZSTD_QUOTE(ERROR(err))); \
+ RAWLOG(3, ": " __VA_ARGS__); \
+ RAWLOG(3, "\n"); \
+ return ERROR(err); \
+ }
+
+/**
+ * Unconditionally return the specified error.
+ *
+ * In debug modes, prints additional information.
+ */
+#define RETURN_ERROR(err, ...) \
+ do { \
+ RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", __FILE__, __LINE__, ZSTD_QUOTE(ERROR(err))); \
+ RAWLOG(3, ": " __VA_ARGS__); \
+ RAWLOG(3, "\n"); \
+ return ERROR(err); \
+ } while(0);
+
+/**
+ * If the provided expression evaluates to an error code, returns that error code.
+ *
+ * In debug modes, prints additional information.
+ */
+#define FORWARD_IF_ERROR(err, ...) \
+ do { \
+ size_t const err_code = (err); \
+ if (ERR_isError(err_code)) { \
+ RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", __FILE__, __LINE__, ZSTD_QUOTE(err), ERR_getErrorName(err_code)); \
+ RAWLOG(3, ": " __VA_ARGS__); \
+ RAWLOG(3, "\n"); \
+ return err_code; \
+ } \
+ } while(0);
+
+
+/*-*************************************
+* Common constants
+***************************************/
+#define ZSTD_OPT_NUM (1<<12)
+
+#define ZSTD_REP_NUM 3 /* number of repcodes */
+#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
+static const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
+
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+
+#define BIT7 128
+#define BIT6 64
+#define BIT5 32
+#define BIT4 16
+#define BIT1 2
+#define BIT0 1
+
+#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10
+static const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 };
+static const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 };
+
+#define ZSTD_FRAMEIDSIZE 4 /* magic number size */
+
+#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
+static const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE;
+typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
+
+#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
+#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
+
+#define HufLog 12
+typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e;
+
+#define LONGNBSEQ 0x7F00
+
+#define MINMATCH 3
+
+#define Litbits 8
+#define MaxLit ((1<<Litbits) - 1)
+#define MaxML 52
+#define MaxLL 35
+#define DefaultMaxOff 28
+#define MaxOff 31
+#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
+#define MLFSELog 9
+#define LLFSELog 9
+#define OffFSELog 8
+#define MaxFSELog MAX(MAX(MLFSELog, LLFSELog), OffFSELog)
+
+static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 2, 2, 3, 3,
+ 4, 6, 7, 8, 9,10,11,12,
+ 13,14,15,16 };
+static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 1, 1, 1,
+ 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 3, 2, 1, 1, 1, 1, 1,
+ -1,-1,-1,-1 };
+#define LL_DEFAULTNORMLOG 6 /* for static allocation */
+static const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG;
+
+static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 2, 2, 3, 3,
+ 4, 4, 5, 7, 8, 9,10,11,
+ 12,13,14,15,16 };
+static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2,
+ 2, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1,-1,-1,
+ -1,-1,-1,-1,-1 };
+#define ML_DEFAULTNORMLOG 6 /* for static allocation */
+static const U32 ML_defaultNormLog = ML_DEFAULTNORMLOG;
+
+static const S16 OF_defaultNorm[DefaultMaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2,
+ 2, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ -1,-1,-1,-1,-1 };
+#define OF_DEFAULTNORMLOG 5 /* for static allocation */
+static const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
+
+
+/*-*******************************************
+* Shared functions to include for inlining
+*********************************************/
+static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
+
+#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
+static void ZSTD_copy16(void* dst, const void* src) { memcpy(dst, src, 16); }
+#define COPY16(d,s) { ZSTD_copy16(d,s); d+=16; s+=16; }
+
+#define WILDCOPY_OVERLENGTH 8
+#define VECLEN 16
+
+typedef enum {
+ ZSTD_no_overlap,
+ ZSTD_overlap_src_before_dst,
+ /* ZSTD_overlap_dst_before_src, */
+} ZSTD_overlap_e;
+
+/*! ZSTD_wildcopy() :
+ * custom version of memcpy(), can overwrite up to WILDCOPY_OVERLENGTH bytes (if length==0) */
+MEM_STATIC FORCE_INLINE_ATTR DONT_VECTORIZE
+void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length, ZSTD_overlap_e ovtype)
+{
+ ptrdiff_t diff = (BYTE*)dst - (const BYTE*)src;
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + length;
+
+ assert(diff >= 8 || (ovtype == ZSTD_no_overlap && diff < -8));
+ if (length < VECLEN || (ovtype == ZSTD_overlap_src_before_dst && diff < VECLEN)) {
+ do
+ COPY8(op, ip)
+ while (op < oend);
+ }
+ else {
+ if ((length & 8) == 0)
+ COPY8(op, ip);
+ do {
+ COPY16(op, ip);
+ }
+ while (op < oend);
+ }
+}
+
+/*! ZSTD_wildcopy_16min() :
+ * same semantics as ZSTD_wilcopy() except guaranteed to be able to copy 16 bytes at the start */
+MEM_STATIC FORCE_INLINE_ATTR DONT_VECTORIZE
+void ZSTD_wildcopy_16min(void* dst, const void* src, ptrdiff_t length, ZSTD_overlap_e ovtype)
+{
+ ptrdiff_t diff = (BYTE*)dst - (const BYTE*)src;
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + length;
+
+ assert(length >= 8);
+ assert(diff >= 8 || (ovtype == ZSTD_no_overlap && diff < -8));
+
+ if (ovtype == ZSTD_overlap_src_before_dst && diff < VECLEN) {
+ do
+ COPY8(op, ip)
+ while (op < oend);
+ }
+ else {
+ if ((length & 8) == 0)
+ COPY8(op, ip);
+ do {
+ COPY16(op, ip);
+ }
+ while (op < oend);
+ }
+}
+
+MEM_STATIC void ZSTD_wildcopy_e(void* dst, const void* src, void* dstEnd) /* should be faster for decoding, but strangely, not verified on all platform */
+{
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = (BYTE*)dstEnd;
+ do
+ COPY8(op, ip)
+ while (op < oend);
+}
+
+
+/*-*******************************************
+* Private declarations
+*********************************************/
+typedef struct seqDef_s {
+ U32 offset;
+ U16 litLength;
+ U16 matchLength;
+} seqDef;
+
+typedef struct {
+ seqDef* sequencesStart;
+ seqDef* sequences;
+ BYTE* litStart;
+ BYTE* lit;
+ BYTE* llCode;
+ BYTE* mlCode;
+ BYTE* ofCode;
+ size_t maxNbSeq;
+ size_t maxNbLit;
+ U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
+ U32 longLengthPos;
+} seqStore_t;
+
+/**
+ * Contains the compressed frame size and an upper-bound for the decompressed frame size.
+ * Note: before using `compressedSize`, check for errors using ZSTD_isError().
+ * similarly, before using `decompressedBound`, check for errors using:
+ * `decompressedBound != ZSTD_CONTENTSIZE_ERROR`
+ */
+typedef struct {
+ size_t compressedSize;
+ unsigned long long decompressedBound;
+} ZSTD_frameSizeInfo; /* decompress & legacy */
+
+const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx); /* compress & dictBuilder */
+void ZSTD_seqToCodes(const seqStore_t* seqStorePtr); /* compress, dictBuilder, decodeCorpus (shouldn't get its definition from here) */
+
+/* custom memory allocation functions */
+void* ZSTD_malloc(size_t size, ZSTD_customMem customMem);
+void* ZSTD_calloc(size_t size, ZSTD_customMem customMem);
+void ZSTD_free(void* ptr, ZSTD_customMem customMem);
+
+
+MEM_STATIC U32 ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus */
+{
+ assert(val != 0);
+ {
+# if defined(_MSC_VER) /* Visual */
+ unsigned long r=0;
+ _BitScanReverse(&r, val);
+ return (unsigned)r;
+# elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */
+ return 31 - __builtin_clz(val);
+# else /* Software version */
+ static const U32 DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ U32 v = val;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return DeBruijnClz[(v * 0x07C4ACDDU) >> 27];
+# endif
+ }
+}
+
+
+/* ZSTD_invalidateRepCodes() :
+ * ensures next compression will not use repcodes from previous block.
+ * Note : only works with regular variant;
+ * do not use with extDict variant ! */
+void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx); /* zstdmt, adaptive_compression (shouldn't get this definition from here) */
+
+
+typedef struct {
+ blockType_e blockType;
+ U32 lastBlock;
+ U32 origSize;
+} blockProperties_t; /* declared here for decompress and fullbench */
+
+/*! ZSTD_getcBlockSize() :
+ * Provides the size of compressed block from block header `src` */
+/* Used by: decompress, fullbench (does not get its definition from here) */
+size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
+ blockProperties_t* bpPtr);
+
+/*! ZSTD_decodeSeqHeaders() :
+ * decode sequence header from src */
+/* Used by: decompress, fullbench (does not get its definition from here) */
+size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
+ const void* src, size_t srcSize);
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_CCOMMON_H_MODULE */
diff --git a/vendor/github.com/DataDog/zstd/zstd_lazy.c b/vendor/github.com/DataDog/zstd/zstd_lazy.c
new file mode 100644
index 0000000..94d906c
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_lazy.c
@@ -0,0 +1,1111 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include "zstd_compress_internal.h"
+#include "zstd_lazy.h"
+
+
+/*-*************************************
+* Binary Tree search
+***************************************/
+
+static void
+ZSTD_updateDUBT(ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* iend,
+ U32 mls)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hashLog = cParams->hashLog;
+
+ U32* const bt = ms->chainTable;
+ U32 const btLog = cParams->chainLog - 1;
+ U32 const btMask = (1 << btLog) - 1;
+
+ const BYTE* const base = ms->window.base;
+ U32 const target = (U32)(ip - base);
+ U32 idx = ms->nextToUpdate;
+
+ if (idx != target)
+ DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)",
+ idx, target, ms->window.dictLimit);
+ assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */
+ (void)iend;
+
+ assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */
+ for ( ; idx < target ; idx++) {
+ size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */
+ U32 const matchIndex = hashTable[h];
+
+ U32* const nextCandidatePtr = bt + 2*(idx&btMask);
+ U32* const sortMarkPtr = nextCandidatePtr + 1;
+
+ DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx);
+ hashTable[h] = idx; /* Update Hash Table */
+ *nextCandidatePtr = matchIndex; /* update BT like a chain */
+ *sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK;
+ }
+ ms->nextToUpdate = target;
+}
+
+
+/** ZSTD_insertDUBT1() :
+ * sort one already inserted but unsorted position
+ * assumption : current >= btlow == (current - btmask)
+ * doesn't fail */
+static void
+ZSTD_insertDUBT1(ZSTD_matchState_t* ms,
+ U32 current, const BYTE* inputEnd,
+ U32 nbCompares, U32 btLow,
+ const ZSTD_dictMode_e dictMode)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const bt = ms->chainTable;
+ U32 const btLog = cParams->chainLog - 1;
+ U32 const btMask = (1 << btLog) - 1;
+ size_t commonLengthSmaller=0, commonLengthLarger=0;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const U32 dictLimit = ms->window.dictLimit;
+ const BYTE* const ip = (current>=dictLimit) ? base + current : dictBase + current;
+ const BYTE* const iend = (current>=dictLimit) ? inputEnd : dictBase + dictLimit;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ const BYTE* match;
+ U32* smallerPtr = bt + 2*(current&btMask);
+ U32* largerPtr = smallerPtr + 1;
+ U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */
+ U32 dummy32; /* to be nullified at the end */
+ U32 const windowValid = ms->window.lowLimit;
+ U32 const maxDistance = 1U << cParams->windowLog;
+ U32 const windowLow = (current - windowValid > maxDistance) ? current - maxDistance : windowValid;
+
+
+ DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)",
+ current, dictLimit, windowLow);
+ assert(current >= btLow);
+ assert(ip < iend); /* condition for ZSTD_count */
+
+ while (nbCompares-- && (matchIndex > windowLow)) {
+ U32* const nextPtr = bt + 2*(matchIndex & btMask);
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
+ assert(matchIndex < current);
+ /* note : all candidates are now supposed sorted,
+ * but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK
+ * when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */
+
+ if ( (dictMode != ZSTD_extDict)
+ || (matchIndex+matchLength >= dictLimit) /* both in current segment*/
+ || (current < dictLimit) /* both in extDict */) {
+ const BYTE* const mBase = ( (dictMode != ZSTD_extDict)
+ || (matchIndex+matchLength >= dictLimit)) ?
+ base : dictBase;
+ assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */
+ || (current < dictLimit) );
+ match = mBase + matchIndex;
+ matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
+ } else {
+ match = dictBase + matchIndex;
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
+ if (matchIndex+matchLength >= dictLimit)
+ match = base + matchIndex; /* preparation for next read of match[matchLength] */
+ }
+
+ DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ",
+ current, matchIndex, (U32)matchLength);
+
+ if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
+ break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
+ }
+
+ if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */
+ /* match is smaller than current */
+ *smallerPtr = matchIndex; /* update smaller idx */
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */
+ DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u",
+ matchIndex, btLow, nextPtr[1]);
+ smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */
+ matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */
+ } else {
+ /* match is larger than current */
+ *largerPtr = matchIndex;
+ commonLengthLarger = matchLength;
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */
+ DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u",
+ matchIndex, btLow, nextPtr[0]);
+ largerPtr = nextPtr;
+ matchIndex = nextPtr[0];
+ } }
+
+ *smallerPtr = *largerPtr = 0;
+}
+
+
+static size_t
+ZSTD_DUBT_findBetterDictMatch (
+ ZSTD_matchState_t* ms,
+ const BYTE* const ip, const BYTE* const iend,
+ size_t* offsetPtr,
+ size_t bestLength,
+ U32 nbCompares,
+ U32 const mls,
+ const ZSTD_dictMode_e dictMode)
+{
+ const ZSTD_matchState_t * const dms = ms->dictMatchState;
+ const ZSTD_compressionParameters* const dmsCParams = &dms->cParams;
+ const U32 * const dictHashTable = dms->hashTable;
+ U32 const hashLog = dmsCParams->hashLog;
+ size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
+ U32 dictMatchIndex = dictHashTable[h];
+
+ const BYTE* const base = ms->window.base;
+ const BYTE* const prefixStart = base + ms->window.dictLimit;
+ U32 const current = (U32)(ip-base);
+ const BYTE* const dictBase = dms->window.base;
+ const BYTE* const dictEnd = dms->window.nextSrc;
+ U32 const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base);
+ U32 const dictLowLimit = dms->window.lowLimit;
+ U32 const dictIndexDelta = ms->window.lowLimit - dictHighLimit;
+
+ U32* const dictBt = dms->chainTable;
+ U32 const btLog = dmsCParams->chainLog - 1;
+ U32 const btMask = (1 << btLog) - 1;
+ U32 const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask;
+
+ size_t commonLengthSmaller=0, commonLengthLarger=0;
+
+ (void)dictMode;
+ assert(dictMode == ZSTD_dictMatchState);
+
+ while (nbCompares-- && (dictMatchIndex > dictLowLimit)) {
+ U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask);
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
+ const BYTE* match = dictBase + dictMatchIndex;
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
+ if (dictMatchIndex+matchLength >= dictHighLimit)
+ match = base + dictMatchIndex + dictIndexDelta; /* to prepare for next usage of match[matchLength] */
+
+ if (matchLength > bestLength) {
+ U32 matchIndex = dictMatchIndex + dictIndexDelta;
+ if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(current-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) {
+ DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)",
+ current, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, ZSTD_REP_MOVE + current - matchIndex, dictMatchIndex, matchIndex);
+ bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + current - matchIndex;
+ }
+ if (ip+matchLength == iend) { /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */
+ break; /* drop, to guarantee consistency (miss a little bit of compression) */
+ }
+ }
+
+ if (match[matchLength] < ip[matchLength]) {
+ if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
+ dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
+ } else {
+ /* match is larger than current */
+ if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
+ commonLengthLarger = matchLength;
+ dictMatchIndex = nextPtr[0];
+ }
+ }
+
+ if (bestLength >= MINMATCH) {
+ U32 const mIndex = current - ((U32)*offsetPtr - ZSTD_REP_MOVE); (void)mIndex;
+ DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
+ current, (U32)bestLength, (U32)*offsetPtr, mIndex);
+ }
+ return bestLength;
+
+}
+
+
+static size_t
+ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms,
+ const BYTE* const ip, const BYTE* const iend,
+ size_t* offsetPtr,
+ U32 const mls,
+ const ZSTD_dictMode_e dictMode)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hashLog = cParams->hashLog;
+ size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
+ U32 matchIndex = hashTable[h];
+
+ const BYTE* const base = ms->window.base;
+ U32 const current = (U32)(ip-base);
+ U32 const maxDistance = 1U << cParams->windowLog;
+ U32 const windowValid = ms->window.lowLimit;
+ U32 const windowLow = (current - windowValid > maxDistance) ? current - maxDistance : windowValid;
+
+ U32* const bt = ms->chainTable;
+ U32 const btLog = cParams->chainLog - 1;
+ U32 const btMask = (1 << btLog) - 1;
+ U32 const btLow = (btMask >= current) ? 0 : current - btMask;
+ U32 const unsortLimit = MAX(btLow, windowLow);
+
+ U32* nextCandidate = bt + 2*(matchIndex&btMask);
+ U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1;
+ U32 nbCompares = 1U << cParams->searchLog;
+ U32 nbCandidates = nbCompares;
+ U32 previousCandidate = 0;
+
+ DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", current);
+ assert(ip <= iend-8); /* required for h calculation */
+
+ /* reach end of unsorted candidates list */
+ while ( (matchIndex > unsortLimit)
+ && (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK)
+ && (nbCandidates > 1) ) {
+ DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted",
+ matchIndex);
+ *unsortedMark = previousCandidate; /* the unsortedMark becomes a reversed chain, to move up back to original position */
+ previousCandidate = matchIndex;
+ matchIndex = *nextCandidate;
+ nextCandidate = bt + 2*(matchIndex&btMask);
+ unsortedMark = bt + 2*(matchIndex&btMask) + 1;
+ nbCandidates --;
+ }
+
+ /* nullify last candidate if it's still unsorted
+ * simplification, detrimental to compression ratio, beneficial for speed */
+ if ( (matchIndex > unsortLimit)
+ && (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) {
+ DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u",
+ matchIndex);
+ *nextCandidate = *unsortedMark = 0;
+ }
+
+ /* batch sort stacked candidates */
+ matchIndex = previousCandidate;
+ while (matchIndex) { /* will end on matchIndex == 0 */
+ U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1;
+ U32 const nextCandidateIdx = *nextCandidateIdxPtr;
+ ZSTD_insertDUBT1(ms, matchIndex, iend,
+ nbCandidates, unsortLimit, dictMode);
+ matchIndex = nextCandidateIdx;
+ nbCandidates++;
+ }
+
+ /* find longest match */
+ { size_t commonLengthSmaller = 0, commonLengthLarger = 0;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const U32 dictLimit = ms->window.dictLimit;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ U32* smallerPtr = bt + 2*(current&btMask);
+ U32* largerPtr = bt + 2*(current&btMask) + 1;
+ U32 matchEndIdx = current + 8 + 1;
+ U32 dummy32; /* to be nullified at the end */
+ size_t bestLength = 0;
+
+ matchIndex = hashTable[h];
+ hashTable[h] = current; /* Update Hash Table */
+
+ while (nbCompares-- && (matchIndex > windowLow)) {
+ U32* const nextPtr = bt + 2*(matchIndex & btMask);
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
+ const BYTE* match;
+
+ if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) {
+ match = base + matchIndex;
+ matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
+ } else {
+ match = dictBase + matchIndex;
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
+ if (matchIndex+matchLength >= dictLimit)
+ match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
+ }
+
+ if (matchLength > bestLength) {
+ if (matchLength > matchEndIdx - matchIndex)
+ matchEndIdx = matchIndex + (U32)matchLength;
+ if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(current-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) )
+ bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + current - matchIndex;
+ if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
+ if (dictMode == ZSTD_dictMatchState) {
+ nbCompares = 0; /* in addition to avoiding checking any
+ * further in this loop, make sure we
+ * skip checking in the dictionary. */
+ }
+ break; /* drop, to guarantee consistency (miss a little bit of compression) */
+ }
+ }
+
+ if (match[matchLength] < ip[matchLength]) {
+ /* match is smaller than current */
+ *smallerPtr = matchIndex; /* update smaller idx */
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
+ smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
+ matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
+ } else {
+ /* match is larger than current */
+ *largerPtr = matchIndex;
+ commonLengthLarger = matchLength;
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
+ largerPtr = nextPtr;
+ matchIndex = nextPtr[0];
+ } }
+
+ *smallerPtr = *largerPtr = 0;
+
+ if (dictMode == ZSTD_dictMatchState && nbCompares) {
+ bestLength = ZSTD_DUBT_findBetterDictMatch(
+ ms, ip, iend,
+ offsetPtr, bestLength, nbCompares,
+ mls, dictMode);
+ }
+
+ assert(matchEndIdx > current+8); /* ensure nextToUpdate is increased */
+ ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
+ if (bestLength >= MINMATCH) {
+ U32 const mIndex = current - ((U32)*offsetPtr - ZSTD_REP_MOVE); (void)mIndex;
+ DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
+ current, (U32)bestLength, (U32)*offsetPtr, mIndex);
+ }
+ return bestLength;
+ }
+}
+
+
+/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
+FORCE_INLINE_TEMPLATE size_t
+ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms,
+ const BYTE* const ip, const BYTE* const iLimit,
+ size_t* offsetPtr,
+ const U32 mls /* template */,
+ const ZSTD_dictMode_e dictMode)
+{
+ DEBUGLOG(7, "ZSTD_BtFindBestMatch");
+ if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
+ ZSTD_updateDUBT(ms, ip, iLimit, mls);
+ return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offsetPtr, mls, dictMode);
+}
+
+
+static size_t
+ZSTD_BtFindBestMatch_selectMLS ( ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 4, ZSTD_noDict);
+ case 5 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 5, ZSTD_noDict);
+ case 7 :
+ case 6 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 6, ZSTD_noDict);
+ }
+}
+
+
+static size_t ZSTD_BtFindBestMatch_dictMatchState_selectMLS (
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 4, ZSTD_dictMatchState);
+ case 5 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 5, ZSTD_dictMatchState);
+ case 7 :
+ case 6 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 6, ZSTD_dictMatchState);
+ }
+}
+
+
+static size_t ZSTD_BtFindBestMatch_extDict_selectMLS (
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 4, ZSTD_extDict);
+ case 5 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 5, ZSTD_extDict);
+ case 7 :
+ case 6 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 6, ZSTD_extDict);
+ }
+}
+
+
+
+/* *********************************
+* Hash Chain
+***********************************/
+#define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)]
+
+/* Update chains up to ip (excluded)
+ Assumption : always within prefix (i.e. not within extDict) */
+static U32 ZSTD_insertAndFindFirstIndex_internal(
+ ZSTD_matchState_t* ms,
+ const ZSTD_compressionParameters* const cParams,
+ const BYTE* ip, U32 const mls)
+{
+ U32* const hashTable = ms->hashTable;
+ const U32 hashLog = cParams->hashLog;
+ U32* const chainTable = ms->chainTable;
+ const U32 chainMask = (1 << cParams->chainLog) - 1;
+ const BYTE* const base = ms->window.base;
+ const U32 target = (U32)(ip - base);
+ U32 idx = ms->nextToUpdate;
+
+ while(idx < target) { /* catch up */
+ size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
+ NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
+ hashTable[h] = idx;
+ idx++;
+ }
+
+ ms->nextToUpdate = target;
+ return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
+}
+
+U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) {
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch);
+}
+
+
+/* inlining is important to hardwire a hot branch (template emulation) */
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_HcFindBestMatch_generic (
+ ZSTD_matchState_t* ms,
+ const BYTE* const ip, const BYTE* const iLimit,
+ size_t* offsetPtr,
+ const U32 mls, const ZSTD_dictMode_e dictMode)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const chainTable = ms->chainTable;
+ const U32 chainSize = (1 << cParams->chainLog);
+ const U32 chainMask = chainSize-1;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const U32 dictLimit = ms->window.dictLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const U32 current = (U32)(ip-base);
+ const U32 maxDistance = 1U << cParams->windowLog;
+ const U32 lowValid = ms->window.lowLimit;
+ const U32 lowLimit = (current - lowValid > maxDistance) ? current - maxDistance : lowValid;
+ const U32 minChain = current > chainSize ? current - chainSize : 0;
+ U32 nbAttempts = 1U << cParams->searchLog;
+ size_t ml=4-1;
+
+ /* HC4 match finder */
+ U32 matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls);
+
+ for ( ; (matchIndex>lowLimit) & (nbAttempts>0) ; nbAttempts--) {
+ size_t currentMl=0;
+ if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
+ const BYTE* const match = base + matchIndex;
+ assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */
+ if (match[ml] == ip[ml]) /* potentially better */
+ currentMl = ZSTD_count(ip, match, iLimit);
+ } else {
+ const BYTE* const match = dictBase + matchIndex;
+ assert(match+4 <= dictEnd);
+ if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
+ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
+ }
+
+ /* save best solution */
+ if (currentMl > ml) {
+ ml = currentMl;
+ *offsetPtr = current - matchIndex + ZSTD_REP_MOVE;
+ if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
+ }
+
+ if (matchIndex <= minChain) break;
+ matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
+ }
+
+ if (dictMode == ZSTD_dictMatchState) {
+ const ZSTD_matchState_t* const dms = ms->dictMatchState;
+ const U32* const dmsChainTable = dms->chainTable;
+ const U32 dmsChainSize = (1 << dms->cParams.chainLog);
+ const U32 dmsChainMask = dmsChainSize - 1;
+ const U32 dmsLowestIndex = dms->window.dictLimit;
+ const BYTE* const dmsBase = dms->window.base;
+ const BYTE* const dmsEnd = dms->window.nextSrc;
+ const U32 dmsSize = (U32)(dmsEnd - dmsBase);
+ const U32 dmsIndexDelta = dictLimit - dmsSize;
+ const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0;
+
+ matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)];
+
+ for ( ; (matchIndex>dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) {
+ size_t currentMl=0;
+ const BYTE* const match = dmsBase + matchIndex;
+ assert(match+4 <= dmsEnd);
+ if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
+ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
+
+ /* save best solution */
+ if (currentMl > ml) {
+ ml = currentMl;
+ *offsetPtr = current - (matchIndex + dmsIndexDelta) + ZSTD_REP_MOVE;
+ if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
+ }
+
+ if (matchIndex <= dmsMinChain) break;
+ matchIndex = dmsChainTable[matchIndex & dmsChainMask];
+ }
+ }
+
+ return ml;
+}
+
+
+FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch_selectMLS (
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_noDict);
+ case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_noDict);
+ case 7 :
+ case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_noDict);
+ }
+}
+
+
+static size_t ZSTD_HcFindBestMatch_dictMatchState_selectMLS (
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_dictMatchState);
+ case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_dictMatchState);
+ case 7 :
+ case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_dictMatchState);
+ }
+}
+
+
+FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch_extDict_selectMLS (
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_extDict);
+ case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_extDict);
+ case 7 :
+ case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_extDict);
+ }
+}
+
+
+/* *******************************
+* Common parser - lazy strategy
+*********************************/
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_compressBlock_lazy_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore,
+ U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize,
+ const U32 searchMethod, const U32 depth,
+ ZSTD_dictMode_e const dictMode)
+{
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - 8;
+ const BYTE* const base = ms->window.base;
+ const U32 prefixLowestIndex = ms->window.dictLimit;
+ const BYTE* const prefixLowest = base + prefixLowestIndex;
+
+ typedef size_t (*searchMax_f)(
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
+ searchMax_f const searchMax = dictMode == ZSTD_dictMatchState ?
+ (searchMethod ? ZSTD_BtFindBestMatch_dictMatchState_selectMLS : ZSTD_HcFindBestMatch_dictMatchState_selectMLS) :
+ (searchMethod ? ZSTD_BtFindBestMatch_selectMLS : ZSTD_HcFindBestMatch_selectMLS);
+ U32 offset_1 = rep[0], offset_2 = rep[1], savedOffset=0;
+
+ const ZSTD_matchState_t* const dms = ms->dictMatchState;
+ const U32 dictLowestIndex = dictMode == ZSTD_dictMatchState ?
+ dms->window.dictLimit : 0;
+ const BYTE* const dictBase = dictMode == ZSTD_dictMatchState ?
+ dms->window.base : NULL;
+ const BYTE* const dictLowest = dictMode == ZSTD_dictMatchState ?
+ dictBase + dictLowestIndex : NULL;
+ const BYTE* const dictEnd = dictMode == ZSTD_dictMatchState ?
+ dms->window.nextSrc : NULL;
+ const U32 dictIndexDelta = dictMode == ZSTD_dictMatchState ?
+ prefixLowestIndex - (U32)(dictEnd - dictBase) :
+ 0;
+ const U32 dictAndPrefixLength = (U32)(ip - prefixLowest + dictEnd - dictLowest);
+
+ /* init */
+ ip += (dictAndPrefixLength == 0);
+ if (dictMode == ZSTD_noDict) {
+ U32 const maxRep = (U32)(ip - prefixLowest);
+ if (offset_2 > maxRep) savedOffset = offset_2, offset_2 = 0;
+ if (offset_1 > maxRep) savedOffset = offset_1, offset_1 = 0;
+ }
+ if (dictMode == ZSTD_dictMatchState) {
+ /* dictMatchState repCode checks don't currently handle repCode == 0
+ * disabling. */
+ assert(offset_1 <= dictAndPrefixLength);
+ assert(offset_2 <= dictAndPrefixLength);
+ }
+
+ /* Match Loop */
+ while (ip < ilimit) {
+ size_t matchLength=0;
+ size_t offset=0;
+ const BYTE* start=ip+1;
+
+ /* check repCode */
+ if (dictMode == ZSTD_dictMatchState) {
+ const U32 repIndex = (U32)(ip - base) + 1 - offset_1;
+ const BYTE* repMatch = (dictMode == ZSTD_dictMatchState
+ && repIndex < prefixLowestIndex) ?
+ dictBase + (repIndex - dictIndexDelta) :
+ base + repIndex;
+ if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
+ && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
+ const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
+ matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
+ if (depth==0) goto _storeSequence;
+ }
+ }
+ if ( dictMode == ZSTD_noDict
+ && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
+ matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
+ if (depth==0) goto _storeSequence;
+ }
+
+ /* first search (depth 0) */
+ { size_t offsetFound = 999999999;
+ size_t const ml2 = searchMax(ms, ip, iend, &offsetFound);
+ if (ml2 > matchLength)
+ matchLength = ml2, start = ip, offset=offsetFound;
+ }
+
+ if (matchLength < 4) {
+ ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */
+ continue;
+ }
+
+ /* let's try to find a better solution */
+ if (depth>=1)
+ while (ip<ilimit) {
+ ip ++;
+ if ( (dictMode == ZSTD_noDict)
+ && (offset) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
+ size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
+ int const gain2 = (int)(mlRep * 3);
+ int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
+ if ((mlRep >= 4) && (gain2 > gain1))
+ matchLength = mlRep, offset = 0, start = ip;
+ }
+ if (dictMode == ZSTD_dictMatchState) {
+ const U32 repIndex = (U32)(ip - base) - offset_1;
+ const BYTE* repMatch = repIndex < prefixLowestIndex ?
+ dictBase + (repIndex - dictIndexDelta) :
+ base + repIndex;
+ if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
+ && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
+ const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
+ size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
+ int const gain2 = (int)(mlRep * 3);
+ int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
+ if ((mlRep >= 4) && (gain2 > gain1))
+ matchLength = mlRep, offset = 0, start = ip;
+ }
+ }
+ { size_t offset2=999999999;
+ size_t const ml2 = searchMax(ms, ip, iend, &offset2);
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4);
+ if ((ml2 >= 4) && (gain2 > gain1)) {
+ matchLength = ml2, offset = offset2, start = ip;
+ continue; /* search a better one */
+ } }
+
+ /* let's find an even better one */
+ if ((depth==2) && (ip<ilimit)) {
+ ip ++;
+ if ( (dictMode == ZSTD_noDict)
+ && (offset) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
+ size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
+ int const gain2 = (int)(mlRep * 4);
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
+ if ((mlRep >= 4) && (gain2 > gain1))
+ matchLength = mlRep, offset = 0, start = ip;
+ }
+ if (dictMode == ZSTD_dictMatchState) {
+ const U32 repIndex = (U32)(ip - base) - offset_1;
+ const BYTE* repMatch = repIndex < prefixLowestIndex ?
+ dictBase + (repIndex - dictIndexDelta) :
+ base + repIndex;
+ if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
+ && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
+ const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
+ size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
+ int const gain2 = (int)(mlRep * 4);
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
+ if ((mlRep >= 4) && (gain2 > gain1))
+ matchLength = mlRep, offset = 0, start = ip;
+ }
+ }
+ { size_t offset2=999999999;
+ size_t const ml2 = searchMax(ms, ip, iend, &offset2);
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7);
+ if ((ml2 >= 4) && (gain2 > gain1)) {
+ matchLength = ml2, offset = offset2, start = ip;
+ continue;
+ } } }
+ break; /* nothing found : store previous solution */
+ }
+
+ /* NOTE:
+ * start[-offset+ZSTD_REP_MOVE-1] is undefined behavior.
+ * (-offset+ZSTD_REP_MOVE-1) is unsigned, and is added to start, which
+ * overflows the pointer, which is undefined behavior.
+ */
+ /* catch up */
+ if (offset) {
+ if (dictMode == ZSTD_noDict) {
+ while ( ((start > anchor) & (start - (offset-ZSTD_REP_MOVE) > prefixLowest))
+ && (start[-1] == (start-(offset-ZSTD_REP_MOVE))[-1]) ) /* only search for offset within prefix */
+ { start--; matchLength++; }
+ }
+ if (dictMode == ZSTD_dictMatchState) {
+ U32 const matchIndex = (U32)((start-base) - (offset - ZSTD_REP_MOVE));
+ const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex;
+ const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest;
+ while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
+ }
+ offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE);
+ }
+ /* store sequence */
+_storeSequence:
+ { size_t const litLength = start - anchor;
+ ZSTD_storeSeq(seqStore, litLength, anchor, (U32)offset, matchLength-MINMATCH);
+ anchor = ip = start + matchLength;
+ }
+
+ /* check immediate repcode */
+ if (dictMode == ZSTD_dictMatchState) {
+ while (ip <= ilimit) {
+ U32 const current2 = (U32)(ip-base);
+ U32 const repIndex = current2 - offset_2;
+ const BYTE* repMatch = dictMode == ZSTD_dictMatchState
+ && repIndex < prefixLowestIndex ?
+ dictBase - dictIndexDelta + repIndex :
+ base + repIndex;
+ if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex) >= 3 /* intentional overflow */)
+ && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
+ const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend;
+ matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4;
+ offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset_2 <=> offset_1 */
+ ZSTD_storeSeq(seqStore, 0, anchor, 0, matchLength-MINMATCH);
+ ip += matchLength;
+ anchor = ip;
+ continue;
+ }
+ break;
+ }
+ }
+
+ if (dictMode == ZSTD_noDict) {
+ while ( ((ip <= ilimit) & (offset_2>0))
+ && (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) {
+ /* store sequence */
+ matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
+ offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap repcodes */
+ ZSTD_storeSeq(seqStore, 0, anchor, 0, matchLength-MINMATCH);
+ ip += matchLength;
+ anchor = ip;
+ continue; /* faster when present ... (?) */
+ } } }
+
+ /* Save reps for next block */
+ rep[0] = offset_1 ? offset_1 : savedOffset;
+ rep[1] = offset_2 ? offset_2 : savedOffset;
+
+ /* Return the last literals size */
+ return iend - anchor;
+}
+
+
+size_t ZSTD_compressBlock_btlazy2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 1, 2, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_lazy2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 2, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_lazy(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 1, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_greedy(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 0, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_btlazy2_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 1, 2, ZSTD_dictMatchState);
+}
+
+size_t ZSTD_compressBlock_lazy2_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 2, ZSTD_dictMatchState);
+}
+
+size_t ZSTD_compressBlock_lazy_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 1, ZSTD_dictMatchState);
+}
+
+size_t ZSTD_compressBlock_greedy_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 0, ZSTD_dictMatchState);
+}
+
+
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_compressBlock_lazy_extDict_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore,
+ U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize,
+ const U32 searchMethod, const U32 depth)
+{
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - 8;
+ const BYTE* const base = ms->window.base;
+ const U32 dictLimit = ms->window.dictLimit;
+ const U32 lowestIndex = ms->window.lowLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const BYTE* const dictStart = dictBase + lowestIndex;
+
+ typedef size_t (*searchMax_f)(
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
+ searchMax_f searchMax = searchMethod ? ZSTD_BtFindBestMatch_extDict_selectMLS : ZSTD_HcFindBestMatch_extDict_selectMLS;
+
+ U32 offset_1 = rep[0], offset_2 = rep[1];
+
+ /* init */
+ ip += (ip == prefixStart);
+
+ /* Match Loop */
+ while (ip < ilimit) {
+ size_t matchLength=0;
+ size_t offset=0;
+ const BYTE* start=ip+1;
+ U32 current = (U32)(ip-base);
+
+ /* check repCode */
+ { const U32 repIndex = (U32)(current+1 - offset_1);
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+ const BYTE* const repMatch = repBase + repIndex;
+ if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
+ if (MEM_read32(ip+1) == MEM_read32(repMatch)) {
+ /* repcode detected we should take it */
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+ matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4;
+ if (depth==0) goto _storeSequence;
+ } }
+
+ /* first search (depth 0) */
+ { size_t offsetFound = 999999999;
+ size_t const ml2 = searchMax(ms, ip, iend, &offsetFound);
+ if (ml2 > matchLength)
+ matchLength = ml2, start = ip, offset=offsetFound;
+ }
+
+ if (matchLength < 4) {
+ ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */
+ continue;
+ }
+
+ /* let's try to find a better solution */
+ if (depth>=1)
+ while (ip<ilimit) {
+ ip ++;
+ current++;
+ /* check repCode */
+ if (offset) {
+ const U32 repIndex = (U32)(current - offset_1);
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+ const BYTE* const repMatch = repBase + repIndex;
+ if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
+ if (MEM_read32(ip) == MEM_read32(repMatch)) {
+ /* repcode detected */
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+ size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
+ int const gain2 = (int)(repLength * 3);
+ int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
+ if ((repLength >= 4) && (gain2 > gain1))
+ matchLength = repLength, offset = 0, start = ip;
+ } }
+
+ /* search match, depth 1 */
+ { size_t offset2=999999999;
+ size_t const ml2 = searchMax(ms, ip, iend, &offset2);
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4);
+ if ((ml2 >= 4) && (gain2 > gain1)) {
+ matchLength = ml2, offset = offset2, start = ip;
+ continue; /* search a better one */
+ } }
+
+ /* let's find an even better one */
+ if ((depth==2) && (ip<ilimit)) {
+ ip ++;
+ current++;
+ /* check repCode */
+ if (offset) {
+ const U32 repIndex = (U32)(current - offset_1);
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+ const BYTE* const repMatch = repBase + repIndex;
+ if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
+ if (MEM_read32(ip) == MEM_read32(repMatch)) {
+ /* repcode detected */
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+ size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
+ int const gain2 = (int)(repLength * 4);
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
+ if ((repLength >= 4) && (gain2 > gain1))
+ matchLength = repLength, offset = 0, start = ip;
+ } }
+
+ /* search match, depth 2 */
+ { size_t offset2=999999999;
+ size_t const ml2 = searchMax(ms, ip, iend, &offset2);
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7);
+ if ((ml2 >= 4) && (gain2 > gain1)) {
+ matchLength = ml2, offset = offset2, start = ip;
+ continue;
+ } } }
+ break; /* nothing found : store previous solution */
+ }
+
+ /* catch up */
+ if (offset) {
+ U32 const matchIndex = (U32)((start-base) - (offset - ZSTD_REP_MOVE));
+ const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
+ const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
+ while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
+ offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE);
+ }
+
+ /* store sequence */
+_storeSequence:
+ { size_t const litLength = start - anchor;
+ ZSTD_storeSeq(seqStore, litLength, anchor, (U32)offset, matchLength-MINMATCH);
+ anchor = ip = start + matchLength;
+ }
+
+ /* check immediate repcode */
+ while (ip <= ilimit) {
+ const U32 repIndex = (U32)((ip-base) - offset_2);
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+ const BYTE* const repMatch = repBase + repIndex;
+ if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
+ if (MEM_read32(ip) == MEM_read32(repMatch)) {
+ /* repcode detected we should take it */
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+ matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
+ offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset history */
+ ZSTD_storeSeq(seqStore, 0, anchor, 0, matchLength-MINMATCH);
+ ip += matchLength;
+ anchor = ip;
+ continue; /* faster when present ... (?) */
+ }
+ break;
+ } }
+
+ /* Save reps for next block */
+ rep[0] = offset_1;
+ rep[1] = offset_2;
+
+ /* Return the last literals size */
+ return iend - anchor;
+}
+
+
+size_t ZSTD_compressBlock_greedy_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, 0, 0);
+}
+
+size_t ZSTD_compressBlock_lazy_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+
+{
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, 0, 1);
+}
+
+size_t ZSTD_compressBlock_lazy2_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+
+{
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, 0, 2);
+}
+
+size_t ZSTD_compressBlock_btlazy2_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+
+{
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, 1, 2);
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_lazy.h b/vendor/github.com/DataDog/zstd/zstd_lazy.h
new file mode 100644
index 0000000..bb17630
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_lazy.h
@@ -0,0 +1,67 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_LAZY_H
+#define ZSTD_LAZY_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#include "zstd_compress_internal.h"
+
+U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip);
+
+void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). preemptively increase value of ZSTD_DUBT_UNSORTED_MARK */
+
+size_t ZSTD_compressBlock_btlazy2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_greedy(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+size_t ZSTD_compressBlock_btlazy2_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy2_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_greedy_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+size_t ZSTD_compressBlock_greedy_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy2_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_btlazy2_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_LAZY_H */
diff --git a/vendor/github.com/DataDog/zstd/zstd_ldm.c b/vendor/github.com/DataDog/zstd/zstd_ldm.c
new file mode 100644
index 0000000..3dcf86e
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_ldm.c
@@ -0,0 +1,597 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ */
+
+#include "zstd_ldm.h"
+
+#include "debug.h"
+#include "zstd_fast.h" /* ZSTD_fillHashTable() */
+#include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */
+
+#define LDM_BUCKET_SIZE_LOG 3
+#define LDM_MIN_MATCH_LENGTH 64
+#define LDM_HASH_RLOG 7
+#define LDM_HASH_CHAR_OFFSET 10
+
+void ZSTD_ldm_adjustParameters(ldmParams_t* params,
+ ZSTD_compressionParameters const* cParams)
+{
+ params->windowLog = cParams->windowLog;
+ ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX);
+ DEBUGLOG(4, "ZSTD_ldm_adjustParameters");
+ if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
+ if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH;
+ if (cParams->strategy >= ZSTD_btopt) {
+ /* Get out of the way of the optimal parser */
+ U32 const minMatch = MAX(cParams->targetLength, params->minMatchLength);
+ assert(minMatch >= ZSTD_LDM_MINMATCH_MIN);
+ assert(minMatch <= ZSTD_LDM_MINMATCH_MAX);
+ params->minMatchLength = minMatch;
+ }
+ if (params->hashLog == 0) {
+ params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG);
+ assert(params->hashLog <= ZSTD_HASHLOG_MAX);
+ }
+ if (params->hashRateLog == 0) {
+ params->hashRateLog = params->windowLog < params->hashLog
+ ? 0
+ : params->windowLog - params->hashLog;
+ }
+ params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog);
+}
+
+size_t ZSTD_ldm_getTableSize(ldmParams_t params)
+{
+ size_t const ldmHSize = ((size_t)1) << params.hashLog;
+ size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
+ size_t const ldmBucketSize =
+ ((size_t)1) << (params.hashLog - ldmBucketSizeLog);
+ size_t const totalSize = ldmBucketSize + ldmHSize * sizeof(ldmEntry_t);
+ return params.enableLdm ? totalSize : 0;
+}
+
+size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
+{
+ return params.enableLdm ? (maxChunkSize / params.minMatchLength) : 0;
+}
+
+/** ZSTD_ldm_getSmallHash() :
+ * numBits should be <= 32
+ * If numBits==0, returns 0.
+ * @return : the most significant numBits of value. */
+static U32 ZSTD_ldm_getSmallHash(U64 value, U32 numBits)
+{
+ assert(numBits <= 32);
+ return numBits == 0 ? 0 : (U32)(value >> (64 - numBits));
+}
+
+/** ZSTD_ldm_getChecksum() :
+ * numBitsToDiscard should be <= 32
+ * @return : the next most significant 32 bits after numBitsToDiscard */
+static U32 ZSTD_ldm_getChecksum(U64 hash, U32 numBitsToDiscard)
+{
+ assert(numBitsToDiscard <= 32);
+ return (hash >> (64 - 32 - numBitsToDiscard)) & 0xFFFFFFFF;
+}
+
+/** ZSTD_ldm_getTag() ;
+ * Given the hash, returns the most significant numTagBits bits
+ * after (32 + hbits) bits.
+ *
+ * If there are not enough bits remaining, return the last
+ * numTagBits bits. */
+static U32 ZSTD_ldm_getTag(U64 hash, U32 hbits, U32 numTagBits)
+{
+ assert(numTagBits < 32 && hbits <= 32);
+ if (32 - hbits < numTagBits) {
+ return hash & (((U32)1 << numTagBits) - 1);
+ } else {
+ return (hash >> (32 - hbits - numTagBits)) & (((U32)1 << numTagBits) - 1);
+ }
+}
+
+/** ZSTD_ldm_getBucket() :
+ * Returns a pointer to the start of the bucket associated with hash. */
+static ldmEntry_t* ZSTD_ldm_getBucket(
+ ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams)
+{
+ return ldmState->hashTable + (hash << ldmParams.bucketSizeLog);
+}
+
+/** ZSTD_ldm_insertEntry() :
+ * Insert the entry with corresponding hash into the hash table */
+static void ZSTD_ldm_insertEntry(ldmState_t* ldmState,
+ size_t const hash, const ldmEntry_t entry,
+ ldmParams_t const ldmParams)
+{
+ BYTE* const bucketOffsets = ldmState->bucketOffsets;
+ *(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + bucketOffsets[hash]) = entry;
+ bucketOffsets[hash]++;
+ bucketOffsets[hash] &= ((U32)1 << ldmParams.bucketSizeLog) - 1;
+}
+
+/** ZSTD_ldm_makeEntryAndInsertByTag() :
+ *
+ * Gets the small hash, checksum, and tag from the rollingHash.
+ *
+ * If the tag matches (1 << ldmParams.hashRateLog)-1, then
+ * creates an ldmEntry from the offset, and inserts it into the hash table.
+ *
+ * hBits is the length of the small hash, which is the most significant hBits
+ * of rollingHash. The checksum is the next 32 most significant bits, followed
+ * by ldmParams.hashRateLog bits that make up the tag. */
+static void ZSTD_ldm_makeEntryAndInsertByTag(ldmState_t* ldmState,
+ U64 const rollingHash,
+ U32 const hBits,
+ U32 const offset,
+ ldmParams_t const ldmParams)
+{
+ U32 const tag = ZSTD_ldm_getTag(rollingHash, hBits, ldmParams.hashRateLog);
+ U32 const tagMask = ((U32)1 << ldmParams.hashRateLog) - 1;
+ if (tag == tagMask) {
+ U32 const hash = ZSTD_ldm_getSmallHash(rollingHash, hBits);
+ U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits);
+ ldmEntry_t entry;
+ entry.offset = offset;
+ entry.checksum = checksum;
+ ZSTD_ldm_insertEntry(ldmState, hash, entry, ldmParams);
+ }
+}
+
+/** ZSTD_ldm_countBackwardsMatch() :
+ * Returns the number of bytes that match backwards before pIn and pMatch.
+ *
+ * We count only bytes where pMatch >= pBase and pIn >= pAnchor. */
+static size_t ZSTD_ldm_countBackwardsMatch(
+ const BYTE* pIn, const BYTE* pAnchor,
+ const BYTE* pMatch, const BYTE* pBase)
+{
+ size_t matchLength = 0;
+ while (pIn > pAnchor && pMatch > pBase && pIn[-1] == pMatch[-1]) {
+ pIn--;
+ pMatch--;
+ matchLength++;
+ }
+ return matchLength;
+}
+
+/** ZSTD_ldm_fillFastTables() :
+ *
+ * Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies.
+ * This is similar to ZSTD_loadDictionaryContent.
+ *
+ * The tables for the other strategies are filled within their
+ * block compressors. */
+static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
+ void const* end)
+{
+ const BYTE* const iend = (const BYTE*)end;
+
+ switch(ms->cParams.strategy)
+ {
+ case ZSTD_fast:
+ ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast);
+ break;
+
+ case ZSTD_dfast:
+ ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast);
+ break;
+
+ case ZSTD_greedy:
+ case ZSTD_lazy:
+ case ZSTD_lazy2:
+ case ZSTD_btlazy2:
+ case ZSTD_btopt:
+ case ZSTD_btultra:
+ case ZSTD_btultra2:
+ break;
+ default:
+ assert(0); /* not possible : not a valid strategy id */
+ }
+
+ return 0;
+}
+
+/** ZSTD_ldm_fillLdmHashTable() :
+ *
+ * Fills hashTable from (lastHashed + 1) to iend (non-inclusive).
+ * lastHash is the rolling hash that corresponds to lastHashed.
+ *
+ * Returns the rolling hash corresponding to position iend-1. */
+static U64 ZSTD_ldm_fillLdmHashTable(ldmState_t* state,
+ U64 lastHash, const BYTE* lastHashed,
+ const BYTE* iend, const BYTE* base,
+ U32 hBits, ldmParams_t const ldmParams)
+{
+ U64 rollingHash = lastHash;
+ const BYTE* cur = lastHashed + 1;
+
+ while (cur < iend) {
+ rollingHash = ZSTD_rollingHash_rotate(rollingHash, cur[-1],
+ cur[ldmParams.minMatchLength-1],
+ state->hashPower);
+ ZSTD_ldm_makeEntryAndInsertByTag(state,
+ rollingHash, hBits,
+ (U32)(cur - base), ldmParams);
+ ++cur;
+ }
+ return rollingHash;
+}
+
+
+/** ZSTD_ldm_limitTableUpdate() :
+ *
+ * Sets cctx->nextToUpdate to a position corresponding closer to anchor
+ * if it is far way
+ * (after a long match, only update tables a limited amount). */
+static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
+{
+ U32 const current = (U32)(anchor - ms->window.base);
+ if (current > ms->nextToUpdate + 1024) {
+ ms->nextToUpdate =
+ current - MIN(512, current - ms->nextToUpdate - 1024);
+ }
+}
+
+static size_t ZSTD_ldm_generateSequences_internal(
+ ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
+ ldmParams_t const* params, void const* src, size_t srcSize)
+{
+ /* LDM parameters */
+ int const extDict = ZSTD_window_hasExtDict(ldmState->window);
+ U32 const minMatchLength = params->minMatchLength;
+ U64 const hashPower = ldmState->hashPower;
+ U32 const hBits = params->hashLog - params->bucketSizeLog;
+ U32 const ldmBucketSize = 1U << params->bucketSizeLog;
+ U32 const hashRateLog = params->hashRateLog;
+ U32 const ldmTagMask = (1U << params->hashRateLog) - 1;
+ /* Prefix and extDict parameters */
+ U32 const dictLimit = ldmState->window.dictLimit;
+ U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit;
+ BYTE const* const base = ldmState->window.base;
+ BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL;
+ BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL;
+ BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL;
+ BYTE const* const lowPrefixPtr = base + dictLimit;
+ /* Input bounds */
+ BYTE const* const istart = (BYTE const*)src;
+ BYTE const* const iend = istart + srcSize;
+ BYTE const* const ilimit = iend - MAX(minMatchLength, HASH_READ_SIZE);
+ /* Input positions */
+ BYTE const* anchor = istart;
+ BYTE const* ip = istart;
+ /* Rolling hash */
+ BYTE const* lastHashed = NULL;
+ U64 rollingHash = 0;
+
+ while (ip <= ilimit) {
+ size_t mLength;
+ U32 const current = (U32)(ip - base);
+ size_t forwardMatchLength = 0, backwardMatchLength = 0;
+ ldmEntry_t* bestEntry = NULL;
+ if (ip != istart) {
+ rollingHash = ZSTD_rollingHash_rotate(rollingHash, lastHashed[0],
+ lastHashed[minMatchLength],
+ hashPower);
+ } else {
+ rollingHash = ZSTD_rollingHash_compute(ip, minMatchLength);
+ }
+ lastHashed = ip;
+
+ /* Do not insert and do not look for a match */
+ if (ZSTD_ldm_getTag(rollingHash, hBits, hashRateLog) != ldmTagMask) {
+ ip++;
+ continue;
+ }
+
+ /* Get the best entry and compute the match lengths */
+ {
+ ldmEntry_t* const bucket =
+ ZSTD_ldm_getBucket(ldmState,
+ ZSTD_ldm_getSmallHash(rollingHash, hBits),
+ *params);
+ ldmEntry_t* cur;
+ size_t bestMatchLength = 0;
+ U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits);
+
+ for (cur = bucket; cur < bucket + ldmBucketSize; ++cur) {
+ size_t curForwardMatchLength, curBackwardMatchLength,
+ curTotalMatchLength;
+ if (cur->checksum != checksum || cur->offset <= lowestIndex) {
+ continue;
+ }
+ if (extDict) {
+ BYTE const* const curMatchBase =
+ cur->offset < dictLimit ? dictBase : base;
+ BYTE const* const pMatch = curMatchBase + cur->offset;
+ BYTE const* const matchEnd =
+ cur->offset < dictLimit ? dictEnd : iend;
+ BYTE const* const lowMatchPtr =
+ cur->offset < dictLimit ? dictStart : lowPrefixPtr;
+
+ curForwardMatchLength = ZSTD_count_2segments(
+ ip, pMatch, iend,
+ matchEnd, lowPrefixPtr);
+ if (curForwardMatchLength < minMatchLength) {
+ continue;
+ }
+ curBackwardMatchLength =
+ ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch,
+ lowMatchPtr);
+ curTotalMatchLength = curForwardMatchLength +
+ curBackwardMatchLength;
+ } else { /* !extDict */
+ BYTE const* const pMatch = base + cur->offset;
+ curForwardMatchLength = ZSTD_count(ip, pMatch, iend);
+ if (curForwardMatchLength < minMatchLength) {
+ continue;
+ }
+ curBackwardMatchLength =
+ ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch,
+ lowPrefixPtr);
+ curTotalMatchLength = curForwardMatchLength +
+ curBackwardMatchLength;
+ }
+
+ if (curTotalMatchLength > bestMatchLength) {
+ bestMatchLength = curTotalMatchLength;
+ forwardMatchLength = curForwardMatchLength;
+ backwardMatchLength = curBackwardMatchLength;
+ bestEntry = cur;
+ }
+ }
+ }
+
+ /* No match found -- continue searching */
+ if (bestEntry == NULL) {
+ ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash,
+ hBits, current,
+ *params);
+ ip++;
+ continue;
+ }
+
+ /* Match found */
+ mLength = forwardMatchLength + backwardMatchLength;
+ ip -= backwardMatchLength;
+
+ {
+ /* Store the sequence:
+ * ip = current - backwardMatchLength
+ * The match is at (bestEntry->offset - backwardMatchLength)
+ */
+ U32 const matchIndex = bestEntry->offset;
+ U32 const offset = current - matchIndex;
+ rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;
+
+ /* Out of sequence storage */
+ if (rawSeqStore->size == rawSeqStore->capacity)
+ return ERROR(dstSize_tooSmall);
+ seq->litLength = (U32)(ip - anchor);
+ seq->matchLength = (U32)mLength;
+ seq->offset = offset;
+ rawSeqStore->size++;
+ }
+
+ /* Insert the current entry into the hash table */
+ ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, hBits,
+ (U32)(lastHashed - base),
+ *params);
+
+ assert(ip + backwardMatchLength == lastHashed);
+
+ /* Fill the hash table from lastHashed+1 to ip+mLength*/
+ /* Heuristic: don't need to fill the entire table at end of block */
+ if (ip + mLength <= ilimit) {
+ rollingHash = ZSTD_ldm_fillLdmHashTable(
+ ldmState, rollingHash, lastHashed,
+ ip + mLength, base, hBits, *params);
+ lastHashed = ip + mLength - 1;
+ }
+ ip += mLength;
+ anchor = ip;
+ }
+ return iend - anchor;
+}
+
+/*! ZSTD_ldm_reduceTable() :
+ * reduce table indexes by `reducerValue` */
+static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
+ U32 const reducerValue)
+{
+ U32 u;
+ for (u = 0; u < size; u++) {
+ if (table[u].offset < reducerValue) table[u].offset = 0;
+ else table[u].offset -= reducerValue;
+ }
+}
+
+size_t ZSTD_ldm_generateSequences(
+ ldmState_t* ldmState, rawSeqStore_t* sequences,
+ ldmParams_t const* params, void const* src, size_t srcSize)
+{
+ U32 const maxDist = 1U << params->windowLog;
+ BYTE const* const istart = (BYTE const*)src;
+ BYTE const* const iend = istart + srcSize;
+ size_t const kMaxChunkSize = 1 << 20;
+ size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0);
+ size_t chunk;
+ size_t leftoverSize = 0;
+
+ assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize);
+ /* Check that ZSTD_window_update() has been called for this chunk prior
+ * to passing it to this function.
+ */
+ assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
+ /* The input could be very large (in zstdmt), so it must be broken up into
+ * chunks to enforce the maximum distance and handle overflow correction.
+ */
+ assert(sequences->pos <= sequences->size);
+ assert(sequences->size <= sequences->capacity);
+ for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) {
+ BYTE const* const chunkStart = istart + chunk * kMaxChunkSize;
+ size_t const remaining = (size_t)(iend - chunkStart);
+ BYTE const *const chunkEnd =
+ (remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize;
+ size_t const chunkSize = chunkEnd - chunkStart;
+ size_t newLeftoverSize;
+ size_t const prevSize = sequences->size;
+
+ assert(chunkStart < iend);
+ /* 1. Perform overflow correction if necessary. */
+ if (ZSTD_window_needOverflowCorrection(ldmState->window, chunkEnd)) {
+ U32 const ldmHSize = 1U << params->hashLog;
+ U32 const correction = ZSTD_window_correctOverflow(
+ &ldmState->window, /* cycleLog */ 0, maxDist, chunkStart);
+ ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
+ }
+ /* 2. We enforce the maximum offset allowed.
+ *
+ * kMaxChunkSize should be small enough that we don't lose too much of
+ * the window through early invalidation.
+ * TODO: * Test the chunk size.
+ * * Try invalidation after the sequence generation and test the
+ * the offset against maxDist directly.
+ */
+ ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, NULL, NULL);
+ /* 3. Generate the sequences for the chunk, and get newLeftoverSize. */
+ newLeftoverSize = ZSTD_ldm_generateSequences_internal(
+ ldmState, sequences, params, chunkStart, chunkSize);
+ if (ZSTD_isError(newLeftoverSize))
+ return newLeftoverSize;
+ /* 4. We add the leftover literals from previous iterations to the first
+ * newly generated sequence, or add the `newLeftoverSize` if none are
+ * generated.
+ */
+ /* Prepend the leftover literals from the last call */
+ if (prevSize < sequences->size) {
+ sequences->seq[prevSize].litLength += (U32)leftoverSize;
+ leftoverSize = newLeftoverSize;
+ } else {
+ assert(newLeftoverSize == chunkSize);
+ leftoverSize += chunkSize;
+ }
+ }
+ return 0;
+}
+
+void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) {
+ while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
+ rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
+ if (srcSize <= seq->litLength) {
+ /* Skip past srcSize literals */
+ seq->litLength -= (U32)srcSize;
+ return;
+ }
+ srcSize -= seq->litLength;
+ seq->litLength = 0;
+ if (srcSize < seq->matchLength) {
+ /* Skip past the first srcSize of the match */
+ seq->matchLength -= (U32)srcSize;
+ if (seq->matchLength < minMatch) {
+ /* The match is too short, omit it */
+ if (rawSeqStore->pos + 1 < rawSeqStore->size) {
+ seq[1].litLength += seq[0].matchLength;
+ }
+ rawSeqStore->pos++;
+ }
+ return;
+ }
+ srcSize -= seq->matchLength;
+ seq->matchLength = 0;
+ rawSeqStore->pos++;
+ }
+}
+
+/**
+ * If the sequence length is longer than remaining then the sequence is split
+ * between this block and the next.
+ *
+ * Returns the current sequence to handle, or if the rest of the block should
+ * be literals, it returns a sequence with offset == 0.
+ */
+static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore,
+ U32 const remaining, U32 const minMatch)
+{
+ rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos];
+ assert(sequence.offset > 0);
+ /* Likely: No partial sequence */
+ if (remaining >= sequence.litLength + sequence.matchLength) {
+ rawSeqStore->pos++;
+ return sequence;
+ }
+ /* Cut the sequence short (offset == 0 ==> rest is literals). */
+ if (remaining <= sequence.litLength) {
+ sequence.offset = 0;
+ } else if (remaining < sequence.litLength + sequence.matchLength) {
+ sequence.matchLength = remaining - sequence.litLength;
+ if (sequence.matchLength < minMatch) {
+ sequence.offset = 0;
+ }
+ }
+ /* Skip past `remaining` bytes for the future sequences. */
+ ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch);
+ return sequence;
+}
+
+size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ unsigned const minMatch = cParams->minMatch;
+ ZSTD_blockCompressor const blockCompressor =
+ ZSTD_selectBlockCompressor(cParams->strategy, ZSTD_matchState_dictMode(ms));
+ /* Input bounds */
+ BYTE const* const istart = (BYTE const*)src;
+ BYTE const* const iend = istart + srcSize;
+ /* Input positions */
+ BYTE const* ip = istart;
+
+ DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize);
+ assert(rawSeqStore->pos <= rawSeqStore->size);
+ assert(rawSeqStore->size <= rawSeqStore->capacity);
+ /* Loop through each sequence and apply the block compressor to the lits */
+ while (rawSeqStore->pos < rawSeqStore->size && ip < iend) {
+ /* maybeSplitSequence updates rawSeqStore->pos */
+ rawSeq const sequence = maybeSplitSequence(rawSeqStore,
+ (U32)(iend - ip), minMatch);
+ int i;
+ /* End signal */
+ if (sequence.offset == 0)
+ break;
+
+ assert(sequence.offset <= (1U << cParams->windowLog));
+ assert(ip + sequence.litLength + sequence.matchLength <= iend);
+
+ /* Fill tables for block compressor */
+ ZSTD_ldm_limitTableUpdate(ms, ip);
+ ZSTD_ldm_fillFastTables(ms, ip);
+ /* Run the block compressor */
+ DEBUGLOG(5, "calling block compressor on segment of size %u", sequence.litLength);
+ {
+ size_t const newLitLength =
+ blockCompressor(ms, seqStore, rep, ip, sequence.litLength);
+ ip += sequence.litLength;
+ /* Update the repcodes */
+ for (i = ZSTD_REP_NUM - 1; i > 0; i--)
+ rep[i] = rep[i-1];
+ rep[0] = sequence.offset;
+ /* Store the sequence */
+ ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength,
+ sequence.offset + ZSTD_REP_MOVE,
+ sequence.matchLength - MINMATCH);
+ ip += sequence.matchLength;
+ }
+ }
+ /* Fill the tables for the block compressor */
+ ZSTD_ldm_limitTableUpdate(ms, ip);
+ ZSTD_ldm_fillFastTables(ms, ip);
+ /* Compress the last literals */
+ return blockCompressor(ms, seqStore, rep, ip, iend - ip);
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_ldm.h b/vendor/github.com/DataDog/zstd/zstd_ldm.h
new file mode 100644
index 0000000..a478461
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_ldm.h
@@ -0,0 +1,105 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ */
+
+#ifndef ZSTD_LDM_H
+#define ZSTD_LDM_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#include "zstd_compress_internal.h" /* ldmParams_t, U32 */
+#include "zstd.h" /* ZSTD_CCtx, size_t */
+
+/*-*************************************
+* Long distance matching
+***************************************/
+
+#define ZSTD_LDM_DEFAULT_WINDOW_LOG ZSTD_WINDOWLOG_LIMIT_DEFAULT
+
+/**
+ * ZSTD_ldm_generateSequences():
+ *
+ * Generates the sequences using the long distance match finder.
+ * Generates long range matching sequences in `sequences`, which parse a prefix
+ * of the source. `sequences` must be large enough to store every sequence,
+ * which can be checked with `ZSTD_ldm_getMaxNbSeq()`.
+ * @returns 0 or an error code.
+ *
+ * NOTE: The user must have called ZSTD_window_update() for all of the input
+ * they have, even if they pass it to ZSTD_ldm_generateSequences() in chunks.
+ * NOTE: This function returns an error if it runs out of space to store
+ * sequences.
+ */
+size_t ZSTD_ldm_generateSequences(
+ ldmState_t* ldms, rawSeqStore_t* sequences,
+ ldmParams_t const* params, void const* src, size_t srcSize);
+
+/**
+ * ZSTD_ldm_blockCompress():
+ *
+ * Compresses a block using the predefined sequences, along with a secondary
+ * block compressor. The literals section of every sequence is passed to the
+ * secondary block compressor, and those sequences are interspersed with the
+ * predefined sequences. Returns the length of the last literals.
+ * Updates `rawSeqStore.pos` to indicate how many sequences have been consumed.
+ * `rawSeqStore.seq` may also be updated to split the last sequence between two
+ * blocks.
+ * @return The length of the last literals.
+ *
+ * NOTE: The source must be at most the maximum block size, but the predefined
+ * sequences can be any size, and may be longer than the block. In the case that
+ * they are longer than the block, the last sequences may need to be split into
+ * two. We handle that case correctly, and update `rawSeqStore` appropriately.
+ * NOTE: This function does not return any errors.
+ */
+size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+/**
+ * ZSTD_ldm_skipSequences():
+ *
+ * Skip past `srcSize` bytes worth of sequences in `rawSeqStore`.
+ * Avoids emitting matches less than `minMatch` bytes.
+ * Must be called for data with is not passed to ZSTD_ldm_blockCompress().
+ */
+void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize,
+ U32 const minMatch);
+
+
+/** ZSTD_ldm_getTableSize() :
+ * Estimate the space needed for long distance matching tables or 0 if LDM is
+ * disabled.
+ */
+size_t ZSTD_ldm_getTableSize(ldmParams_t params);
+
+/** ZSTD_ldm_getSeqSpace() :
+ * Return an upper bound on the number of sequences that can be produced by
+ * the long distance matcher, or 0 if LDM is disabled.
+ */
+size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize);
+
+/** ZSTD_ldm_adjustParameters() :
+ * If the params->hashRateLog is not set, set it to its default value based on
+ * windowLog and params->hashLog.
+ *
+ * Ensures that params->bucketSizeLog is <= params->hashLog (setting it to
+ * params->hashLog if it is not).
+ *
+ * Ensures that the minMatchLength >= targetLength during optimal parsing.
+ */
+void ZSTD_ldm_adjustParameters(ldmParams_t* params,
+ ZSTD_compressionParameters const* cParams);
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_FAST_H */
diff --git a/vendor/github.com/DataDog/zstd/zstd_legacy.h b/vendor/github.com/DataDog/zstd/zstd_legacy.h
new file mode 100644
index 0000000..0dbd3c7
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_legacy.h
@@ -0,0 +1,415 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_LEGACY_H
+#define ZSTD_LEGACY_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/* *************************************
+* Includes
+***************************************/
+#include "mem.h" /* MEM_STATIC */
+#include "error_private.h" /* ERROR */
+#include "zstd_internal.h" /* ZSTD_inBuffer, ZSTD_outBuffer, ZSTD_frameSizeInfo */
+
+#if !defined (ZSTD_LEGACY_SUPPORT) || (ZSTD_LEGACY_SUPPORT == 0)
+# undef ZSTD_LEGACY_SUPPORT
+# define ZSTD_LEGACY_SUPPORT 8
+#endif
+
+#if (ZSTD_LEGACY_SUPPORT <= 1)
+# include "zstd_v01.h"
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 2)
+# include "zstd_v02.h"
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 3)
+# include "zstd_v03.h"
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 4)
+# include "zstd_v04.h"
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 5)
+# include "zstd_v05.h"
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 6)
+# include "zstd_v06.h"
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 7)
+# include "zstd_v07.h"
+#endif
+
+/** ZSTD_isLegacy() :
+ @return : > 0 if supported by legacy decoder. 0 otherwise.
+ return value is the version.
+*/
+MEM_STATIC unsigned ZSTD_isLegacy(const void* src, size_t srcSize)
+{
+ U32 magicNumberLE;
+ if (srcSize<4) return 0;
+ magicNumberLE = MEM_readLE32(src);
+ switch(magicNumberLE)
+ {
+#if (ZSTD_LEGACY_SUPPORT <= 1)
+ case ZSTDv01_magicNumberLE:return 1;
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 2)
+ case ZSTDv02_magicNumber : return 2;
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 3)
+ case ZSTDv03_magicNumber : return 3;
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 4)
+ case ZSTDv04_magicNumber : return 4;
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 5)
+ case ZSTDv05_MAGICNUMBER : return 5;
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 6)
+ case ZSTDv06_MAGICNUMBER : return 6;
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 7)
+ case ZSTDv07_MAGICNUMBER : return 7;
+#endif
+ default : return 0;
+ }
+}
+
+
+MEM_STATIC unsigned long long ZSTD_getDecompressedSize_legacy(const void* src, size_t srcSize)
+{
+ U32 const version = ZSTD_isLegacy(src, srcSize);
+ if (version < 5) return 0; /* no decompressed size in frame header, or not a legacy format */
+#if (ZSTD_LEGACY_SUPPORT <= 5)
+ if (version==5) {
+ ZSTDv05_parameters fParams;
+ size_t const frResult = ZSTDv05_getFrameParams(&fParams, src, srcSize);
+ if (frResult != 0) return 0;
+ return fParams.srcSize;
+ }
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 6)
+ if (version==6) {
+ ZSTDv06_frameParams fParams;
+ size_t const frResult = ZSTDv06_getFrameParams(&fParams, src, srcSize);
+ if (frResult != 0) return 0;
+ return fParams.frameContentSize;
+ }
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 7)
+ if (version==7) {
+ ZSTDv07_frameParams fParams;
+ size_t const frResult = ZSTDv07_getFrameParams(&fParams, src, srcSize);
+ if (frResult != 0) return 0;
+ return fParams.frameContentSize;
+ }
+#endif
+ return 0; /* should not be possible */
+}
+
+
+MEM_STATIC size_t ZSTD_decompressLegacy(
+ void* dst, size_t dstCapacity,
+ const void* src, size_t compressedSize,
+ const void* dict,size_t dictSize)
+{
+ U32 const version = ZSTD_isLegacy(src, compressedSize);
+ (void)dst; (void)dstCapacity; (void)dict; (void)dictSize; /* unused when ZSTD_LEGACY_SUPPORT >= 8 */
+ switch(version)
+ {
+#if (ZSTD_LEGACY_SUPPORT <= 1)
+ case 1 :
+ return ZSTDv01_decompress(dst, dstCapacity, src, compressedSize);
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 2)
+ case 2 :
+ return ZSTDv02_decompress(dst, dstCapacity, src, compressedSize);
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 3)
+ case 3 :
+ return ZSTDv03_decompress(dst, dstCapacity, src, compressedSize);
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 4)
+ case 4 :
+ return ZSTDv04_decompress(dst, dstCapacity, src, compressedSize);
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 5)
+ case 5 :
+ { size_t result;
+ ZSTDv05_DCtx* const zd = ZSTDv05_createDCtx();
+ if (zd==NULL) return ERROR(memory_allocation);
+ result = ZSTDv05_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
+ ZSTDv05_freeDCtx(zd);
+ return result;
+ }
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 6)
+ case 6 :
+ { size_t result;
+ ZSTDv06_DCtx* const zd = ZSTDv06_createDCtx();
+ if (zd==NULL) return ERROR(memory_allocation);
+ result = ZSTDv06_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
+ ZSTDv06_freeDCtx(zd);
+ return result;
+ }
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 7)
+ case 7 :
+ { size_t result;
+ ZSTDv07_DCtx* const zd = ZSTDv07_createDCtx();
+ if (zd==NULL) return ERROR(memory_allocation);
+ result = ZSTDv07_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
+ ZSTDv07_freeDCtx(zd);
+ return result;
+ }
+#endif
+ default :
+ return ERROR(prefix_unknown);
+ }
+}
+
+MEM_STATIC ZSTD_frameSizeInfo ZSTD_findFrameSizeInfoLegacy(const void *src, size_t srcSize)
+{
+ ZSTD_frameSizeInfo frameSizeInfo;
+ U32 const version = ZSTD_isLegacy(src, srcSize);
+ switch(version)
+ {
+#if (ZSTD_LEGACY_SUPPORT <= 1)
+ case 1 :
+ ZSTDv01_findFrameSizeInfoLegacy(src, srcSize,
+ &frameSizeInfo.compressedSize,
+ &frameSizeInfo.decompressedBound);
+ break;
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 2)
+ case 2 :
+ ZSTDv02_findFrameSizeInfoLegacy(src, srcSize,
+ &frameSizeInfo.compressedSize,
+ &frameSizeInfo.decompressedBound);
+ break;
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 3)
+ case 3 :
+ ZSTDv03_findFrameSizeInfoLegacy(src, srcSize,
+ &frameSizeInfo.compressedSize,
+ &frameSizeInfo.decompressedBound);
+ break;
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 4)
+ case 4 :
+ ZSTDv04_findFrameSizeInfoLegacy(src, srcSize,
+ &frameSizeInfo.compressedSize,
+ &frameSizeInfo.decompressedBound);
+ break;
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 5)
+ case 5 :
+ ZSTDv05_findFrameSizeInfoLegacy(src, srcSize,
+ &frameSizeInfo.compressedSize,
+ &frameSizeInfo.decompressedBound);
+ break;
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 6)
+ case 6 :
+ ZSTDv06_findFrameSizeInfoLegacy(src, srcSize,
+ &frameSizeInfo.compressedSize,
+ &frameSizeInfo.decompressedBound);
+ break;
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 7)
+ case 7 :
+ ZSTDv07_findFrameSizeInfoLegacy(src, srcSize,
+ &frameSizeInfo.compressedSize,
+ &frameSizeInfo.decompressedBound);
+ break;
+#endif
+ default :
+ frameSizeInfo.compressedSize = ERROR(prefix_unknown);
+ frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR;
+ break;
+ }
+ if (!ZSTD_isError(frameSizeInfo.compressedSize) && frameSizeInfo.compressedSize > srcSize) {
+ frameSizeInfo.compressedSize = ERROR(srcSize_wrong);
+ frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR;
+ }
+ return frameSizeInfo;
+}
+
+MEM_STATIC size_t ZSTD_findFrameCompressedSizeLegacy(const void *src, size_t srcSize)
+{
+ ZSTD_frameSizeInfo frameSizeInfo = ZSTD_findFrameSizeInfoLegacy(src, srcSize);
+ return frameSizeInfo.compressedSize;
+}
+
+MEM_STATIC size_t ZSTD_freeLegacyStreamContext(void* legacyContext, U32 version)
+{
+ switch(version)
+ {
+ default :
+ case 1 :
+ case 2 :
+ case 3 :
+ (void)legacyContext;
+ return ERROR(version_unsupported);
+#if (ZSTD_LEGACY_SUPPORT <= 4)
+ case 4 : return ZBUFFv04_freeDCtx((ZBUFFv04_DCtx*)legacyContext);
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 5)
+ case 5 : return ZBUFFv05_freeDCtx((ZBUFFv05_DCtx*)legacyContext);
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 6)
+ case 6 : return ZBUFFv06_freeDCtx((ZBUFFv06_DCtx*)legacyContext);
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 7)
+ case 7 : return ZBUFFv07_freeDCtx((ZBUFFv07_DCtx*)legacyContext);
+#endif
+ }
+}
+
+
+MEM_STATIC size_t ZSTD_initLegacyStream(void** legacyContext, U32 prevVersion, U32 newVersion,
+ const void* dict, size_t dictSize)
+{
+ DEBUGLOG(5, "ZSTD_initLegacyStream for v0.%u", newVersion);
+ if (prevVersion != newVersion) ZSTD_freeLegacyStreamContext(*legacyContext, prevVersion);
+ switch(newVersion)
+ {
+ default :
+ case 1 :
+ case 2 :
+ case 3 :
+ (void)dict; (void)dictSize;
+ return 0;
+#if (ZSTD_LEGACY_SUPPORT <= 4)
+ case 4 :
+ {
+ ZBUFFv04_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv04_createDCtx() : (ZBUFFv04_DCtx*)*legacyContext;
+ if (dctx==NULL) return ERROR(memory_allocation);
+ ZBUFFv04_decompressInit(dctx);
+ ZBUFFv04_decompressWithDictionary(dctx, dict, dictSize);
+ *legacyContext = dctx;
+ return 0;
+ }
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 5)
+ case 5 :
+ {
+ ZBUFFv05_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv05_createDCtx() : (ZBUFFv05_DCtx*)*legacyContext;
+ if (dctx==NULL) return ERROR(memory_allocation);
+ ZBUFFv05_decompressInitDictionary(dctx, dict, dictSize);
+ *legacyContext = dctx;
+ return 0;
+ }
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 6)
+ case 6 :
+ {
+ ZBUFFv06_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv06_createDCtx() : (ZBUFFv06_DCtx*)*legacyContext;
+ if (dctx==NULL) return ERROR(memory_allocation);
+ ZBUFFv06_decompressInitDictionary(dctx, dict, dictSize);
+ *legacyContext = dctx;
+ return 0;
+ }
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 7)
+ case 7 :
+ {
+ ZBUFFv07_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv07_createDCtx() : (ZBUFFv07_DCtx*)*legacyContext;
+ if (dctx==NULL) return ERROR(memory_allocation);
+ ZBUFFv07_decompressInitDictionary(dctx, dict, dictSize);
+ *legacyContext = dctx;
+ return 0;
+ }
+#endif
+ }
+}
+
+
+
+MEM_STATIC size_t ZSTD_decompressLegacyStream(void* legacyContext, U32 version,
+ ZSTD_outBuffer* output, ZSTD_inBuffer* input)
+{
+ DEBUGLOG(5, "ZSTD_decompressLegacyStream for v0.%u", version);
+ switch(version)
+ {
+ default :
+ case 1 :
+ case 2 :
+ case 3 :
+ (void)legacyContext; (void)output; (void)input;
+ return ERROR(version_unsupported);
+#if (ZSTD_LEGACY_SUPPORT <= 4)
+ case 4 :
+ {
+ ZBUFFv04_DCtx* dctx = (ZBUFFv04_DCtx*) legacyContext;
+ const void* src = (const char*)input->src + input->pos;
+ size_t readSize = input->size - input->pos;
+ void* dst = (char*)output->dst + output->pos;
+ size_t decodedSize = output->size - output->pos;
+ size_t const hintSize = ZBUFFv04_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
+ output->pos += decodedSize;
+ input->pos += readSize;
+ return hintSize;
+ }
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 5)
+ case 5 :
+ {
+ ZBUFFv05_DCtx* dctx = (ZBUFFv05_DCtx*) legacyContext;
+ const void* src = (const char*)input->src + input->pos;
+ size_t readSize = input->size - input->pos;
+ void* dst = (char*)output->dst + output->pos;
+ size_t decodedSize = output->size - output->pos;
+ size_t const hintSize = ZBUFFv05_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
+ output->pos += decodedSize;
+ input->pos += readSize;
+ return hintSize;
+ }
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 6)
+ case 6 :
+ {
+ ZBUFFv06_DCtx* dctx = (ZBUFFv06_DCtx*) legacyContext;
+ const void* src = (const char*)input->src + input->pos;
+ size_t readSize = input->size - input->pos;
+ void* dst = (char*)output->dst + output->pos;
+ size_t decodedSize = output->size - output->pos;
+ size_t const hintSize = ZBUFFv06_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
+ output->pos += decodedSize;
+ input->pos += readSize;
+ return hintSize;
+ }
+#endif
+#if (ZSTD_LEGACY_SUPPORT <= 7)
+ case 7 :
+ {
+ ZBUFFv07_DCtx* dctx = (ZBUFFv07_DCtx*) legacyContext;
+ const void* src = (const char*)input->src + input->pos;
+ size_t readSize = input->size - input->pos;
+ void* dst = (char*)output->dst + output->pos;
+ size_t decodedSize = output->size - output->pos;
+ size_t const hintSize = ZBUFFv07_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
+ output->pos += decodedSize;
+ input->pos += readSize;
+ return hintSize;
+ }
+#endif
+ }
+}
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_LEGACY_H */
diff --git a/vendor/github.com/DataDog/zstd/zstd_opt.c b/vendor/github.com/DataDog/zstd/zstd_opt.c
new file mode 100644
index 0000000..e32e542
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_opt.c
@@ -0,0 +1,1246 @@
+/*
+ * Copyright (c) 2016-present, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include "zstd_compress_internal.h"
+#include "hist.h"
+#include "zstd_opt.h"
+
+
+#define ZSTD_LITFREQ_ADD 2 /* scaling factor for litFreq, so that frequencies adapt faster to new stats */
+#define ZSTD_FREQ_DIV 4 /* log factor when using previous stats to init next stats */
+#define ZSTD_MAX_PRICE (1<<30)
+
+#define ZSTD_PREDEF_THRESHOLD 1024 /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */
+
+
+/*-*************************************
+* Price functions for optimal parser
+***************************************/
+
+#if 0 /* approximation at bit level */
+# define BITCOST_ACCURACY 0
+# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
+# define WEIGHT(stat) ((void)opt, ZSTD_bitWeight(stat))
+#elif 0 /* fractional bit accuracy */
+# define BITCOST_ACCURACY 8
+# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
+# define WEIGHT(stat,opt) ((void)opt, ZSTD_fracWeight(stat))
+#else /* opt==approx, ultra==accurate */
+# define BITCOST_ACCURACY 8
+# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
+# define WEIGHT(stat,opt) (opt ? ZSTD_fracWeight(stat) : ZSTD_bitWeight(stat))
+#endif
+
+MEM_STATIC U32 ZSTD_bitWeight(U32 stat)
+{
+ return (ZSTD_highbit32(stat+1) * BITCOST_MULTIPLIER);
+}
+
+MEM_STATIC U32 ZSTD_fracWeight(U32 rawStat)
+{
+ U32 const stat = rawStat + 1;
+ U32 const hb = ZSTD_highbit32(stat);
+ U32 const BWeight = hb * BITCOST_MULTIPLIER;
+ U32 const FWeight = (stat << BITCOST_ACCURACY) >> hb;
+ U32 const weight = BWeight + FWeight;
+ assert(hb + BITCOST_ACCURACY < 31);
+ return weight;
+}
+
+#if (DEBUGLEVEL>=2)
+/* debugging function,
+ * @return price in bytes as fractional value
+ * for debug messages only */
+MEM_STATIC double ZSTD_fCost(U32 price)
+{
+ return (double)price / (BITCOST_MULTIPLIER*8);
+}
+#endif
+
+static int ZSTD_compressedLiterals(optState_t const* const optPtr)
+{
+ return optPtr->literalCompressionMode != ZSTD_lcm_uncompressed;
+}
+
+static void ZSTD_setBasePrices(optState_t* optPtr, int optLevel)
+{
+ if (ZSTD_compressedLiterals(optPtr))
+ optPtr->litSumBasePrice = WEIGHT(optPtr->litSum, optLevel);
+ optPtr->litLengthSumBasePrice = WEIGHT(optPtr->litLengthSum, optLevel);
+ optPtr->matchLengthSumBasePrice = WEIGHT(optPtr->matchLengthSum, optLevel);
+ optPtr->offCodeSumBasePrice = WEIGHT(optPtr->offCodeSum, optLevel);
+}
+
+
+/* ZSTD_downscaleStat() :
+ * reduce all elements in table by a factor 2^(ZSTD_FREQ_DIV+malus)
+ * return the resulting sum of elements */
+static U32 ZSTD_downscaleStat(unsigned* table, U32 lastEltIndex, int malus)
+{
+ U32 s, sum=0;
+ DEBUGLOG(5, "ZSTD_downscaleStat (nbElts=%u)", (unsigned)lastEltIndex+1);
+ assert(ZSTD_FREQ_DIV+malus > 0 && ZSTD_FREQ_DIV+malus < 31);
+ for (s=0; s<lastEltIndex+1; s++) {
+ table[s] = 1 + (table[s] >> (ZSTD_FREQ_DIV+malus));
+ sum += table[s];
+ }
+ return sum;
+}
+
+/* ZSTD_rescaleFreqs() :
+ * if first block (detected by optPtr->litLengthSum == 0) : init statistics
+ * take hints from dictionary if there is one
+ * or init from zero, using src for literals stats, or flat 1 for match symbols
+ * otherwise downscale existing stats, to be used as seed for next block.
+ */
+static void
+ZSTD_rescaleFreqs(optState_t* const optPtr,
+ const BYTE* const src, size_t const srcSize,
+ int const optLevel)
+{
+ int const compressedLiterals = ZSTD_compressedLiterals(optPtr);
+ DEBUGLOG(5, "ZSTD_rescaleFreqs (srcSize=%u)", (unsigned)srcSize);
+ optPtr->priceType = zop_dynamic;
+
+ if (optPtr->litLengthSum == 0) { /* first block : init */
+ if (srcSize <= ZSTD_PREDEF_THRESHOLD) { /* heuristic */
+ DEBUGLOG(5, "(srcSize <= ZSTD_PREDEF_THRESHOLD) => zop_predef");
+ optPtr->priceType = zop_predef;
+ }
+
+ assert(optPtr->symbolCosts != NULL);
+ if (optPtr->symbolCosts->huf.repeatMode == HUF_repeat_valid) {
+ /* huffman table presumed generated by dictionary */
+ optPtr->priceType = zop_dynamic;
+
+ if (compressedLiterals) {
+ unsigned lit;
+ assert(optPtr->litFreq != NULL);
+ optPtr->litSum = 0;
+ for (lit=0; lit<=MaxLit; lit++) {
+ U32 const scaleLog = 11; /* scale to 2K */
+ U32 const bitCost = HUF_getNbBits(optPtr->symbolCosts->huf.CTable, lit);
+ assert(bitCost <= scaleLog);
+ optPtr->litFreq[lit] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
+ optPtr->litSum += optPtr->litFreq[lit];
+ } }
+
+ { unsigned ll;
+ FSE_CState_t llstate;
+ FSE_initCState(&llstate, optPtr->symbolCosts->fse.litlengthCTable);
+ optPtr->litLengthSum = 0;
+ for (ll=0; ll<=MaxLL; ll++) {
+ U32 const scaleLog = 10; /* scale to 1K */
+ U32 const bitCost = FSE_getMaxNbBits(llstate.symbolTT, ll);
+ assert(bitCost < scaleLog);
+ optPtr->litLengthFreq[ll] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
+ optPtr->litLengthSum += optPtr->litLengthFreq[ll];
+ } }
+
+ { unsigned ml;
+ FSE_CState_t mlstate;
+ FSE_initCState(&mlstate, optPtr->symbolCosts->fse.matchlengthCTable);
+ optPtr->matchLengthSum = 0;
+ for (ml=0; ml<=MaxML; ml++) {
+ U32 const scaleLog = 10;
+ U32 const bitCost = FSE_getMaxNbBits(mlstate.symbolTT, ml);
+ assert(bitCost < scaleLog);
+ optPtr->matchLengthFreq[ml] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
+ optPtr->matchLengthSum += optPtr->matchLengthFreq[ml];
+ } }
+
+ { unsigned of;
+ FSE_CState_t ofstate;
+ FSE_initCState(&ofstate, optPtr->symbolCosts->fse.offcodeCTable);
+ optPtr->offCodeSum = 0;
+ for (of=0; of<=MaxOff; of++) {
+ U32 const scaleLog = 10;
+ U32 const bitCost = FSE_getMaxNbBits(ofstate.symbolTT, of);
+ assert(bitCost < scaleLog);
+ optPtr->offCodeFreq[of] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
+ optPtr->offCodeSum += optPtr->offCodeFreq[of];
+ } }
+
+ } else { /* not a dictionary */
+
+ assert(optPtr->litFreq != NULL);
+ if (compressedLiterals) {
+ unsigned lit = MaxLit;
+ HIST_count_simple(optPtr->litFreq, &lit, src, srcSize); /* use raw first block to init statistics */
+ optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
+ }
+
+ { unsigned ll;
+ for (ll=0; ll<=MaxLL; ll++)
+ optPtr->litLengthFreq[ll] = 1;
+ }
+ optPtr->litLengthSum = MaxLL+1;
+
+ { unsigned ml;
+ for (ml=0; ml<=MaxML; ml++)
+ optPtr->matchLengthFreq[ml] = 1;
+ }
+ optPtr->matchLengthSum = MaxML+1;
+
+ { unsigned of;
+ for (of=0; of<=MaxOff; of++)
+ optPtr->offCodeFreq[of] = 1;
+ }
+ optPtr->offCodeSum = MaxOff+1;
+
+ }
+
+ } else { /* new block : re-use previous statistics, scaled down */
+
+ if (compressedLiterals)
+ optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
+ optPtr->litLengthSum = ZSTD_downscaleStat(optPtr->litLengthFreq, MaxLL, 0);
+ optPtr->matchLengthSum = ZSTD_downscaleStat(optPtr->matchLengthFreq, MaxML, 0);
+ optPtr->offCodeSum = ZSTD_downscaleStat(optPtr->offCodeFreq, MaxOff, 0);
+ }
+
+ ZSTD_setBasePrices(optPtr, optLevel);
+}
+
+/* ZSTD_rawLiteralsCost() :
+ * price of literals (only) in specified segment (which length can be 0).
+ * does not include price of literalLength symbol */
+static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength,
+ const optState_t* const optPtr,
+ int optLevel)
+{
+ if (litLength == 0) return 0;
+
+ if (!ZSTD_compressedLiterals(optPtr))
+ return (litLength << 3) * BITCOST_MULTIPLIER; /* Uncompressed - 8 bytes per literal. */
+
+ if (optPtr->priceType == zop_predef)
+ return (litLength*6) * BITCOST_MULTIPLIER; /* 6 bit per literal - no statistic used */
+
+ /* dynamic statistics */
+ { U32 price = litLength * optPtr->litSumBasePrice;
+ U32 u;
+ for (u=0; u < litLength; u++) {
+ assert(WEIGHT(optPtr->litFreq[literals[u]], optLevel) <= optPtr->litSumBasePrice); /* literal cost should never be negative */
+ price -= WEIGHT(optPtr->litFreq[literals[u]], optLevel);
+ }
+ return price;
+ }
+}
+
+/* ZSTD_litLengthPrice() :
+ * cost of literalLength symbol */
+static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optPtr, int optLevel)
+{
+ if (optPtr->priceType == zop_predef) return WEIGHT(litLength, optLevel);
+
+ /* dynamic statistics */
+ { U32 const llCode = ZSTD_LLcode(litLength);
+ return (LL_bits[llCode] * BITCOST_MULTIPLIER)
+ + optPtr->litLengthSumBasePrice
+ - WEIGHT(optPtr->litLengthFreq[llCode], optLevel);
+ }
+}
+
+/* ZSTD_litLengthContribution() :
+ * @return ( cost(litlength) - cost(0) )
+ * this value can then be added to rawLiteralsCost()
+ * to provide a cost which is directly comparable to a match ending at same position */
+static int ZSTD_litLengthContribution(U32 const litLength, const optState_t* const optPtr, int optLevel)
+{
+ if (optPtr->priceType >= zop_predef) return (int)WEIGHT(litLength, optLevel);
+
+ /* dynamic statistics */
+ { U32 const llCode = ZSTD_LLcode(litLength);
+ int const contribution = (int)(LL_bits[llCode] * BITCOST_MULTIPLIER)
+ + (int)WEIGHT(optPtr->litLengthFreq[0], optLevel) /* note: log2litLengthSum cancel out */
+ - (int)WEIGHT(optPtr->litLengthFreq[llCode], optLevel);
+#if 1
+ return contribution;
+#else
+ return MAX(0, contribution); /* sometimes better, sometimes not ... */
+#endif
+ }
+}
+
+/* ZSTD_literalsContribution() :
+ * creates a fake cost for the literals part of a sequence
+ * which can be compared to the ending cost of a match
+ * should a new match start at this position */
+static int ZSTD_literalsContribution(const BYTE* const literals, U32 const litLength,
+ const optState_t* const optPtr,
+ int optLevel)
+{
+ int const contribution = (int)ZSTD_rawLiteralsCost(literals, litLength, optPtr, optLevel)
+ + ZSTD_litLengthContribution(litLength, optPtr, optLevel);
+ return contribution;
+}
+
+/* ZSTD_getMatchPrice() :
+ * Provides the cost of the match part (offset + matchLength) of a sequence
+ * Must be combined with ZSTD_fullLiteralsCost() to get the full cost of a sequence.
+ * optLevel: when <2, favors small offset for decompression speed (improved cache efficiency) */
+FORCE_INLINE_TEMPLATE U32
+ZSTD_getMatchPrice(U32 const offset,
+ U32 const matchLength,
+ const optState_t* const optPtr,
+ int const optLevel)
+{
+ U32 price;
+ U32 const offCode = ZSTD_highbit32(offset+1);
+ U32 const mlBase = matchLength - MINMATCH;
+ assert(matchLength >= MINMATCH);
+
+ if (optPtr->priceType == zop_predef) /* fixed scheme, do not use statistics */
+ return WEIGHT(mlBase, optLevel) + ((16 + offCode) * BITCOST_MULTIPLIER);
+
+ /* dynamic statistics */
+ price = (offCode * BITCOST_MULTIPLIER) + (optPtr->offCodeSumBasePrice - WEIGHT(optPtr->offCodeFreq[offCode], optLevel));
+ if ((optLevel<2) /*static*/ && offCode >= 20)
+ price += (offCode-19)*2 * BITCOST_MULTIPLIER; /* handicap for long distance offsets, favor decompression speed */
+
+ /* match Length */
+ { U32 const mlCode = ZSTD_MLcode(mlBase);
+ price += (ML_bits[mlCode] * BITCOST_MULTIPLIER) + (optPtr->matchLengthSumBasePrice - WEIGHT(optPtr->matchLengthFreq[mlCode], optLevel));
+ }
+
+ price += BITCOST_MULTIPLIER / 5; /* heuristic : make matches a bit more costly to favor less sequences -> faster decompression speed */
+
+ DEBUGLOG(8, "ZSTD_getMatchPrice(ml:%u) = %u", matchLength, price);
+ return price;
+}
+
+/* ZSTD_updateStats() :
+ * assumption : literals + litLengtn <= iend */
+static void ZSTD_updateStats(optState_t* const optPtr,
+ U32 litLength, const BYTE* literals,
+ U32 offsetCode, U32 matchLength)
+{
+ /* literals */
+ if (ZSTD_compressedLiterals(optPtr)) {
+ U32 u;
+ for (u=0; u < litLength; u++)
+ optPtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD;
+ optPtr->litSum += litLength*ZSTD_LITFREQ_ADD;
+ }
+
+ /* literal Length */
+ { U32 const llCode = ZSTD_LLcode(litLength);
+ optPtr->litLengthFreq[llCode]++;
+ optPtr->litLengthSum++;
+ }
+
+ /* match offset code (0-2=>repCode; 3+=>offset+2) */
+ { U32 const offCode = ZSTD_highbit32(offsetCode+1);
+ assert(offCode <= MaxOff);
+ optPtr->offCodeFreq[offCode]++;
+ optPtr->offCodeSum++;
+ }
+
+ /* match Length */
+ { U32 const mlBase = matchLength - MINMATCH;
+ U32 const mlCode = ZSTD_MLcode(mlBase);
+ optPtr->matchLengthFreq[mlCode]++;
+ optPtr->matchLengthSum++;
+ }
+}
+
+
+/* ZSTD_readMINMATCH() :
+ * function safe only for comparisons
+ * assumption : memPtr must be at least 4 bytes before end of buffer */
+MEM_STATIC U32 ZSTD_readMINMATCH(const void* memPtr, U32 length)
+{
+ switch (length)
+ {
+ default :
+ case 4 : return MEM_read32(memPtr);
+ case 3 : if (MEM_isLittleEndian())
+ return MEM_read32(memPtr)<<8;
+ else
+ return MEM_read32(memPtr)>>8;
+ }
+}
+
+
+/* Update hashTable3 up to ip (excluded)
+ Assumption : always within prefix (i.e. not within extDict) */
+static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms,
+ U32* nextToUpdate3,
+ const BYTE* const ip)
+{
+ U32* const hashTable3 = ms->hashTable3;
+ U32 const hashLog3 = ms->hashLog3;
+ const BYTE* const base = ms->window.base;
+ U32 idx = *nextToUpdate3;
+ U32 const target = (U32)(ip - base);
+ size_t const hash3 = ZSTD_hash3Ptr(ip, hashLog3);
+ assert(hashLog3 > 0);
+
+ while(idx < target) {
+ hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx;
+ idx++;
+ }
+
+ *nextToUpdate3 = target;
+ return hashTable3[hash3];
+}
+
+
+/*-*************************************
+* Binary Tree search
+***************************************/
+/** ZSTD_insertBt1() : add one or multiple positions to tree.
+ * ip : assumed <= iend-8 .
+ * @return : nb of positions added */
+static U32 ZSTD_insertBt1(
+ ZSTD_matchState_t* ms,
+ const BYTE* const ip, const BYTE* const iend,
+ U32 const mls, const int extDict)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hashLog = cParams->hashLog;
+ size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
+ U32* const bt = ms->chainTable;
+ U32 const btLog = cParams->chainLog - 1;
+ U32 const btMask = (1 << btLog) - 1;
+ U32 matchIndex = hashTable[h];
+ size_t commonLengthSmaller=0, commonLengthLarger=0;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const U32 dictLimit = ms->window.dictLimit;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ const BYTE* match;
+ const U32 current = (U32)(ip-base);
+ const U32 btLow = btMask >= current ? 0 : current - btMask;
+ U32* smallerPtr = bt + 2*(current&btMask);
+ U32* largerPtr = smallerPtr + 1;
+ U32 dummy32; /* to be nullified at the end */
+ U32 const windowLow = ms->window.lowLimit;
+ U32 matchEndIdx = current+8+1;
+ size_t bestLength = 8;
+ U32 nbCompares = 1U << cParams->searchLog;
+#ifdef ZSTD_C_PREDICT
+ U32 predictedSmall = *(bt + 2*((current-1)&btMask) + 0);
+ U32 predictedLarge = *(bt + 2*((current-1)&btMask) + 1);
+ predictedSmall += (predictedSmall>0);
+ predictedLarge += (predictedLarge>0);
+#endif /* ZSTD_C_PREDICT */
+
+ DEBUGLOG(8, "ZSTD_insertBt1 (%u)", current);
+
+ assert(ip <= iend-8); /* required for h calculation */
+ hashTable[h] = current; /* Update Hash Table */
+
+ assert(windowLow > 0);
+ while (nbCompares-- && (matchIndex >= windowLow)) {
+ U32* const nextPtr = bt + 2*(matchIndex & btMask);
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
+ assert(matchIndex < current);
+
+#ifdef ZSTD_C_PREDICT /* note : can create issues when hlog small <= 11 */
+ const U32* predictPtr = bt + 2*((matchIndex-1) & btMask); /* written this way, as bt is a roll buffer */
+ if (matchIndex == predictedSmall) {
+ /* no need to check length, result known */
+ *smallerPtr = matchIndex;
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
+ smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
+ matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
+ predictedSmall = predictPtr[1] + (predictPtr[1]>0);
+ continue;
+ }
+ if (matchIndex == predictedLarge) {
+ *largerPtr = matchIndex;
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
+ largerPtr = nextPtr;
+ matchIndex = nextPtr[0];
+ predictedLarge = predictPtr[0] + (predictPtr[0]>0);
+ continue;
+ }
+#endif
+
+ if (!extDict || (matchIndex+matchLength >= dictLimit)) {
+ assert(matchIndex+matchLength >= dictLimit); /* might be wrong if actually extDict */
+ match = base + matchIndex;
+ matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
+ } else {
+ match = dictBase + matchIndex;
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
+ if (matchIndex+matchLength >= dictLimit)
+ match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
+ }
+
+ if (matchLength > bestLength) {
+ bestLength = matchLength;
+ if (matchLength > matchEndIdx - matchIndex)
+ matchEndIdx = matchIndex + (U32)matchLength;
+ }
+
+ if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
+ break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
+ }
+
+ if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */
+ /* match is smaller than current */
+ *smallerPtr = matchIndex; /* update smaller idx */
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */
+ smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */
+ matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */
+ } else {
+ /* match is larger than current */
+ *largerPtr = matchIndex;
+ commonLengthLarger = matchLength;
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */
+ largerPtr = nextPtr;
+ matchIndex = nextPtr[0];
+ } }
+
+ *smallerPtr = *largerPtr = 0;
+ { U32 positions = 0;
+ if (bestLength > 384) positions = MIN(192, (U32)(bestLength - 384)); /* speed optimization */
+ assert(matchEndIdx > current + 8);
+ return MAX(positions, matchEndIdx - (current + 8));
+ }
+}
+
+FORCE_INLINE_TEMPLATE
+void ZSTD_updateTree_internal(
+ ZSTD_matchState_t* ms,
+ const BYTE* const ip, const BYTE* const iend,
+ const U32 mls, const ZSTD_dictMode_e dictMode)
+{
+ const BYTE* const base = ms->window.base;
+ U32 const target = (U32)(ip - base);
+ U32 idx = ms->nextToUpdate;
+ DEBUGLOG(6, "ZSTD_updateTree_internal, from %u to %u (dictMode:%u)",
+ idx, target, dictMode);
+
+ while(idx < target) {
+ U32 const forward = ZSTD_insertBt1(ms, base+idx, iend, mls, dictMode == ZSTD_extDict);
+ assert(idx < (U32)(idx + forward));
+ idx += forward;
+ }
+ assert((size_t)(ip - base) <= (size_t)(U32)(-1));
+ assert((size_t)(iend - base) <= (size_t)(U32)(-1));
+ ms->nextToUpdate = target;
+}
+
+void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend) {
+ ZSTD_updateTree_internal(ms, ip, iend, ms->cParams.minMatch, ZSTD_noDict);
+}
+
+FORCE_INLINE_TEMPLATE
+U32 ZSTD_insertBtAndGetAllMatches (
+ ZSTD_match_t* matches, /* store result (found matches) in this table (presumed large enough) */
+ ZSTD_matchState_t* ms,
+ U32* nextToUpdate3,
+ const BYTE* const ip, const BYTE* const iLimit, const ZSTD_dictMode_e dictMode,
+ const U32 rep[ZSTD_REP_NUM],
+ U32 const ll0, /* tells if associated literal length is 0 or not. This value must be 0 or 1 */
+ const U32 lengthToBeat,
+ U32 const mls /* template */)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
+ U32 const maxDistance = 1U << cParams->windowLog;
+ const BYTE* const base = ms->window.base;
+ U32 const current = (U32)(ip-base);
+ U32 const hashLog = cParams->hashLog;
+ U32 const minMatch = (mls==3) ? 3 : 4;
+ U32* const hashTable = ms->hashTable;
+ size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
+ U32 matchIndex = hashTable[h];
+ U32* const bt = ms->chainTable;
+ U32 const btLog = cParams->chainLog - 1;
+ U32 const btMask= (1U << btLog) - 1;
+ size_t commonLengthSmaller=0, commonLengthLarger=0;
+ const BYTE* const dictBase = ms->window.dictBase;
+ U32 const dictLimit = ms->window.dictLimit;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ U32 const btLow = (btMask >= current) ? 0 : current - btMask;
+ U32 const windowValid = ms->window.lowLimit;
+ U32 const windowLow = ((current - windowValid) > maxDistance) ? current - maxDistance : windowValid;
+ U32 const matchLow = windowLow ? windowLow : 1;
+ U32* smallerPtr = bt + 2*(current&btMask);
+ U32* largerPtr = bt + 2*(current&btMask) + 1;
+ U32 matchEndIdx = current+8+1; /* farthest referenced position of any match => detects repetitive patterns */
+ U32 dummy32; /* to be nullified at the end */
+ U32 mnum = 0;
+ U32 nbCompares = 1U << cParams->searchLog;
+
+ const ZSTD_matchState_t* dms = dictMode == ZSTD_dictMatchState ? ms->dictMatchState : NULL;
+ const ZSTD_compressionParameters* const dmsCParams =
+ dictMode == ZSTD_dictMatchState ? &dms->cParams : NULL;
+ const BYTE* const dmsBase = dictMode == ZSTD_dictMatchState ? dms->window.base : NULL;
+ const BYTE* const dmsEnd = dictMode == ZSTD_dictMatchState ? dms->window.nextSrc : NULL;
+ U32 const dmsHighLimit = dictMode == ZSTD_dictMatchState ? (U32)(dmsEnd - dmsBase) : 0;
+ U32 const dmsLowLimit = dictMode == ZSTD_dictMatchState ? dms->window.lowLimit : 0;
+ U32 const dmsIndexDelta = dictMode == ZSTD_dictMatchState ? windowLow - dmsHighLimit : 0;
+ U32 const dmsHashLog = dictMode == ZSTD_dictMatchState ? dmsCParams->hashLog : hashLog;
+ U32 const dmsBtLog = dictMode == ZSTD_dictMatchState ? dmsCParams->chainLog - 1 : btLog;
+ U32 const dmsBtMask = dictMode == ZSTD_dictMatchState ? (1U << dmsBtLog) - 1 : 0;
+ U32 const dmsBtLow = dictMode == ZSTD_dictMatchState && dmsBtMask < dmsHighLimit - dmsLowLimit ? dmsHighLimit - dmsBtMask : dmsLowLimit;
+
+ size_t bestLength = lengthToBeat-1;
+ DEBUGLOG(8, "ZSTD_insertBtAndGetAllMatches: current=%u", current);
+
+ /* check repCode */
+ assert(ll0 <= 1); /* necessarily 1 or 0 */
+ { U32 const lastR = ZSTD_REP_NUM + ll0;
+ U32 repCode;
+ for (repCode = ll0; repCode < lastR; repCode++) {
+ U32 const repOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
+ U32 const repIndex = current - repOffset;
+ U32 repLen = 0;
+ assert(current >= dictLimit);
+ if (repOffset-1 /* intentional overflow, discards 0 and -1 */ < current-dictLimit) { /* equivalent to `current > repIndex >= dictLimit` */
+ if (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(ip - repOffset, minMatch)) {
+ repLen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repOffset, iLimit) + minMatch;
+ }
+ } else { /* repIndex < dictLimit || repIndex >= current */
+ const BYTE* const repMatch = dictMode == ZSTD_dictMatchState ?
+ dmsBase + repIndex - dmsIndexDelta :
+ dictBase + repIndex;
+ assert(current >= windowLow);
+ if ( dictMode == ZSTD_extDict
+ && ( ((repOffset-1) /*intentional overflow*/ < current - windowLow) /* equivalent to `current > repIndex >= windowLow` */
+ & (((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */)
+ && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
+ repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dictEnd, prefixStart) + minMatch;
+ }
+ if (dictMode == ZSTD_dictMatchState
+ && ( ((repOffset-1) /*intentional overflow*/ < current - (dmsLowLimit + dmsIndexDelta)) /* equivalent to `current > repIndex >= dmsLowLimit` */
+ & ((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */
+ && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
+ repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dmsEnd, prefixStart) + minMatch;
+ } }
+ /* save longer solution */
+ if (repLen > bestLength) {
+ DEBUGLOG(8, "found repCode %u (ll0:%u, offset:%u) of length %u",
+ repCode, ll0, repOffset, repLen);
+ bestLength = repLen;
+ matches[mnum].off = repCode - ll0;
+ matches[mnum].len = (U32)repLen;
+ mnum++;
+ if ( (repLen > sufficient_len)
+ | (ip+repLen == iLimit) ) { /* best possible */
+ return mnum;
+ } } } }
+
+ /* HC3 match finder */
+ if ((mls == 3) /*static*/ && (bestLength < mls)) {
+ U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(ms, nextToUpdate3, ip);
+ if ((matchIndex3 >= matchLow)
+ & (current - matchIndex3 < (1<<18)) /*heuristic : longer distance likely too expensive*/ ) {
+ size_t mlen;
+ if ((dictMode == ZSTD_noDict) /*static*/ || (dictMode == ZSTD_dictMatchState) /*static*/ || (matchIndex3 >= dictLimit)) {
+ const BYTE* const match = base + matchIndex3;
+ mlen = ZSTD_count(ip, match, iLimit);
+ } else {
+ const BYTE* const match = dictBase + matchIndex3;
+ mlen = ZSTD_count_2segments(ip, match, iLimit, dictEnd, prefixStart);
+ }
+
+ /* save best solution */
+ if (mlen >= mls /* == 3 > bestLength */) {
+ DEBUGLOG(8, "found small match with hlog3, of length %u",
+ (U32)mlen);
+ bestLength = mlen;
+ assert(current > matchIndex3);
+ assert(mnum==0); /* no prior solution */
+ matches[0].off = (current - matchIndex3) + ZSTD_REP_MOVE;
+ matches[0].len = (U32)mlen;
+ mnum = 1;
+ if ( (mlen > sufficient_len) |
+ (ip+mlen == iLimit) ) { /* best possible length */
+ ms->nextToUpdate = current+1; /* skip insertion */
+ return 1;
+ } } }
+ /* no dictMatchState lookup: dicts don't have a populated HC3 table */
+ }
+
+ hashTable[h] = current; /* Update Hash Table */
+
+ while (nbCompares-- && (matchIndex >= matchLow)) {
+ U32* const nextPtr = bt + 2*(matchIndex & btMask);
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
+ const BYTE* match;
+ assert(current > matchIndex);
+
+ if ((dictMode == ZSTD_noDict) || (dictMode == ZSTD_dictMatchState) || (matchIndex+matchLength >= dictLimit)) {
+ assert(matchIndex+matchLength >= dictLimit); /* ensure the condition is correct when !extDict */
+ match = base + matchIndex;
+ matchLength += ZSTD_count(ip+matchLength, match+matchLength, iLimit);
+ } else {
+ match = dictBase + matchIndex;
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart);
+ if (matchIndex+matchLength >= dictLimit)
+ match = base + matchIndex; /* prepare for match[matchLength] */
+ }
+
+ if (matchLength > bestLength) {
+ DEBUGLOG(8, "found match of length %u at distance %u (offCode=%u)",
+ (U32)matchLength, current - matchIndex, current - matchIndex + ZSTD_REP_MOVE);
+ assert(matchEndIdx > matchIndex);
+ if (matchLength > matchEndIdx - matchIndex)
+ matchEndIdx = matchIndex + (U32)matchLength;
+ bestLength = matchLength;
+ matches[mnum].off = (current - matchIndex) + ZSTD_REP_MOVE;
+ matches[mnum].len = (U32)matchLength;
+ mnum++;
+ if ( (matchLength > ZSTD_OPT_NUM)
+ | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) {
+ if (dictMode == ZSTD_dictMatchState) nbCompares = 0; /* break should also skip searching dms */
+ break; /* drop, to preserve bt consistency (miss a little bit of compression) */
+ }
+ }
+
+ if (match[matchLength] < ip[matchLength]) {
+ /* match smaller than current */
+ *smallerPtr = matchIndex; /* update smaller idx */
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
+ smallerPtr = nextPtr+1; /* new candidate => larger than match, which was smaller than current */
+ matchIndex = nextPtr[1]; /* new matchIndex, larger than previous, closer to current */
+ } else {
+ *largerPtr = matchIndex;
+ commonLengthLarger = matchLength;
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
+ largerPtr = nextPtr;
+ matchIndex = nextPtr[0];
+ } }
+
+ *smallerPtr = *largerPtr = 0;
+
+ if (dictMode == ZSTD_dictMatchState && nbCompares) {
+ size_t const dmsH = ZSTD_hashPtr(ip, dmsHashLog, mls);
+ U32 dictMatchIndex = dms->hashTable[dmsH];
+ const U32* const dmsBt = dms->chainTable;
+ commonLengthSmaller = commonLengthLarger = 0;
+ while (nbCompares-- && (dictMatchIndex > dmsLowLimit)) {
+ const U32* const nextPtr = dmsBt + 2*(dictMatchIndex & dmsBtMask);
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
+ const BYTE* match = dmsBase + dictMatchIndex;
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dmsEnd, prefixStart);
+ if (dictMatchIndex+matchLength >= dmsHighLimit)
+ match = base + dictMatchIndex + dmsIndexDelta; /* to prepare for next usage of match[matchLength] */
+
+ if (matchLength > bestLength) {
+ matchIndex = dictMatchIndex + dmsIndexDelta;
+ DEBUGLOG(8, "found dms match of length %u at distance %u (offCode=%u)",
+ (U32)matchLength, current - matchIndex, current - matchIndex + ZSTD_REP_MOVE);
+ if (matchLength > matchEndIdx - matchIndex)
+ matchEndIdx = matchIndex + (U32)matchLength;
+ bestLength = matchLength;
+ matches[mnum].off = (current - matchIndex) + ZSTD_REP_MOVE;
+ matches[mnum].len = (U32)matchLength;
+ mnum++;
+ if ( (matchLength > ZSTD_OPT_NUM)
+ | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) {
+ break; /* drop, to guarantee consistency (miss a little bit of compression) */
+ }
+ }
+
+ if (dictMatchIndex <= dmsBtLow) { break; } /* beyond tree size, stop the search */
+ if (match[matchLength] < ip[matchLength]) {
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
+ dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
+ } else {
+ /* match is larger than current */
+ commonLengthLarger = matchLength;
+ dictMatchIndex = nextPtr[0];
+ }
+ }
+ }
+
+ assert(matchEndIdx > current+8);
+ ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
+ return mnum;
+}
+
+
+FORCE_INLINE_TEMPLATE U32 ZSTD_BtGetAllMatches (
+ ZSTD_match_t* matches, /* store result (match found, increasing size) in this table */
+ ZSTD_matchState_t* ms,
+ U32* nextToUpdate3,
+ const BYTE* ip, const BYTE* const iHighLimit, const ZSTD_dictMode_e dictMode,
+ const U32 rep[ZSTD_REP_NUM],
+ U32 const ll0,
+ U32 const lengthToBeat)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32 const matchLengthSearch = cParams->minMatch;
+ DEBUGLOG(8, "ZSTD_BtGetAllMatches");
+ if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
+ ZSTD_updateTree_internal(ms, ip, iHighLimit, matchLengthSearch, dictMode);
+ switch(matchLengthSearch)
+ {
+ case 3 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 3);
+ default :
+ case 4 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 4);
+ case 5 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 5);
+ case 7 :
+ case 6 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 6);
+ }
+}
+
+
+/*-*******************************
+* Optimal parser
+*********************************/
+typedef struct repcodes_s {
+ U32 rep[3];
+} repcodes_t;
+
+static repcodes_t ZSTD_updateRep(U32 const rep[3], U32 const offset, U32 const ll0)
+{
+ repcodes_t newReps;
+ if (offset >= ZSTD_REP_NUM) { /* full offset */
+ newReps.rep[2] = rep[1];
+ newReps.rep[1] = rep[0];
+ newReps.rep[0] = offset - ZSTD_REP_MOVE;
+ } else { /* repcode */
+ U32 const repCode = offset + ll0;
+ if (repCode > 0) { /* note : if repCode==0, no change */
+ U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
+ newReps.rep[2] = (repCode >= 2) ? rep[1] : rep[2];
+ newReps.rep[1] = rep[0];
+ newReps.rep[0] = currentOffset;
+ } else { /* repCode == 0 */
+ memcpy(&newReps, rep, sizeof(newReps));
+ }
+ }
+ return newReps;
+}
+
+
+static U32 ZSTD_totalLen(ZSTD_optimal_t sol)
+{
+ return sol.litlen + sol.mlen;
+}
+
+#if 0 /* debug */
+
+static void
+listStats(const U32* table, int lastEltID)
+{
+ int const nbElts = lastEltID + 1;
+ int enb;
+ for (enb=0; enb < nbElts; enb++) {
+ (void)table;
+ //RAWLOG(2, "%3i:%3i, ", enb, table[enb]);
+ RAWLOG(2, "%4i,", table[enb]);
+ }
+ RAWLOG(2, " \n");
+}
+
+#endif
+
+FORCE_INLINE_TEMPLATE size_t
+ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
+ seqStore_t* seqStore,
+ U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize,
+ const int optLevel,
+ const ZSTD_dictMode_e dictMode)
+{
+ optState_t* const optStatePtr = &ms->opt;
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - 8;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const prefixStart = base + ms->window.dictLimit;
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+
+ U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
+ U32 const minMatch = (cParams->minMatch == 3) ? 3 : 4;
+ U32 nextToUpdate3 = ms->nextToUpdate;
+
+ ZSTD_optimal_t* const opt = optStatePtr->priceTable;
+ ZSTD_match_t* const matches = optStatePtr->matchTable;
+ ZSTD_optimal_t lastSequence;
+
+ /* init */
+ DEBUGLOG(5, "ZSTD_compressBlock_opt_generic: current=%u, prefix=%u, nextToUpdate=%u",
+ (U32)(ip - base), ms->window.dictLimit, ms->nextToUpdate);
+ assert(optLevel <= 2);
+ ZSTD_rescaleFreqs(optStatePtr, (const BYTE*)src, srcSize, optLevel);
+ ip += (ip==prefixStart);
+
+ /* Match Loop */
+ while (ip < ilimit) {
+ U32 cur, last_pos = 0;
+
+ /* find first match */
+ { U32 const litlen = (U32)(ip - anchor);
+ U32 const ll0 = !litlen;
+ U32 const nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, ip, iend, dictMode, rep, ll0, minMatch);
+ if (!nbMatches) { ip++; continue; }
+
+ /* initialize opt[0] */
+ { U32 i ; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
+ opt[0].mlen = 0; /* means is_a_literal */
+ opt[0].litlen = litlen;
+ opt[0].price = ZSTD_literalsContribution(anchor, litlen, optStatePtr, optLevel);
+
+ /* large match -> immediate encoding */
+ { U32 const maxML = matches[nbMatches-1].len;
+ U32 const maxOffset = matches[nbMatches-1].off;
+ DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new series",
+ nbMatches, maxML, maxOffset, (U32)(ip-prefixStart));
+
+ if (maxML > sufficient_len) {
+ lastSequence.litlen = litlen;
+ lastSequence.mlen = maxML;
+ lastSequence.off = maxOffset;
+ DEBUGLOG(6, "large match (%u>%u), immediate encoding",
+ maxML, sufficient_len);
+ cur = 0;
+ last_pos = ZSTD_totalLen(lastSequence);
+ goto _shortestPath;
+ } }
+
+ /* set prices for first matches starting position == 0 */
+ { U32 const literalsPrice = opt[0].price + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
+ U32 pos;
+ U32 matchNb;
+ for (pos = 1; pos < minMatch; pos++) {
+ opt[pos].price = ZSTD_MAX_PRICE; /* mlen, litlen and price will be fixed during forward scanning */
+ }
+ for (matchNb = 0; matchNb < nbMatches; matchNb++) {
+ U32 const offset = matches[matchNb].off;
+ U32 const end = matches[matchNb].len;
+ repcodes_t const repHistory = ZSTD_updateRep(rep, offset, ll0);
+ for ( ; pos <= end ; pos++ ) {
+ U32 const matchPrice = ZSTD_getMatchPrice(offset, pos, optStatePtr, optLevel);
+ U32 const sequencePrice = literalsPrice + matchPrice;
+ DEBUGLOG(7, "rPos:%u => set initial price : %.2f",
+ pos, ZSTD_fCost(sequencePrice));
+ opt[pos].mlen = pos;
+ opt[pos].off = offset;
+ opt[pos].litlen = litlen;
+ opt[pos].price = sequencePrice;
+ ZSTD_STATIC_ASSERT(sizeof(opt[pos].rep) == sizeof(repHistory));
+ memcpy(opt[pos].rep, &repHistory, sizeof(repHistory));
+ } }
+ last_pos = pos-1;
+ }
+ }
+
+ /* check further positions */
+ for (cur = 1; cur <= last_pos; cur++) {
+ const BYTE* const inr = ip + cur;
+ assert(cur < ZSTD_OPT_NUM);
+ DEBUGLOG(7, "cPos:%zi==rPos:%u", inr-istart, cur)
+
+ /* Fix current position with one literal if cheaper */
+ { U32 const litlen = (opt[cur-1].mlen == 0) ? opt[cur-1].litlen + 1 : 1;
+ int const price = opt[cur-1].price
+ + ZSTD_rawLiteralsCost(ip+cur-1, 1, optStatePtr, optLevel)
+ + ZSTD_litLengthPrice(litlen, optStatePtr, optLevel)
+ - ZSTD_litLengthPrice(litlen-1, optStatePtr, optLevel);
+ assert(price < 1000000000); /* overflow check */
+ if (price <= opt[cur].price) {
+ DEBUGLOG(7, "cPos:%zi==rPos:%u : better price (%.2f<=%.2f) using literal (ll==%u) (hist:%u,%u,%u)",
+ inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price), litlen,
+ opt[cur-1].rep[0], opt[cur-1].rep[1], opt[cur-1].rep[2]);
+ opt[cur].mlen = 0;
+ opt[cur].off = 0;
+ opt[cur].litlen = litlen;
+ opt[cur].price = price;
+ memcpy(opt[cur].rep, opt[cur-1].rep, sizeof(opt[cur].rep));
+ } else {
+ DEBUGLOG(7, "cPos:%zi==rPos:%u : literal would cost more (%.2f>%.2f) (hist:%u,%u,%u)",
+ inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price),
+ opt[cur].rep[0], opt[cur].rep[1], opt[cur].rep[2]);
+ }
+ }
+
+ /* last match must start at a minimum distance of 8 from oend */
+ if (inr > ilimit) continue;
+
+ if (cur == last_pos) break;
+
+ if ( (optLevel==0) /*static_test*/
+ && (opt[cur+1].price <= opt[cur].price + (BITCOST_MULTIPLIER/2)) ) {
+ DEBUGLOG(7, "move to next rPos:%u : price is <=", cur+1);
+ continue; /* skip unpromising positions; about ~+6% speed, -0.01 ratio */
+ }
+
+ { U32 const ll0 = (opt[cur].mlen != 0);
+ U32 const litlen = (opt[cur].mlen == 0) ? opt[cur].litlen : 0;
+ U32 const previousPrice = opt[cur].price;
+ U32 const basePrice = previousPrice + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
+ U32 const nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, inr, iend, dictMode, opt[cur].rep, ll0, minMatch);
+ U32 matchNb;
+ if (!nbMatches) {
+ DEBUGLOG(7, "rPos:%u : no match found", cur);
+ continue;
+ }
+
+ { U32 const maxML = matches[nbMatches-1].len;
+ DEBUGLOG(7, "cPos:%zi==rPos:%u, found %u matches, of maxLength=%u",
+ inr-istart, cur, nbMatches, maxML);
+
+ if ( (maxML > sufficient_len)
+ || (cur + maxML >= ZSTD_OPT_NUM) ) {
+ lastSequence.mlen = maxML;
+ lastSequence.off = matches[nbMatches-1].off;
+ lastSequence.litlen = litlen;
+ cur -= (opt[cur].mlen==0) ? opt[cur].litlen : 0; /* last sequence is actually only literals, fix cur to last match - note : may underflow, in which case, it's first sequence, and it's okay */
+ last_pos = cur + ZSTD_totalLen(lastSequence);
+ if (cur > ZSTD_OPT_NUM) cur = 0; /* underflow => first match */
+ goto _shortestPath;
+ } }
+
+ /* set prices using matches found at position == cur */
+ for (matchNb = 0; matchNb < nbMatches; matchNb++) {
+ U32 const offset = matches[matchNb].off;
+ repcodes_t const repHistory = ZSTD_updateRep(opt[cur].rep, offset, ll0);
+ U32 const lastML = matches[matchNb].len;
+ U32 const startML = (matchNb>0) ? matches[matchNb-1].len+1 : minMatch;
+ U32 mlen;
+
+ DEBUGLOG(7, "testing match %u => offCode=%4u, mlen=%2u, llen=%2u",
+ matchNb, matches[matchNb].off, lastML, litlen);
+
+ for (mlen = lastML; mlen >= startML; mlen--) { /* scan downward */
+ U32 const pos = cur + mlen;
+ int const price = basePrice + ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel);
+
+ if ((pos > last_pos) || (price < opt[pos].price)) {
+ DEBUGLOG(7, "rPos:%u (ml=%2u) => new better price (%.2f<%.2f)",
+ pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
+ while (last_pos < pos) { opt[last_pos+1].price = ZSTD_MAX_PRICE; last_pos++; } /* fill empty positions */
+ opt[pos].mlen = mlen;
+ opt[pos].off = offset;
+ opt[pos].litlen = litlen;
+ opt[pos].price = price;
+ ZSTD_STATIC_ASSERT(sizeof(opt[pos].rep) == sizeof(repHistory));
+ memcpy(opt[pos].rep, &repHistory, sizeof(repHistory));
+ } else {
+ DEBUGLOG(7, "rPos:%u (ml=%2u) => new price is worse (%.2f>=%.2f)",
+ pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
+ if (optLevel==0) break; /* early update abort; gets ~+10% speed for about -0.01 ratio loss */
+ }
+ } } }
+ } /* for (cur = 1; cur <= last_pos; cur++) */
+
+ lastSequence = opt[last_pos];
+ cur = last_pos > ZSTD_totalLen(lastSequence) ? last_pos - ZSTD_totalLen(lastSequence) : 0; /* single sequence, and it starts before `ip` */
+ assert(cur < ZSTD_OPT_NUM); /* control overflow*/
+
+_shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
+ assert(opt[0].mlen == 0);
+
+ { U32 const storeEnd = cur + 1;
+ U32 storeStart = storeEnd;
+ U32 seqPos = cur;
+
+ DEBUGLOG(6, "start reverse traversal (last_pos:%u, cur:%u)",
+ last_pos, cur); (void)last_pos;
+ assert(storeEnd < ZSTD_OPT_NUM);
+ DEBUGLOG(6, "last sequence copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
+ storeEnd, lastSequence.litlen, lastSequence.mlen, lastSequence.off);
+ opt[storeEnd] = lastSequence;
+ while (seqPos > 0) {
+ U32 const backDist = ZSTD_totalLen(opt[seqPos]);
+ storeStart--;
+ DEBUGLOG(6, "sequence from rPos=%u copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
+ seqPos, storeStart, opt[seqPos].litlen, opt[seqPos].mlen, opt[seqPos].off);
+ opt[storeStart] = opt[seqPos];
+ seqPos = (seqPos > backDist) ? seqPos - backDist : 0;
+ }
+
+ /* save sequences */
+ DEBUGLOG(6, "sending selected sequences into seqStore")
+ { U32 storePos;
+ for (storePos=storeStart; storePos <= storeEnd; storePos++) {
+ U32 const llen = opt[storePos].litlen;
+ U32 const mlen = opt[storePos].mlen;
+ U32 const offCode = opt[storePos].off;
+ U32 const advance = llen + mlen;
+ DEBUGLOG(6, "considering seq starting at %zi, llen=%u, mlen=%u",
+ anchor - istart, (unsigned)llen, (unsigned)mlen);
+
+ if (mlen==0) { /* only literals => must be last "sequence", actually starting a new stream of sequences */
+ assert(storePos == storeEnd); /* must be last sequence */
+ ip = anchor + llen; /* last "sequence" is a bunch of literals => don't progress anchor */
+ continue; /* will finish */
+ }
+
+ /* repcodes update : like ZSTD_updateRep(), but update in place */
+ if (offCode >= ZSTD_REP_NUM) { /* full offset */
+ rep[2] = rep[1];
+ rep[1] = rep[0];
+ rep[0] = offCode - ZSTD_REP_MOVE;
+ } else { /* repcode */
+ U32 const repCode = offCode + (llen==0);
+ if (repCode) { /* note : if repCode==0, no change */
+ U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
+ if (repCode >= 2) rep[2] = rep[1];
+ rep[1] = rep[0];
+ rep[0] = currentOffset;
+ } }
+
+ assert(anchor + llen <= iend);
+ ZSTD_updateStats(optStatePtr, llen, anchor, offCode, mlen);
+ ZSTD_storeSeq(seqStore, llen, anchor, offCode, mlen-MINMATCH);
+ anchor += advance;
+ ip = anchor;
+ } }
+ ZSTD_setBasePrices(optStatePtr, optLevel);
+ }
+
+ } /* while (ip < ilimit) */
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+
+size_t ZSTD_compressBlock_btopt(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ DEBUGLOG(5, "ZSTD_compressBlock_btopt");
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_noDict);
+}
+
+
+/* used in 2-pass strategy */
+static U32 ZSTD_upscaleStat(unsigned* table, U32 lastEltIndex, int bonus)
+{
+ U32 s, sum=0;
+ assert(ZSTD_FREQ_DIV+bonus >= 0);
+ for (s=0; s<lastEltIndex+1; s++) {
+ table[s] <<= ZSTD_FREQ_DIV+bonus;
+ table[s]--;
+ sum += table[s];
+ }
+ return sum;
+}
+
+/* used in 2-pass strategy */
+MEM_STATIC void ZSTD_upscaleStats(optState_t* optPtr)
+{
+ if (ZSTD_compressedLiterals(optPtr))
+ optPtr->litSum = ZSTD_upscaleStat(optPtr->litFreq, MaxLit, 0);
+ optPtr->litLengthSum = ZSTD_upscaleStat(optPtr->litLengthFreq, MaxLL, 0);
+ optPtr->matchLengthSum = ZSTD_upscaleStat(optPtr->matchLengthFreq, MaxML, 0);
+ optPtr->offCodeSum = ZSTD_upscaleStat(optPtr->offCodeFreq, MaxOff, 0);
+}
+
+/* ZSTD_initStats_ultra():
+ * make a first compression pass, just to seed stats with more accurate starting values.
+ * only works on first block, with no dictionary and no ldm.
+ * this function cannot error, hence its contract must be respected.
+ */
+static void
+ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
+ seqStore_t* seqStore,
+ U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ U32 tmpRep[ZSTD_REP_NUM]; /* updated rep codes will sink here */
+ memcpy(tmpRep, rep, sizeof(tmpRep));
+
+ DEBUGLOG(4, "ZSTD_initStats_ultra (srcSize=%zu)", srcSize);
+ assert(ms->opt.litLengthSum == 0); /* first block */
+ assert(seqStore->sequences == seqStore->sequencesStart); /* no ldm */
+ assert(ms->window.dictLimit == ms->window.lowLimit); /* no dictionary */
+ assert(ms->window.dictLimit - ms->nextToUpdate <= 1); /* no prefix (note: intentional overflow, defined as 2-complement) */
+
+ ZSTD_compressBlock_opt_generic(ms, seqStore, tmpRep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict); /* generate stats into ms->opt*/
+
+ /* invalidate first scan from history */
+ ZSTD_resetSeqStore(seqStore);
+ ms->window.base -= srcSize;
+ ms->window.dictLimit += (U32)srcSize;
+ ms->window.lowLimit = ms->window.dictLimit;
+ ms->nextToUpdate = ms->window.dictLimit;
+
+ /* re-inforce weight of collected statistics */
+ ZSTD_upscaleStats(&ms->opt);
+}
+
+size_t ZSTD_compressBlock_btultra(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ DEBUGLOG(5, "ZSTD_compressBlock_btultra (srcSize=%zu)", srcSize);
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_btultra2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ U32 const current = (U32)((const BYTE*)src - ms->window.base);
+ DEBUGLOG(5, "ZSTD_compressBlock_btultra2 (srcSize=%zu)", srcSize);
+
+ /* 2-pass strategy:
+ * this strategy makes a first pass over first block to collect statistics
+ * and seed next round's statistics with it.
+ * After 1st pass, function forgets everything, and starts a new block.
+ * Consequently, this can only work if no data has been previously loaded in tables,
+ * aka, no dictionary, no prefix, no ldm preprocessing.
+ * The compression ratio gain is generally small (~0.5% on first block),
+ * the cost is 2x cpu time on first block. */
+ assert(srcSize <= ZSTD_BLOCKSIZE_MAX);
+ if ( (ms->opt.litLengthSum==0) /* first block */
+ && (seqStore->sequences == seqStore->sequencesStart) /* no ldm */
+ && (ms->window.dictLimit == ms->window.lowLimit) /* no dictionary */
+ && (current == ms->window.dictLimit) /* start of frame, nothing already loaded nor skipped */
+ && (srcSize > ZSTD_PREDEF_THRESHOLD)
+ ) {
+ ZSTD_initStats_ultra(ms, seqStore, rep, src, srcSize);
+ }
+
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_btopt_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_dictMatchState);
+}
+
+size_t ZSTD_compressBlock_btultra_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_dictMatchState);
+}
+
+size_t ZSTD_compressBlock_btopt_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_extDict);
+}
+
+size_t ZSTD_compressBlock_btultra_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_extDict);
+}
+
+/* note : no btultra2 variant for extDict nor dictMatchState,
+ * because btultra2 is not meant to work with dictionaries
+ * and is only specific for the first block (no prefix) */
diff --git a/vendor/github.com/DataDog/zstd/zstd_opt.h b/vendor/github.com/DataDog/zstd/zstd_opt.h
new file mode 100644
index 0000000..094f747
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_opt.h
@@ -0,0 +1,56 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_OPT_H
+#define ZSTD_OPT_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#include "zstd_compress_internal.h"
+
+/* used in ZSTD_loadDictionaryContent() */
+void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend);
+
+size_t ZSTD_compressBlock_btopt(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_btultra(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_btultra2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+
+size_t ZSTD_compressBlock_btopt_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_btultra_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+size_t ZSTD_compressBlock_btopt_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_btultra_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+ /* note : no btultra2 variant for extDict nor dictMatchState,
+ * because btultra2 is not meant to work with dictionaries
+ * and is only specific for the first block (no prefix) */
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_OPT_H */
diff --git a/vendor/github.com/DataDog/zstd/zstd_stream.go b/vendor/github.com/DataDog/zstd/zstd_stream.go
new file mode 100644
index 0000000..2330353
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_stream.go
@@ -0,0 +1,294 @@
+package zstd
+
+/*
+#define ZSTD_STATIC_LINKING_ONLY
+#define ZBUFF_DISABLE_DEPRECATE_WARNINGS
+#include "zstd.h"
+#include "zbuff.h"
+*/
+import "C"
+import (
+ "errors"
+ "fmt"
+ "io"
+ "runtime"
+ "unsafe"
+)
+
+var errShortRead = errors.New("short read")
+
+// Writer is an io.WriteCloser that zstd-compresses its input.
+type Writer struct {
+ CompressionLevel int
+
+ ctx *C.ZSTD_CCtx
+ dict []byte
+ dstBuffer []byte
+ firstError error
+ underlyingWriter io.Writer
+}
+
+func resize(in []byte, newSize int) []byte {
+ if in == nil {
+ return make([]byte, newSize)
+ }
+ if newSize <= cap(in) {
+ return in[:newSize]
+ }
+ toAdd := newSize - len(in)
+ return append(in, make([]byte, toAdd)...)
+}
+
+// NewWriter creates a new Writer with default compression options. Writes to
+// the writer will be written in compressed form to w.
+func NewWriter(w io.Writer) *Writer {
+ return NewWriterLevelDict(w, DefaultCompression, nil)
+}
+
+// NewWriterLevel is like NewWriter but specifies the compression level instead
+// of assuming default compression.
+//
+// The level can be DefaultCompression or any integer value between BestSpeed
+// and BestCompression inclusive.
+func NewWriterLevel(w io.Writer, level int) *Writer {
+ return NewWriterLevelDict(w, level, nil)
+
+}
+
+// NewWriterLevelDict is like NewWriterLevel but specifies a dictionary to
+// compress with. If the dictionary is empty or nil it is ignored. The dictionary
+// should not be modified until the writer is closed.
+func NewWriterLevelDict(w io.Writer, level int, dict []byte) *Writer {
+ var err error
+ ctx := C.ZSTD_createCCtx()
+
+ if dict == nil {
+ err = getError(int(C.ZSTD_compressBegin(ctx,
+ C.int(level))))
+ } else {
+ err = getError(int(C.ZSTD_compressBegin_usingDict(
+ ctx,
+ unsafe.Pointer(&dict[0]),
+ C.size_t(len(dict)),
+ C.int(level))))
+ }
+
+ return &Writer{
+ CompressionLevel: level,
+ ctx: ctx,
+ dict: dict,
+ dstBuffer: make([]byte, CompressBound(1024)),
+ firstError: err,
+ underlyingWriter: w,
+ }
+}
+
+// Write writes a compressed form of p to the underlying io.Writer.
+func (w *Writer) Write(p []byte) (int, error) {
+ if w.firstError != nil {
+ return 0, w.firstError
+ }
+ if len(p) == 0 {
+ return 0, nil
+ }
+ // Check if dstBuffer is enough
+ if len(w.dstBuffer) < CompressBound(len(p)) {
+ w.dstBuffer = make([]byte, CompressBound(len(p)))
+ }
+
+ retCode := C.ZSTD_compressContinue(
+ w.ctx,
+ unsafe.Pointer(&w.dstBuffer[0]),
+ C.size_t(len(w.dstBuffer)),
+ unsafe.Pointer(&p[0]),
+ C.size_t(len(p)))
+
+ if err := getError(int(retCode)); err != nil {
+ return 0, err
+ }
+ written := int(retCode)
+
+ // Write to underlying buffer
+ _, err := w.underlyingWriter.Write(w.dstBuffer[:written])
+
+ // Same behaviour as zlib, we can't know how much data we wrote, only
+ // if there was an error
+ if err != nil {
+ return 0, err
+ }
+ return len(p), err
+}
+
+// Close closes the Writer, flushing any unwritten data to the underlying
+// io.Writer and freeing objects, but does not close the underlying io.Writer.
+func (w *Writer) Close() error {
+ retCode := C.ZSTD_compressEnd(
+ w.ctx,
+ unsafe.Pointer(&w.dstBuffer[0]),
+ C.size_t(len(w.dstBuffer)),
+ unsafe.Pointer(nil),
+ C.size_t(0))
+
+ if err := getError(int(retCode)); err != nil {
+ return err
+ }
+ written := int(retCode)
+ retCode = C.ZSTD_freeCCtx(w.ctx) // Safely close buffer before writing the end
+
+ if err := getError(int(retCode)); err != nil {
+ return err
+ }
+
+ _, err := w.underlyingWriter.Write(w.dstBuffer[:written])
+ if err != nil {
+ return err
+ }
+ return nil
+}
+
+// reader is an io.ReadCloser that decompresses when read from.
+type reader struct {
+ ctx *C.ZBUFF_DCtx
+ compressionBuffer []byte
+ compressionLeft int
+ decompressionBuffer []byte
+ decompOff int
+ decompSize int
+ dict []byte
+ firstError error
+ recommendedSrcSize int
+ underlyingReader io.Reader
+}
+
+// NewReader creates a new io.ReadCloser. Reads from the returned ReadCloser
+// read and decompress data from r. It is the caller's responsibility to call
+// Close on the ReadCloser when done. If this is not done, underlying objects
+// in the zstd library will not be freed.
+func NewReader(r io.Reader) io.ReadCloser {
+ return NewReaderDict(r, nil)
+}
+
+// NewReaderDict is like NewReader but uses a preset dictionary. NewReaderDict
+// ignores the dictionary if it is nil.
+func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
+ var err error
+ ctx := C.ZBUFF_createDCtx()
+ if len(dict) == 0 {
+ err = getError(int(C.ZBUFF_decompressInit(ctx)))
+ } else {
+ err = getError(int(C.ZBUFF_decompressInitDictionary(
+ ctx,
+ unsafe.Pointer(&dict[0]),
+ C.size_t(len(dict)))))
+ }
+ cSize := int(C.ZBUFF_recommendedDInSize())
+ dSize := int(C.ZBUFF_recommendedDOutSize())
+ if cSize <= 0 {
+ panic(fmt.Errorf("ZBUFF_recommendedDInSize() returned invalid size: %v", cSize))
+ }
+ if dSize <= 0 {
+ panic(fmt.Errorf("ZBUFF_recommendedDOutSize() returned invalid size: %v", dSize))
+ }
+
+ compressionBuffer := make([]byte, cSize)
+ decompressionBuffer := make([]byte, dSize)
+ return &reader{
+ ctx: ctx,
+ dict: dict,
+ compressionBuffer: compressionBuffer,
+ decompressionBuffer: decompressionBuffer,
+ firstError: err,
+ recommendedSrcSize: cSize,
+ underlyingReader: r,
+ }
+}
+
+// Close frees the allocated C objects
+func (r *reader) Close() error {
+ return getError(int(C.ZBUFF_freeDCtx(r.ctx)))
+}
+
+func (r *reader) Read(p []byte) (int, error) {
+
+ // If we already have enough bytes, return
+ if r.decompSize-r.decompOff >= len(p) {
+ copy(p, r.decompressionBuffer[r.decompOff:])
+ r.decompOff += len(p)
+ return len(p), nil
+ }
+
+ copy(p, r.decompressionBuffer[r.decompOff:r.decompSize])
+ got := r.decompSize - r.decompOff
+ r.decompSize = 0
+ r.decompOff = 0
+
+ for got < len(p) {
+ // Populate src
+ src := r.compressionBuffer
+ reader := r.underlyingReader
+ n, err := TryReadFull(reader, src[r.compressionLeft:])
+ if err != nil && err != errShortRead { // Handle underlying reader errors first
+ return 0, fmt.Errorf("failed to read from underlying reader: %s", err)
+ } else if n == 0 && r.compressionLeft == 0 {
+ return got, io.EOF
+ }
+ src = src[:r.compressionLeft+n]
+
+ // C code
+ cSrcSize := C.size_t(len(src))
+ cDstSize := C.size_t(len(r.decompressionBuffer))
+ retCode := int(C.ZBUFF_decompressContinue(
+ r.ctx,
+ unsafe.Pointer(&r.decompressionBuffer[0]),
+ &cDstSize,
+ unsafe.Pointer(&src[0]),
+ &cSrcSize))
+
+ // Keep src here eventhough, we reuse later, the code might be deleted at some point
+ runtime.KeepAlive(src)
+ if err = getError(retCode); err != nil {
+ return 0, fmt.Errorf("failed to decompress: %s", err)
+ }
+
+ // Put everything in buffer
+ if int(cSrcSize) < len(src) {
+ left := src[int(cSrcSize):]
+ copy(r.compressionBuffer, left)
+ }
+ r.compressionLeft = len(src) - int(cSrcSize)
+ r.decompSize = int(cDstSize)
+ r.decompOff = copy(p[got:], r.decompressionBuffer[:r.decompSize])
+ got += r.decompOff
+
+ // Resize buffers
+ nsize := retCode // Hint for next src buffer size
+ if nsize <= 0 {
+ // Reset to recommended size
+ nsize = r.recommendedSrcSize
+ }
+ if nsize < r.compressionLeft {
+ nsize = r.compressionLeft
+ }
+ r.compressionBuffer = resize(r.compressionBuffer, nsize)
+ }
+ return got, nil
+}
+
+// TryReadFull reads buffer just as ReadFull does
+// Here we expect that buffer may end and we do not return ErrUnexpectedEOF as ReadAtLeast does.
+// We return errShortRead instead to distinguish short reads and failures.
+// We cannot use ReadFull/ReadAtLeast because it masks Reader errors, such as network failures
+// and causes panic instead of error.
+func TryReadFull(r io.Reader, buf []byte) (n int, err error) {
+ for n < len(buf) && err == nil {
+ var nn int
+ nn, err = r.Read(buf[n:])
+ n += nn
+ }
+ if n == len(buf) && err == io.EOF {
+ err = nil // EOF at the end is somewhat expected
+ } else if err == io.EOF {
+ err = errShortRead
+ }
+ return
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_v01.c b/vendor/github.com/DataDog/zstd/zstd_v01.c
new file mode 100644
index 0000000..ae8cba2
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v01.c
@@ -0,0 +1,2152 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+/******************************************
+* Includes
+******************************************/
+#include <stddef.h> /* size_t, ptrdiff_t */
+#include "zstd_v01.h"
+#include "error_private.h"
+
+
+/******************************************
+* Static allocation
+******************************************/
+/* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */
+#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
+
+/* You can statically allocate Huff0 DTable as a table of unsigned short using below macro */
+#define HUF_DTABLE_SIZE_U16(maxTableLog) (1 + (1<<maxTableLog))
+#define HUF_CREATE_STATIC_DTABLE(DTable, maxTableLog) \
+ unsigned short DTable[HUF_DTABLE_SIZE_U16(maxTableLog)] = { maxTableLog }
+
+
+/******************************************
+* Error Management
+******************************************/
+#define FSE_LIST_ERRORS(ITEM) \
+ ITEM(FSE_OK_NoError) ITEM(FSE_ERROR_GENERIC) \
+ ITEM(FSE_ERROR_tableLog_tooLarge) ITEM(FSE_ERROR_maxSymbolValue_tooLarge) ITEM(FSE_ERROR_maxSymbolValue_tooSmall) \
+ ITEM(FSE_ERROR_dstSize_tooSmall) ITEM(FSE_ERROR_srcSize_wrong)\
+ ITEM(FSE_ERROR_corruptionDetected) \
+ ITEM(FSE_ERROR_maxCode)
+
+#define FSE_GENERATE_ENUM(ENUM) ENUM,
+typedef enum { FSE_LIST_ERRORS(FSE_GENERATE_ENUM) } FSE_errorCodes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */
+
+
+/******************************************
+* FSE symbol compression API
+******************************************/
+/*
+ This API consists of small unitary functions, which highly benefit from being inlined.
+ You will want to enable link-time-optimization to ensure these functions are properly inlined in your binary.
+ Visual seems to do it automatically.
+ For gcc or clang, you'll need to add -flto flag at compilation and linking stages.
+ If none of these solutions is applicable, include "fse.c" directly.
+*/
+
+typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */
+typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
+
+typedef struct
+{
+ size_t bitContainer;
+ int bitPos;
+ char* startPtr;
+ char* ptr;
+ char* endPtr;
+} FSE_CStream_t;
+
+typedef struct
+{
+ ptrdiff_t value;
+ const void* stateTable;
+ const void* symbolTT;
+ unsigned stateLog;
+} FSE_CState_t;
+
+typedef struct
+{
+ size_t bitContainer;
+ unsigned bitsConsumed;
+ const char* ptr;
+ const char* start;
+} FSE_DStream_t;
+
+typedef struct
+{
+ size_t state;
+ const void* table; /* precise table may vary, depending on U16 */
+} FSE_DState_t;
+
+typedef enum { FSE_DStream_unfinished = 0,
+ FSE_DStream_endOfBuffer = 1,
+ FSE_DStream_completed = 2,
+ FSE_DStream_tooFar = 3 } FSE_DStream_status; /* result of FSE_reloadDStream() */
+ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... ?! */
+
+
+/****************************************************************
+* Tuning parameters
+****************************************************************/
+/* MEMORY_USAGE :
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+* Increasing memory usage improves compression ratio
+* Reduced memory usage can improve speed, due to cache effect
+* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
+#define FSE_MAX_MEMORY_USAGE 14
+#define FSE_DEFAULT_MEMORY_USAGE 13
+
+/* FSE_MAX_SYMBOL_VALUE :
+* Maximum symbol value authorized.
+* Required for proper stack allocation */
+#define FSE_MAX_SYMBOL_VALUE 255
+
+
+/****************************************************************
+* template functions type & suffix
+****************************************************************/
+#define FSE_FUNCTION_TYPE BYTE
+#define FSE_FUNCTION_EXTENSION
+
+
+/****************************************************************
+* Byte symbol type
+****************************************************************/
+typedef struct
+{
+ unsigned short newState;
+ unsigned char symbol;
+ unsigned char nbBits;
+} FSE_decode_t; /* size == U32 */
+
+
+
+/****************************************************************
+* Compiler specifics
+****************************************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# define FORCE_INLINE static __forceinline
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
+#else
+# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# ifdef __GNUC__
+# define FORCE_INLINE static inline __attribute__((always_inline))
+# else
+# define FORCE_INLINE static inline
+# endif
+# else
+# define FORCE_INLINE static
+# endif /* __STDC_VERSION__ */
+#endif
+
+
+/****************************************************************
+* Includes
+****************************************************************/
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memcpy, memset */
+#include <stdio.h> /* printf (debug) */
+
+
+#ifndef MEM_ACCESS_MODULE
+#define MEM_ACCESS_MODULE
+/****************************************************************
+* Basic Types
+*****************************************************************/
+#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# include <stdint.h>
+typedef uint8_t BYTE;
+typedef uint16_t U16;
+typedef int16_t S16;
+typedef uint32_t U32;
+typedef int32_t S32;
+typedef uint64_t U64;
+typedef int64_t S64;
+#else
+typedef unsigned char BYTE;
+typedef unsigned short U16;
+typedef signed short S16;
+typedef unsigned int U32;
+typedef signed int S32;
+typedef unsigned long long U64;
+typedef signed long long S64;
+#endif
+
+#endif /* MEM_ACCESS_MODULE */
+
+/****************************************************************
+* Memory I/O
+*****************************************************************/
+/* FSE_FORCE_MEMORY_ACCESS
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
+ * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method is portable but violate C standard.
+ * It can generate buggy code on targets generating assembly depending on alignment.
+ * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
+ * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef FSE_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
+# define FSE_FORCE_MEMORY_ACCESS 2
+# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
+ (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# define FSE_FORCE_MEMORY_ACCESS 1
+# endif
+#endif
+
+
+static unsigned FSE_32bits(void)
+{
+ return sizeof(void*)==4;
+}
+
+static unsigned FSE_isLittleEndian(void)
+{
+ const union { U32 i; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
+ return one.c[0];
+}
+
+#if defined(FSE_FORCE_MEMORY_ACCESS) && (FSE_FORCE_MEMORY_ACCESS==2)
+
+static U16 FSE_read16(const void* memPtr) { return *(const U16*) memPtr; }
+static U32 FSE_read32(const void* memPtr) { return *(const U32*) memPtr; }
+static U64 FSE_read64(const void* memPtr) { return *(const U64*) memPtr; }
+
+#elif defined(FSE_FORCE_MEMORY_ACCESS) && (FSE_FORCE_MEMORY_ACCESS==1)
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;
+
+static U16 FSE_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
+static U32 FSE_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+static U64 FSE_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
+
+#else
+
+static U16 FSE_read16(const void* memPtr)
+{
+ U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+static U32 FSE_read32(const void* memPtr)
+{
+ U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+static U64 FSE_read64(const void* memPtr)
+{
+ U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+#endif // FSE_FORCE_MEMORY_ACCESS
+
+static U16 FSE_readLE16(const void* memPtr)
+{
+ if (FSE_isLittleEndian())
+ return FSE_read16(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U16)(p[0] + (p[1]<<8));
+ }
+}
+
+static U32 FSE_readLE32(const void* memPtr)
+{
+ if (FSE_isLittleEndian())
+ return FSE_read32(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
+ }
+}
+
+
+static U64 FSE_readLE64(const void* memPtr)
+{
+ if (FSE_isLittleEndian())
+ return FSE_read64(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
+ + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
+ }
+}
+
+static size_t FSE_readLEST(const void* memPtr)
+{
+ if (FSE_32bits())
+ return (size_t)FSE_readLE32(memPtr);
+ else
+ return (size_t)FSE_readLE64(memPtr);
+}
+
+
+
+/****************************************************************
+* Constants
+*****************************************************************/
+#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
+#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
+#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
+#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
+#define FSE_MIN_TABLELOG 5
+
+#define FSE_TABLELOG_ABSOLUTE_MAX 15
+#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
+#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
+#endif
+
+
+/****************************************************************
+* Error Management
+****************************************************************/
+#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+/****************************************************************
+* Complex types
+****************************************************************/
+typedef struct
+{
+ int deltaFindState;
+ U32 deltaNbBits;
+} FSE_symbolCompressionTransform; /* total 8 bytes */
+
+typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
+
+/****************************************************************
+* Internal functions
+****************************************************************/
+FORCE_INLINE unsigned FSE_highbit32 (U32 val)
+{
+# if defined(_MSC_VER) /* Visual */
+ unsigned long r;
+ _BitScanReverse ( &r, val );
+ return (unsigned) r;
+# elif defined(__GNUC__) && (GCC_VERSION >= 304) /* GCC Intrinsic */
+ return 31 - __builtin_clz (val);
+# else /* Software version */
+ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ U32 v = val;
+ unsigned r;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
+ return r;
+# endif
+}
+
+
+/****************************************************************
+* Templates
+****************************************************************/
+/*
+ designed to be included
+ for type-specific functions (template emulation in C)
+ Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSE_FUNCTION_EXTENSION
+# error "FSE_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSE_FUNCTION_TYPE
+# error "FSE_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSE_CAT(X,Y) X##Y
+#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
+#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
+
+
+
+static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
+
+#define FSE_DECODE_TYPE FSE_decode_t
+
+
+typedef struct {
+ U16 tableLog;
+ U16 fastMode;
+} FSE_DTableHeader; /* sizeof U32 */
+
+static size_t FSE_buildDTable
+(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)(ptr) + 1; /* because dt is unsigned, 32-bits aligned on 32-bits */
+ const U32 tableSize = 1 << tableLog;
+ const U32 tableMask = tableSize-1;
+ const U32 step = FSE_tableStep(tableSize);
+ U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
+ U32 position = 0;
+ U32 highThreshold = tableSize-1;
+ const S16 largeLimit= (S16)(1 << (tableLog-1));
+ U32 noLarge = 1;
+ U32 s;
+
+ /* Sanity Checks */
+ if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return (size_t)-FSE_ERROR_maxSymbolValue_tooLarge;
+ if (tableLog > FSE_MAX_TABLELOG) return (size_t)-FSE_ERROR_tableLog_tooLarge;
+
+ /* Init, lay down lowprob symbols */
+ DTableH[0].tableLog = (U16)tableLog;
+ for (s=0; s<=maxSymbolValue; s++)
+ {
+ if (normalizedCounter[s]==-1)
+ {
+ tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
+ symbolNext[s] = 1;
+ }
+ else
+ {
+ if (normalizedCounter[s] >= largeLimit) noLarge=0;
+ symbolNext[s] = normalizedCounter[s];
+ }
+ }
+
+ /* Spread symbols */
+ for (s=0; s<=maxSymbolValue; s++)
+ {
+ int i;
+ for (i=0; i<normalizedCounter[s]; i++)
+ {
+ tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
+ position = (position + step) & tableMask;
+ while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
+ }
+ }
+
+ if (position!=0) return (size_t)-FSE_ERROR_GENERIC; /* position must reach all cells once, otherwise normalizedCounter is incorrect */
+
+ /* Build Decoding table */
+ {
+ U32 i;
+ for (i=0; i<tableSize; i++)
+ {
+ FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
+ U16 nextState = symbolNext[symbol]++;
+ tableDecode[i].nbBits = (BYTE) (tableLog - FSE_highbit32 ((U32)nextState) );
+ tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
+ }
+ }
+
+ DTableH->fastMode = (U16)noLarge;
+ return 0;
+}
+
+
+/******************************************
+* FSE byte symbol
+******************************************/
+#ifndef FSE_COMMONDEFS_ONLY
+
+static unsigned FSE_isError(size_t code) { return (code > (size_t)(-FSE_ERROR_maxCode)); }
+
+static short FSE_abs(short a)
+{
+ return a<0? -a : a;
+}
+
+
+/****************************************************************
+* Header bitstream management
+****************************************************************/
+static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize)
+{
+ const BYTE* const istart = (const BYTE*) headerBuffer;
+ const BYTE* const iend = istart + hbSize;
+ const BYTE* ip = istart;
+ int nbBits;
+ int remaining;
+ int threshold;
+ U32 bitStream;
+ int bitCount;
+ unsigned charnum = 0;
+ int previous0 = 0;
+
+ if (hbSize < 4) return (size_t)-FSE_ERROR_srcSize_wrong;
+ bitStream = FSE_readLE32(ip);
+ nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
+ if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return (size_t)-FSE_ERROR_tableLog_tooLarge;
+ bitStream >>= 4;
+ bitCount = 4;
+ *tableLogPtr = nbBits;
+ remaining = (1<<nbBits)+1;
+ threshold = 1<<nbBits;
+ nbBits++;
+
+ while ((remaining>1) && (charnum<=*maxSVPtr))
+ {
+ if (previous0)
+ {
+ unsigned n0 = charnum;
+ while ((bitStream & 0xFFFF) == 0xFFFF)
+ {
+ n0+=24;
+ if (ip < iend-5)
+ {
+ ip+=2;
+ bitStream = FSE_readLE32(ip) >> bitCount;
+ }
+ else
+ {
+ bitStream >>= 16;
+ bitCount+=16;
+ }
+ }
+ while ((bitStream & 3) == 3)
+ {
+ n0+=3;
+ bitStream>>=2;
+ bitCount+=2;
+ }
+ n0 += bitStream & 3;
+ bitCount += 2;
+ if (n0 > *maxSVPtr) return (size_t)-FSE_ERROR_maxSymbolValue_tooSmall;
+ while (charnum < n0) normalizedCounter[charnum++] = 0;
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
+ {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ bitStream = FSE_readLE32(ip) >> bitCount;
+ }
+ else
+ bitStream >>= 2;
+ }
+ {
+ const short max = (short)((2*threshold-1)-remaining);
+ short count;
+
+ if ((bitStream & (threshold-1)) < (U32)max)
+ {
+ count = (short)(bitStream & (threshold-1));
+ bitCount += nbBits-1;
+ }
+ else
+ {
+ count = (short)(bitStream & (2*threshold-1));
+ if (count >= threshold) count -= max;
+ bitCount += nbBits;
+ }
+
+ count--; /* extra accuracy */
+ remaining -= FSE_abs(count);
+ normalizedCounter[charnum++] = count;
+ previous0 = !count;
+ while (remaining < threshold)
+ {
+ nbBits--;
+ threshold >>= 1;
+ }
+
+ {
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
+ {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ }
+ else
+ {
+ bitCount -= (int)(8 * (iend - 4 - ip));
+ ip = iend - 4;
+ }
+ bitStream = FSE_readLE32(ip) >> (bitCount & 31);
+ }
+ }
+ }
+ if (remaining != 1) return (size_t)-FSE_ERROR_GENERIC;
+ *maxSVPtr = charnum-1;
+
+ ip += (bitCount+7)>>3;
+ if ((size_t)(ip-istart) > hbSize) return (size_t)-FSE_ERROR_srcSize_wrong;
+ return ip-istart;
+}
+
+
+/*********************************************************
+* Decompression (Byte symbols)
+*********************************************************/
+static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */
+
+ DTableH->tableLog = 0;
+ DTableH->fastMode = 0;
+
+ cell->newState = 0;
+ cell->symbol = symbolValue;
+ cell->nbBits = 0;
+
+ return 0;
+}
+
+
+static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */
+ const unsigned tableSize = 1 << nbBits;
+ const unsigned tableMask = tableSize - 1;
+ const unsigned maxSymbolValue = tableMask;
+ unsigned s;
+
+ /* Sanity checks */
+ if (nbBits < 1) return (size_t)-FSE_ERROR_GENERIC; /* min size */
+
+ /* Build Decoding Table */
+ DTableH->tableLog = (U16)nbBits;
+ DTableH->fastMode = 1;
+ for (s=0; s<=maxSymbolValue; s++)
+ {
+ dinfo[s].newState = 0;
+ dinfo[s].symbol = (BYTE)s;
+ dinfo[s].nbBits = (BYTE)nbBits;
+ }
+
+ return 0;
+}
+
+
+/* FSE_initDStream
+ * Initialize a FSE_DStream_t.
+ * srcBuffer must point at the beginning of an FSE block.
+ * The function result is the size of the FSE_block (== srcSize).
+ * If srcSize is too small, the function will return an errorCode;
+ */
+static size_t FSE_initDStream(FSE_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
+{
+ if (srcSize < 1) return (size_t)-FSE_ERROR_srcSize_wrong;
+
+ if (srcSize >= sizeof(size_t))
+ {
+ U32 contain32;
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
+ bitD->bitContainer = FSE_readLEST(bitD->ptr);
+ contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
+ if (contain32 == 0) return (size_t)-FSE_ERROR_GENERIC; /* stop bit not present */
+ bitD->bitsConsumed = 8 - FSE_highbit32(contain32);
+ }
+ else
+ {
+ U32 contain32;
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = bitD->start;
+ bitD->bitContainer = *(const BYTE*)(bitD->start);
+ switch(srcSize)
+ {
+ case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
+ /* fallthrough */
+ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
+ /* fallthrough */
+ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
+ /* fallthrough */
+ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
+ /* fallthrough */
+ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
+ /* fallthrough */
+ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8;
+ /* fallthrough */
+ default:;
+ }
+ contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
+ if (contain32 == 0) return (size_t)-FSE_ERROR_GENERIC; /* stop bit not present */
+ bitD->bitsConsumed = 8 - FSE_highbit32(contain32);
+ bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
+ }
+
+ return srcSize;
+}
+
+
+/*!FSE_lookBits
+ * Provides next n bits from the bitContainer.
+ * bitContainer is not modified (bits are still present for next read/look)
+ * On 32-bits, maxNbBits==25
+ * On 64-bits, maxNbBits==57
+ * return : value extracted.
+ */
+static size_t FSE_lookBits(FSE_DStream_t* bitD, U32 nbBits)
+{
+ const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
+}
+
+static size_t FSE_lookBitsFast(FSE_DStream_t* bitD, U32 nbBits) /* only if nbBits >= 1 !! */
+{
+ const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
+}
+
+static void FSE_skipBits(FSE_DStream_t* bitD, U32 nbBits)
+{
+ bitD->bitsConsumed += nbBits;
+}
+
+
+/*!FSE_readBits
+ * Read next n bits from the bitContainer.
+ * On 32-bits, don't read more than maxNbBits==25
+ * On 64-bits, don't read more than maxNbBits==57
+ * Use the fast variant *only* if n >= 1.
+ * return : value extracted.
+ */
+static size_t FSE_readBits(FSE_DStream_t* bitD, U32 nbBits)
+{
+ size_t value = FSE_lookBits(bitD, nbBits);
+ FSE_skipBits(bitD, nbBits);
+ return value;
+}
+
+static size_t FSE_readBitsFast(FSE_DStream_t* bitD, U32 nbBits) /* only if nbBits >= 1 !! */
+{
+ size_t value = FSE_lookBitsFast(bitD, nbBits);
+ FSE_skipBits(bitD, nbBits);
+ return value;
+}
+
+static unsigned FSE_reloadDStream(FSE_DStream_t* bitD)
+{
+ if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
+ return FSE_DStream_tooFar;
+
+ if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
+ {
+ bitD->ptr -= bitD->bitsConsumed >> 3;
+ bitD->bitsConsumed &= 7;
+ bitD->bitContainer = FSE_readLEST(bitD->ptr);
+ return FSE_DStream_unfinished;
+ }
+ if (bitD->ptr == bitD->start)
+ {
+ if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return FSE_DStream_endOfBuffer;
+ return FSE_DStream_completed;
+ }
+ {
+ U32 nbBytes = bitD->bitsConsumed >> 3;
+ U32 result = FSE_DStream_unfinished;
+ if (bitD->ptr - nbBytes < bitD->start)
+ {
+ nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
+ result = FSE_DStream_endOfBuffer;
+ }
+ bitD->ptr -= nbBytes;
+ bitD->bitsConsumed -= nbBytes*8;
+ bitD->bitContainer = FSE_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
+ return result;
+ }
+}
+
+
+static void FSE_initDState(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD, const FSE_DTable* dt)
+{
+ const void* ptr = dt;
+ const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
+ DStatePtr->state = FSE_readBits(bitD, DTableH->tableLog);
+ FSE_reloadDStream(bitD);
+ DStatePtr->table = dt + 1;
+}
+
+static BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD)
+{
+ const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ const U32 nbBits = DInfo.nbBits;
+ BYTE symbol = DInfo.symbol;
+ size_t lowBits = FSE_readBits(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+static BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD)
+{
+ const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ const U32 nbBits = DInfo.nbBits;
+ BYTE symbol = DInfo.symbol;
+ size_t lowBits = FSE_readBitsFast(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+/* FSE_endOfDStream
+ Tells if bitD has reached end of bitStream or not */
+
+static unsigned FSE_endOfDStream(const FSE_DStream_t* bitD)
+{
+ return ((bitD->ptr == bitD->start) && (bitD->bitsConsumed == sizeof(bitD->bitContainer)*8));
+}
+
+static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
+{
+ return DStatePtr->state == 0;
+}
+
+
+FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
+ void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSE_DTable* dt, const unsigned fast)
+{
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const omax = op + maxDstSize;
+ BYTE* const olimit = omax-3;
+
+ FSE_DStream_t bitD;
+ FSE_DState_t state1;
+ FSE_DState_t state2;
+ size_t errorCode;
+
+ /* Init */
+ errorCode = FSE_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
+ if (FSE_isError(errorCode)) return errorCode;
+
+ FSE_initDState(&state1, &bitD, dt);
+ FSE_initDState(&state2, &bitD, dt);
+
+#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
+
+ /* 4 symbols per loop */
+ for ( ; (FSE_reloadDStream(&bitD)==FSE_DStream_unfinished) && (op<olimit) ; op+=4)
+ {
+ op[0] = FSE_GETSYMBOL(&state1);
+
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ FSE_reloadDStream(&bitD);
+
+ op[1] = FSE_GETSYMBOL(&state2);
+
+ if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ { if (FSE_reloadDStream(&bitD) > FSE_DStream_unfinished) { op+=2; break; } }
+
+ op[2] = FSE_GETSYMBOL(&state1);
+
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ FSE_reloadDStream(&bitD);
+
+ op[3] = FSE_GETSYMBOL(&state2);
+ }
+
+ /* tail */
+ /* note : FSE_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly FSE_DStream_completed */
+ while (1)
+ {
+ if ( (FSE_reloadDStream(&bitD)>FSE_DStream_completed) || (op==omax) || (FSE_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
+ break;
+
+ *op++ = FSE_GETSYMBOL(&state1);
+
+ if ( (FSE_reloadDStream(&bitD)>FSE_DStream_completed) || (op==omax) || (FSE_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
+ break;
+
+ *op++ = FSE_GETSYMBOL(&state2);
+ }
+
+ /* end ? */
+ if (FSE_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
+ return op-ostart;
+
+ if (op==omax) return (size_t)-FSE_ERROR_dstSize_tooSmall; /* dst buffer is full, but cSrc unfinished */
+
+ return (size_t)-FSE_ERROR_corruptionDetected;
+}
+
+
+static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSE_DTable* dt)
+{
+ FSE_DTableHeader DTableH;
+ memcpy(&DTableH, dt, sizeof(DTableH)); /* memcpy() into local variable, to avoid strict aliasing warning */
+
+ /* select fast mode (static) */
+ if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
+ return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
+}
+
+
+static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
+{
+ const BYTE* const istart = (const BYTE*)cSrc;
+ const BYTE* ip = istart;
+ short counting[FSE_MAX_SYMBOL_VALUE+1];
+ DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
+ unsigned tableLog;
+ unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
+ size_t errorCode;
+
+ if (cSrcSize<2) return (size_t)-FSE_ERROR_srcSize_wrong; /* too small input size */
+
+ /* normal FSE decoding mode */
+ errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
+ if (FSE_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong; /* too small input size */
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
+ if (FSE_isError(errorCode)) return errorCode;
+
+ /* always return, even if it is an error code */
+ return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
+}
+
+
+
+/* *******************************************************
+* Huff0 : Huffman block compression
+*********************************************************/
+#define HUF_MAX_SYMBOL_VALUE 255
+#define HUF_DEFAULT_TABLELOG 12 /* used by default, when not specified */
+#define HUF_MAX_TABLELOG 12 /* max possible tableLog; for allocation purpose; can be modified */
+#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
+#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
+# error "HUF_MAX_TABLELOG is too large !"
+#endif
+
+typedef struct HUF_CElt_s {
+ U16 val;
+ BYTE nbBits;
+} HUF_CElt ;
+
+typedef struct nodeElt_s {
+ U32 count;
+ U16 parent;
+ BYTE byte;
+ BYTE nbBits;
+} nodeElt;
+
+
+/* *******************************************************
+* Huff0 : Huffman block decompression
+*********************************************************/
+typedef struct {
+ BYTE byte;
+ BYTE nbBits;
+} HUF_DElt;
+
+static size_t HUF_readDTable (U16* DTable, const void* src, size_t srcSize)
+{
+ BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
+ U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
+ U32 weightTotal;
+ U32 maxBits;
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize;
+ size_t oSize;
+ U32 n;
+ U32 nextRankStart;
+ void* ptr = DTable+1;
+ HUF_DElt* const dt = (HUF_DElt*)ptr;
+
+ if (!srcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
+ iSize = ip[0];
+
+ FSE_STATIC_ASSERT(sizeof(HUF_DElt) == sizeof(U16)); /* if compilation fails here, assertion is false */
+ //memset(huffWeight, 0, sizeof(huffWeight)); /* should not be necessary, but some analyzer complain ... */
+ if (iSize >= 128) /* special header */
+ {
+ if (iSize >= (242)) /* RLE */
+ {
+ static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
+ oSize = l[iSize-242];
+ memset(huffWeight, 1, sizeof(huffWeight));
+ iSize = 0;
+ }
+ else /* Incompressible */
+ {
+ oSize = iSize - 127;
+ iSize = ((oSize+1)/2);
+ if (iSize+1 > srcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
+ ip += 1;
+ for (n=0; n<oSize; n+=2)
+ {
+ huffWeight[n] = ip[n/2] >> 4;
+ huffWeight[n+1] = ip[n/2] & 15;
+ }
+ }
+ }
+ else /* header compressed with FSE (normal case) */
+ {
+ if (iSize+1 > srcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
+ oSize = FSE_decompress(huffWeight, HUF_MAX_SYMBOL_VALUE, ip+1, iSize); /* max 255 values decoded, last one is implied */
+ if (FSE_isError(oSize)) return oSize;
+ }
+
+ /* collect weight stats */
+ memset(rankVal, 0, sizeof(rankVal));
+ weightTotal = 0;
+ for (n=0; n<oSize; n++)
+ {
+ if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return (size_t)-FSE_ERROR_corruptionDetected;
+ rankVal[huffWeight[n]]++;
+ weightTotal += (1 << huffWeight[n]) >> 1;
+ }
+ if (weightTotal == 0) return (size_t)-FSE_ERROR_corruptionDetected;
+
+ /* get last non-null symbol weight (implied, total must be 2^n) */
+ maxBits = FSE_highbit32(weightTotal) + 1;
+ if (maxBits > DTable[0]) return (size_t)-FSE_ERROR_tableLog_tooLarge; /* DTable is too small */
+ DTable[0] = (U16)maxBits;
+ {
+ U32 total = 1 << maxBits;
+ U32 rest = total - weightTotal;
+ U32 verif = 1 << FSE_highbit32(rest);
+ U32 lastWeight = FSE_highbit32(rest) + 1;
+ if (verif != rest) return (size_t)-FSE_ERROR_corruptionDetected; /* last value must be a clean power of 2 */
+ huffWeight[oSize] = (BYTE)lastWeight;
+ rankVal[lastWeight]++;
+ }
+
+ /* check tree construction validity */
+ if ((rankVal[1] < 2) || (rankVal[1] & 1)) return (size_t)-FSE_ERROR_corruptionDetected; /* by construction : at least 2 elts of rank 1, must be even */
+
+ /* Prepare ranks */
+ nextRankStart = 0;
+ for (n=1; n<=maxBits; n++)
+ {
+ U32 current = nextRankStart;
+ nextRankStart += (rankVal[n] << (n-1));
+ rankVal[n] = current;
+ }
+
+ /* fill DTable */
+ for (n=0; n<=oSize; n++)
+ {
+ const U32 w = huffWeight[n];
+ const U32 length = (1 << w) >> 1;
+ U32 i;
+ HUF_DElt D;
+ D.byte = (BYTE)n; D.nbBits = (BYTE)(maxBits + 1 - w);
+ for (i = rankVal[w]; i < rankVal[w] + length; i++)
+ dt[i] = D;
+ rankVal[w] += length;
+ }
+
+ return iSize+1;
+}
+
+
+static BYTE HUF_decodeSymbol(FSE_DStream_t* Dstream, const HUF_DElt* dt, const U32 dtLog)
+{
+ const size_t val = FSE_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
+ const BYTE c = dt[val].byte;
+ FSE_skipBits(Dstream, dt[val].nbBits);
+ return c;
+}
+
+static size_t HUF_decompress_usingDTable( /* -3% slower when non static */
+ void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U16* DTable)
+{
+ if (cSrcSize < 6) return (size_t)-FSE_ERROR_srcSize_wrong;
+ {
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const omax = op + maxDstSize;
+ BYTE* const olimit = omax-15;
+
+ const void* ptr = DTable;
+ const HUF_DElt* const dt = (const HUF_DElt*)(ptr)+1;
+ const U32 dtLog = DTable[0];
+ size_t errorCode;
+ U32 reloadStatus;
+
+ /* Init */
+
+ const U16* jumpTable = (const U16*)cSrc;
+ const size_t length1 = FSE_readLE16(jumpTable);
+ const size_t length2 = FSE_readLE16(jumpTable+1);
+ const size_t length3 = FSE_readLE16(jumpTable+2);
+ const size_t length4 = cSrcSize - 6 - length1 - length2 - length3; // check coherency !!
+ const char* const start1 = (const char*)(cSrc) + 6;
+ const char* const start2 = start1 + length1;
+ const char* const start3 = start2 + length2;
+ const char* const start4 = start3 + length3;
+ FSE_DStream_t bitD1, bitD2, bitD3, bitD4;
+
+ if (length1+length2+length3+6 >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
+
+ errorCode = FSE_initDStream(&bitD1, start1, length1);
+ if (FSE_isError(errorCode)) return errorCode;
+ errorCode = FSE_initDStream(&bitD2, start2, length2);
+ if (FSE_isError(errorCode)) return errorCode;
+ errorCode = FSE_initDStream(&bitD3, start3, length3);
+ if (FSE_isError(errorCode)) return errorCode;
+ errorCode = FSE_initDStream(&bitD4, start4, length4);
+ if (FSE_isError(errorCode)) return errorCode;
+
+ reloadStatus=FSE_reloadDStream(&bitD2);
+
+ /* 16 symbols per loop */
+ for ( ; (reloadStatus<FSE_DStream_completed) && (op<olimit); /* D2-3-4 are supposed to be synchronized and finish together */
+ op+=16, reloadStatus = FSE_reloadDStream(&bitD2) | FSE_reloadDStream(&bitD3) | FSE_reloadDStream(&bitD4), FSE_reloadDStream(&bitD1))
+ {
+ #define HUF_DECODE_SYMBOL_0(n, Dstream) \
+ op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog);
+
+ #define HUF_DECODE_SYMBOL_1(n, Dstream) \
+ op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog); \
+ if (FSE_32bits() && (HUF_MAX_TABLELOG>12)) FSE_reloadDStream(&Dstream)
+
+ #define HUF_DECODE_SYMBOL_2(n, Dstream) \
+ op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog); \
+ if (FSE_32bits()) FSE_reloadDStream(&Dstream)
+
+ HUF_DECODE_SYMBOL_1( 0, bitD1);
+ HUF_DECODE_SYMBOL_1( 1, bitD2);
+ HUF_DECODE_SYMBOL_1( 2, bitD3);
+ HUF_DECODE_SYMBOL_1( 3, bitD4);
+ HUF_DECODE_SYMBOL_2( 4, bitD1);
+ HUF_DECODE_SYMBOL_2( 5, bitD2);
+ HUF_DECODE_SYMBOL_2( 6, bitD3);
+ HUF_DECODE_SYMBOL_2( 7, bitD4);
+ HUF_DECODE_SYMBOL_1( 8, bitD1);
+ HUF_DECODE_SYMBOL_1( 9, bitD2);
+ HUF_DECODE_SYMBOL_1(10, bitD3);
+ HUF_DECODE_SYMBOL_1(11, bitD4);
+ HUF_DECODE_SYMBOL_0(12, bitD1);
+ HUF_DECODE_SYMBOL_0(13, bitD2);
+ HUF_DECODE_SYMBOL_0(14, bitD3);
+ HUF_DECODE_SYMBOL_0(15, bitD4);
+ }
+
+ if (reloadStatus!=FSE_DStream_completed) /* not complete : some bitStream might be FSE_DStream_unfinished */
+ return (size_t)-FSE_ERROR_corruptionDetected;
+
+ /* tail */
+ {
+ // bitTail = bitD1; // *much* slower : -20% !??!
+ FSE_DStream_t bitTail;
+ bitTail.ptr = bitD1.ptr;
+ bitTail.bitsConsumed = bitD1.bitsConsumed;
+ bitTail.bitContainer = bitD1.bitContainer; // required in case of FSE_DStream_endOfBuffer
+ bitTail.start = start1;
+ for ( ; (FSE_reloadDStream(&bitTail) < FSE_DStream_completed) && (op<omax) ; op++)
+ {
+ HUF_DECODE_SYMBOL_0(0, bitTail);
+ }
+
+ if (FSE_endOfDStream(&bitTail))
+ return op-ostart;
+ }
+
+ if (op==omax) return (size_t)-FSE_ERROR_dstSize_tooSmall; /* dst buffer is full, but cSrc unfinished */
+
+ return (size_t)-FSE_ERROR_corruptionDetected;
+ }
+}
+
+
+static size_t HUF_decompress (void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUF_CREATE_STATIC_DTABLE(DTable, HUF_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+ size_t errorCode;
+
+ errorCode = HUF_readDTable (DTable, cSrc, cSrcSize);
+ if (FSE_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ return HUF_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, DTable);
+}
+
+
+#endif /* FSE_COMMONDEFS_ONLY */
+
+/*
+ zstd - standard compression library
+ Copyright (C) 2014-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd source repository : https://github.com/Cyan4973/zstd
+ - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
+*/
+
+/****************************************************************
+* Tuning parameters
+*****************************************************************/
+/* MEMORY_USAGE :
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+* Increasing memory usage improves compression ratio
+* Reduced memory usage can improve speed, due to cache effect */
+#define ZSTD_MEMORY_USAGE 17
+
+
+/**************************************
+ CPU Feature Detection
+**************************************/
+/*
+ * Automated efficient unaligned memory access detection
+ * Based on known hardware architectures
+ * This list will be updated thanks to feedbacks
+ */
+#if defined(CPU_HAS_EFFICIENT_UNALIGNED_MEMORY_ACCESS) \
+ || defined(__ARM_FEATURE_UNALIGNED) \
+ || defined(__i386__) || defined(__x86_64__) \
+ || defined(_M_IX86) || defined(_M_X64) \
+ || defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_8__) \
+ || (defined(_M_ARM) && (_M_ARM >= 7))
+# define ZSTD_UNALIGNED_ACCESS 1
+#else
+# define ZSTD_UNALIGNED_ACCESS 0
+#endif
+
+
+/********************************************************
+* Includes
+*********************************************************/
+#include <stdlib.h> /* calloc */
+#include <string.h> /* memcpy, memmove */
+#include <stdio.h> /* debug : printf */
+
+
+/********************************************************
+* Compiler specifics
+*********************************************************/
+#ifdef __AVX2__
+# include <immintrin.h> /* AVX2 intrinsics */
+#endif
+
+#ifdef _MSC_VER /* Visual Studio */
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4324) /* disable: C4324: padded structure */
+#endif
+
+
+#ifndef MEM_ACCESS_MODULE
+#define MEM_ACCESS_MODULE
+/********************************************************
+* Basic Types
+*********************************************************/
+#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# include <stdint.h>
+typedef uint8_t BYTE;
+typedef uint16_t U16;
+typedef int16_t S16;
+typedef uint32_t U32;
+typedef int32_t S32;
+typedef uint64_t U64;
+#else
+typedef unsigned char BYTE;
+typedef unsigned short U16;
+typedef signed short S16;
+typedef unsigned int U32;
+typedef signed int S32;
+typedef unsigned long long U64;
+#endif
+
+#endif /* MEM_ACCESS_MODULE */
+
+
+/********************************************************
+* Constants
+*********************************************************/
+static const U32 ZSTD_magicNumber = 0xFD2FB51E; /* 3rd version : seqNb header */
+
+#define HASH_LOG (ZSTD_MEMORY_USAGE - 2)
+#define HASH_TABLESIZE (1 << HASH_LOG)
+#define HASH_MASK (HASH_TABLESIZE - 1)
+
+#define KNUTH 2654435761
+
+#define BIT7 128
+#define BIT6 64
+#define BIT5 32
+#define BIT4 16
+
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+
+#define BLOCKSIZE (128 KB) /* define, for static allocation */
+
+#define WORKPLACESIZE (BLOCKSIZE*3)
+#define MINMATCH 4
+#define MLbits 7
+#define LLbits 6
+#define Offbits 5
+#define MaxML ((1<<MLbits )-1)
+#define MaxLL ((1<<LLbits )-1)
+#define MaxOff ((1<<Offbits)-1)
+#define LitFSELog 11
+#define MLFSELog 10
+#define LLFSELog 10
+#define OffFSELog 9
+#define MAX(a,b) ((a)<(b)?(b):(a))
+#define MaxSeq MAX(MaxLL, MaxML)
+
+#define LITERAL_NOENTROPY 63
+#define COMMAND_NOENTROPY 7 /* to remove */
+
+#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
+
+static const size_t ZSTD_blockHeaderSize = 3;
+static const size_t ZSTD_frameHeaderSize = 4;
+
+
+/********************************************************
+* Memory operations
+*********************************************************/
+static unsigned ZSTD_32bits(void) { return sizeof(void*)==4; }
+
+static unsigned ZSTD_isLittleEndian(void)
+{
+ const union { U32 i; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
+ return one.c[0];
+}
+
+static U16 ZSTD_read16(const void* p) { U16 r; memcpy(&r, p, sizeof(r)); return r; }
+
+static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
+
+static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
+
+#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
+
+static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
+{
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + length;
+ while (op < oend) COPY8(op, ip);
+}
+
+static U16 ZSTD_readLE16(const void* memPtr)
+{
+ if (ZSTD_isLittleEndian()) return ZSTD_read16(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U16)((U16)p[0] + ((U16)p[1]<<8));
+ }
+}
+
+static U32 ZSTD_readLE24(const void* memPtr)
+{
+ return ZSTD_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
+}
+
+static U32 ZSTD_readBE32(const void* memPtr)
+{
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U32)(((U32)p[0]<<24) + ((U32)p[1]<<16) + ((U32)p[2]<<8) + ((U32)p[3]<<0));
+}
+
+
+/**************************************
+* Local structures
+***************************************/
+typedef struct ZSTD_Cctx_s ZSTD_Cctx;
+
+typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
+
+typedef struct
+{
+ blockType_t blockType;
+ U32 origSize;
+} blockProperties_t;
+
+typedef struct {
+ void* buffer;
+ U32* offsetStart;
+ U32* offset;
+ BYTE* offCodeStart;
+ BYTE* offCode;
+ BYTE* litStart;
+ BYTE* lit;
+ BYTE* litLengthStart;
+ BYTE* litLength;
+ BYTE* matchLengthStart;
+ BYTE* matchLength;
+ BYTE* dumpsStart;
+ BYTE* dumps;
+} seqStore_t;
+
+
+typedef struct ZSTD_Cctx_s
+{
+ const BYTE* base;
+ U32 current;
+ U32 nextUpdate;
+ seqStore_t seqStore;
+#ifdef __AVX2__
+ __m256i hashTable[HASH_TABLESIZE>>3];
+#else
+ U32 hashTable[HASH_TABLESIZE];
+#endif
+ BYTE buffer[WORKPLACESIZE];
+} cctxi_t;
+
+
+
+
+/**************************************
+* Error Management
+**************************************/
+/* published entry point */
+unsigned ZSTDv01_isError(size_t code) { return ERR_isError(code); }
+
+
+/**************************************
+* Tool functions
+**************************************/
+#define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */
+#define ZSTD_VERSION_MINOR 1 /* for new (non-breaking) interface capabilities */
+#define ZSTD_VERSION_RELEASE 3 /* for tweaks, bug-fixes, or development */
+#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
+
+/**************************************************************
+* Decompression code
+**************************************************************/
+
+static size_t ZSTDv01_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
+{
+ const BYTE* const in = (const BYTE* const)src;
+ BYTE headerFlags;
+ U32 cSize;
+
+ if (srcSize < 3) return ERROR(srcSize_wrong);
+
+ headerFlags = *in;
+ cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
+
+ bpPtr->blockType = (blockType_t)(headerFlags >> 6);
+ bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
+
+ if (bpPtr->blockType == bt_end) return 0;
+ if (bpPtr->blockType == bt_rle) return 1;
+ return cSize;
+}
+
+
+static size_t ZSTD_copyUncompressedBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
+ memcpy(dst, src, srcSize);
+ return srcSize;
+}
+
+
+static size_t ZSTD_decompressLiterals(void* ctx,
+ void* dst, size_t maxDstSize,
+ const void* src, size_t srcSize)
+{
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + maxDstSize;
+ const BYTE* ip = (const BYTE*)src;
+ size_t errorCode;
+ size_t litSize;
+
+ /* check : minimum 2, for litSize, +1, for content */
+ if (srcSize <= 3) return ERROR(corruption_detected);
+
+ litSize = ip[1] + (ip[0]<<8);
+ litSize += ((ip[-3] >> 3) & 7) << 16; // mmmmh....
+ op = oend - litSize;
+
+ (void)ctx;
+ if (litSize > maxDstSize) return ERROR(dstSize_tooSmall);
+ errorCode = HUF_decompress(op, litSize, ip+2, srcSize-2);
+ if (FSE_isError(errorCode)) return ERROR(GENERIC);
+ return litSize;
+}
+
+
+static size_t ZSTDv01_decodeLiteralsBlock(void* ctx,
+ void* dst, size_t maxDstSize,
+ const BYTE** litStart, size_t* litSize,
+ const void* src, size_t srcSize)
+{
+ const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* ip = istart;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const oend = ostart + maxDstSize;
+ blockProperties_t litbp;
+
+ size_t litcSize = ZSTDv01_getcBlockSize(src, srcSize, &litbp);
+ if (ZSTDv01_isError(litcSize)) return litcSize;
+ if (litcSize > srcSize - ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
+ ip += ZSTD_blockHeaderSize;
+
+ switch(litbp.blockType)
+ {
+ case bt_raw:
+ *litStart = ip;
+ ip += litcSize;
+ *litSize = litcSize;
+ break;
+ case bt_rle:
+ {
+ size_t rleSize = litbp.origSize;
+ if (rleSize>maxDstSize) return ERROR(dstSize_tooSmall);
+ if (!srcSize) return ERROR(srcSize_wrong);
+ memset(oend - rleSize, *ip, rleSize);
+ *litStart = oend - rleSize;
+ *litSize = rleSize;
+ ip++;
+ break;
+ }
+ case bt_compressed:
+ {
+ size_t decodedLitSize = ZSTD_decompressLiterals(ctx, dst, maxDstSize, ip, litcSize);
+ if (ZSTDv01_isError(decodedLitSize)) return decodedLitSize;
+ *litStart = oend - decodedLitSize;
+ *litSize = decodedLitSize;
+ ip += litcSize;
+ break;
+ }
+ case bt_end:
+ default:
+ return ERROR(GENERIC);
+ }
+
+ return ip-istart;
+}
+
+
+static size_t ZSTDv01_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
+ FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
+ const void* src, size_t srcSize)
+{
+ const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* ip = istart;
+ const BYTE* const iend = istart + srcSize;
+ U32 LLtype, Offtype, MLtype;
+ U32 LLlog, Offlog, MLlog;
+ size_t dumpsLength;
+
+ /* check */
+ if (srcSize < 5) return ERROR(srcSize_wrong);
+
+ /* SeqHead */
+ *nbSeq = ZSTD_readLE16(ip); ip+=2;
+ LLtype = *ip >> 6;
+ Offtype = (*ip >> 4) & 3;
+ MLtype = (*ip >> 2) & 3;
+ if (*ip & 2)
+ {
+ dumpsLength = ip[2];
+ dumpsLength += ip[1] << 8;
+ ip += 3;
+ }
+ else
+ {
+ dumpsLength = ip[1];
+ dumpsLength += (ip[0] & 1) << 8;
+ ip += 2;
+ }
+ *dumpsPtr = ip;
+ ip += dumpsLength;
+ *dumpsLengthPtr = dumpsLength;
+
+ /* check */
+ if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
+
+ /* sequences */
+ {
+ S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL and MaxOff */
+ size_t headerSize;
+
+ /* Build DTables */
+ switch(LLtype)
+ {
+ case bt_rle :
+ LLlog = 0;
+ FSE_buildDTable_rle(DTableLL, *ip++); break;
+ case bt_raw :
+ LLlog = LLbits;
+ FSE_buildDTable_raw(DTableLL, LLbits); break;
+ default :
+ { U32 max = MaxLL;
+ headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
+ if (FSE_isError(headerSize)) return ERROR(GENERIC);
+ if (LLlog > LLFSELog) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSE_buildDTable(DTableLL, norm, max, LLlog);
+ } }
+
+ switch(Offtype)
+ {
+ case bt_rle :
+ Offlog = 0;
+ if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
+ FSE_buildDTable_rle(DTableOffb, *ip++); break;
+ case bt_raw :
+ Offlog = Offbits;
+ FSE_buildDTable_raw(DTableOffb, Offbits); break;
+ default :
+ { U32 max = MaxOff;
+ headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
+ if (FSE_isError(headerSize)) return ERROR(GENERIC);
+ if (Offlog > OffFSELog) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSE_buildDTable(DTableOffb, norm, max, Offlog);
+ } }
+
+ switch(MLtype)
+ {
+ case bt_rle :
+ MLlog = 0;
+ if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
+ FSE_buildDTable_rle(DTableML, *ip++); break;
+ case bt_raw :
+ MLlog = MLbits;
+ FSE_buildDTable_raw(DTableML, MLbits); break;
+ default :
+ { U32 max = MaxML;
+ headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
+ if (FSE_isError(headerSize)) return ERROR(GENERIC);
+ if (MLlog > MLFSELog) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSE_buildDTable(DTableML, norm, max, MLlog);
+ } } }
+
+ return ip-istart;
+}
+
+
+typedef struct {
+ size_t litLength;
+ size_t offset;
+ size_t matchLength;
+} seq_t;
+
+typedef struct {
+ FSE_DStream_t DStream;
+ FSE_DState_t stateLL;
+ FSE_DState_t stateOffb;
+ FSE_DState_t stateML;
+ size_t prevOffset;
+ const BYTE* dumps;
+ const BYTE* dumpsEnd;
+} seqState_t;
+
+
+static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
+{
+ size_t litLength;
+ size_t prevOffset;
+ size_t offset;
+ size_t matchLength;
+ const BYTE* dumps = seqState->dumps;
+ const BYTE* const de = seqState->dumpsEnd;
+
+ /* Literal length */
+ litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
+ prevOffset = litLength ? seq->offset : seqState->prevOffset;
+ seqState->prevOffset = seq->offset;
+ if (litLength == MaxLL)
+ {
+ const U32 add = dumps<de ? *dumps++ : 0;
+ if (add < 255) litLength += add;
+ else
+ {
+ if (dumps<=(de-3))
+ {
+ litLength = ZSTD_readLE24(dumps);
+ dumps += 3;
+ }
+ }
+ }
+
+ /* Offset */
+ {
+ U32 offsetCode, nbBits;
+ offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream));
+ if (ZSTD_32bits()) FSE_reloadDStream(&(seqState->DStream));
+ nbBits = offsetCode - 1;
+ if (offsetCode==0) nbBits = 0; /* cmove */
+ offset = ((size_t)1 << (nbBits & ((sizeof(offset)*8)-1))) + FSE_readBits(&(seqState->DStream), nbBits);
+ if (ZSTD_32bits()) FSE_reloadDStream(&(seqState->DStream));
+ if (offsetCode==0) offset = prevOffset;
+ }
+
+ /* MatchLength */
+ matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
+ if (matchLength == MaxML)
+ {
+ const U32 add = dumps<de ? *dumps++ : 0;
+ if (add < 255) matchLength += add;
+ else
+ {
+ if (dumps<=(de-3))
+ {
+ matchLength = ZSTD_readLE24(dumps);
+ dumps += 3;
+ }
+ }
+ }
+ matchLength += MINMATCH;
+
+ /* save result */
+ seq->litLength = litLength;
+ seq->offset = offset;
+ seq->matchLength = matchLength;
+ seqState->dumps = dumps;
+}
+
+
+static size_t ZSTD_execSequence(BYTE* op,
+ seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ BYTE* const base, BYTE* const oend)
+{
+ static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
+ static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* subtracted */
+ const BYTE* const ostart = op;
+ const size_t litLength = sequence.litLength;
+ BYTE* const endMatch = op + litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */
+ const BYTE* const litEnd = *litPtr + litLength;
+
+ /* check */
+ if (endMatch > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
+ if (litEnd > litLimit) return ERROR(corruption_detected);
+ if (sequence.matchLength > (size_t)(*litPtr-op)) return ERROR(dstSize_tooSmall); /* overwrite literal segment */
+
+ /* copy Literals */
+ if (((size_t)(*litPtr - op) < 8) || ((size_t)(oend-litEnd) < 8) || (op+litLength > oend-8))
+ memmove(op, *litPtr, litLength); /* overwrite risk */
+ else
+ ZSTD_wildcopy(op, *litPtr, litLength);
+ op += litLength;
+ *litPtr = litEnd; /* update for next sequence */
+
+ /* check : last match must be at a minimum distance of 8 from end of dest buffer */
+ if (oend-op < 8) return ERROR(dstSize_tooSmall);
+
+ /* copy Match */
+ {
+ const U32 overlapRisk = (((size_t)(litEnd - endMatch)) < 12);
+ const BYTE* match = op - sequence.offset; /* possible underflow at op - offset ? */
+ size_t qutt = 12;
+ U64 saved[2];
+
+ /* check */
+ if (match < base) return ERROR(corruption_detected);
+ if (sequence.offset > (size_t)base) return ERROR(corruption_detected);
+
+ /* save beginning of literal sequence, in case of write overlap */
+ if (overlapRisk)
+ {
+ if ((endMatch + qutt) > oend) qutt = oend-endMatch;
+ memcpy(saved, endMatch, qutt);
+ }
+
+ if (sequence.offset < 8)
+ {
+ const int dec64 = dec64table[sequence.offset];
+ op[0] = match[0];
+ op[1] = match[1];
+ op[2] = match[2];
+ op[3] = match[3];
+ match += dec32table[sequence.offset];
+ ZSTD_copy4(op+4, match);
+ match -= dec64;
+ } else { ZSTD_copy8(op, match); }
+ op += 8; match += 8;
+
+ if (endMatch > oend-(16-MINMATCH))
+ {
+ if (op < oend-8)
+ {
+ ZSTD_wildcopy(op, match, (oend-8) - op);
+ match += (oend-8) - op;
+ op = oend-8;
+ }
+ while (op<endMatch) *op++ = *match++;
+ }
+ else
+ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
+
+ /* restore, in case of overlap */
+ if (overlapRisk) memcpy(endMatch, saved, qutt);
+ }
+
+ return endMatch-ostart;
+}
+
+typedef struct ZSTDv01_Dctx_s
+{
+ U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
+ U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
+ U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
+ void* previousDstEnd;
+ void* base;
+ size_t expected;
+ blockType_t bType;
+ U32 phase;
+} dctx_t;
+
+
+static size_t ZSTD_decompressSequences(
+ void* ctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize,
+ const BYTE* litStart, size_t litSize)
+{
+ dctx_t* dctx = (dctx_t*)ctx;
+ const BYTE* ip = (const BYTE*)seqStart;
+ const BYTE* const iend = ip + seqSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + maxDstSize;
+ size_t errorCode, dumpsLength;
+ const BYTE* litPtr = litStart;
+ const BYTE* const litEnd = litStart + litSize;
+ int nbSeq;
+ const BYTE* dumps;
+ U32* DTableLL = dctx->LLTable;
+ U32* DTableML = dctx->MLTable;
+ U32* DTableOffb = dctx->OffTable;
+ BYTE* const base = (BYTE*) (dctx->base);
+
+ /* Build Decoding Tables */
+ errorCode = ZSTDv01_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
+ DTableLL, DTableML, DTableOffb,
+ ip, iend-ip);
+ if (ZSTDv01_isError(errorCode)) return errorCode;
+ ip += errorCode;
+
+ /* Regen sequences */
+ {
+ seq_t sequence;
+ seqState_t seqState;
+
+ memset(&sequence, 0, sizeof(sequence));
+ seqState.dumps = dumps;
+ seqState.dumpsEnd = dumps + dumpsLength;
+ seqState.prevOffset = 1;
+ errorCode = FSE_initDStream(&(seqState.DStream), ip, iend-ip);
+ if (FSE_isError(errorCode)) return ERROR(corruption_detected);
+ FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
+ FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
+ FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
+
+ for ( ; (FSE_reloadDStream(&(seqState.DStream)) <= FSE_DStream_completed) && (nbSeq>0) ; )
+ {
+ size_t oneSeqSize;
+ nbSeq--;
+ ZSTD_decodeSequence(&sequence, &seqState);
+ oneSeqSize = ZSTD_execSequence(op, sequence, &litPtr, litEnd, base, oend);
+ if (ZSTDv01_isError(oneSeqSize)) return oneSeqSize;
+ op += oneSeqSize;
+ }
+
+ /* check if reached exact end */
+ if ( !FSE_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* requested too much : data is corrupted */
+ if (nbSeq<0) return ERROR(corruption_detected); /* requested too many sequences : data is corrupted */
+
+ /* last literal segment */
+ {
+ size_t lastLLSize = litEnd - litPtr;
+ if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
+ if (op != litPtr) memmove(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+ }
+
+ return op-ostart;
+}
+
+
+static size_t ZSTD_decompressBlock(
+ void* ctx,
+ void* dst, size_t maxDstSize,
+ const void* src, size_t srcSize)
+{
+ /* blockType == blockCompressed, srcSize is trusted */
+ const BYTE* ip = (const BYTE*)src;
+ const BYTE* litPtr = NULL;
+ size_t litSize = 0;
+ size_t errorCode;
+
+ /* Decode literals sub-block */
+ errorCode = ZSTDv01_decodeLiteralsBlock(ctx, dst, maxDstSize, &litPtr, &litSize, src, srcSize);
+ if (ZSTDv01_isError(errorCode)) return errorCode;
+ ip += errorCode;
+ srcSize -= errorCode;
+
+ return ZSTD_decompressSequences(ctx, dst, maxDstSize, ip, srcSize, litPtr, litSize);
+}
+
+
+size_t ZSTDv01_decompressDCtx(void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+ const BYTE* iend = ip + srcSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + maxDstSize;
+ size_t remainingSize = srcSize;
+ U32 magicNumber;
+ size_t errorCode=0;
+ blockProperties_t blockProperties;
+
+ /* Frame Header */
+ if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
+ magicNumber = ZSTD_readBE32(src);
+ if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
+ ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
+
+ /* Loop on each block */
+ while (1)
+ {
+ size_t blockSize = ZSTDv01_getcBlockSize(ip, iend-ip, &blockProperties);
+ if (ZSTDv01_isError(blockSize)) return blockSize;
+
+ ip += ZSTD_blockHeaderSize;
+ remainingSize -= ZSTD_blockHeaderSize;
+ if (blockSize > remainingSize) return ERROR(srcSize_wrong);
+
+ switch(blockProperties.blockType)
+ {
+ case bt_compressed:
+ errorCode = ZSTD_decompressBlock(ctx, op, oend-op, ip, blockSize);
+ break;
+ case bt_raw :
+ errorCode = ZSTD_copyUncompressedBlock(op, oend-op, ip, blockSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet supported */
+ break;
+ case bt_end :
+ /* end of frame */
+ if (remainingSize) return ERROR(srcSize_wrong);
+ break;
+ default:
+ return ERROR(GENERIC);
+ }
+ if (blockSize == 0) break; /* bt_end */
+
+ if (ZSTDv01_isError(errorCode)) return errorCode;
+ op += errorCode;
+ ip += blockSize;
+ remainingSize -= blockSize;
+ }
+
+ return op-ostart;
+}
+
+size_t ZSTDv01_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ dctx_t ctx;
+ ctx.base = dst;
+ return ZSTDv01_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize);
+}
+
+/* ZSTD_errorFrameSizeInfoLegacy() :
+ assumes `cSize` and `dBound` are _not_ NULL */
+static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
+{
+ *cSize = ret;
+ *dBound = ZSTD_CONTENTSIZE_ERROR;
+}
+
+void ZSTDv01_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
+{
+ const BYTE* ip = (const BYTE*)src;
+ size_t remainingSize = srcSize;
+ size_t nbBlocks = 0;
+ U32 magicNumber;
+ blockProperties_t blockProperties;
+
+ /* Frame Header */
+ if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+ magicNumber = ZSTD_readBE32(src);
+ if (magicNumber != ZSTD_magicNumber) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
+ return;
+ }
+ ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
+
+ /* Loop on each block */
+ while (1)
+ {
+ size_t blockSize = ZSTDv01_getcBlockSize(ip, remainingSize, &blockProperties);
+ if (ZSTDv01_isError(blockSize)) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, blockSize);
+ return;
+ }
+
+ ip += ZSTD_blockHeaderSize;
+ remainingSize -= ZSTD_blockHeaderSize;
+ if (blockSize > remainingSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+
+ if (blockSize == 0) break; /* bt_end */
+
+ ip += blockSize;
+ remainingSize -= blockSize;
+ nbBlocks++;
+ }
+
+ *cSize = ip - (const BYTE*)src;
+ *dBound = nbBlocks * BLOCKSIZE;
+}
+
+/*******************************
+* Streaming Decompression API
+*******************************/
+
+size_t ZSTDv01_resetDCtx(ZSTDv01_Dctx* dctx)
+{
+ dctx->expected = ZSTD_frameHeaderSize;
+ dctx->phase = 0;
+ dctx->previousDstEnd = NULL;
+ dctx->base = NULL;
+ return 0;
+}
+
+ZSTDv01_Dctx* ZSTDv01_createDCtx(void)
+{
+ ZSTDv01_Dctx* dctx = (ZSTDv01_Dctx*)malloc(sizeof(ZSTDv01_Dctx));
+ if (dctx==NULL) return NULL;
+ ZSTDv01_resetDCtx(dctx);
+ return dctx;
+}
+
+size_t ZSTDv01_freeDCtx(ZSTDv01_Dctx* dctx)
+{
+ free(dctx);
+ return 0;
+}
+
+size_t ZSTDv01_nextSrcSizeToDecompress(ZSTDv01_Dctx* dctx)
+{
+ return ((dctx_t*)dctx)->expected;
+}
+
+size_t ZSTDv01_decompressContinue(ZSTDv01_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ dctx_t* ctx = (dctx_t*)dctx;
+
+ /* Sanity check */
+ if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
+ if (dst != ctx->previousDstEnd) /* not contiguous */
+ ctx->base = dst;
+
+ /* Decompress : frame header */
+ if (ctx->phase == 0)
+ {
+ /* Check frame magic header */
+ U32 magicNumber = ZSTD_readBE32(src);
+ if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
+ ctx->phase = 1;
+ ctx->expected = ZSTD_blockHeaderSize;
+ return 0;
+ }
+
+ /* Decompress : block header */
+ if (ctx->phase == 1)
+ {
+ blockProperties_t bp;
+ size_t blockSize = ZSTDv01_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
+ if (ZSTDv01_isError(blockSize)) return blockSize;
+ if (bp.blockType == bt_end)
+ {
+ ctx->expected = 0;
+ ctx->phase = 0;
+ }
+ else
+ {
+ ctx->expected = blockSize;
+ ctx->bType = bp.blockType;
+ ctx->phase = 2;
+ }
+
+ return 0;
+ }
+
+ /* Decompress : block content */
+ {
+ size_t rSize;
+ switch(ctx->bType)
+ {
+ case bt_compressed:
+ rSize = ZSTD_decompressBlock(ctx, dst, maxDstSize, src, srcSize);
+ break;
+ case bt_raw :
+ rSize = ZSTD_copyUncompressedBlock(dst, maxDstSize, src, srcSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet handled */
+ break;
+ case bt_end : /* should never happen (filtered at phase 1) */
+ rSize = 0;
+ break;
+ default:
+ return ERROR(GENERIC);
+ }
+ ctx->phase = 1;
+ ctx->expected = ZSTD_blockHeaderSize;
+ ctx->previousDstEnd = (void*)( ((char*)dst) + rSize);
+ return rSize;
+ }
+
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_v01.h b/vendor/github.com/DataDog/zstd/zstd_v01.h
new file mode 100644
index 0000000..245f9dd
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v01.h
@@ -0,0 +1,94 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_V01_H_28739879432
+#define ZSTD_V01_H_28739879432
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/* *************************************
+* Includes
+***************************************/
+#include <stddef.h> /* size_t */
+
+
+/* *************************************
+* Simple one-step function
+***************************************/
+/**
+ZSTDv01_decompress() : decompress ZSTD frames compliant with v0.1.x format
+ compressedSize : is the exact source size
+ maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
+ It must be equal or larger than originalSize, otherwise decompression will fail.
+ return : the number of bytes decompressed into destination buffer (originalSize)
+ or an errorCode if it fails (which can be tested using ZSTDv01_isError())
+*/
+size_t ZSTDv01_decompress( void* dst, size_t maxOriginalSize,
+ const void* src, size_t compressedSize);
+
+ /**
+ ZSTDv01_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.1.x format
+ srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
+ cSize (output parameter) : the number of bytes that would be read to decompress this frame
+ or an error code if it fails (which can be tested using ZSTDv01_isError())
+ dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
+ or ZSTD_CONTENTSIZE_ERROR if an error occurs
+
+ note : assumes `cSize` and `dBound` are _not_ NULL.
+ */
+void ZSTDv01_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
+ size_t* cSize, unsigned long long* dBound);
+
+/**
+ZSTDv01_isError() : tells if the result of ZSTDv01_decompress() is an error
+*/
+unsigned ZSTDv01_isError(size_t code);
+
+
+/* *************************************
+* Advanced functions
+***************************************/
+typedef struct ZSTDv01_Dctx_s ZSTDv01_Dctx;
+ZSTDv01_Dctx* ZSTDv01_createDCtx(void);
+size_t ZSTDv01_freeDCtx(ZSTDv01_Dctx* dctx);
+
+size_t ZSTDv01_decompressDCtx(void* ctx,
+ void* dst, size_t maxOriginalSize,
+ const void* src, size_t compressedSize);
+
+/* *************************************
+* Streaming functions
+***************************************/
+size_t ZSTDv01_resetDCtx(ZSTDv01_Dctx* dctx);
+
+size_t ZSTDv01_nextSrcSizeToDecompress(ZSTDv01_Dctx* dctx);
+size_t ZSTDv01_decompressContinue(ZSTDv01_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
+/**
+ Use above functions alternatively.
+ ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
+ ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
+ Result is the number of bytes regenerated within 'dst'.
+ It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
+*/
+
+/* *************************************
+* Prefix - version detection
+***************************************/
+#define ZSTDv01_magicNumber 0xFD2FB51E /* Big Endian version */
+#define ZSTDv01_magicNumberLE 0x1EB52FFD /* Little Endian version */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_V01_H_28739879432 */
diff --git a/vendor/github.com/DataDog/zstd/zstd_v02.c b/vendor/github.com/DataDog/zstd/zstd_v02.c
new file mode 100644
index 0000000..793df60
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v02.c
@@ -0,0 +1,3513 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+#include <stddef.h> /* size_t, ptrdiff_t */
+#include "zstd_v02.h"
+#include "error_private.h"
+
+
+/******************************************
+* Compiler-specific
+******************************************/
+#if defined(_MSC_VER) /* Visual Studio */
+# include <stdlib.h> /* _byteswap_ulong */
+# include <intrin.h> /* _byteswap_* */
+#endif
+
+
+/* ******************************************************************
+ mem.h
+ low-level memory access routines
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef MEM_H_MODULE
+#define MEM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/******************************************
+* Includes
+******************************************/
+#include <stddef.h> /* size_t, ptrdiff_t */
+#include <string.h> /* memcpy */
+
+
+/******************************************
+* Compiler-specific
+******************************************/
+#if defined(__GNUC__)
+# define MEM_STATIC static __attribute__((unused))
+#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define MEM_STATIC static inline
+#elif defined(_MSC_VER)
+# define MEM_STATIC static __inline
+#else
+# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
+
+
+/****************************************************************
+* Basic Types
+*****************************************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# include <stdint.h>
+ typedef uint8_t BYTE;
+ typedef uint16_t U16;
+ typedef int16_t S16;
+ typedef uint32_t U32;
+ typedef int32_t S32;
+ typedef uint64_t U64;
+ typedef int64_t S64;
+#else
+ typedef unsigned char BYTE;
+ typedef unsigned short U16;
+ typedef signed short S16;
+ typedef unsigned int U32;
+ typedef signed int S32;
+ typedef unsigned long long U64;
+ typedef signed long long S64;
+#endif
+
+
+/****************************************************************
+* Memory I/O
+*****************************************************************/
+/* MEM_FORCE_MEMORY_ACCESS
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
+ * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method is portable but violate C standard.
+ * It can generate buggy code on targets generating assembly depending on alignment.
+ * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
+ * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
+# define MEM_FORCE_MEMORY_ACCESS 2
+# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
+ (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# define MEM_FORCE_MEMORY_ACCESS 1
+# endif
+#endif
+
+MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; }
+MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; }
+
+MEM_STATIC unsigned MEM_isLittleEndian(void)
+{
+ const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
+ return one.c[0];
+}
+
+#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
+
+/* violates C standard on structure alignment.
+Only use if no other choice to achieve best performance on target platform */
+MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
+MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
+MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
+
+#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;
+
+MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
+MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
+
+#else
+
+/* default method, safe and standard.
+ can sometimes prove slower */
+
+MEM_STATIC U16 MEM_read16(const void* memPtr)
+{
+ U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U32 MEM_read32(const void* memPtr)
+{
+ U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U64 MEM_read64(const void* memPtr)
+{
+ U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value)
+{
+ memcpy(memPtr, &value, sizeof(value));
+}
+
+#endif // MEM_FORCE_MEMORY_ACCESS
+
+
+MEM_STATIC U16 MEM_readLE16(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read16(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U16)(p[0] + (p[1]<<8));
+ }
+}
+
+MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
+{
+ if (MEM_isLittleEndian())
+ {
+ MEM_write16(memPtr, val);
+ }
+ else
+ {
+ BYTE* p = (BYTE*)memPtr;
+ p[0] = (BYTE)val;
+ p[1] = (BYTE)(val>>8);
+ }
+}
+
+MEM_STATIC U32 MEM_readLE24(const void* memPtr)
+{
+ return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
+}
+
+MEM_STATIC U32 MEM_readLE32(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read32(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
+ }
+}
+
+
+MEM_STATIC U64 MEM_readLE64(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read64(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
+ + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
+ }
+}
+
+
+MEM_STATIC size_t MEM_readLEST(const void* memPtr)
+{
+ if (MEM_32bits())
+ return (size_t)MEM_readLE32(memPtr);
+ else
+ return (size_t)MEM_readLE64(memPtr);
+}
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* MEM_H_MODULE */
+
+
+/* ******************************************************************
+ bitstream
+ Part of NewGen Entropy library
+ header file (to include)
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef BITSTREAM_H_MODULE
+#define BITSTREAM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*
+* This API consists of small unitary functions, which highly benefit from being inlined.
+* Since link-time-optimization is not available for all compilers,
+* these functions are defined into a .h to be included.
+*/
+
+
+/**********************************************
+* bitStream decompression API (read backward)
+**********************************************/
+typedef struct
+{
+ size_t bitContainer;
+ unsigned bitsConsumed;
+ const char* ptr;
+ const char* start;
+} BIT_DStream_t;
+
+typedef enum { BIT_DStream_unfinished = 0,
+ BIT_DStream_endOfBuffer = 1,
+ BIT_DStream_completed = 2,
+ BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
+ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
+
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
+MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
+
+
+/******************************************
+* unsafe API
+******************************************/
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
+/* faster, but works only if nbBits >= 1 */
+
+
+
+/****************************************************************
+* Helper functions
+****************************************************************/
+MEM_STATIC unsigned BIT_highbit32 (U32 val)
+{
+# if defined(_MSC_VER) /* Visual */
+ unsigned long r=0;
+ _BitScanReverse ( &r, val );
+ return (unsigned) r;
+# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
+ return 31 - __builtin_clz (val);
+# else /* Software version */
+ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ U32 v = val;
+ unsigned r;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
+ return r;
+# endif
+}
+
+
+
+/**********************************************************
+* bitStream decoding
+**********************************************************/
+
+/*!BIT_initDStream
+* Initialize a BIT_DStream_t.
+* @bitD : a pointer to an already allocated BIT_DStream_t structure
+* @srcBuffer must point at the beginning of a bitStream
+* @srcSize must be the exact size of the bitStream
+* @result : size of stream (== srcSize) or an errorCode if a problem is detected
+*/
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
+{
+ if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
+
+ if (srcSize >= sizeof(size_t)) /* normal case */
+ {
+ U32 contain32;
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
+ if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
+ bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
+ }
+ else
+ {
+ U32 contain32;
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = bitD->start;
+ bitD->bitContainer = *(const BYTE*)(bitD->start);
+ switch(srcSize)
+ {
+ case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
+ /* fallthrough */
+ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
+ /* fallthrough */
+ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
+ /* fallthrough */
+ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
+ /* fallthrough */
+ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
+ /* fallthrough */
+ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8;
+ /* fallthrough */
+ default:;
+ }
+ contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
+ if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
+ bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
+ bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
+ }
+
+ return srcSize;
+}
+
+MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+ const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
+}
+
+/*! BIT_lookBitsFast :
+* unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits)
+{
+ const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
+}
+
+MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+ bitD->bitsConsumed += nbBits;
+}
+
+MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+ size_t value = BIT_lookBits(bitD, nbBits);
+ BIT_skipBits(bitD, nbBits);
+ return value;
+}
+
+/*!BIT_readBitsFast :
+* unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
+{
+ size_t value = BIT_lookBitsFast(bitD, nbBits);
+ BIT_skipBits(bitD, nbBits);
+ return value;
+}
+
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
+{
+ if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
+ return BIT_DStream_overflow;
+
+ if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
+ {
+ bitD->ptr -= bitD->bitsConsumed >> 3;
+ bitD->bitsConsumed &= 7;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ return BIT_DStream_unfinished;
+ }
+ if (bitD->ptr == bitD->start)
+ {
+ if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
+ return BIT_DStream_completed;
+ }
+ {
+ U32 nbBytes = bitD->bitsConsumed >> 3;
+ BIT_DStream_status result = BIT_DStream_unfinished;
+ if (bitD->ptr - nbBytes < bitD->start)
+ {
+ nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
+ result = BIT_DStream_endOfBuffer;
+ }
+ bitD->ptr -= nbBytes;
+ bitD->bitsConsumed -= nbBytes*8;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
+ return result;
+ }
+}
+
+/*! BIT_endOfDStream
+* @return Tells if DStream has reached its exact end
+*/
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
+{
+ return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
+}
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* BITSTREAM_H_MODULE */
+/* ******************************************************************
+ Error codes and messages
+ Copyright (C) 2013-2015, Yann Collet
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef ERROR_H_MODULE
+#define ERROR_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/******************************************
+* Compiler-specific
+******************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define ERR_STATIC static inline
+#elif defined(_MSC_VER)
+# define ERR_STATIC static __inline
+#elif defined(__GNUC__)
+# define ERR_STATIC static __attribute__((unused))
+#else
+# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
+
+
+/******************************************
+* Error Management
+******************************************/
+#define PREFIX(name) ZSTD_error_##name
+
+#define ERROR(name) (size_t)-PREFIX(name)
+
+#define ERROR_LIST(ITEM) \
+ ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \
+ ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \
+ ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \
+ ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \
+ ITEM(PREFIX(maxCode))
+
+#define ERROR_GENERATE_ENUM(ENUM) ENUM,
+typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */
+
+#define ERROR_CONVERTTOSTRING(STRING) #STRING,
+#define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR)
+static const char* ERR_strings[] = { ERROR_LIST(ERROR_GENERATE_STRING) };
+
+ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
+
+ERR_STATIC const char* ERR_getErrorName(size_t code)
+{
+ static const char* codeError = "Unspecified error code";
+ if (ERR_isError(code)) return ERR_strings[-(int)(code)];
+ return codeError;
+}
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ERROR_H_MODULE */
+/*
+Constructor and Destructor of type FSE_CTable
+ Note that its size depends on 'tableLog' and 'maxSymbolValue' */
+typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */
+typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
+
+
+/* ******************************************************************
+ FSE : Finite State Entropy coder
+ header file for static linking (only)
+ Copyright (C) 2013-2015, Yann Collet
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/******************************************
+* Static allocation
+******************************************/
+/* FSE buffer bounds */
+#define FSE_NCOUNTBOUND 512
+#define FSE_BLOCKBOUND(size) (size + (size>>7))
+#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
+
+/* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */
+#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
+#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
+
+
+/******************************************
+* FSE advanced API
+******************************************/
+static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
+/* build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
+
+static size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
+/* build a fake FSE_DTable, designed to always generate the same symbolValue */
+
+
+/******************************************
+* FSE symbol decompression API
+******************************************/
+typedef struct
+{
+ size_t state;
+ const void* table; /* precise table may vary, depending on U16 */
+} FSE_DState_t;
+
+
+static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
+
+static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
+
+static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
+
+
+/******************************************
+* FSE unsafe API
+******************************************/
+static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
+/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
+
+
+/******************************************
+* Implementation of inline functions
+******************************************/
+
+/* decompression */
+
+typedef struct {
+ U16 tableLog;
+ U16 fastMode;
+} FSE_DTableHeader; /* sizeof U32 */
+
+typedef struct
+{
+ unsigned short newState;
+ unsigned char symbol;
+ unsigned char nbBits;
+} FSE_decode_t; /* size == U32 */
+
+MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
+{
+ FSE_DTableHeader DTableH;
+ memcpy(&DTableH, dt, sizeof(DTableH));
+ DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog);
+ BIT_reloadDStream(bitD);
+ DStatePtr->table = dt + 1;
+}
+
+MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+ const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ const U32 nbBits = DInfo.nbBits;
+ BYTE symbol = DInfo.symbol;
+ size_t lowBits = BIT_readBits(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+ const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ const U32 nbBits = DInfo.nbBits;
+ BYTE symbol = DInfo.symbol;
+ size_t lowBits = BIT_readBitsFast(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
+{
+ return DStatePtr->state == 0;
+}
+
+
+#if defined (__cplusplus)
+}
+#endif
+/* ******************************************************************
+ Huff0 : Huffman coder, part of New Generation Entropy library
+ header file for static linking (only)
+ Copyright (C) 2013-2015, Yann Collet
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/******************************************
+* Static allocation macros
+******************************************/
+/* Huff0 buffer bounds */
+#define HUF_CTABLEBOUND 129
+#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
+#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
+
+/* static allocation of Huff0's DTable */
+#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog)) /* nb Cells; use unsigned short for X2, unsigned int for X4 */
+#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
+ unsigned short DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
+#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
+ unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
+#define HUF_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
+ unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
+
+
+/******************************************
+* Advanced functions
+******************************************/
+static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
+static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
+static size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* quad-symbols decoder */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+/*
+ zstd - standard compression library
+ Header File
+ Copyright (C) 2014-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd source repository : https://github.com/Cyan4973/zstd
+ - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
+*/
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/* *************************************
+* Includes
+***************************************/
+#include <stddef.h> /* size_t */
+
+
+/* *************************************
+* Version
+***************************************/
+#define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */
+#define ZSTD_VERSION_MINOR 2 /* for new (non-breaking) interface capabilities */
+#define ZSTD_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */
+#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
+
+
+/* *************************************
+* Advanced functions
+***************************************/
+typedef struct ZSTD_CCtx_s ZSTD_CCtx; /* incomplete type */
+
+#if defined (__cplusplus)
+}
+#endif
+/*
+ zstd - standard compression library
+ Header File for static linking only
+ Copyright (C) 2014-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd source repository : https://github.com/Cyan4973/zstd
+ - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
+*/
+
+/* The objects defined into this file should be considered experimental.
+ * They are not labelled stable, as their prototype may change in the future.
+ * You can use them for tests, provide feedback, or if you can endure risk of future changes.
+ */
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/* *************************************
+* Streaming functions
+***************************************/
+
+typedef struct ZSTD_DCtx_s ZSTD_DCtx;
+
+/*
+ Use above functions alternatively.
+ ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
+ ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
+ Result is the number of bytes regenerated within 'dst'.
+ It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
+*/
+
+/* *************************************
+* Prefix - version detection
+***************************************/
+#define ZSTD_magicNumber 0xFD2FB522 /* v0.2 (current)*/
+
+
+#if defined (__cplusplus)
+}
+#endif
+/* ******************************************************************
+ FSE : Finite State Entropy coder
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+#ifndef FSE_COMMONDEFS_ONLY
+
+/****************************************************************
+* Tuning parameters
+****************************************************************/
+/* MEMORY_USAGE :
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+* Increasing memory usage improves compression ratio
+* Reduced memory usage can improve speed, due to cache effect
+* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
+#define FSE_MAX_MEMORY_USAGE 14
+#define FSE_DEFAULT_MEMORY_USAGE 13
+
+/* FSE_MAX_SYMBOL_VALUE :
+* Maximum symbol value authorized.
+* Required for proper stack allocation */
+#define FSE_MAX_SYMBOL_VALUE 255
+
+
+/****************************************************************
+* template functions type & suffix
+****************************************************************/
+#define FSE_FUNCTION_TYPE BYTE
+#define FSE_FUNCTION_EXTENSION
+
+
+/****************************************************************
+* Byte symbol type
+****************************************************************/
+#endif /* !FSE_COMMONDEFS_ONLY */
+
+
+/****************************************************************
+* Compiler specifics
+****************************************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# define FORCE_INLINE static __forceinline
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
+#else
+# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# ifdef __GNUC__
+# define FORCE_INLINE static inline __attribute__((always_inline))
+# else
+# define FORCE_INLINE static inline
+# endif
+# else
+# define FORCE_INLINE static
+# endif /* __STDC_VERSION__ */
+#endif
+
+
+/****************************************************************
+* Includes
+****************************************************************/
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memcpy, memset */
+#include <stdio.h> /* printf (debug) */
+
+/****************************************************************
+* Constants
+*****************************************************************/
+#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
+#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
+#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
+#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
+#define FSE_MIN_TABLELOG 5
+
+#define FSE_TABLELOG_ABSOLUTE_MAX 15
+#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
+#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
+#endif
+
+
+/****************************************************************
+* Error Management
+****************************************************************/
+#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+/****************************************************************
+* Complex types
+****************************************************************/
+typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
+
+
+/****************************************************************
+* Templates
+****************************************************************/
+/*
+ designed to be included
+ for type-specific functions (template emulation in C)
+ Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSE_FUNCTION_EXTENSION
+# error "FSE_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSE_FUNCTION_TYPE
+# error "FSE_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSE_CAT(X,Y) X##Y
+#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
+#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
+
+
+/* Function templates */
+
+#define FSE_DECODE_TYPE FSE_decode_t
+
+static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
+
+static size_t FSE_buildDTable
+(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+ void* ptr = dt+1;
+ FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)ptr;
+ FSE_DTableHeader DTableH;
+ const U32 tableSize = 1 << tableLog;
+ const U32 tableMask = tableSize-1;
+ const U32 step = FSE_tableStep(tableSize);
+ U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
+ U32 position = 0;
+ U32 highThreshold = tableSize-1;
+ const S16 largeLimit= (S16)(1 << (tableLog-1));
+ U32 noLarge = 1;
+ U32 s;
+
+ /* Sanity Checks */
+ if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
+
+ /* Init, lay down lowprob symbols */
+ DTableH.tableLog = (U16)tableLog;
+ for (s=0; s<=maxSymbolValue; s++)
+ {
+ if (normalizedCounter[s]==-1)
+ {
+ tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
+ symbolNext[s] = 1;
+ }
+ else
+ {
+ if (normalizedCounter[s] >= largeLimit) noLarge=0;
+ symbolNext[s] = normalizedCounter[s];
+ }
+ }
+
+ /* Spread symbols */
+ for (s=0; s<=maxSymbolValue; s++)
+ {
+ int i;
+ for (i=0; i<normalizedCounter[s]; i++)
+ {
+ tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
+ position = (position + step) & tableMask;
+ while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
+ }
+ }
+
+ if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
+
+ /* Build Decoding table */
+ {
+ U32 i;
+ for (i=0; i<tableSize; i++)
+ {
+ FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
+ U16 nextState = symbolNext[symbol]++;
+ tableDecode[i].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
+ tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
+ }
+ }
+
+ DTableH.fastMode = (U16)noLarge;
+ memcpy(dt, &DTableH, sizeof(DTableH)); /* memcpy(), to avoid strict aliasing warnings */
+ return 0;
+}
+
+
+#ifndef FSE_COMMONDEFS_ONLY
+/******************************************
+* FSE helper functions
+******************************************/
+static unsigned FSE_isError(size_t code) { return ERR_isError(code); }
+
+
+/****************************************************************
+* FSE NCount encoding-decoding
+****************************************************************/
+static short FSE_abs(short a)
+{
+ return (short)(a<0 ? -a : a);
+}
+
+static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize)
+{
+ const BYTE* const istart = (const BYTE*) headerBuffer;
+ const BYTE* const iend = istart + hbSize;
+ const BYTE* ip = istart;
+ int nbBits;
+ int remaining;
+ int threshold;
+ U32 bitStream;
+ int bitCount;
+ unsigned charnum = 0;
+ int previous0 = 0;
+
+ if (hbSize < 4) return ERROR(srcSize_wrong);
+ bitStream = MEM_readLE32(ip);
+ nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
+ if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
+ bitStream >>= 4;
+ bitCount = 4;
+ *tableLogPtr = nbBits;
+ remaining = (1<<nbBits)+1;
+ threshold = 1<<nbBits;
+ nbBits++;
+
+ while ((remaining>1) && (charnum<=*maxSVPtr))
+ {
+ if (previous0)
+ {
+ unsigned n0 = charnum;
+ while ((bitStream & 0xFFFF) == 0xFFFF)
+ {
+ n0+=24;
+ if (ip < iend-5)
+ {
+ ip+=2;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ }
+ else
+ {
+ bitStream >>= 16;
+ bitCount+=16;
+ }
+ }
+ while ((bitStream & 3) == 3)
+ {
+ n0+=3;
+ bitStream>>=2;
+ bitCount+=2;
+ }
+ n0 += bitStream & 3;
+ bitCount += 2;
+ if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
+ while (charnum < n0) normalizedCounter[charnum++] = 0;
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
+ {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ }
+ else
+ bitStream >>= 2;
+ }
+ {
+ const short max = (short)((2*threshold-1)-remaining);
+ short count;
+
+ if ((bitStream & (threshold-1)) < (U32)max)
+ {
+ count = (short)(bitStream & (threshold-1));
+ bitCount += nbBits-1;
+ }
+ else
+ {
+ count = (short)(bitStream & (2*threshold-1));
+ if (count >= threshold) count -= max;
+ bitCount += nbBits;
+ }
+
+ count--; /* extra accuracy */
+ remaining -= FSE_abs(count);
+ normalizedCounter[charnum++] = count;
+ previous0 = !count;
+ while (remaining < threshold)
+ {
+ nbBits--;
+ threshold >>= 1;
+ }
+
+ {
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
+ {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ }
+ else
+ {
+ bitCount -= (int)(8 * (iend - 4 - ip));
+ ip = iend - 4;
+ }
+ bitStream = MEM_readLE32(ip) >> (bitCount & 31);
+ }
+ }
+ }
+ if (remaining != 1) return ERROR(GENERIC);
+ *maxSVPtr = charnum-1;
+
+ ip += (bitCount+7)>>3;
+ if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
+ return ip-istart;
+}
+
+
+/*********************************************************
+* Decompression (Byte symbols)
+*********************************************************/
+static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */
+
+ DTableH->tableLog = 0;
+ DTableH->fastMode = 0;
+
+ cell->newState = 0;
+ cell->symbol = symbolValue;
+ cell->nbBits = 0;
+
+ return 0;
+}
+
+
+static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */
+ const unsigned tableSize = 1 << nbBits;
+ const unsigned tableMask = tableSize - 1;
+ const unsigned maxSymbolValue = tableMask;
+ unsigned s;
+
+ /* Sanity checks */
+ if (nbBits < 1) return ERROR(GENERIC); /* min size */
+
+ /* Build Decoding Table */
+ DTableH->tableLog = (U16)nbBits;
+ DTableH->fastMode = 1;
+ for (s=0; s<=maxSymbolValue; s++)
+ {
+ dinfo[s].newState = 0;
+ dinfo[s].symbol = (BYTE)s;
+ dinfo[s].nbBits = (BYTE)nbBits;
+ }
+
+ return 0;
+}
+
+FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
+ void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSE_DTable* dt, const unsigned fast)
+{
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const omax = op + maxDstSize;
+ BYTE* const olimit = omax-3;
+
+ BIT_DStream_t bitD;
+ FSE_DState_t state1;
+ FSE_DState_t state2;
+ size_t errorCode;
+
+ /* Init */
+ errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
+ if (FSE_isError(errorCode)) return errorCode;
+
+ FSE_initDState(&state1, &bitD, dt);
+ FSE_initDState(&state2, &bitD, dt);
+
+#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
+
+ /* 4 symbols per loop */
+ for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op<olimit) ; op+=4)
+ {
+ op[0] = FSE_GETSYMBOL(&state1);
+
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BIT_reloadDStream(&bitD);
+
+ op[1] = FSE_GETSYMBOL(&state2);
+
+ if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
+
+ op[2] = FSE_GETSYMBOL(&state1);
+
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BIT_reloadDStream(&bitD);
+
+ op[3] = FSE_GETSYMBOL(&state2);
+ }
+
+ /* tail */
+ /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
+ while (1)
+ {
+ if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
+ break;
+
+ *op++ = FSE_GETSYMBOL(&state1);
+
+ if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
+ break;
+
+ *op++ = FSE_GETSYMBOL(&state2);
+ }
+
+ /* end ? */
+ if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
+ return op-ostart;
+
+ if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */
+
+ return ERROR(corruption_detected);
+}
+
+
+static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSE_DTable* dt)
+{
+ FSE_DTableHeader DTableH;
+ memcpy(&DTableH, dt, sizeof(DTableH));
+
+ /* select fast mode (static) */
+ if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
+ return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
+}
+
+
+static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
+{
+ const BYTE* const istart = (const BYTE*)cSrc;
+ const BYTE* ip = istart;
+ short counting[FSE_MAX_SYMBOL_VALUE+1];
+ DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
+ unsigned tableLog;
+ unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
+ size_t errorCode;
+
+ if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
+
+ /* normal FSE decoding mode */
+ errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
+ if (FSE_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
+ if (FSE_isError(errorCode)) return errorCode;
+
+ /* always return, even if it is an error code */
+ return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
+}
+
+
+
+#endif /* FSE_COMMONDEFS_ONLY */
+/* ******************************************************************
+ Huff0 : Huffman coder, part of New Generation Entropy library
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+/****************************************************************
+* Compiler specifics
+****************************************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+/* inline is defined */
+#elif defined(_MSC_VER)
+# define inline __inline
+#else
+# define inline /* disable inline */
+#endif
+
+
+#ifdef _MSC_VER /* Visual Studio */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+#endif
+
+
+/****************************************************************
+* Includes
+****************************************************************/
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memcpy, memset */
+#include <stdio.h> /* printf (debug) */
+
+/****************************************************************
+* Error Management
+****************************************************************/
+#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+/******************************************
+* Helper functions
+******************************************/
+static unsigned HUF_isError(size_t code) { return ERR_isError(code); }
+
+#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
+#define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
+#define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */
+#define HUF_MAX_SYMBOL_VALUE 255
+#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
+# error "HUF_MAX_TABLELOG is too large !"
+#endif
+
+
+
+/*********************************************************
+* Huff0 : Huffman block decompression
+*********************************************************/
+typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
+
+typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
+
+typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
+
+/*! HUF_readStats
+ Read compact Huffman tree, saved by HUF_writeCTable
+ @huffWeight : destination buffer
+ @return : size read from `src`
+*/
+static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize)
+{
+ U32 weightTotal;
+ U32 tableLog;
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize;
+ size_t oSize;
+ U32 n;
+
+ if (!srcSize) return ERROR(srcSize_wrong);
+ iSize = ip[0];
+ //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
+
+ if (iSize >= 128) /* special header */
+ {
+ if (iSize >= (242)) /* RLE */
+ {
+ static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
+ oSize = l[iSize-242];
+ memset(huffWeight, 1, hwSize);
+ iSize = 0;
+ }
+ else /* Incompressible */
+ {
+ oSize = iSize - 127;
+ iSize = ((oSize+1)/2);
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ if (oSize >= hwSize) return ERROR(corruption_detected);
+ ip += 1;
+ for (n=0; n<oSize; n+=2)
+ {
+ huffWeight[n] = ip[n/2] >> 4;
+ huffWeight[n+1] = ip[n/2] & 15;
+ }
+ }
+ }
+ else /* header compressed with FSE (normal case) */
+ {
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
+ if (FSE_isError(oSize)) return oSize;
+ }
+
+ /* collect weight stats */
+ memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
+ weightTotal = 0;
+ for (n=0; n<oSize; n++)
+ {
+ if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
+ rankStats[huffWeight[n]]++;
+ weightTotal += (1 << huffWeight[n]) >> 1;
+ }
+ if (weightTotal == 0) return ERROR(corruption_detected);
+
+ /* get last non-null symbol weight (implied, total must be 2^n) */
+ tableLog = BIT_highbit32(weightTotal) + 1;
+ if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
+ {
+ U32 total = 1 << tableLog;
+ U32 rest = total - weightTotal;
+ U32 verif = 1 << BIT_highbit32(rest);
+ U32 lastWeight = BIT_highbit32(rest) + 1;
+ if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
+ huffWeight[oSize] = (BYTE)lastWeight;
+ rankStats[lastWeight]++;
+ }
+
+ /* check tree construction validity */
+ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
+
+ /* results */
+ *nbSymbolsPtr = (U32)(oSize+1);
+ *tableLogPtr = tableLog;
+ return iSize+1;
+}
+
+
+/**************************/
+/* single-symbol decoding */
+/**************************/
+
+static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
+{
+ BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
+ U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
+ U32 tableLog = 0;
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize = ip[0];
+ U32 nbSymbols = 0;
+ U32 n;
+ U32 nextRankStart;
+ void* ptr = DTable+1;
+ HUF_DEltX2* const dt = (HUF_DEltX2*)ptr;
+
+ HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
+ //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
+ if (HUF_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
+ DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */
+
+ /* Prepare ranks */
+ nextRankStart = 0;
+ for (n=1; n<=tableLog; n++)
+ {
+ U32 current = nextRankStart;
+ nextRankStart += (rankVal[n] << (n-1));
+ rankVal[n] = current;
+ }
+
+ /* fill DTable */
+ for (n=0; n<nbSymbols; n++)
+ {
+ const U32 w = huffWeight[n];
+ const U32 length = (1 << w) >> 1;
+ U32 i;
+ HUF_DEltX2 D;
+ D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
+ for (i = rankVal[w]; i < rankVal[w] + length; i++)
+ dt[i] = D;
+ rankVal[w] += length;
+ }
+
+ return iSize;
+}
+
+static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
+{
+ const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
+ const BYTE c = dt[val].byte;
+ BIT_skipBits(Dstream, dt[val].nbBits);
+ return c;
+}
+
+#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
+ *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
+ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 4 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
+ {
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ }
+
+ /* closer to the end */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ /* no more data to retrieve from bitstream, hence no need to reload */
+ while (p < pEnd)
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ return pEnd-pStart;
+}
+
+
+static size_t HUF_decompress4X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U16* DTable)
+{
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ {
+ const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+
+ const void* ptr = DTable;
+ const HUF_DEltX2* const dt = ((const HUF_DEltX2*)ptr) +1;
+ const U32 dtLog = DTable[0];
+ size_t errorCode;
+
+ /* Init */
+ BIT_DStream_t bitD1;
+ BIT_DStream_t bitD2;
+ BIT_DStream_t bitD3;
+ BIT_DStream_t bitD4;
+ const size_t length1 = MEM_readLE16(istart);
+ const size_t length2 = MEM_readLE16(istart+2);
+ const size_t length3 = MEM_readLE16(istart+4);
+ size_t length4;
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+
+ length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ errorCode = BIT_initDStream(&bitD1, istart1, length1);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD2, istart2, length2);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD3, istart3, length3);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD4, istart4, length4);
+ if (HUF_isError(errorCode)) return errorCode;
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
+ {
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
+
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
+ HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
+ HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
+ HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+ if (!endSignal) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+ size_t errorCode;
+
+ errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
+ if (HUF_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+/***************************/
+/* double-symbols decoding */
+/***************************/
+
+static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
+ const U32* rankValOrigin, const int minWeight,
+ const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
+ U32 nbBitsBaseline, U16 baseSeq)
+{
+ HUF_DEltX4 DElt;
+ U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
+ U32 s;
+
+ /* get pre-calculated rankVal */
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill skipped values */
+ if (minWeight>1)
+ {
+ U32 i, skipSize = rankVal[minWeight];
+ MEM_writeLE16(&(DElt.sequence), baseSeq);
+ DElt.nbBits = (BYTE)(consumed);
+ DElt.length = 1;
+ for (i = 0; i < skipSize; i++)
+ DTable[i] = DElt;
+ }
+
+ /* fill DTable */
+ for (s=0; s<sortedListSize; s++) /* note : sortedSymbols already skipped */
+ {
+ const U32 symbol = sortedSymbols[s].symbol;
+ const U32 weight = sortedSymbols[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 length = 1 << (sizeLog-nbBits);
+ const U32 start = rankVal[weight];
+ U32 i = start;
+ const U32 end = start + length;
+
+ MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
+ DElt.nbBits = (BYTE)(nbBits + consumed);
+ DElt.length = 2;
+ do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
+
+ rankVal[weight] += length;
+ }
+}
+
+typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];
+
+static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
+ const sortedSymbol_t* sortedList, const U32 sortedListSize,
+ const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
+ const U32 nbBitsBaseline)
+{
+ U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
+ const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
+ const U32 minBits = nbBitsBaseline - maxWeight;
+ U32 s;
+
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill DTable */
+ for (s=0; s<sortedListSize; s++)
+ {
+ const U16 symbol = sortedList[s].symbol;
+ const U32 weight = sortedList[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 start = rankVal[weight];
+ const U32 length = 1 << (targetLog-nbBits);
+
+ if (targetLog-nbBits >= minBits) /* enough room for a second symbol */
+ {
+ U32 sortedRank;
+ int minWeight = nbBits + scaleLog;
+ if (minWeight < 1) minWeight = 1;
+ sortedRank = rankStart[minWeight];
+ HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
+ rankValOrigin[nbBits], minWeight,
+ sortedList+sortedRank, sortedListSize-sortedRank,
+ nbBitsBaseline, symbol);
+ }
+ else
+ {
+ U32 i;
+ const U32 end = start + length;
+ HUF_DEltX4 DElt;
+
+ MEM_writeLE16(&(DElt.sequence), symbol);
+ DElt.nbBits = (BYTE)(nbBits);
+ DElt.length = 1;
+ for (i = start; i < end; i++)
+ DTable[i] = DElt;
+ }
+ rankVal[weight] += length;
+ }
+}
+
+static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
+{
+ BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
+ sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
+ U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
+ U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
+ U32* const rankStart = rankStart0+1;
+ rankVal_t rankVal;
+ U32 tableLog, maxW, sizeOfSort, nbSymbols;
+ const U32 memLog = DTable[0];
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize = ip[0];
+ void* ptr = DTable;
+ HUF_DEltX4* const dt = ((HUF_DEltX4*)ptr) + 1;
+
+ HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */
+ if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
+ //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
+ if (HUF_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
+
+ /* find maxWeight */
+ for (maxW = tableLog; rankStats[maxW]==0; maxW--)
+ {if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */
+
+ /* Get start index of each weight */
+ {
+ U32 w, nextRankStart = 0;
+ for (w=1; w<=maxW; w++)
+ {
+ U32 current = nextRankStart;
+ nextRankStart += rankStats[w];
+ rankStart[w] = current;
+ }
+ rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
+ sizeOfSort = nextRankStart;
+ }
+
+ /* sort symbols by weight */
+ {
+ U32 s;
+ for (s=0; s<nbSymbols; s++)
+ {
+ U32 w = weightList[s];
+ U32 r = rankStart[w]++;
+ sortedSymbol[r].symbol = (BYTE)s;
+ sortedSymbol[r].weight = (BYTE)w;
+ }
+ rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
+ }
+
+ /* Build rankVal */
+ {
+ const U32 minBits = tableLog+1 - maxW;
+ U32 nextRankVal = 0;
+ U32 w, consumed;
+ const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
+ U32* rankVal0 = rankVal[0];
+ for (w=1; w<=maxW; w++)
+ {
+ U32 current = nextRankVal;
+ nextRankVal += rankStats[w] << (w+rescale);
+ rankVal0[w] = current;
+ }
+ for (consumed = minBits; consumed <= memLog - minBits; consumed++)
+ {
+ U32* rankValPtr = rankVal[consumed];
+ for (w = 1; w <= maxW; w++)
+ {
+ rankValPtr[w] = rankVal0[w] >> consumed;
+ }
+ }
+ }
+
+ HUF_fillDTableX4(dt, memLog,
+ sortedSymbol, sizeOfSort,
+ rankStart0, rankVal, maxW,
+ tableLog+1);
+
+ return iSize;
+}
+
+
+static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
+{
+ const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 2);
+ BIT_skipBits(DStream, dt[val].nbBits);
+ return dt[val].length;
+}
+
+static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
+{
+ const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 1);
+ if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
+ else
+ {
+ if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
+ {
+ BIT_skipBits(DStream, dt[val].nbBits);
+ if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
+ DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
+ }
+ }
+ return 1;
+}
+
+
+#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
+ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
+ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 8 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7))
+ {
+ HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
+ }
+
+ /* closer to the end */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
+ HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
+
+ while (p <= pEnd-2)
+ HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
+
+ if (p < pEnd)
+ p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
+
+ return p-pStart;
+}
+
+
+
+static size_t HUF_decompress4X4_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U32* DTable)
+{
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ {
+ const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+
+ const void* ptr = DTable;
+ const HUF_DEltX4* const dt = ((const HUF_DEltX4*)ptr) +1;
+ const U32 dtLog = DTable[0];
+ size_t errorCode;
+
+ /* Init */
+ BIT_DStream_t bitD1;
+ BIT_DStream_t bitD2;
+ BIT_DStream_t bitD3;
+ BIT_DStream_t bitD4;
+ const size_t length1 = MEM_readLE16(istart);
+ const size_t length2 = MEM_readLE16(istart+2);
+ const size_t length3 = MEM_readLE16(istart+4);
+ size_t length4;
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+
+ length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ errorCode = BIT_initDStream(&bitD1, istart1, length1);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD2, istart2, length2);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD3, istart3, length3);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD4, istart4, length4);
+ if (HUF_isError(errorCode)) return errorCode;
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
+ {
+ HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
+
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
+ HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
+ HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
+ HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+ if (!endSignal) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize;
+ cSrcSize -= hSize;
+
+ return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+/**********************************/
+/* quad-symbol decoding */
+/**********************************/
+typedef struct { BYTE nbBits; BYTE nbBytes; } HUF_DDescX6;
+typedef union { BYTE byte[4]; U32 sequence; } HUF_DSeqX6;
+
+/* recursive, up to level 3; may benefit from <template>-like strategy to nest each level inline */
+static void HUF_fillDTableX6LevelN(HUF_DDescX6* DDescription, HUF_DSeqX6* DSequence, int sizeLog,
+ const rankVal_t rankValOrigin, const U32 consumed, const int minWeight, const U32 maxWeight,
+ const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, const U32* rankStart,
+ const U32 nbBitsBaseline, HUF_DSeqX6 baseSeq, HUF_DDescX6 DDesc)
+{
+ const int scaleLog = nbBitsBaseline - sizeLog; /* note : targetLog >= (nbBitsBaseline-1), hence scaleLog <= 1 */
+ const int minBits = nbBitsBaseline - maxWeight;
+ const U32 level = DDesc.nbBytes;
+ U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
+ U32 symbolStartPos, s;
+
+ /* local rankVal, will be modified */
+ memcpy(rankVal, rankValOrigin[consumed], sizeof(rankVal));
+
+ /* fill skipped values */
+ if (minWeight>1)
+ {
+ U32 i;
+ const U32 skipSize = rankVal[minWeight];
+ for (i = 0; i < skipSize; i++)
+ {
+ DSequence[i] = baseSeq;
+ DDescription[i] = DDesc;
+ }
+ }
+
+ /* fill DTable */
+ DDesc.nbBytes++;
+ symbolStartPos = rankStart[minWeight];
+ for (s=symbolStartPos; s<sortedListSize; s++)
+ {
+ const BYTE symbol = sortedSymbols[s].symbol;
+ const U32 weight = sortedSymbols[s].weight; /* >= 1 (sorted) */
+ const int nbBits = nbBitsBaseline - weight; /* >= 1 (by construction) */
+ const int totalBits = consumed+nbBits;
+ const U32 start = rankVal[weight];
+ const U32 length = 1 << (sizeLog-nbBits);
+ baseSeq.byte[level] = symbol;
+ DDesc.nbBits = (BYTE)totalBits;
+
+ if ((level<3) && (sizeLog-totalBits >= minBits)) /* enough room for another symbol */
+ {
+ int nextMinWeight = totalBits + scaleLog;
+ if (nextMinWeight < 1) nextMinWeight = 1;
+ HUF_fillDTableX6LevelN(DDescription+start, DSequence+start, sizeLog-nbBits,
+ rankValOrigin, totalBits, nextMinWeight, maxWeight,
+ sortedSymbols, sortedListSize, rankStart,
+ nbBitsBaseline, baseSeq, DDesc); /* recursive (max : level 3) */
+ }
+ else
+ {
+ U32 i;
+ const U32 end = start + length;
+ for (i = start; i < end; i++)
+ {
+ DDescription[i] = DDesc;
+ DSequence[i] = baseSeq;
+ }
+ }
+ rankVal[weight] += length;
+ }
+}
+
+
+/* note : same preparation as X4 */
+static size_t HUF_readDTableX6 (U32* DTable, const void* src, size_t srcSize)
+{
+ BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
+ sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
+ U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
+ U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
+ U32* const rankStart = rankStart0+1;
+ U32 tableLog, maxW, sizeOfSort, nbSymbols;
+ rankVal_t rankVal;
+ const U32 memLog = DTable[0];
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize = ip[0];
+
+ if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
+ //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
+ if (HUF_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable is too small */
+
+ /* find maxWeight */
+ for (maxW = tableLog; rankStats[maxW]==0; maxW--)
+ { if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */
+
+
+ /* Get start index of each weight */
+ {
+ U32 w, nextRankStart = 0;
+ for (w=1; w<=maxW; w++)
+ {
+ U32 current = nextRankStart;
+ nextRankStart += rankStats[w];
+ rankStart[w] = current;
+ }
+ rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
+ sizeOfSort = nextRankStart;
+ }
+
+ /* sort symbols by weight */
+ {
+ U32 s;
+ for (s=0; s<nbSymbols; s++)
+ {
+ U32 w = weightList[s];
+ U32 r = rankStart[w]++;
+ sortedSymbol[r].symbol = (BYTE)s;
+ sortedSymbol[r].weight = (BYTE)w;
+ }
+ rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
+ }
+
+ /* Build rankVal */
+ {
+ const U32 minBits = tableLog+1 - maxW;
+ U32 nextRankVal = 0;
+ U32 w, consumed;
+ const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
+ U32* rankVal0 = rankVal[0];
+ for (w=1; w<=maxW; w++)
+ {
+ U32 current = nextRankVal;
+ nextRankVal += rankStats[w] << (w+rescale);
+ rankVal0[w] = current;
+ }
+ for (consumed = minBits; consumed <= memLog - minBits; consumed++)
+ {
+ U32* rankValPtr = rankVal[consumed];
+ for (w = 1; w <= maxW; w++)
+ {
+ rankValPtr[w] = rankVal0[w] >> consumed;
+ }
+ }
+ }
+
+
+ /* fill tables */
+ {
+ void* ptr = DTable+1;
+ HUF_DDescX6* DDescription = (HUF_DDescX6*)(ptr);
+ void* dSeqStart = DTable + 1 + ((size_t)1<<(memLog-1));
+ HUF_DSeqX6* DSequence = (HUF_DSeqX6*)(dSeqStart);
+ HUF_DSeqX6 DSeq;
+ HUF_DDescX6 DDesc;
+ DSeq.sequence = 0;
+ DDesc.nbBits = 0;
+ DDesc.nbBytes = 0;
+ HUF_fillDTableX6LevelN(DDescription, DSequence, memLog,
+ (const U32 (*)[HUF_ABSOLUTEMAX_TABLELOG + 1])rankVal, 0, 1, maxW,
+ sortedSymbol, sizeOfSort, rankStart0,
+ tableLog+1, DSeq, DDesc);
+ }
+
+ return iSize;
+}
+
+
+static U32 HUF_decodeSymbolX6(void* op, BIT_DStream_t* DStream, const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog)
+{
+ const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, ds+val, sizeof(HUF_DSeqX6));
+ BIT_skipBits(DStream, dd[val].nbBits);
+ return dd[val].nbBytes;
+}
+
+static U32 HUF_decodeLastSymbolsX6(void* op, const U32 maxL, BIT_DStream_t* DStream,
+ const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog)
+{
+ const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ U32 length = dd[val].nbBytes;
+ if (length <= maxL)
+ {
+ memcpy(op, ds+val, length);
+ BIT_skipBits(DStream, dd[val].nbBits);
+ return length;
+ }
+ memcpy(op, ds+val, maxL);
+ if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
+ {
+ BIT_skipBits(DStream, dd[val].nbBits);
+ if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
+ DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
+ }
+ return maxL;
+}
+
+
+#define HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr) \
+ ptr += HUF_decodeSymbolX6(ptr, DStreamPtr, dd, ds, dtLog)
+
+#define HUF_DECODE_SYMBOLX6_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
+ HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr)
+
+#define HUF_DECODE_SYMBOLX6_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr)
+
+static inline size_t HUF_decodeStreamX6(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const U32* DTable, const U32 dtLog)
+{
+ const void* ddPtr = DTable+1;
+ const HUF_DDescX6* dd = (const HUF_DDescX6*)(ddPtr);
+ const void* dsPtr = DTable + 1 + ((size_t)1<<(dtLog-1));
+ const HUF_DSeqX6* ds = (const HUF_DSeqX6*)(dsPtr);
+ BYTE* const pStart = p;
+
+ /* up to 16 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-16))
+ {
+ HUF_DECODE_SYMBOLX6_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX6_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX6_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX6_0(p, bitDPtr);
+ }
+
+ /* closer to the end, up to 4 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
+ HUF_DECODE_SYMBOLX6_0(p, bitDPtr);
+
+ while (p <= pEnd-4)
+ HUF_DECODE_SYMBOLX6_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
+
+ while (p < pEnd)
+ p += HUF_decodeLastSymbolsX6(p, (U32)(pEnd-p), bitDPtr, dd, ds, dtLog);
+
+ return p-pStart;
+}
+
+
+
+static size_t HUF_decompress4X6_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U32* DTable)
+{
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ {
+ const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+
+ const U32 dtLog = DTable[0];
+ const void* ddPtr = DTable+1;
+ const HUF_DDescX6* dd = (const HUF_DDescX6*)(ddPtr);
+ const void* dsPtr = DTable + 1 + ((size_t)1<<(dtLog-1));
+ const HUF_DSeqX6* ds = (const HUF_DSeqX6*)(dsPtr);
+ size_t errorCode;
+
+ /* Init */
+ BIT_DStream_t bitD1;
+ BIT_DStream_t bitD2;
+ BIT_DStream_t bitD3;
+ BIT_DStream_t bitD4;
+ const size_t length1 = MEM_readLE16(istart);
+ const size_t length2 = MEM_readLE16(istart+2);
+ const size_t length3 = MEM_readLE16(istart+4);
+ size_t length4;
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+
+ length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ errorCode = BIT_initDStream(&bitD1, istart1, length1);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD2, istart2, length2);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD3, istart3, length3);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD4, istart4, length4);
+ if (HUF_isError(errorCode)) return errorCode;
+
+ /* 16-64 symbols per loop (4-16 symbols per stream) */
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ for ( ; (op3 <= opStart4) && (endSignal==BIT_DStream_unfinished) && (op4<=(oend-16)) ; )
+ {
+ HUF_DECODE_SYMBOLX6_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX6_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX6_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX6_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX6_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX6_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX6_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX6_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX6_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX6_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX6_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX6_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX6_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX6_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX6_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX6_0(op4, &bitD4);
+
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUF_decodeStreamX6(op1, &bitD1, opStart2, DTable, dtLog);
+ HUF_decodeStreamX6(op2, &bitD2, opStart3, DTable, dtLog);
+ HUF_decodeStreamX6(op3, &bitD3, opStart4, DTable, dtLog);
+ HUF_decodeStreamX6(op4, &bitD4, oend, DTable, dtLog);
+
+ /* check */
+ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+ if (!endSignal) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+static size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUF_CREATE_STATIC_DTABLEX6(DTable, HUF_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t hSize = HUF_readDTableX6 (DTable, cSrc, cSrcSize);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize;
+ cSrcSize -= hSize;
+
+ return HUF_decompress4X6_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+/**********************************/
+/* Generic decompression selector */
+/**********************************/
+
+typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
+static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
+{
+ /* single, double, quad */
+ {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
+ {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
+ {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
+ {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
+ {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
+ {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
+ {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
+ {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
+ {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
+ {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
+ {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
+ {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
+ {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
+ {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
+ {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
+ {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
+};
+
+typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
+
+static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, HUF_decompress4X6 };
+ /* estimate decompression time */
+ U32 Q;
+ const U32 D256 = (U32)(dstSize >> 8);
+ U32 Dtime[3];
+ U32 algoNb = 0;
+ int n;
+
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
+ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
+
+ /* decoder timing evaluation */
+ Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
+ for (n=0; n<3; n++)
+ Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
+
+ Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
+
+ if (Dtime[1] < Dtime[0]) algoNb = 1;
+ if (Dtime[2] < Dtime[algoNb]) algoNb = 2;
+
+ return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
+
+ //return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
+ //return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
+ //return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */
+}
+/*
+ zstd - standard compression library
+ Copyright (C) 2014-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd source repository : https://github.com/Cyan4973/zstd
+ - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
+*/
+
+/* ***************************************************************
+* Tuning parameters
+*****************************************************************/
+/*!
+* MEMORY_USAGE :
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+* Increasing memory usage improves compression ratio
+* Reduced memory usage can improve speed, due to cache effect
+*/
+#define ZSTD_MEMORY_USAGE 17
+
+/*!
+ * HEAPMODE :
+ * Select how default compression functions will allocate memory for their hash table,
+ * in memory stack (0, fastest), or in memory heap (1, requires malloc())
+ * Note that compression context is fairly large, as a consequence heap memory is recommended.
+ */
+#ifndef ZSTD_HEAPMODE
+# define ZSTD_HEAPMODE 1
+#endif /* ZSTD_HEAPMODE */
+
+/*!
+* LEGACY_SUPPORT :
+* decompressor can decode older formats (starting from Zstd 0.1+)
+*/
+#ifndef ZSTD_LEGACY_SUPPORT
+# define ZSTD_LEGACY_SUPPORT 1
+#endif
+
+
+/* *******************************************************
+* Includes
+*********************************************************/
+#include <stdlib.h> /* calloc */
+#include <string.h> /* memcpy, memmove */
+#include <stdio.h> /* debug : printf */
+
+
+/* *******************************************************
+* Compiler specifics
+*********************************************************/
+#ifdef __AVX2__
+# include <immintrin.h> /* AVX2 intrinsics */
+#endif
+
+#ifdef _MSC_VER /* Visual Studio */
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4324) /* disable: C4324: padded structure */
+#endif
+
+
+/* *******************************************************
+* Constants
+*********************************************************/
+#define HASH_LOG (ZSTD_MEMORY_USAGE - 2)
+#define HASH_TABLESIZE (1 << HASH_LOG)
+#define HASH_MASK (HASH_TABLESIZE - 1)
+
+#define KNUTH 2654435761
+
+#define BIT7 128
+#define BIT6 64
+#define BIT5 32
+#define BIT4 16
+#define BIT1 2
+#define BIT0 1
+
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+
+#define BLOCKSIZE (128 KB) /* define, for static allocation */
+#define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/)
+#define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE)
+#define IS_RAW BIT0
+#define IS_RLE BIT1
+
+#define WORKPLACESIZE (BLOCKSIZE*3)
+#define MINMATCH 4
+#define MLbits 7
+#define LLbits 6
+#define Offbits 5
+#define MaxML ((1<<MLbits )-1)
+#define MaxLL ((1<<LLbits )-1)
+#define MaxOff 31
+#define LitFSELog 11
+#define MLFSELog 10
+#define LLFSELog 10
+#define OffFSELog 9
+#define MAX(a,b) ((a)<(b)?(b):(a))
+#define MaxSeq MAX(MaxLL, MaxML)
+
+#define LITERAL_NOENTROPY 63
+#define COMMAND_NOENTROPY 7 /* to remove */
+
+#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
+
+static const size_t ZSTD_blockHeaderSize = 3;
+static const size_t ZSTD_frameHeaderSize = 4;
+
+
+/* *******************************************************
+* Memory operations
+**********************************************************/
+static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
+
+static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
+
+#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
+
+/*! ZSTD_wildcopy : custom version of memcpy(), can copy up to 7-8 bytes too many */
+static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
+{
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + length;
+ do COPY8(op, ip) while (op < oend);
+}
+
+
+/* **************************************
+* Local structures
+****************************************/
+typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
+
+typedef struct
+{
+ blockType_t blockType;
+ U32 origSize;
+} blockProperties_t;
+
+typedef struct {
+ void* buffer;
+ U32* offsetStart;
+ U32* offset;
+ BYTE* offCodeStart;
+ BYTE* offCode;
+ BYTE* litStart;
+ BYTE* lit;
+ BYTE* litLengthStart;
+ BYTE* litLength;
+ BYTE* matchLengthStart;
+ BYTE* matchLength;
+ BYTE* dumpsStart;
+ BYTE* dumps;
+} seqStore_t;
+
+
+/* *************************************
+* Error Management
+***************************************/
+/*! ZSTD_isError
+* tells if a return value is an error code */
+static unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
+
+
+
+/* *************************************************************
+* Decompression section
+***************************************************************/
+struct ZSTD_DCtx_s
+{
+ U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
+ U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
+ U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
+ void* previousDstEnd;
+ void* base;
+ size_t expected;
+ blockType_t bType;
+ U32 phase;
+ const BYTE* litPtr;
+ size_t litSize;
+ BYTE litBuffer[BLOCKSIZE + 8 /* margin for wildcopy */];
+}; /* typedef'd to ZSTD_Dctx within "zstd_static.h" */
+
+
+static size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
+{
+ const BYTE* const in = (const BYTE* const)src;
+ BYTE headerFlags;
+ U32 cSize;
+
+ if (srcSize < 3) return ERROR(srcSize_wrong);
+
+ headerFlags = *in;
+ cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
+
+ bpPtr->blockType = (blockType_t)(headerFlags >> 6);
+ bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
+
+ if (bpPtr->blockType == bt_end) return 0;
+ if (bpPtr->blockType == bt_rle) return 1;
+ return cSize;
+}
+
+static size_t ZSTD_copyUncompressedBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
+ memcpy(dst, src, srcSize);
+ return srcSize;
+}
+
+
+/** ZSTD_decompressLiterals
+ @return : nb of bytes read from src, or an error code*/
+static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr,
+ const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+
+ const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
+ const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
+
+ if (litSize > *maxDstSizePtr) return ERROR(corruption_detected);
+ if (litCSize + 5 > srcSize) return ERROR(corruption_detected);
+
+ if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected);
+
+ *maxDstSizePtr = litSize;
+ return litCSize + 5;
+}
+
+
+/** ZSTD_decodeLiteralsBlock
+ @return : nb of bytes read from src (< srcSize )*/
+static size_t ZSTD_decodeLiteralsBlock(void* ctx,
+ const void* src, size_t srcSize)
+{
+ ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx;
+ const BYTE* const istart = (const BYTE* const)src;
+
+ /* any compressed block with literals segment must be at least this size */
+ if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
+
+ switch(*istart & 3)
+ {
+ default:
+ case 0:
+ {
+ size_t litSize = BLOCKSIZE;
+ const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, 8);
+ return readSize; /* works if it's an error too */
+ }
+ case IS_RAW:
+ {
+ const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
+ if (litSize > srcSize-11) /* risk of reading too far with wildcopy */
+ {
+ if (litSize > srcSize-3) return ERROR(corruption_detected);
+ memcpy(dctx->litBuffer, istart, litSize);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, 8);
+ return litSize+3;
+ }
+ /* direct reference into compressed stream */
+ dctx->litPtr = istart+3;
+ dctx->litSize = litSize;
+ return litSize+3;
+ }
+ case IS_RLE:
+ {
+ const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
+ if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
+ memset(dctx->litBuffer, istart[3], litSize + 8);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ return 4;
+ }
+ }
+}
+
+
+static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
+ FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
+ const void* src, size_t srcSize)
+{
+ const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* ip = istart;
+ const BYTE* const iend = istart + srcSize;
+ U32 LLtype, Offtype, MLtype;
+ U32 LLlog, Offlog, MLlog;
+ size_t dumpsLength;
+
+ /* check */
+ if (srcSize < 5) return ERROR(srcSize_wrong);
+
+ /* SeqHead */
+ *nbSeq = MEM_readLE16(ip); ip+=2;
+ LLtype = *ip >> 6;
+ Offtype = (*ip >> 4) & 3;
+ MLtype = (*ip >> 2) & 3;
+ if (*ip & 2)
+ {
+ dumpsLength = ip[2];
+ dumpsLength += ip[1] << 8;
+ ip += 3;
+ }
+ else
+ {
+ dumpsLength = ip[1];
+ dumpsLength += (ip[0] & 1) << 8;
+ ip += 2;
+ }
+ *dumpsPtr = ip;
+ ip += dumpsLength;
+ *dumpsLengthPtr = dumpsLength;
+
+ /* check */
+ if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
+
+ /* sequences */
+ {
+ S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL and MaxOff */
+ size_t headerSize;
+
+ /* Build DTables */
+ switch(LLtype)
+ {
+ case bt_rle :
+ LLlog = 0;
+ FSE_buildDTable_rle(DTableLL, *ip++); break;
+ case bt_raw :
+ LLlog = LLbits;
+ FSE_buildDTable_raw(DTableLL, LLbits); break;
+ default :
+ { U32 max = MaxLL;
+ headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
+ if (FSE_isError(headerSize)) return ERROR(GENERIC);
+ if (LLlog > LLFSELog) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSE_buildDTable(DTableLL, norm, max, LLlog);
+ } }
+
+ switch(Offtype)
+ {
+ case bt_rle :
+ Offlog = 0;
+ if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
+ FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */
+ break;
+ case bt_raw :
+ Offlog = Offbits;
+ FSE_buildDTable_raw(DTableOffb, Offbits); break;
+ default :
+ { U32 max = MaxOff;
+ headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
+ if (FSE_isError(headerSize)) return ERROR(GENERIC);
+ if (Offlog > OffFSELog) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSE_buildDTable(DTableOffb, norm, max, Offlog);
+ } }
+
+ switch(MLtype)
+ {
+ case bt_rle :
+ MLlog = 0;
+ if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
+ FSE_buildDTable_rle(DTableML, *ip++); break;
+ case bt_raw :
+ MLlog = MLbits;
+ FSE_buildDTable_raw(DTableML, MLbits); break;
+ default :
+ { U32 max = MaxML;
+ headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
+ if (FSE_isError(headerSize)) return ERROR(GENERIC);
+ if (MLlog > MLFSELog) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSE_buildDTable(DTableML, norm, max, MLlog);
+ } } }
+
+ return ip-istart;
+}
+
+
+typedef struct {
+ size_t litLength;
+ size_t offset;
+ size_t matchLength;
+} seq_t;
+
+typedef struct {
+ BIT_DStream_t DStream;
+ FSE_DState_t stateLL;
+ FSE_DState_t stateOffb;
+ FSE_DState_t stateML;
+ size_t prevOffset;
+ const BYTE* dumps;
+ const BYTE* dumpsEnd;
+} seqState_t;
+
+
+static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
+{
+ size_t litLength;
+ size_t prevOffset;
+ size_t offset;
+ size_t matchLength;
+ const BYTE* dumps = seqState->dumps;
+ const BYTE* const de = seqState->dumpsEnd;
+
+ /* Literal length */
+ litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
+ prevOffset = litLength ? seq->offset : seqState->prevOffset;
+ seqState->prevOffset = seq->offset;
+ if (litLength == MaxLL)
+ {
+ const U32 add = dumps<de ? *dumps++ : 0;
+ if (add < 255) litLength += add;
+ else if (dumps + 3 <= de)
+ {
+ litLength = MEM_readLE24(dumps);
+ dumps += 3;
+ }
+ if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
+ }
+
+ /* Offset */
+ {
+ static const size_t offsetPrefix[MaxOff+1] = { /* note : size_t faster than U32 */
+ 1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256,
+ 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
+ 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 };
+ U32 offsetCode, nbBits;
+ offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* <= maxOff, by table construction */
+ if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
+ nbBits = offsetCode - 1;
+ if (offsetCode==0) nbBits = 0; /* cmove */
+ offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits);
+ if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
+ if (offsetCode==0) offset = prevOffset; /* cmove */
+ }
+
+ /* MatchLength */
+ matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
+ if (matchLength == MaxML)
+ {
+ const U32 add = dumps<de ? *dumps++ : 0;
+ if (add < 255) matchLength += add;
+ else if (dumps + 3 <= de)
+ {
+ matchLength = MEM_readLE24(dumps);
+ dumps += 3;
+ }
+ if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
+ }
+ matchLength += MINMATCH;
+
+ /* save result */
+ seq->litLength = litLength;
+ seq->offset = offset;
+ seq->matchLength = matchLength;
+ seqState->dumps = dumps;
+}
+
+
+static size_t ZSTD_execSequence(BYTE* op,
+ seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ BYTE* const base, BYTE* const oend)
+{
+ static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
+ static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* subtracted */
+ const BYTE* const ostart = op;
+ BYTE* const oLitEnd = op + sequence.litLength;
+ BYTE* const oMatchEnd = op + sequence.litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */
+ BYTE* const oend_8 = oend-8;
+ const BYTE* const litEnd = *litPtr + sequence.litLength;
+
+ /* checks */
+ if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */
+ if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
+ if (litEnd > litLimit) return ERROR(corruption_detected); /* overRead beyond lit buffer */
+
+ /* copy Literals */
+ ZSTD_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
+ op = oLitEnd;
+ *litPtr = litEnd; /* update for next sequence */
+
+ /* copy Match */
+ {
+ const BYTE* match = op - sequence.offset;
+
+ /* check */
+ if (sequence.offset > (size_t)op) return ERROR(corruption_detected); /* address space overflow test (this test seems kept by clang optimizer) */
+ //if (match > op) return ERROR(corruption_detected); /* address space overflow test (is clang optimizer removing this test ?) */
+ if (match < base) return ERROR(corruption_detected);
+
+ /* close range match, overlap */
+ if (sequence.offset < 8)
+ {
+ const int dec64 = dec64table[sequence.offset];
+ op[0] = match[0];
+ op[1] = match[1];
+ op[2] = match[2];
+ op[3] = match[3];
+ match += dec32table[sequence.offset];
+ ZSTD_copy4(op+4, match);
+ match -= dec64;
+ }
+ else
+ {
+ ZSTD_copy8(op, match);
+ }
+ op += 8; match += 8;
+
+ if (oMatchEnd > oend-(16-MINMATCH))
+ {
+ if (op < oend_8)
+ {
+ ZSTD_wildcopy(op, match, oend_8 - op);
+ match += oend_8 - op;
+ op = oend_8;
+ }
+ while (op < oMatchEnd) *op++ = *match++;
+ }
+ else
+ {
+ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
+ }
+ }
+
+ return oMatchEnd - ostart;
+}
+
+static size_t ZSTD_decompressSequences(
+ void* ctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize)
+{
+ ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx;
+ const BYTE* ip = (const BYTE*)seqStart;
+ const BYTE* const iend = ip + seqSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + maxDstSize;
+ size_t errorCode, dumpsLength;
+ const BYTE* litPtr = dctx->litPtr;
+ const BYTE* const litEnd = litPtr + dctx->litSize;
+ int nbSeq;
+ const BYTE* dumps;
+ U32* DTableLL = dctx->LLTable;
+ U32* DTableML = dctx->MLTable;
+ U32* DTableOffb = dctx->OffTable;
+ BYTE* const base = (BYTE*) (dctx->base);
+
+ /* Build Decoding Tables */
+ errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
+ DTableLL, DTableML, DTableOffb,
+ ip, iend-ip);
+ if (ZSTD_isError(errorCode)) return errorCode;
+ ip += errorCode;
+
+ /* Regen sequences */
+ {
+ seq_t sequence;
+ seqState_t seqState;
+
+ memset(&sequence, 0, sizeof(sequence));
+ seqState.dumps = dumps;
+ seqState.dumpsEnd = dumps + dumpsLength;
+ seqState.prevOffset = 1;
+ errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip);
+ if (ERR_isError(errorCode)) return ERROR(corruption_detected);
+ FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
+ FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
+ FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
+
+ for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (nbSeq>0) ; )
+ {
+ size_t oneSeqSize;
+ nbSeq--;
+ ZSTD_decodeSequence(&sequence, &seqState);
+ oneSeqSize = ZSTD_execSequence(op, sequence, &litPtr, litEnd, base, oend);
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+ op += oneSeqSize;
+ }
+
+ /* check if reached exact end */
+ if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* requested too much : data is corrupted */
+ if (nbSeq<0) return ERROR(corruption_detected); /* requested too many sequences : data is corrupted */
+
+ /* last literal segment */
+ {
+ size_t lastLLSize = litEnd - litPtr;
+ if (litPtr > litEnd) return ERROR(corruption_detected);
+ if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
+ if (op != litPtr) memmove(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+ }
+
+ return op-ostart;
+}
+
+
+static size_t ZSTD_decompressBlock(
+ void* ctx,
+ void* dst, size_t maxDstSize,
+ const void* src, size_t srcSize)
+{
+ /* blockType == blockCompressed */
+ const BYTE* ip = (const BYTE*)src;
+
+ /* Decode literals sub-block */
+ size_t litCSize = ZSTD_decodeLiteralsBlock(ctx, src, srcSize);
+ if (ZSTD_isError(litCSize)) return litCSize;
+ ip += litCSize;
+ srcSize -= litCSize;
+
+ return ZSTD_decompressSequences(ctx, dst, maxDstSize, ip, srcSize);
+}
+
+
+static size_t ZSTD_decompressDCtx(void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+ const BYTE* iend = ip + srcSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + maxDstSize;
+ size_t remainingSize = srcSize;
+ U32 magicNumber;
+ blockProperties_t blockProperties;
+
+ /* Frame Header */
+ if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
+ magicNumber = MEM_readLE32(src);
+ if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
+ ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
+
+ /* Loop on each block */
+ while (1)
+ {
+ size_t decodedSize=0;
+ size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties);
+ if (ZSTD_isError(cBlockSize)) return cBlockSize;
+
+ ip += ZSTD_blockHeaderSize;
+ remainingSize -= ZSTD_blockHeaderSize;
+ if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
+
+ switch(blockProperties.blockType)
+ {
+ case bt_compressed:
+ decodedSize = ZSTD_decompressBlock(ctx, op, oend-op, ip, cBlockSize);
+ break;
+ case bt_raw :
+ decodedSize = ZSTD_copyUncompressedBlock(op, oend-op, ip, cBlockSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet supported */
+ break;
+ case bt_end :
+ /* end of frame */
+ if (remainingSize) return ERROR(srcSize_wrong);
+ break;
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+ if (cBlockSize == 0) break; /* bt_end */
+
+ if (ZSTD_isError(decodedSize)) return decodedSize;
+ op += decodedSize;
+ ip += cBlockSize;
+ remainingSize -= cBlockSize;
+ }
+
+ return op-ostart;
+}
+
+static size_t ZSTD_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ ZSTD_DCtx ctx;
+ ctx.base = dst;
+ return ZSTD_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize);
+}
+
+/* ZSTD_errorFrameSizeInfoLegacy() :
+ assumes `cSize` and `dBound` are _not_ NULL */
+static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
+{
+ *cSize = ret;
+ *dBound = ZSTD_CONTENTSIZE_ERROR;
+}
+
+void ZSTDv02_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
+{
+ const BYTE* ip = (const BYTE*)src;
+ size_t remainingSize = srcSize;
+ size_t nbBlocks = 0;
+ U32 magicNumber;
+ blockProperties_t blockProperties;
+
+ /* Frame Header */
+ if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+ magicNumber = MEM_readLE32(src);
+ if (magicNumber != ZSTD_magicNumber) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
+ return;
+ }
+ ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
+
+ /* Loop on each block */
+ while (1)
+ {
+ size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
+ if (ZSTD_isError(cBlockSize)) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
+ return;
+ }
+
+ ip += ZSTD_blockHeaderSize;
+ remainingSize -= ZSTD_blockHeaderSize;
+ if (cBlockSize > remainingSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+
+ if (cBlockSize == 0) break; /* bt_end */
+
+ ip += cBlockSize;
+ remainingSize -= cBlockSize;
+ nbBlocks++;
+ }
+
+ *cSize = ip - (const BYTE*)src;
+ *dBound = nbBlocks * BLOCKSIZE;
+}
+
+/*******************************
+* Streaming Decompression API
+*******************************/
+
+static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx)
+{
+ dctx->expected = ZSTD_frameHeaderSize;
+ dctx->phase = 0;
+ dctx->previousDstEnd = NULL;
+ dctx->base = NULL;
+ return 0;
+}
+
+static ZSTD_DCtx* ZSTD_createDCtx(void)
+{
+ ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx));
+ if (dctx==NULL) return NULL;
+ ZSTD_resetDCtx(dctx);
+ return dctx;
+}
+
+static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
+{
+ free(dctx);
+ return 0;
+}
+
+static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx)
+{
+ return dctx->expected;
+}
+
+static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ /* Sanity check */
+ if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
+ if (dst != ctx->previousDstEnd) /* not contiguous */
+ ctx->base = dst;
+
+ /* Decompress : frame header */
+ if (ctx->phase == 0)
+ {
+ /* Check frame magic header */
+ U32 magicNumber = MEM_readLE32(src);
+ if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
+ ctx->phase = 1;
+ ctx->expected = ZSTD_blockHeaderSize;
+ return 0;
+ }
+
+ /* Decompress : block header */
+ if (ctx->phase == 1)
+ {
+ blockProperties_t bp;
+ size_t blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
+ if (ZSTD_isError(blockSize)) return blockSize;
+ if (bp.blockType == bt_end)
+ {
+ ctx->expected = 0;
+ ctx->phase = 0;
+ }
+ else
+ {
+ ctx->expected = blockSize;
+ ctx->bType = bp.blockType;
+ ctx->phase = 2;
+ }
+
+ return 0;
+ }
+
+ /* Decompress : block content */
+ {
+ size_t rSize;
+ switch(ctx->bType)
+ {
+ case bt_compressed:
+ rSize = ZSTD_decompressBlock(ctx, dst, maxDstSize, src, srcSize);
+ break;
+ case bt_raw :
+ rSize = ZSTD_copyUncompressedBlock(dst, maxDstSize, src, srcSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet handled */
+ break;
+ case bt_end : /* should never happen (filtered at phase 1) */
+ rSize = 0;
+ break;
+ default:
+ return ERROR(GENERIC);
+ }
+ ctx->phase = 1;
+ ctx->expected = ZSTD_blockHeaderSize;
+ ctx->previousDstEnd = (void*)( ((char*)dst) + rSize);
+ return rSize;
+ }
+
+}
+
+
+/* wrapper layer */
+
+unsigned ZSTDv02_isError(size_t code)
+{
+ return ZSTD_isError(code);
+}
+
+size_t ZSTDv02_decompress( void* dst, size_t maxOriginalSize,
+ const void* src, size_t compressedSize)
+{
+ return ZSTD_decompress(dst, maxOriginalSize, src, compressedSize);
+}
+
+ZSTDv02_Dctx* ZSTDv02_createDCtx(void)
+{
+ return (ZSTDv02_Dctx*)ZSTD_createDCtx();
+}
+
+size_t ZSTDv02_freeDCtx(ZSTDv02_Dctx* dctx)
+{
+ return ZSTD_freeDCtx((ZSTD_DCtx*)dctx);
+}
+
+size_t ZSTDv02_resetDCtx(ZSTDv02_Dctx* dctx)
+{
+ return ZSTD_resetDCtx((ZSTD_DCtx*)dctx);
+}
+
+size_t ZSTDv02_nextSrcSizeToDecompress(ZSTDv02_Dctx* dctx)
+{
+ return ZSTD_nextSrcSizeToDecompress((ZSTD_DCtx*)dctx);
+}
+
+size_t ZSTDv02_decompressContinue(ZSTDv02_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ return ZSTD_decompressContinue((ZSTD_DCtx*)dctx, dst, maxDstSize, src, srcSize);
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_v02.h b/vendor/github.com/DataDog/zstd/zstd_v02.h
new file mode 100644
index 0000000..9d7d8d9
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v02.h
@@ -0,0 +1,93 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_V02_H_4174539423
+#define ZSTD_V02_H_4174539423
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/* *************************************
+* Includes
+***************************************/
+#include <stddef.h> /* size_t */
+
+
+/* *************************************
+* Simple one-step function
+***************************************/
+/**
+ZSTDv02_decompress() : decompress ZSTD frames compliant with v0.2.x format
+ compressedSize : is the exact source size
+ maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
+ It must be equal or larger than originalSize, otherwise decompression will fail.
+ return : the number of bytes decompressed into destination buffer (originalSize)
+ or an errorCode if it fails (which can be tested using ZSTDv01_isError())
+*/
+size_t ZSTDv02_decompress( void* dst, size_t maxOriginalSize,
+ const void* src, size_t compressedSize);
+
+ /**
+ ZSTDv02_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.2.x format
+ srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
+ cSize (output parameter) : the number of bytes that would be read to decompress this frame
+ or an error code if it fails (which can be tested using ZSTDv01_isError())
+ dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
+ or ZSTD_CONTENTSIZE_ERROR if an error occurs
+
+ note : assumes `cSize` and `dBound` are _not_ NULL.
+ */
+void ZSTDv02_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
+ size_t* cSize, unsigned long long* dBound);
+
+/**
+ZSTDv02_isError() : tells if the result of ZSTDv02_decompress() is an error
+*/
+unsigned ZSTDv02_isError(size_t code);
+
+
+/* *************************************
+* Advanced functions
+***************************************/
+typedef struct ZSTDv02_Dctx_s ZSTDv02_Dctx;
+ZSTDv02_Dctx* ZSTDv02_createDCtx(void);
+size_t ZSTDv02_freeDCtx(ZSTDv02_Dctx* dctx);
+
+size_t ZSTDv02_decompressDCtx(void* ctx,
+ void* dst, size_t maxOriginalSize,
+ const void* src, size_t compressedSize);
+
+/* *************************************
+* Streaming functions
+***************************************/
+size_t ZSTDv02_resetDCtx(ZSTDv02_Dctx* dctx);
+
+size_t ZSTDv02_nextSrcSizeToDecompress(ZSTDv02_Dctx* dctx);
+size_t ZSTDv02_decompressContinue(ZSTDv02_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
+/**
+ Use above functions alternatively.
+ ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
+ ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
+ Result is the number of bytes regenerated within 'dst'.
+ It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
+*/
+
+/* *************************************
+* Prefix - version detection
+***************************************/
+#define ZSTDv02_magicNumber 0xFD2FB522 /* v0.2 */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_V02_H_4174539423 */
diff --git a/vendor/github.com/DataDog/zstd/zstd_v03.c b/vendor/github.com/DataDog/zstd/zstd_v03.c
new file mode 100644
index 0000000..7a0e7c9
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v03.c
@@ -0,0 +1,3155 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+#include <stddef.h> /* size_t, ptrdiff_t */
+#include "zstd_v03.h"
+#include "error_private.h"
+
+
+/******************************************
+* Compiler-specific
+******************************************/
+#if defined(_MSC_VER) /* Visual Studio */
+# include <stdlib.h> /* _byteswap_ulong */
+# include <intrin.h> /* _byteswap_* */
+#endif
+
+
+
+/* ******************************************************************
+ mem.h
+ low-level memory access routines
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef MEM_H_MODULE
+#define MEM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/******************************************
+* Includes
+******************************************/
+#include <stddef.h> /* size_t, ptrdiff_t */
+#include <string.h> /* memcpy */
+
+
+/******************************************
+* Compiler-specific
+******************************************/
+#if defined(__GNUC__)
+# define MEM_STATIC static __attribute__((unused))
+#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define MEM_STATIC static inline
+#elif defined(_MSC_VER)
+# define MEM_STATIC static __inline
+#else
+# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
+
+
+/****************************************************************
+* Basic Types
+*****************************************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# include <stdint.h>
+ typedef uint8_t BYTE;
+ typedef uint16_t U16;
+ typedef int16_t S16;
+ typedef uint32_t U32;
+ typedef int32_t S32;
+ typedef uint64_t U64;
+ typedef int64_t S64;
+#else
+ typedef unsigned char BYTE;
+ typedef unsigned short U16;
+ typedef signed short S16;
+ typedef unsigned int U32;
+ typedef signed int S32;
+ typedef unsigned long long U64;
+ typedef signed long long S64;
+#endif
+
+
+/****************************************************************
+* Memory I/O
+*****************************************************************/
+/* MEM_FORCE_MEMORY_ACCESS
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
+ * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method is portable but violate C standard.
+ * It can generate buggy code on targets generating assembly depending on alignment.
+ * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
+ * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
+# define MEM_FORCE_MEMORY_ACCESS 2
+# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
+ (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# define MEM_FORCE_MEMORY_ACCESS 1
+# endif
+#endif
+
+MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; }
+MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; }
+
+MEM_STATIC unsigned MEM_isLittleEndian(void)
+{
+ const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
+ return one.c[0];
+}
+
+#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
+
+/* violates C standard on structure alignment.
+Only use if no other choice to achieve best performance on target platform */
+MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
+MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
+MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
+
+#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;
+
+MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
+MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
+
+#else
+
+/* default method, safe and standard.
+ can sometimes prove slower */
+
+MEM_STATIC U16 MEM_read16(const void* memPtr)
+{
+ U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U32 MEM_read32(const void* memPtr)
+{
+ U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U64 MEM_read64(const void* memPtr)
+{
+ U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value)
+{
+ memcpy(memPtr, &value, sizeof(value));
+}
+
+
+#endif // MEM_FORCE_MEMORY_ACCESS
+
+
+MEM_STATIC U16 MEM_readLE16(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read16(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U16)(p[0] + (p[1]<<8));
+ }
+}
+
+MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
+{
+ if (MEM_isLittleEndian())
+ {
+ MEM_write16(memPtr, val);
+ }
+ else
+ {
+ BYTE* p = (BYTE*)memPtr;
+ p[0] = (BYTE)val;
+ p[1] = (BYTE)(val>>8);
+ }
+}
+
+MEM_STATIC U32 MEM_readLE24(const void* memPtr)
+{
+ return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
+}
+
+MEM_STATIC U32 MEM_readLE32(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read32(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
+ }
+}
+
+MEM_STATIC U64 MEM_readLE64(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read64(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
+ + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
+ }
+}
+
+
+MEM_STATIC size_t MEM_readLEST(const void* memPtr)
+{
+ if (MEM_32bits())
+ return (size_t)MEM_readLE32(memPtr);
+ else
+ return (size_t)MEM_readLE64(memPtr);
+}
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* MEM_H_MODULE */
+
+
+/* ******************************************************************
+ bitstream
+ Part of NewGen Entropy library
+ header file (to include)
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef BITSTREAM_H_MODULE
+#define BITSTREAM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*
+* This API consists of small unitary functions, which highly benefit from being inlined.
+* Since link-time-optimization is not available for all compilers,
+* these functions are defined into a .h to be included.
+*/
+
+
+/**********************************************
+* bitStream decompression API (read backward)
+**********************************************/
+typedef struct
+{
+ size_t bitContainer;
+ unsigned bitsConsumed;
+ const char* ptr;
+ const char* start;
+} BIT_DStream_t;
+
+typedef enum { BIT_DStream_unfinished = 0,
+ BIT_DStream_endOfBuffer = 1,
+ BIT_DStream_completed = 2,
+ BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
+ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
+
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
+MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
+
+
+
+/******************************************
+* unsafe API
+******************************************/
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
+/* faster, but works only if nbBits >= 1 */
+
+
+
+/****************************************************************
+* Helper functions
+****************************************************************/
+MEM_STATIC unsigned BIT_highbit32 (U32 val)
+{
+# if defined(_MSC_VER) /* Visual */
+ unsigned long r=0;
+ _BitScanReverse ( &r, val );
+ return (unsigned) r;
+# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
+ return 31 - __builtin_clz (val);
+# else /* Software version */
+ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ U32 v = val;
+ unsigned r;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
+ return r;
+# endif
+}
+
+
+
+/**********************************************************
+* bitStream decoding
+**********************************************************/
+
+/*!BIT_initDStream
+* Initialize a BIT_DStream_t.
+* @bitD : a pointer to an already allocated BIT_DStream_t structure
+* @srcBuffer must point at the beginning of a bitStream
+* @srcSize must be the exact size of the bitStream
+* @result : size of stream (== srcSize) or an errorCode if a problem is detected
+*/
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
+{
+ if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
+
+ if (srcSize >= sizeof(size_t)) /* normal case */
+ {
+ U32 contain32;
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
+ if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
+ bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
+ }
+ else
+ {
+ U32 contain32;
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = bitD->start;
+ bitD->bitContainer = *(const BYTE*)(bitD->start);
+ switch(srcSize)
+ {
+ case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
+ /* fallthrough */
+ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
+ /* fallthrough */
+ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
+ /* fallthrough */
+ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
+ /* fallthrough */
+ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
+ /* fallthrough */
+ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8;
+ /* fallthrough */
+ default:;
+ }
+ contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
+ if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
+ bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
+ bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
+ }
+
+ return srcSize;
+}
+MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+ const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
+}
+
+/*! BIT_lookBitsFast :
+* unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits)
+{
+ const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
+}
+
+MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+ bitD->bitsConsumed += nbBits;
+}
+
+MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+ size_t value = BIT_lookBits(bitD, nbBits);
+ BIT_skipBits(bitD, nbBits);
+ return value;
+}
+
+/*!BIT_readBitsFast :
+* unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
+{
+ size_t value = BIT_lookBitsFast(bitD, nbBits);
+ BIT_skipBits(bitD, nbBits);
+ return value;
+}
+
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
+{
+ if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
+ return BIT_DStream_overflow;
+
+ if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
+ {
+ bitD->ptr -= bitD->bitsConsumed >> 3;
+ bitD->bitsConsumed &= 7;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ return BIT_DStream_unfinished;
+ }
+ if (bitD->ptr == bitD->start)
+ {
+ if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
+ return BIT_DStream_completed;
+ }
+ {
+ U32 nbBytes = bitD->bitsConsumed >> 3;
+ BIT_DStream_status result = BIT_DStream_unfinished;
+ if (bitD->ptr - nbBytes < bitD->start)
+ {
+ nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
+ result = BIT_DStream_endOfBuffer;
+ }
+ bitD->ptr -= nbBytes;
+ bitD->bitsConsumed -= nbBytes*8;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
+ return result;
+ }
+}
+
+/*! BIT_endOfDStream
+* @return Tells if DStream has reached its exact end
+*/
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
+{
+ return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
+}
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* BITSTREAM_H_MODULE */
+/* ******************************************************************
+ Error codes and messages
+ Copyright (C) 2013-2015, Yann Collet
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef ERROR_H_MODULE
+#define ERROR_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/******************************************
+* Compiler-specific
+******************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define ERR_STATIC static inline
+#elif defined(_MSC_VER)
+# define ERR_STATIC static __inline
+#elif defined(__GNUC__)
+# define ERR_STATIC static __attribute__((unused))
+#else
+# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
+
+
+/******************************************
+* Error Management
+******************************************/
+#define PREFIX(name) ZSTD_error_##name
+
+#define ERROR(name) (size_t)-PREFIX(name)
+
+#define ERROR_LIST(ITEM) \
+ ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \
+ ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \
+ ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \
+ ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \
+ ITEM(PREFIX(maxCode))
+
+#define ERROR_GENERATE_ENUM(ENUM) ENUM,
+typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */
+
+#define ERROR_CONVERTTOSTRING(STRING) #STRING,
+#define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR)
+static const char* ERR_strings[] = { ERROR_LIST(ERROR_GENERATE_STRING) };
+
+ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
+
+ERR_STATIC const char* ERR_getErrorName(size_t code)
+{
+ static const char* codeError = "Unspecified error code";
+ if (ERR_isError(code)) return ERR_strings[-(int)(code)];
+ return codeError;
+}
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ERROR_H_MODULE */
+/*
+Constructor and Destructor of type FSE_CTable
+ Note that its size depends on 'tableLog' and 'maxSymbolValue' */
+typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */
+typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
+
+
+/* ******************************************************************
+ FSE : Finite State Entropy coder
+ header file for static linking (only)
+ Copyright (C) 2013-2015, Yann Collet
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/******************************************
+* Static allocation
+******************************************/
+/* FSE buffer bounds */
+#define FSE_NCOUNTBOUND 512
+#define FSE_BLOCKBOUND(size) (size + (size>>7))
+#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
+
+/* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */
+#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
+#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
+
+
+/******************************************
+* FSE advanced API
+******************************************/
+static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
+/* build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
+
+static size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
+/* build a fake FSE_DTable, designed to always generate the same symbolValue */
+
+
+/******************************************
+* FSE symbol decompression API
+******************************************/
+typedef struct
+{
+ size_t state;
+ const void* table; /* precise table may vary, depending on U16 */
+} FSE_DState_t;
+
+
+static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
+
+static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
+
+static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
+
+
+/******************************************
+* FSE unsafe API
+******************************************/
+static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
+/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
+
+
+/******************************************
+* Implementation of inline functions
+******************************************/
+
+/* decompression */
+
+typedef struct {
+ U16 tableLog;
+ U16 fastMode;
+} FSE_DTableHeader; /* sizeof U32 */
+
+typedef struct
+{
+ unsigned short newState;
+ unsigned char symbol;
+ unsigned char nbBits;
+} FSE_decode_t; /* size == U32 */
+
+MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
+{
+ FSE_DTableHeader DTableH;
+ memcpy(&DTableH, dt, sizeof(DTableH));
+ DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog);
+ BIT_reloadDStream(bitD);
+ DStatePtr->table = dt + 1;
+}
+
+MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+ const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ const U32 nbBits = DInfo.nbBits;
+ BYTE symbol = DInfo.symbol;
+ size_t lowBits = BIT_readBits(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+ const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ const U32 nbBits = DInfo.nbBits;
+ BYTE symbol = DInfo.symbol;
+ size_t lowBits = BIT_readBitsFast(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
+{
+ return DStatePtr->state == 0;
+}
+
+
+#if defined (__cplusplus)
+}
+#endif
+/* ******************************************************************
+ Huff0 : Huffman coder, part of New Generation Entropy library
+ header file for static linking (only)
+ Copyright (C) 2013-2015, Yann Collet
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/******************************************
+* Static allocation macros
+******************************************/
+/* Huff0 buffer bounds */
+#define HUF_CTABLEBOUND 129
+#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
+#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
+
+/* static allocation of Huff0's DTable */
+#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog)) /* nb Cells; use unsigned short for X2, unsigned int for X4 */
+#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
+ unsigned short DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
+#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
+ unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
+#define HUF_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
+ unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
+
+
+/******************************************
+* Advanced functions
+******************************************/
+static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
+static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+/*
+ zstd - standard compression library
+ Header File
+ Copyright (C) 2014-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd source repository : https://github.com/Cyan4973/zstd
+ - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
+*/
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/* *************************************
+* Includes
+***************************************/
+#include <stddef.h> /* size_t */
+
+
+/* *************************************
+* Version
+***************************************/
+#define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */
+#define ZSTD_VERSION_MINOR 2 /* for new (non-breaking) interface capabilities */
+#define ZSTD_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */
+#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
+
+
+/* *************************************
+* Advanced functions
+***************************************/
+typedef struct ZSTD_CCtx_s ZSTD_CCtx; /* incomplete type */
+
+#if defined (__cplusplus)
+}
+#endif
+/*
+ zstd - standard compression library
+ Header File for static linking only
+ Copyright (C) 2014-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd source repository : https://github.com/Cyan4973/zstd
+ - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
+*/
+
+/* The objects defined into this file should be considered experimental.
+ * They are not labelled stable, as their prototype may change in the future.
+ * You can use them for tests, provide feedback, or if you can endure risk of future changes.
+ */
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/* *************************************
+* Streaming functions
+***************************************/
+
+typedef struct ZSTD_DCtx_s ZSTD_DCtx;
+
+/*
+ Use above functions alternatively.
+ ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
+ ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
+ Result is the number of bytes regenerated within 'dst'.
+ It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
+*/
+
+/* *************************************
+* Prefix - version detection
+***************************************/
+#define ZSTD_magicNumber 0xFD2FB523 /* v0.3 */
+
+
+#if defined (__cplusplus)
+}
+#endif
+/* ******************************************************************
+ FSE : Finite State Entropy coder
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+#ifndef FSE_COMMONDEFS_ONLY
+
+/****************************************************************
+* Tuning parameters
+****************************************************************/
+/* MEMORY_USAGE :
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+* Increasing memory usage improves compression ratio
+* Reduced memory usage can improve speed, due to cache effect
+* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
+#define FSE_MAX_MEMORY_USAGE 14
+#define FSE_DEFAULT_MEMORY_USAGE 13
+
+/* FSE_MAX_SYMBOL_VALUE :
+* Maximum symbol value authorized.
+* Required for proper stack allocation */
+#define FSE_MAX_SYMBOL_VALUE 255
+
+
+/****************************************************************
+* template functions type & suffix
+****************************************************************/
+#define FSE_FUNCTION_TYPE BYTE
+#define FSE_FUNCTION_EXTENSION
+
+
+/****************************************************************
+* Byte symbol type
+****************************************************************/
+#endif /* !FSE_COMMONDEFS_ONLY */
+
+
+/****************************************************************
+* Compiler specifics
+****************************************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# define FORCE_INLINE static __forceinline
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
+#else
+# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# ifdef __GNUC__
+# define FORCE_INLINE static inline __attribute__((always_inline))
+# else
+# define FORCE_INLINE static inline
+# endif
+# else
+# define FORCE_INLINE static
+# endif /* __STDC_VERSION__ */
+#endif
+
+
+/****************************************************************
+* Includes
+****************************************************************/
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memcpy, memset */
+#include <stdio.h> /* printf (debug) */
+
+/****************************************************************
+* Constants
+*****************************************************************/
+#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
+#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
+#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
+#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
+#define FSE_MIN_TABLELOG 5
+
+#define FSE_TABLELOG_ABSOLUTE_MAX 15
+#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
+#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
+#endif
+
+
+/****************************************************************
+* Error Management
+****************************************************************/
+#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+/****************************************************************
+* Complex types
+****************************************************************/
+typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
+
+
+/****************************************************************
+* Templates
+****************************************************************/
+/*
+ designed to be included
+ for type-specific functions (template emulation in C)
+ Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSE_FUNCTION_EXTENSION
+# error "FSE_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSE_FUNCTION_TYPE
+# error "FSE_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSE_CAT(X,Y) X##Y
+#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
+#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
+
+
+/* Function templates */
+
+#define FSE_DECODE_TYPE FSE_decode_t
+
+static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
+
+static size_t FSE_buildDTable
+(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+ void* ptr = dt+1;
+ FSE_DTableHeader DTableH;
+ FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)ptr;
+ const U32 tableSize = 1 << tableLog;
+ const U32 tableMask = tableSize-1;
+ const U32 step = FSE_tableStep(tableSize);
+ U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
+ U32 position = 0;
+ U32 highThreshold = tableSize-1;
+ const S16 largeLimit= (S16)(1 << (tableLog-1));
+ U32 noLarge = 1;
+ U32 s;
+
+ /* Sanity Checks */
+ if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
+
+ /* Init, lay down lowprob symbols */
+ DTableH.tableLog = (U16)tableLog;
+ for (s=0; s<=maxSymbolValue; s++)
+ {
+ if (normalizedCounter[s]==-1)
+ {
+ tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
+ symbolNext[s] = 1;
+ }
+ else
+ {
+ if (normalizedCounter[s] >= largeLimit) noLarge=0;
+ symbolNext[s] = normalizedCounter[s];
+ }
+ }
+
+ /* Spread symbols */
+ for (s=0; s<=maxSymbolValue; s++)
+ {
+ int i;
+ for (i=0; i<normalizedCounter[s]; i++)
+ {
+ tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
+ position = (position + step) & tableMask;
+ while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
+ }
+ }
+
+ if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
+
+ /* Build Decoding table */
+ {
+ U32 i;
+ for (i=0; i<tableSize; i++)
+ {
+ FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
+ U16 nextState = symbolNext[symbol]++;
+ tableDecode[i].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
+ tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
+ }
+ }
+
+ DTableH.fastMode = (U16)noLarge;
+ memcpy(dt, &DTableH, sizeof(DTableH));
+ return 0;
+}
+
+
+#ifndef FSE_COMMONDEFS_ONLY
+/******************************************
+* FSE helper functions
+******************************************/
+static unsigned FSE_isError(size_t code) { return ERR_isError(code); }
+
+
+/****************************************************************
+* FSE NCount encoding-decoding
+****************************************************************/
+static short FSE_abs(short a)
+{
+ return a<0 ? -a : a;
+}
+
+static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize)
+{
+ const BYTE* const istart = (const BYTE*) headerBuffer;
+ const BYTE* const iend = istart + hbSize;
+ const BYTE* ip = istart;
+ int nbBits;
+ int remaining;
+ int threshold;
+ U32 bitStream;
+ int bitCount;
+ unsigned charnum = 0;
+ int previous0 = 0;
+
+ if (hbSize < 4) return ERROR(srcSize_wrong);
+ bitStream = MEM_readLE32(ip);
+ nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
+ if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
+ bitStream >>= 4;
+ bitCount = 4;
+ *tableLogPtr = nbBits;
+ remaining = (1<<nbBits)+1;
+ threshold = 1<<nbBits;
+ nbBits++;
+
+ while ((remaining>1) && (charnum<=*maxSVPtr))
+ {
+ if (previous0)
+ {
+ unsigned n0 = charnum;
+ while ((bitStream & 0xFFFF) == 0xFFFF)
+ {
+ n0+=24;
+ if (ip < iend-5)
+ {
+ ip+=2;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ }
+ else
+ {
+ bitStream >>= 16;
+ bitCount+=16;
+ }
+ }
+ while ((bitStream & 3) == 3)
+ {
+ n0+=3;
+ bitStream>>=2;
+ bitCount+=2;
+ }
+ n0 += bitStream & 3;
+ bitCount += 2;
+ if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
+ while (charnum < n0) normalizedCounter[charnum++] = 0;
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
+ {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ }
+ else
+ bitStream >>= 2;
+ }
+ {
+ const short max = (short)((2*threshold-1)-remaining);
+ short count;
+
+ if ((bitStream & (threshold-1)) < (U32)max)
+ {
+ count = (short)(bitStream & (threshold-1));
+ bitCount += nbBits-1;
+ }
+ else
+ {
+ count = (short)(bitStream & (2*threshold-1));
+ if (count >= threshold) count -= max;
+ bitCount += nbBits;
+ }
+
+ count--; /* extra accuracy */
+ remaining -= FSE_abs(count);
+ normalizedCounter[charnum++] = count;
+ previous0 = !count;
+ while (remaining < threshold)
+ {
+ nbBits--;
+ threshold >>= 1;
+ }
+
+ {
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
+ {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ }
+ else
+ {
+ bitCount -= (int)(8 * (iend - 4 - ip));
+ ip = iend - 4;
+ }
+ bitStream = MEM_readLE32(ip) >> (bitCount & 31);
+ }
+ }
+ }
+ if (remaining != 1) return ERROR(GENERIC);
+ *maxSVPtr = charnum-1;
+
+ ip += (bitCount+7)>>3;
+ if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
+ return ip-istart;
+}
+
+
+/*********************************************************
+* Decompression (Byte symbols)
+*********************************************************/
+static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1;
+
+ DTableH->tableLog = 0;
+ DTableH->fastMode = 0;
+
+ cell->newState = 0;
+ cell->symbol = symbolValue;
+ cell->nbBits = 0;
+
+ return 0;
+}
+
+
+static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1;
+ const unsigned tableSize = 1 << nbBits;
+ const unsigned tableMask = tableSize - 1;
+ const unsigned maxSymbolValue = tableMask;
+ unsigned s;
+
+ /* Sanity checks */
+ if (nbBits < 1) return ERROR(GENERIC); /* min size */
+
+ /* Build Decoding Table */
+ DTableH->tableLog = (U16)nbBits;
+ DTableH->fastMode = 1;
+ for (s=0; s<=maxSymbolValue; s++)
+ {
+ dinfo[s].newState = 0;
+ dinfo[s].symbol = (BYTE)s;
+ dinfo[s].nbBits = (BYTE)nbBits;
+ }
+
+ return 0;
+}
+
+FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
+ void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSE_DTable* dt, const unsigned fast)
+{
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const omax = op + maxDstSize;
+ BYTE* const olimit = omax-3;
+
+ BIT_DStream_t bitD;
+ FSE_DState_t state1;
+ FSE_DState_t state2;
+ size_t errorCode;
+
+ /* Init */
+ errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
+ if (FSE_isError(errorCode)) return errorCode;
+
+ FSE_initDState(&state1, &bitD, dt);
+ FSE_initDState(&state2, &bitD, dt);
+
+#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
+
+ /* 4 symbols per loop */
+ for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op<olimit) ; op+=4)
+ {
+ op[0] = FSE_GETSYMBOL(&state1);
+
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BIT_reloadDStream(&bitD);
+
+ op[1] = FSE_GETSYMBOL(&state2);
+
+ if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
+
+ op[2] = FSE_GETSYMBOL(&state1);
+
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BIT_reloadDStream(&bitD);
+
+ op[3] = FSE_GETSYMBOL(&state2);
+ }
+
+ /* tail */
+ /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
+ while (1)
+ {
+ if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
+ break;
+
+ *op++ = FSE_GETSYMBOL(&state1);
+
+ if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
+ break;
+
+ *op++ = FSE_GETSYMBOL(&state2);
+ }
+
+ /* end ? */
+ if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
+ return op-ostart;
+
+ if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */
+
+ return ERROR(corruption_detected);
+}
+
+
+static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSE_DTable* dt)
+{
+ FSE_DTableHeader DTableH;
+ memcpy(&DTableH, dt, sizeof(DTableH));
+
+ /* select fast mode (static) */
+ if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
+ return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
+}
+
+
+static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
+{
+ const BYTE* const istart = (const BYTE*)cSrc;
+ const BYTE* ip = istart;
+ short counting[FSE_MAX_SYMBOL_VALUE+1];
+ DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
+ unsigned tableLog;
+ unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
+ size_t errorCode;
+
+ if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
+
+ /* normal FSE decoding mode */
+ errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
+ if (FSE_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
+ if (FSE_isError(errorCode)) return errorCode;
+
+ /* always return, even if it is an error code */
+ return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
+}
+
+
+
+#endif /* FSE_COMMONDEFS_ONLY */
+/* ******************************************************************
+ Huff0 : Huffman coder, part of New Generation Entropy library
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+/****************************************************************
+* Compiler specifics
+****************************************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+/* inline is defined */
+#elif defined(_MSC_VER)
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# define inline __inline
+#else
+# define inline /* disable inline */
+#endif
+
+
+/****************************************************************
+* Includes
+****************************************************************/
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memcpy, memset */
+#include <stdio.h> /* printf (debug) */
+
+/****************************************************************
+* Error Management
+****************************************************************/
+#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+/******************************************
+* Helper functions
+******************************************/
+static unsigned HUF_isError(size_t code) { return ERR_isError(code); }
+
+#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
+#define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
+#define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */
+#define HUF_MAX_SYMBOL_VALUE 255
+#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
+# error "HUF_MAX_TABLELOG is too large !"
+#endif
+
+
+
+/*********************************************************
+* Huff0 : Huffman block decompression
+*********************************************************/
+typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
+
+typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
+
+typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
+
+/*! HUF_readStats
+ Read compact Huffman tree, saved by HUF_writeCTable
+ @huffWeight : destination buffer
+ @return : size read from `src`
+*/
+static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize)
+{
+ U32 weightTotal;
+ U32 tableLog;
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize;
+ size_t oSize;
+ U32 n;
+
+ if (!srcSize) return ERROR(srcSize_wrong);
+ iSize = ip[0];
+ //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
+
+ if (iSize >= 128) /* special header */
+ {
+ if (iSize >= (242)) /* RLE */
+ {
+ static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
+ oSize = l[iSize-242];
+ memset(huffWeight, 1, hwSize);
+ iSize = 0;
+ }
+ else /* Incompressible */
+ {
+ oSize = iSize - 127;
+ iSize = ((oSize+1)/2);
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ if (oSize >= hwSize) return ERROR(corruption_detected);
+ ip += 1;
+ for (n=0; n<oSize; n+=2)
+ {
+ huffWeight[n] = ip[n/2] >> 4;
+ huffWeight[n+1] = ip[n/2] & 15;
+ }
+ }
+ }
+ else /* header compressed with FSE (normal case) */
+ {
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
+ if (FSE_isError(oSize)) return oSize;
+ }
+
+ /* collect weight stats */
+ memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
+ weightTotal = 0;
+ for (n=0; n<oSize; n++)
+ {
+ if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
+ rankStats[huffWeight[n]]++;
+ weightTotal += (1 << huffWeight[n]) >> 1;
+ }
+ if (weightTotal == 0) return ERROR(corruption_detected);
+
+ /* get last non-null symbol weight (implied, total must be 2^n) */
+ tableLog = BIT_highbit32(weightTotal) + 1;
+ if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
+ {
+ U32 total = 1 << tableLog;
+ U32 rest = total - weightTotal;
+ U32 verif = 1 << BIT_highbit32(rest);
+ U32 lastWeight = BIT_highbit32(rest) + 1;
+ if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
+ huffWeight[oSize] = (BYTE)lastWeight;
+ rankStats[lastWeight]++;
+ }
+
+ /* check tree construction validity */
+ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
+
+ /* results */
+ *nbSymbolsPtr = (U32)(oSize+1);
+ *tableLogPtr = tableLog;
+ return iSize+1;
+}
+
+
+/**************************/
+/* single-symbol decoding */
+/**************************/
+
+static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
+{
+ BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
+ U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
+ U32 tableLog = 0;
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize = ip[0];
+ U32 nbSymbols = 0;
+ U32 n;
+ U32 nextRankStart;
+ void* ptr = DTable+1;
+ HUF_DEltX2* const dt = (HUF_DEltX2*)(ptr);
+
+ HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
+ //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
+ if (HUF_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
+ DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */
+
+ /* Prepare ranks */
+ nextRankStart = 0;
+ for (n=1; n<=tableLog; n++)
+ {
+ U32 current = nextRankStart;
+ nextRankStart += (rankVal[n] << (n-1));
+ rankVal[n] = current;
+ }
+
+ /* fill DTable */
+ for (n=0; n<nbSymbols; n++)
+ {
+ const U32 w = huffWeight[n];
+ const U32 length = (1 << w) >> 1;
+ U32 i;
+ HUF_DEltX2 D;
+ D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
+ for (i = rankVal[w]; i < rankVal[w] + length; i++)
+ dt[i] = D;
+ rankVal[w] += length;
+ }
+
+ return iSize;
+}
+
+static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
+{
+ const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
+ const BYTE c = dt[val].byte;
+ BIT_skipBits(Dstream, dt[val].nbBits);
+ return c;
+}
+
+#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
+ *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
+ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 4 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
+ {
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ }
+
+ /* closer to the end */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ /* no more data to retrieve from bitstream, hence no need to reload */
+ while (p < pEnd)
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ return pEnd-pStart;
+}
+
+
+static size_t HUF_decompress4X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U16* DTable)
+{
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ {
+ const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+
+ const void* ptr = DTable;
+ const HUF_DEltX2* const dt = ((const HUF_DEltX2*)ptr) +1;
+ const U32 dtLog = DTable[0];
+ size_t errorCode;
+
+ /* Init */
+ BIT_DStream_t bitD1;
+ BIT_DStream_t bitD2;
+ BIT_DStream_t bitD3;
+ BIT_DStream_t bitD4;
+ const size_t length1 = MEM_readLE16(istart);
+ const size_t length2 = MEM_readLE16(istart+2);
+ const size_t length3 = MEM_readLE16(istart+4);
+ size_t length4;
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+
+ length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ errorCode = BIT_initDStream(&bitD1, istart1, length1);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD2, istart2, length2);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD3, istart3, length3);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD4, istart4, length4);
+ if (HUF_isError(errorCode)) return errorCode;
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
+ {
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
+
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
+ HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
+ HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
+ HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+ if (!endSignal) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+ size_t errorCode;
+
+ errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
+ if (HUF_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+/***************************/
+/* double-symbols decoding */
+/***************************/
+
+static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
+ const U32* rankValOrigin, const int minWeight,
+ const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
+ U32 nbBitsBaseline, U16 baseSeq)
+{
+ HUF_DEltX4 DElt;
+ U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
+ U32 s;
+
+ /* get pre-calculated rankVal */
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill skipped values */
+ if (minWeight>1)
+ {
+ U32 i, skipSize = rankVal[minWeight];
+ MEM_writeLE16(&(DElt.sequence), baseSeq);
+ DElt.nbBits = (BYTE)(consumed);
+ DElt.length = 1;
+ for (i = 0; i < skipSize; i++)
+ DTable[i] = DElt;
+ }
+
+ /* fill DTable */
+ for (s=0; s<sortedListSize; s++) /* note : sortedSymbols already skipped */
+ {
+ const U32 symbol = sortedSymbols[s].symbol;
+ const U32 weight = sortedSymbols[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 length = 1 << (sizeLog-nbBits);
+ const U32 start = rankVal[weight];
+ U32 i = start;
+ const U32 end = start + length;
+
+ MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
+ DElt.nbBits = (BYTE)(nbBits + consumed);
+ DElt.length = 2;
+ do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
+
+ rankVal[weight] += length;
+ }
+}
+
+typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];
+
+static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
+ const sortedSymbol_t* sortedList, const U32 sortedListSize,
+ const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
+ const U32 nbBitsBaseline)
+{
+ U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
+ const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
+ const U32 minBits = nbBitsBaseline - maxWeight;
+ U32 s;
+
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill DTable */
+ for (s=0; s<sortedListSize; s++)
+ {
+ const U16 symbol = sortedList[s].symbol;
+ const U32 weight = sortedList[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 start = rankVal[weight];
+ const U32 length = 1 << (targetLog-nbBits);
+
+ if (targetLog-nbBits >= minBits) /* enough room for a second symbol */
+ {
+ U32 sortedRank;
+ int minWeight = nbBits + scaleLog;
+ if (minWeight < 1) minWeight = 1;
+ sortedRank = rankStart[minWeight];
+ HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
+ rankValOrigin[nbBits], minWeight,
+ sortedList+sortedRank, sortedListSize-sortedRank,
+ nbBitsBaseline, symbol);
+ }
+ else
+ {
+ U32 i;
+ const U32 end = start + length;
+ HUF_DEltX4 DElt;
+
+ MEM_writeLE16(&(DElt.sequence), symbol);
+ DElt.nbBits = (BYTE)(nbBits);
+ DElt.length = 1;
+ for (i = start; i < end; i++)
+ DTable[i] = DElt;
+ }
+ rankVal[weight] += length;
+ }
+}
+
+static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
+{
+ BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
+ sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
+ U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
+ U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
+ U32* const rankStart = rankStart0+1;
+ rankVal_t rankVal;
+ U32 tableLog, maxW, sizeOfSort, nbSymbols;
+ const U32 memLog = DTable[0];
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize = ip[0];
+ void* ptr = DTable;
+ HUF_DEltX4* const dt = ((HUF_DEltX4*)ptr) + 1;
+
+ HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */
+ if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
+ //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
+ if (HUF_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
+
+ /* find maxWeight */
+ for (maxW = tableLog; rankStats[maxW]==0; maxW--)
+ { if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */
+
+ /* Get start index of each weight */
+ {
+ U32 w, nextRankStart = 0;
+ for (w=1; w<=maxW; w++)
+ {
+ U32 current = nextRankStart;
+ nextRankStart += rankStats[w];
+ rankStart[w] = current;
+ }
+ rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
+ sizeOfSort = nextRankStart;
+ }
+
+ /* sort symbols by weight */
+ {
+ U32 s;
+ for (s=0; s<nbSymbols; s++)
+ {
+ U32 w = weightList[s];
+ U32 r = rankStart[w]++;
+ sortedSymbol[r].symbol = (BYTE)s;
+ sortedSymbol[r].weight = (BYTE)w;
+ }
+ rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
+ }
+
+ /* Build rankVal */
+ {
+ const U32 minBits = tableLog+1 - maxW;
+ U32 nextRankVal = 0;
+ U32 w, consumed;
+ const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
+ U32* rankVal0 = rankVal[0];
+ for (w=1; w<=maxW; w++)
+ {
+ U32 current = nextRankVal;
+ nextRankVal += rankStats[w] << (w+rescale);
+ rankVal0[w] = current;
+ }
+ for (consumed = minBits; consumed <= memLog - minBits; consumed++)
+ {
+ U32* rankValPtr = rankVal[consumed];
+ for (w = 1; w <= maxW; w++)
+ {
+ rankValPtr[w] = rankVal0[w] >> consumed;
+ }
+ }
+ }
+
+ HUF_fillDTableX4(dt, memLog,
+ sortedSymbol, sizeOfSort,
+ rankStart0, rankVal, maxW,
+ tableLog+1);
+
+ return iSize;
+}
+
+
+static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
+{
+ const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 2);
+ BIT_skipBits(DStream, dt[val].nbBits);
+ return dt[val].length;
+}
+
+static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
+{
+ const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 1);
+ if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
+ else
+ {
+ if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
+ {
+ BIT_skipBits(DStream, dt[val].nbBits);
+ if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
+ DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
+ }
+ }
+ return 1;
+}
+
+
+#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
+ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
+ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 8 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7))
+ {
+ HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
+ }
+
+ /* closer to the end */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
+ HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
+
+ while (p <= pEnd-2)
+ HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
+
+ if (p < pEnd)
+ p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
+
+ return p-pStart;
+}
+
+
+
+static size_t HUF_decompress4X4_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U32* DTable)
+{
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ {
+ const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+
+ const void* ptr = DTable;
+ const HUF_DEltX4* const dt = ((const HUF_DEltX4*)ptr) +1;
+ const U32 dtLog = DTable[0];
+ size_t errorCode;
+
+ /* Init */
+ BIT_DStream_t bitD1;
+ BIT_DStream_t bitD2;
+ BIT_DStream_t bitD3;
+ BIT_DStream_t bitD4;
+ const size_t length1 = MEM_readLE16(istart);
+ const size_t length2 = MEM_readLE16(istart+2);
+ const size_t length3 = MEM_readLE16(istart+4);
+ size_t length4;
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+
+ length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ errorCode = BIT_initDStream(&bitD1, istart1, length1);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD2, istart2, length2);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD3, istart3, length3);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD4, istart4, length4);
+ if (HUF_isError(errorCode)) return errorCode;
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
+ {
+ HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
+
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
+ HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
+ HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
+ HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+ if (!endSignal) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize;
+ cSrcSize -= hSize;
+
+ return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+/**********************************/
+/* Generic decompression selector */
+/**********************************/
+
+typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
+static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
+{
+ /* single, double, quad */
+ {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
+ {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
+ {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
+ {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
+ {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
+ {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
+ {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
+ {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
+ {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
+ {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
+ {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
+ {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
+ {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
+ {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
+ {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
+ {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
+};
+
+typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
+
+static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, NULL };
+ /* estimate decompression time */
+ U32 Q;
+ const U32 D256 = (U32)(dstSize >> 8);
+ U32 Dtime[3];
+ U32 algoNb = 0;
+ int n;
+
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
+ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
+
+ /* decoder timing evaluation */
+ Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
+ for (n=0; n<3; n++)
+ Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
+
+ Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
+
+ if (Dtime[1] < Dtime[0]) algoNb = 1;
+
+ return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
+
+ //return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
+ //return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
+ //return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */
+}
+/*
+ zstd - standard compression library
+ Copyright (C) 2014-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd source repository : https://github.com/Cyan4973/zstd
+ - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
+*/
+
+/* ***************************************************************
+* Tuning parameters
+*****************************************************************/
+/*!
+* MEMORY_USAGE :
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+* Increasing memory usage improves compression ratio
+* Reduced memory usage can improve speed, due to cache effect
+*/
+#define ZSTD_MEMORY_USAGE 17
+
+/*!
+ * HEAPMODE :
+ * Select how default compression functions will allocate memory for their hash table,
+ * in memory stack (0, fastest), or in memory heap (1, requires malloc())
+ * Note that compression context is fairly large, as a consequence heap memory is recommended.
+ */
+#ifndef ZSTD_HEAPMODE
+# define ZSTD_HEAPMODE 1
+#endif /* ZSTD_HEAPMODE */
+
+/*!
+* LEGACY_SUPPORT :
+* decompressor can decode older formats (starting from Zstd 0.1+)
+*/
+#ifndef ZSTD_LEGACY_SUPPORT
+# define ZSTD_LEGACY_SUPPORT 1
+#endif
+
+
+/* *******************************************************
+* Includes
+*********************************************************/
+#include <stdlib.h> /* calloc */
+#include <string.h> /* memcpy, memmove */
+#include <stdio.h> /* debug : printf */
+
+
+/* *******************************************************
+* Compiler specifics
+*********************************************************/
+#ifdef __AVX2__
+# include <immintrin.h> /* AVX2 intrinsics */
+#endif
+
+#ifdef _MSC_VER /* Visual Studio */
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4324) /* disable: C4324: padded structure */
+#else
+# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+#endif
+
+
+/* *******************************************************
+* Constants
+*********************************************************/
+#define HASH_LOG (ZSTD_MEMORY_USAGE - 2)
+#define HASH_TABLESIZE (1 << HASH_LOG)
+#define HASH_MASK (HASH_TABLESIZE - 1)
+
+#define KNUTH 2654435761
+
+#define BIT7 128
+#define BIT6 64
+#define BIT5 32
+#define BIT4 16
+#define BIT1 2
+#define BIT0 1
+
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+
+#define BLOCKSIZE (128 KB) /* define, for static allocation */
+#define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/)
+#define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE)
+#define IS_RAW BIT0
+#define IS_RLE BIT1
+
+#define WORKPLACESIZE (BLOCKSIZE*3)
+#define MINMATCH 4
+#define MLbits 7
+#define LLbits 6
+#define Offbits 5
+#define MaxML ((1<<MLbits )-1)
+#define MaxLL ((1<<LLbits )-1)
+#define MaxOff 31
+#define LitFSELog 11
+#define MLFSELog 10
+#define LLFSELog 10
+#define OffFSELog 9
+#define MAX(a,b) ((a)<(b)?(b):(a))
+#define MaxSeq MAX(MaxLL, MaxML)
+
+#define LITERAL_NOENTROPY 63
+#define COMMAND_NOENTROPY 7 /* to remove */
+
+#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
+
+static const size_t ZSTD_blockHeaderSize = 3;
+static const size_t ZSTD_frameHeaderSize = 4;
+
+
+/* *******************************************************
+* Memory operations
+**********************************************************/
+static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
+
+static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
+
+#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
+
+/*! ZSTD_wildcopy : custom version of memcpy(), can copy up to 7-8 bytes too many */
+static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
+{
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + length;
+ do COPY8(op, ip) while (op < oend);
+}
+
+
+/* **************************************
+* Local structures
+****************************************/
+typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
+
+typedef struct
+{
+ blockType_t blockType;
+ U32 origSize;
+} blockProperties_t;
+
+typedef struct {
+ void* buffer;
+ U32* offsetStart;
+ U32* offset;
+ BYTE* offCodeStart;
+ BYTE* offCode;
+ BYTE* litStart;
+ BYTE* lit;
+ BYTE* litLengthStart;
+ BYTE* litLength;
+ BYTE* matchLengthStart;
+ BYTE* matchLength;
+ BYTE* dumpsStart;
+ BYTE* dumps;
+} seqStore_t;
+
+
+/* *************************************
+* Error Management
+***************************************/
+/*! ZSTD_isError
+* tells if a return value is an error code */
+static unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
+
+
+
+/* *************************************************************
+* Decompression section
+***************************************************************/
+struct ZSTD_DCtx_s
+{
+ U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
+ U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
+ U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
+ void* previousDstEnd;
+ void* base;
+ size_t expected;
+ blockType_t bType;
+ U32 phase;
+ const BYTE* litPtr;
+ size_t litSize;
+ BYTE litBuffer[BLOCKSIZE + 8 /* margin for wildcopy */];
+}; /* typedef'd to ZSTD_Dctx within "zstd_static.h" */
+
+
+static size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
+{
+ const BYTE* const in = (const BYTE* const)src;
+ BYTE headerFlags;
+ U32 cSize;
+
+ if (srcSize < 3) return ERROR(srcSize_wrong);
+
+ headerFlags = *in;
+ cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
+
+ bpPtr->blockType = (blockType_t)(headerFlags >> 6);
+ bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
+
+ if (bpPtr->blockType == bt_end) return 0;
+ if (bpPtr->blockType == bt_rle) return 1;
+ return cSize;
+}
+
+static size_t ZSTD_copyUncompressedBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
+ memcpy(dst, src, srcSize);
+ return srcSize;
+}
+
+
+/** ZSTD_decompressLiterals
+ @return : nb of bytes read from src, or an error code*/
+static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr,
+ const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+
+ const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
+ const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
+
+ if (litSize > *maxDstSizePtr) return ERROR(corruption_detected);
+ if (litCSize + 5 > srcSize) return ERROR(corruption_detected);
+
+ if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected);
+
+ *maxDstSizePtr = litSize;
+ return litCSize + 5;
+}
+
+
+/** ZSTD_decodeLiteralsBlock
+ @return : nb of bytes read from src (< srcSize )*/
+static size_t ZSTD_decodeLiteralsBlock(void* ctx,
+ const void* src, size_t srcSize)
+{
+ ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx;
+ const BYTE* const istart = (const BYTE* const)src;
+
+ /* any compressed block with literals segment must be at least this size */
+ if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
+
+ switch(*istart & 3)
+ {
+ default:
+ case 0:
+ {
+ size_t litSize = BLOCKSIZE;
+ const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, 8);
+ return readSize; /* works if it's an error too */
+ }
+ case IS_RAW:
+ {
+ const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
+ if (litSize > srcSize-11) /* risk of reading too far with wildcopy */
+ {
+ if (litSize > srcSize-3) return ERROR(corruption_detected);
+ memcpy(dctx->litBuffer, istart, litSize);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, 8);
+ return litSize+3;
+ }
+ /* direct reference into compressed stream */
+ dctx->litPtr = istart+3;
+ dctx->litSize = litSize;
+ return litSize+3;
+ }
+ case IS_RLE:
+ {
+ const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
+ if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
+ memset(dctx->litBuffer, istart[3], litSize + 8);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ return 4;
+ }
+ }
+}
+
+
+static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
+ FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
+ const void* src, size_t srcSize)
+{
+ const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* ip = istart;
+ const BYTE* const iend = istart + srcSize;
+ U32 LLtype, Offtype, MLtype;
+ U32 LLlog, Offlog, MLlog;
+ size_t dumpsLength;
+
+ /* check */
+ if (srcSize < 5) return ERROR(srcSize_wrong);
+
+ /* SeqHead */
+ *nbSeq = MEM_readLE16(ip); ip+=2;
+ LLtype = *ip >> 6;
+ Offtype = (*ip >> 4) & 3;
+ MLtype = (*ip >> 2) & 3;
+ if (*ip & 2)
+ {
+ dumpsLength = ip[2];
+ dumpsLength += ip[1] << 8;
+ ip += 3;
+ }
+ else
+ {
+ dumpsLength = ip[1];
+ dumpsLength += (ip[0] & 1) << 8;
+ ip += 2;
+ }
+ *dumpsPtr = ip;
+ ip += dumpsLength;
+ *dumpsLengthPtr = dumpsLength;
+
+ /* check */
+ if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
+
+ /* sequences */
+ {
+ S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL and MaxOff */
+ size_t headerSize;
+
+ /* Build DTables */
+ switch(LLtype)
+ {
+ case bt_rle :
+ LLlog = 0;
+ FSE_buildDTable_rle(DTableLL, *ip++); break;
+ case bt_raw :
+ LLlog = LLbits;
+ FSE_buildDTable_raw(DTableLL, LLbits); break;
+ default :
+ { U32 max = MaxLL;
+ headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
+ if (FSE_isError(headerSize)) return ERROR(GENERIC);
+ if (LLlog > LLFSELog) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSE_buildDTable(DTableLL, norm, max, LLlog);
+ } }
+
+ switch(Offtype)
+ {
+ case bt_rle :
+ Offlog = 0;
+ if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
+ FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */
+ break;
+ case bt_raw :
+ Offlog = Offbits;
+ FSE_buildDTable_raw(DTableOffb, Offbits); break;
+ default :
+ { U32 max = MaxOff;
+ headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
+ if (FSE_isError(headerSize)) return ERROR(GENERIC);
+ if (Offlog > OffFSELog) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSE_buildDTable(DTableOffb, norm, max, Offlog);
+ } }
+
+ switch(MLtype)
+ {
+ case bt_rle :
+ MLlog = 0;
+ if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
+ FSE_buildDTable_rle(DTableML, *ip++); break;
+ case bt_raw :
+ MLlog = MLbits;
+ FSE_buildDTable_raw(DTableML, MLbits); break;
+ default :
+ { U32 max = MaxML;
+ headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
+ if (FSE_isError(headerSize)) return ERROR(GENERIC);
+ if (MLlog > MLFSELog) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSE_buildDTable(DTableML, norm, max, MLlog);
+ } } }
+
+ return ip-istart;
+}
+
+
+typedef struct {
+ size_t litLength;
+ size_t offset;
+ size_t matchLength;
+} seq_t;
+
+typedef struct {
+ BIT_DStream_t DStream;
+ FSE_DState_t stateLL;
+ FSE_DState_t stateOffb;
+ FSE_DState_t stateML;
+ size_t prevOffset;
+ const BYTE* dumps;
+ const BYTE* dumpsEnd;
+} seqState_t;
+
+
+static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
+{
+ size_t litLength;
+ size_t prevOffset;
+ size_t offset;
+ size_t matchLength;
+ const BYTE* dumps = seqState->dumps;
+ const BYTE* const de = seqState->dumpsEnd;
+
+ /* Literal length */
+ litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
+ prevOffset = litLength ? seq->offset : seqState->prevOffset;
+ seqState->prevOffset = seq->offset;
+ if (litLength == MaxLL)
+ {
+ const U32 add = dumps<de ? *dumps++ : 0;
+ if (add < 255) litLength += add;
+ else if (dumps + 3 <= de)
+ {
+ litLength = MEM_readLE24(dumps);
+ dumps += 3;
+ }
+ if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
+ }
+
+ /* Offset */
+ {
+ static const size_t offsetPrefix[MaxOff+1] = { /* note : size_t faster than U32 */
+ 1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256,
+ 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
+ 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 };
+ U32 offsetCode, nbBits;
+ offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* <= maxOff, by table construction */
+ if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
+ nbBits = offsetCode - 1;
+ if (offsetCode==0) nbBits = 0; /* cmove */
+ offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits);
+ if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
+ if (offsetCode==0) offset = prevOffset; /* cmove */
+ }
+
+ /* MatchLength */
+ matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
+ if (matchLength == MaxML)
+ {
+ const U32 add = dumps<de ? *dumps++ : 0;
+ if (add < 255) matchLength += add;
+ else if (dumps + 3 <= de)
+ {
+ matchLength = MEM_readLE24(dumps);
+ dumps += 3;
+ }
+ if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
+ }
+ matchLength += MINMATCH;
+
+ /* save result */
+ seq->litLength = litLength;
+ seq->offset = offset;
+ seq->matchLength = matchLength;
+ seqState->dumps = dumps;
+}
+
+
+static size_t ZSTD_execSequence(BYTE* op,
+ seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ BYTE* const base, BYTE* const oend)
+{
+ static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
+ static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* subtracted */
+ const BYTE* const ostart = op;
+ BYTE* const oLitEnd = op + sequence.litLength;
+ BYTE* const oMatchEnd = op + sequence.litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */
+ BYTE* const oend_8 = oend-8;
+ const BYTE* const litEnd = *litPtr + sequence.litLength;
+
+ /* checks */
+ if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */
+ if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
+ if (litEnd > litLimit) return ERROR(corruption_detected); /* overRead beyond lit buffer */
+
+ /* copy Literals */
+ ZSTD_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
+ op = oLitEnd;
+ *litPtr = litEnd; /* update for next sequence */
+
+ /* copy Match */
+ {
+ const BYTE* match = op - sequence.offset;
+
+ /* check */
+ if (sequence.offset > (size_t)op) return ERROR(corruption_detected); /* address space overflow test (this test seems kept by clang optimizer) */
+ //if (match > op) return ERROR(corruption_detected); /* address space overflow test (is clang optimizer removing this test ?) */
+ if (match < base) return ERROR(corruption_detected);
+
+ /* close range match, overlap */
+ if (sequence.offset < 8)
+ {
+ const int dec64 = dec64table[sequence.offset];
+ op[0] = match[0];
+ op[1] = match[1];
+ op[2] = match[2];
+ op[3] = match[3];
+ match += dec32table[sequence.offset];
+ ZSTD_copy4(op+4, match);
+ match -= dec64;
+ }
+ else
+ {
+ ZSTD_copy8(op, match);
+ }
+ op += 8; match += 8;
+
+ if (oMatchEnd > oend-(16-MINMATCH))
+ {
+ if (op < oend_8)
+ {
+ ZSTD_wildcopy(op, match, oend_8 - op);
+ match += oend_8 - op;
+ op = oend_8;
+ }
+ while (op < oMatchEnd) *op++ = *match++;
+ }
+ else
+ {
+ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
+ }
+ }
+
+ return oMatchEnd - ostart;
+}
+
+static size_t ZSTD_decompressSequences(
+ void* ctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize)
+{
+ ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx;
+ const BYTE* ip = (const BYTE*)seqStart;
+ const BYTE* const iend = ip + seqSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + maxDstSize;
+ size_t errorCode, dumpsLength;
+ const BYTE* litPtr = dctx->litPtr;
+ const BYTE* const litEnd = litPtr + dctx->litSize;
+ int nbSeq;
+ const BYTE* dumps;
+ U32* DTableLL = dctx->LLTable;
+ U32* DTableML = dctx->MLTable;
+ U32* DTableOffb = dctx->OffTable;
+ BYTE* const base = (BYTE*) (dctx->base);
+
+ /* Build Decoding Tables */
+ errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
+ DTableLL, DTableML, DTableOffb,
+ ip, iend-ip);
+ if (ZSTD_isError(errorCode)) return errorCode;
+ ip += errorCode;
+
+ /* Regen sequences */
+ {
+ seq_t sequence;
+ seqState_t seqState;
+
+ memset(&sequence, 0, sizeof(sequence));
+ seqState.dumps = dumps;
+ seqState.dumpsEnd = dumps + dumpsLength;
+ seqState.prevOffset = sequence.offset = 4;
+ errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip);
+ if (ERR_isError(errorCode)) return ERROR(corruption_detected);
+ FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
+ FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
+ FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
+
+ for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (nbSeq>0) ; )
+ {
+ size_t oneSeqSize;
+ nbSeq--;
+ ZSTD_decodeSequence(&sequence, &seqState);
+ oneSeqSize = ZSTD_execSequence(op, sequence, &litPtr, litEnd, base, oend);
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+ op += oneSeqSize;
+ }
+
+ /* check if reached exact end */
+ if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* requested too much : data is corrupted */
+ if (nbSeq<0) return ERROR(corruption_detected); /* requested too many sequences : data is corrupted */
+
+ /* last literal segment */
+ {
+ size_t lastLLSize = litEnd - litPtr;
+ if (litPtr > litEnd) return ERROR(corruption_detected);
+ if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
+ if (op != litPtr) memmove(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+ }
+
+ return op-ostart;
+}
+
+
+static size_t ZSTD_decompressBlock(
+ void* ctx,
+ void* dst, size_t maxDstSize,
+ const void* src, size_t srcSize)
+{
+ /* blockType == blockCompressed */
+ const BYTE* ip = (const BYTE*)src;
+
+ /* Decode literals sub-block */
+ size_t litCSize = ZSTD_decodeLiteralsBlock(ctx, src, srcSize);
+ if (ZSTD_isError(litCSize)) return litCSize;
+ ip += litCSize;
+ srcSize -= litCSize;
+
+ return ZSTD_decompressSequences(ctx, dst, maxDstSize, ip, srcSize);
+}
+
+
+static size_t ZSTD_decompressDCtx(void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+ const BYTE* iend = ip + srcSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + maxDstSize;
+ size_t remainingSize = srcSize;
+ U32 magicNumber;
+ blockProperties_t blockProperties;
+
+ /* Frame Header */
+ if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
+ magicNumber = MEM_readLE32(src);
+ if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
+ ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
+
+ /* Loop on each block */
+ while (1)
+ {
+ size_t decodedSize=0;
+ size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties);
+ if (ZSTD_isError(cBlockSize)) return cBlockSize;
+
+ ip += ZSTD_blockHeaderSize;
+ remainingSize -= ZSTD_blockHeaderSize;
+ if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
+
+ switch(blockProperties.blockType)
+ {
+ case bt_compressed:
+ decodedSize = ZSTD_decompressBlock(ctx, op, oend-op, ip, cBlockSize);
+ break;
+ case bt_raw :
+ decodedSize = ZSTD_copyUncompressedBlock(op, oend-op, ip, cBlockSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet supported */
+ break;
+ case bt_end :
+ /* end of frame */
+ if (remainingSize) return ERROR(srcSize_wrong);
+ break;
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+ if (cBlockSize == 0) break; /* bt_end */
+
+ if (ZSTD_isError(decodedSize)) return decodedSize;
+ op += decodedSize;
+ ip += cBlockSize;
+ remainingSize -= cBlockSize;
+ }
+
+ return op-ostart;
+}
+
+static size_t ZSTD_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ ZSTD_DCtx ctx;
+ ctx.base = dst;
+ return ZSTD_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize);
+}
+
+/* ZSTD_errorFrameSizeInfoLegacy() :
+ assumes `cSize` and `dBound` are _not_ NULL */
+MEM_STATIC void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
+{
+ *cSize = ret;
+ *dBound = ZSTD_CONTENTSIZE_ERROR;
+}
+
+void ZSTDv03_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
+{
+ const BYTE* ip = (const BYTE*)src;
+ size_t remainingSize = srcSize;
+ size_t nbBlocks = 0;
+ U32 magicNumber;
+ blockProperties_t blockProperties;
+
+ /* Frame Header */
+ if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+ magicNumber = MEM_readLE32(src);
+ if (magicNumber != ZSTD_magicNumber) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
+ return;
+ }
+ ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
+
+ /* Loop on each block */
+ while (1)
+ {
+ size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
+ if (ZSTD_isError(cBlockSize)) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
+ return;
+ }
+
+ ip += ZSTD_blockHeaderSize;
+ remainingSize -= ZSTD_blockHeaderSize;
+ if (cBlockSize > remainingSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+
+ if (cBlockSize == 0) break; /* bt_end */
+
+ ip += cBlockSize;
+ remainingSize -= cBlockSize;
+ nbBlocks++;
+ }
+
+ *cSize = ip - (const BYTE*)src;
+ *dBound = nbBlocks * BLOCKSIZE;
+}
+
+
+/*******************************
+* Streaming Decompression API
+*******************************/
+
+static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx)
+{
+ dctx->expected = ZSTD_frameHeaderSize;
+ dctx->phase = 0;
+ dctx->previousDstEnd = NULL;
+ dctx->base = NULL;
+ return 0;
+}
+
+static ZSTD_DCtx* ZSTD_createDCtx(void)
+{
+ ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx));
+ if (dctx==NULL) return NULL;
+ ZSTD_resetDCtx(dctx);
+ return dctx;
+}
+
+static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
+{
+ free(dctx);
+ return 0;
+}
+
+static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx)
+{
+ return dctx->expected;
+}
+
+static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ /* Sanity check */
+ if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
+ if (dst != ctx->previousDstEnd) /* not contiguous */
+ ctx->base = dst;
+
+ /* Decompress : frame header */
+ if (ctx->phase == 0)
+ {
+ /* Check frame magic header */
+ U32 magicNumber = MEM_readLE32(src);
+ if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
+ ctx->phase = 1;
+ ctx->expected = ZSTD_blockHeaderSize;
+ return 0;
+ }
+
+ /* Decompress : block header */
+ if (ctx->phase == 1)
+ {
+ blockProperties_t bp;
+ size_t blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
+ if (ZSTD_isError(blockSize)) return blockSize;
+ if (bp.blockType == bt_end)
+ {
+ ctx->expected = 0;
+ ctx->phase = 0;
+ }
+ else
+ {
+ ctx->expected = blockSize;
+ ctx->bType = bp.blockType;
+ ctx->phase = 2;
+ }
+
+ return 0;
+ }
+
+ /* Decompress : block content */
+ {
+ size_t rSize;
+ switch(ctx->bType)
+ {
+ case bt_compressed:
+ rSize = ZSTD_decompressBlock(ctx, dst, maxDstSize, src, srcSize);
+ break;
+ case bt_raw :
+ rSize = ZSTD_copyUncompressedBlock(dst, maxDstSize, src, srcSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet handled */
+ break;
+ case bt_end : /* should never happen (filtered at phase 1) */
+ rSize = 0;
+ break;
+ default:
+ return ERROR(GENERIC);
+ }
+ ctx->phase = 1;
+ ctx->expected = ZSTD_blockHeaderSize;
+ ctx->previousDstEnd = (void*)( ((char*)dst) + rSize);
+ return rSize;
+ }
+
+}
+
+
+/* wrapper layer */
+
+unsigned ZSTDv03_isError(size_t code)
+{
+ return ZSTD_isError(code);
+}
+
+size_t ZSTDv03_decompress( void* dst, size_t maxOriginalSize,
+ const void* src, size_t compressedSize)
+{
+ return ZSTD_decompress(dst, maxOriginalSize, src, compressedSize);
+}
+
+ZSTDv03_Dctx* ZSTDv03_createDCtx(void)
+{
+ return (ZSTDv03_Dctx*)ZSTD_createDCtx();
+}
+
+size_t ZSTDv03_freeDCtx(ZSTDv03_Dctx* dctx)
+{
+ return ZSTD_freeDCtx((ZSTD_DCtx*)dctx);
+}
+
+size_t ZSTDv03_resetDCtx(ZSTDv03_Dctx* dctx)
+{
+ return ZSTD_resetDCtx((ZSTD_DCtx*)dctx);
+}
+
+size_t ZSTDv03_nextSrcSizeToDecompress(ZSTDv03_Dctx* dctx)
+{
+ return ZSTD_nextSrcSizeToDecompress((ZSTD_DCtx*)dctx);
+}
+
+size_t ZSTDv03_decompressContinue(ZSTDv03_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ return ZSTD_decompressContinue((ZSTD_DCtx*)dctx, dst, maxDstSize, src, srcSize);
+}
diff --git a/vendor/github.com/DataDog/zstd/zstd_v03.h b/vendor/github.com/DataDog/zstd/zstd_v03.h
new file mode 100644
index 0000000..efd8c2b
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v03.h
@@ -0,0 +1,93 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_V03_H_298734209782
+#define ZSTD_V03_H_298734209782
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/* *************************************
+* Includes
+***************************************/
+#include <stddef.h> /* size_t */
+
+
+/* *************************************
+* Simple one-step function
+***************************************/
+/**
+ZSTDv03_decompress() : decompress ZSTD frames compliant with v0.3.x format
+ compressedSize : is the exact source size
+ maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
+ It must be equal or larger than originalSize, otherwise decompression will fail.
+ return : the number of bytes decompressed into destination buffer (originalSize)
+ or an errorCode if it fails (which can be tested using ZSTDv01_isError())
+*/
+size_t ZSTDv03_decompress( void* dst, size_t maxOriginalSize,
+ const void* src, size_t compressedSize);
+
+ /**
+ ZSTDv03_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.3.x format
+ srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
+ cSize (output parameter) : the number of bytes that would be read to decompress this frame
+ or an error code if it fails (which can be tested using ZSTDv01_isError())
+ dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
+ or ZSTD_CONTENTSIZE_ERROR if an error occurs
+
+ note : assumes `cSize` and `dBound` are _not_ NULL.
+ */
+ void ZSTDv03_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
+ size_t* cSize, unsigned long long* dBound);
+
+ /**
+ZSTDv03_isError() : tells if the result of ZSTDv03_decompress() is an error
+*/
+unsigned ZSTDv03_isError(size_t code);
+
+
+/* *************************************
+* Advanced functions
+***************************************/
+typedef struct ZSTDv03_Dctx_s ZSTDv03_Dctx;
+ZSTDv03_Dctx* ZSTDv03_createDCtx(void);
+size_t ZSTDv03_freeDCtx(ZSTDv03_Dctx* dctx);
+
+size_t ZSTDv03_decompressDCtx(void* ctx,
+ void* dst, size_t maxOriginalSize,
+ const void* src, size_t compressedSize);
+
+/* *************************************
+* Streaming functions
+***************************************/
+size_t ZSTDv03_resetDCtx(ZSTDv03_Dctx* dctx);
+
+size_t ZSTDv03_nextSrcSizeToDecompress(ZSTDv03_Dctx* dctx);
+size_t ZSTDv03_decompressContinue(ZSTDv03_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
+/**
+ Use above functions alternatively.
+ ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
+ ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
+ Result is the number of bytes regenerated within 'dst'.
+ It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
+*/
+
+/* *************************************
+* Prefix - version detection
+***************************************/
+#define ZSTDv03_magicNumber 0xFD2FB523 /* v0.3 */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_V03_H_298734209782 */
diff --git a/vendor/github.com/DataDog/zstd/zstd_v04.c b/vendor/github.com/DataDog/zstd/zstd_v04.c
new file mode 100644
index 0000000..645a6e3
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v04.c
@@ -0,0 +1,3637 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+ /******************************************
+ * Includes
+ ******************************************/
+#include <stddef.h> /* size_t, ptrdiff_t */
+#include <string.h> /* memcpy */
+
+#include "zstd_v04.h"
+#include "error_private.h"
+
+
+/* ******************************************************************
+ * mem.h
+ *******************************************************************/
+#ifndef MEM_H_MODULE
+#define MEM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/******************************************
+* Compiler-specific
+******************************************/
+#if defined(_MSC_VER) /* Visual Studio */
+# include <stdlib.h> /* _byteswap_ulong */
+# include <intrin.h> /* _byteswap_* */
+#endif
+#if defined(__GNUC__)
+# define MEM_STATIC static __attribute__((unused))
+#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define MEM_STATIC static inline
+#elif defined(_MSC_VER)
+# define MEM_STATIC static __inline
+#else
+# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
+
+
+/****************************************************************
+* Basic Types
+*****************************************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# include <stdint.h>
+ typedef uint8_t BYTE;
+ typedef uint16_t U16;
+ typedef int16_t S16;
+ typedef uint32_t U32;
+ typedef int32_t S32;
+ typedef uint64_t U64;
+ typedef int64_t S64;
+#else
+ typedef unsigned char BYTE;
+ typedef unsigned short U16;
+ typedef signed short S16;
+ typedef unsigned int U32;
+ typedef signed int S32;
+ typedef unsigned long long U64;
+ typedef signed long long S64;
+#endif
+
+
+/*-*************************************
+* Debug
+***************************************/
+#include "debug.h"
+#ifndef assert
+# define assert(condition) ((void)0)
+#endif
+
+
+/****************************************************************
+* Memory I/O
+*****************************************************************/
+/* MEM_FORCE_MEMORY_ACCESS
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
+ * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method is portable but violate C standard.
+ * It can generate buggy code on targets generating assembly depending on alignment.
+ * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
+ * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
+# define MEM_FORCE_MEMORY_ACCESS 2
+# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
+ (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# define MEM_FORCE_MEMORY_ACCESS 1
+# endif
+#endif
+
+MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; }
+MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; }
+
+MEM_STATIC unsigned MEM_isLittleEndian(void)
+{
+ const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
+ return one.c[0];
+}
+
+#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
+
+/* violates C standard on structure alignment.
+Only use if no other choice to achieve best performance on target platform */
+MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
+MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
+MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
+
+#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;
+
+MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
+MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
+
+#else
+
+/* default method, safe and standard.
+ can sometimes prove slower */
+
+MEM_STATIC U16 MEM_read16(const void* memPtr)
+{
+ U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U32 MEM_read32(const void* memPtr)
+{
+ U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U64 MEM_read64(const void* memPtr)
+{
+ U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value)
+{
+ memcpy(memPtr, &value, sizeof(value));
+}
+
+#endif // MEM_FORCE_MEMORY_ACCESS
+
+
+MEM_STATIC U16 MEM_readLE16(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read16(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U16)(p[0] + (p[1]<<8));
+ }
+}
+
+MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
+{
+ if (MEM_isLittleEndian())
+ {
+ MEM_write16(memPtr, val);
+ }
+ else
+ {
+ BYTE* p = (BYTE*)memPtr;
+ p[0] = (BYTE)val;
+ p[1] = (BYTE)(val>>8);
+ }
+}
+
+MEM_STATIC U32 MEM_readLE24(const void* memPtr)
+{
+ return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
+}
+
+MEM_STATIC U32 MEM_readLE32(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read32(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
+ }
+}
+
+
+MEM_STATIC U64 MEM_readLE64(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read64(memPtr);
+ else
+ {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
+ + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
+ }
+}
+
+
+MEM_STATIC size_t MEM_readLEST(const void* memPtr)
+{
+ if (MEM_32bits())
+ return (size_t)MEM_readLE32(memPtr);
+ else
+ return (size_t)MEM_readLE64(memPtr);
+}
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* MEM_H_MODULE */
+
+/*
+ zstd - standard compression library
+ Header File for static linking only
+*/
+#ifndef ZSTD_STATIC_H
+#define ZSTD_STATIC_H
+
+
+/* *************************************
+* Types
+***************************************/
+#define ZSTD_WINDOWLOG_ABSOLUTEMIN 11
+
+/** from faster to stronger */
+typedef enum { ZSTD_fast, ZSTD_greedy, ZSTD_lazy, ZSTD_lazy2, ZSTD_btlazy2 } ZSTD_strategy;
+
+typedef struct
+{
+ U64 srcSize; /* optional : tells how much bytes are present in the frame. Use 0 if not known. */
+ U32 windowLog; /* largest match distance : larger == more compression, more memory needed during decompression */
+ U32 contentLog; /* full search segment : larger == more compression, slower, more memory (useless for fast) */
+ U32 hashLog; /* dispatch table : larger == more memory, faster */
+ U32 searchLog; /* nb of searches : larger == more compression, slower */
+ U32 searchLength; /* size of matches : larger == faster decompression, sometimes less compression */
+ ZSTD_strategy strategy;
+} ZSTD_parameters;
+
+typedef ZSTDv04_Dctx ZSTD_DCtx;
+
+/* *************************************
+* Advanced functions
+***************************************/
+/** ZSTD_decompress_usingDict
+* Same as ZSTD_decompressDCtx, using a Dictionary content as prefix
+* Note : dict can be NULL, in which case, it's equivalent to ZSTD_decompressDCtx() */
+static size_t ZSTD_decompress_usingDict(ZSTD_DCtx* ctx,
+ void* dst, size_t maxDstSize,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize);
+
+
+/* **************************************
+* Streaming functions (direct mode)
+****************************************/
+static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx);
+static size_t ZSTD_getFrameParams(ZSTD_parameters* params, const void* src, size_t srcSize);
+static void ZSTD_decompress_insertDictionary(ZSTD_DCtx* ctx, const void* src, size_t srcSize);
+
+static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx);
+static size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
+
+/**
+ Streaming decompression, bufferless mode
+
+ A ZSTD_DCtx object is required to track streaming operations.
+ Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it.
+ A ZSTD_DCtx object can be re-used multiple times. Use ZSTD_resetDCtx() to return to fresh status.
+
+ First operation is to retrieve frame parameters, using ZSTD_getFrameParams().
+ This function doesn't consume its input. It needs enough input data to properly decode the frame header.
+ Objective is to retrieve *params.windowlog, to know minimum amount of memory required during decoding.
+ Result : 0 when successful, it means the ZSTD_parameters structure has been filled.
+ >0 : means there is not enough data into src. Provides the expected size to successfully decode header.
+ errorCode, which can be tested using ZSTD_isError() (For example, if it's not a ZSTD header)
+
+ Then, you can optionally insert a dictionary.
+ This operation must mimic the compressor behavior, otherwise decompression will fail or be corrupted.
+
+ Then it's possible to start decompression.
+ Use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively.
+ ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
+ ZSTD_decompressContinue() requires this exact amount of bytes, or it will fail.
+ ZSTD_decompressContinue() needs previous data blocks during decompression, up to (1 << windowlog).
+ They should preferably be located contiguously, prior to current block. Alternatively, a round buffer is also possible.
+
+ @result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst'.
+ It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
+
+ A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero.
+ Context can then be reset to start a new decompression.
+*/
+
+
+
+
+#endif /* ZSTD_STATIC_H */
+
+
+/*
+ zstd_internal - common functions to include
+ Header File for include
+*/
+#ifndef ZSTD_CCOMMON_H_MODULE
+#define ZSTD_CCOMMON_H_MODULE
+
+/* *************************************
+* Common macros
+***************************************/
+#define MIN(a,b) ((a)<(b) ? (a) : (b))
+#define MAX(a,b) ((a)>(b) ? (a) : (b))
+
+
+/* *************************************
+* Common constants
+***************************************/
+#define ZSTD_MAGICNUMBER 0xFD2FB524 /* v0.4 */
+
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+
+#define BLOCKSIZE (128 KB) /* define, for static allocation */
+
+static const size_t ZSTD_blockHeaderSize = 3;
+static const size_t ZSTD_frameHeaderSize_min = 5;
+#define ZSTD_frameHeaderSize_max 5 /* define, for static allocation */
+
+#define BIT7 128
+#define BIT6 64
+#define BIT5 32
+#define BIT4 16
+#define BIT1 2
+#define BIT0 1
+
+#define IS_RAW BIT0
+#define IS_RLE BIT1
+
+#define MINMATCH 4
+#define REPCODE_STARTVALUE 4
+
+#define MLbits 7
+#define LLbits 6
+#define Offbits 5
+#define MaxML ((1<<MLbits) - 1)
+#define MaxLL ((1<<LLbits) - 1)
+#define MaxOff ((1<<Offbits)- 1)
+#define MLFSELog 10
+#define LLFSELog 10
+#define OffFSELog 9
+#define MaxSeq MAX(MaxLL, MaxML)
+
+#define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/)
+#define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE)
+
+#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
+
+typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
+
+
+/* ******************************************
+* Shared functions to include for inlining
+********************************************/
+static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
+
+#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
+
+/*! ZSTD_wildcopy : custom version of memcpy(), can copy up to 7-8 bytes too many */
+static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
+{
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + length;
+ do
+ COPY8(op, ip)
+ while (op < oend);
+}
+
+
+
+/* ******************************************************************
+ FSE : Finite State Entropy coder
+ header file
+****************************************************************** */
+#ifndef FSE_H
+#define FSE_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/* *****************************************
+* Includes
+******************************************/
+#include <stddef.h> /* size_t, ptrdiff_t */
+
+
+/* *****************************************
+* FSE simple functions
+******************************************/
+static size_t FSE_decompress(void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize);
+/*!
+FSE_decompress():
+ Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
+ into already allocated destination buffer 'dst', of size 'maxDstSize'.
+ return : size of regenerated data (<= maxDstSize)
+ or an error code, which can be tested using FSE_isError()
+
+ ** Important ** : FSE_decompress() doesn't decompress non-compressible nor RLE data !!!
+ Why ? : making this distinction requires a header.
+ Header management is intentionally delegated to the user layer, which can better manage special cases.
+*/
+
+
+/* *****************************************
+* Tool functions
+******************************************/
+/* Error Management */
+static unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
+
+
+
+/* *****************************************
+* FSE detailed API
+******************************************/
+/*!
+FSE_compress() does the following:
+1. count symbol occurrence from source[] into table count[]
+2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
+3. save normalized counters to memory buffer using writeNCount()
+4. build encoding table 'CTable' from normalized counters
+5. encode the data stream using encoding table 'CTable'
+
+FSE_decompress() does the following:
+1. read normalized counters with readNCount()
+2. build decoding table 'DTable' from normalized counters
+3. decode the data stream using decoding table 'DTable'
+
+The following API allows targeting specific sub-functions for advanced tasks.
+For example, it's possible to compress several blocks using the same 'CTable',
+or to save and provide normalized distribution using external method.
+*/
+
+
+/* *** DECOMPRESSION *** */
+
+/*!
+FSE_readNCount():
+ Read compactly saved 'normalizedCounter' from 'rBuffer'.
+ return : size read from 'rBuffer'
+ or an errorCode, which can be tested using FSE_isError()
+ maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
+static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
+
+/*!
+Constructor and Destructor of type FSE_DTable
+ Note that its size depends on 'tableLog' */
+typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
+
+/*!
+FSE_buildDTable():
+ Builds 'dt', which must be already allocated, using FSE_createDTable()
+ return : 0,
+ or an errorCode, which can be tested using FSE_isError() */
+static size_t FSE_buildDTable ( FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
+
+/*!
+FSE_decompress_usingDTable():
+ Decompress compressed source 'cSrc' of size 'cSrcSize' using 'dt'
+ into 'dst' which must be already allocated.
+ return : size of regenerated data (necessarily <= maxDstSize)
+ or an errorCode, which can be tested using FSE_isError() */
+static size_t FSE_decompress_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
+
+/*!
+Tutorial :
+----------
+(Note : these functions only decompress FSE-compressed blocks.
+ If block is uncompressed, use memcpy() instead
+ If block is a single repeated byte, use memset() instead )
+
+The first step is to obtain the normalized frequencies of symbols.
+This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
+'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
+In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
+or size the table to handle worst case situations (typically 256).
+FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
+The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
+Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
+If there is an error, the function will return an error code, which can be tested using FSE_isError().
+
+The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
+This is performed by the function FSE_buildDTable().
+The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
+If there is an error, the function will return an error code, which can be tested using FSE_isError().
+
+'FSE_DTable' can then be used to decompress 'cSrc', with FSE_decompress_usingDTable().
+'cSrcSize' must be strictly correct, otherwise decompression will fail.
+FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=maxDstSize).
+If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
+*/
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* FSE_H */
+
+
+/* ******************************************************************
+ bitstream
+ Part of NewGen Entropy library
+ header file (to include)
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef BITSTREAM_H_MODULE
+#define BITSTREAM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*
+* This API consists of small unitary functions, which highly benefit from being inlined.
+* Since link-time-optimization is not available for all compilers,
+* these functions are defined into a .h to be included.
+*/
+
+/**********************************************
+* bitStream decompression API (read backward)
+**********************************************/
+typedef struct
+{
+ size_t bitContainer;
+ unsigned bitsConsumed;
+ const char* ptr;
+ const char* start;
+} BIT_DStream_t;
+
+typedef enum { BIT_DStream_unfinished = 0,
+ BIT_DStream_endOfBuffer = 1,
+ BIT_DStream_completed = 2,
+ BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
+ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
+
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
+MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
+
+
+
+
+/******************************************
+* unsafe API
+******************************************/
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
+/* faster, but works only if nbBits >= 1 */
+
+
+
+/****************************************************************
+* Helper functions
+****************************************************************/
+MEM_STATIC unsigned BIT_highbit32 (U32 val)
+{
+# if defined(_MSC_VER) /* Visual */
+ unsigned long r=0;
+ _BitScanReverse ( &r, val );
+ return (unsigned) r;
+# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
+ return 31 - __builtin_clz (val);
+# else /* Software version */
+ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ U32 v = val;
+ unsigned r;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
+ return r;
+# endif
+}
+
+
+/**********************************************************
+* bitStream decoding
+**********************************************************/
+
+/*!BIT_initDStream
+* Initialize a BIT_DStream_t.
+* @bitD : a pointer to an already allocated BIT_DStream_t structure
+* @srcBuffer must point at the beginning of a bitStream
+* @srcSize must be the exact size of the bitStream
+* @result : size of stream (== srcSize) or an errorCode if a problem is detected
+*/
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
+{
+ if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
+
+ if (srcSize >= sizeof(size_t)) /* normal case */
+ {
+ U32 contain32;
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
+ if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
+ bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
+ }
+ else
+ {
+ U32 contain32;
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = bitD->start;
+ bitD->bitContainer = *(const BYTE*)(bitD->start);
+ switch(srcSize)
+ {
+ case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);/* fall-through */
+ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);/* fall-through */
+ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);/* fall-through */
+ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; /* fall-through */
+ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; /* fall-through */
+ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8; /* fall-through */
+ default: break;
+ }
+ contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
+ if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
+ bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
+ bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
+ }
+
+ return srcSize;
+}
+
+MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+ const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
+}
+
+/*! BIT_lookBitsFast :
+* unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits)
+{
+ const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
+}
+
+MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+ bitD->bitsConsumed += nbBits;
+}
+
+MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+ size_t value = BIT_lookBits(bitD, nbBits);
+ BIT_skipBits(bitD, nbBits);
+ return value;
+}
+
+/*!BIT_readBitsFast :
+* unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
+{
+ size_t value = BIT_lookBitsFast(bitD, nbBits);
+ BIT_skipBits(bitD, nbBits);
+ return value;
+}
+
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
+{
+ if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
+ return BIT_DStream_overflow;
+
+ if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
+ {
+ bitD->ptr -= bitD->bitsConsumed >> 3;
+ bitD->bitsConsumed &= 7;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ return BIT_DStream_unfinished;
+ }
+ if (bitD->ptr == bitD->start)
+ {
+ if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
+ return BIT_DStream_completed;
+ }
+ {
+ U32 nbBytes = bitD->bitsConsumed >> 3;
+ BIT_DStream_status result = BIT_DStream_unfinished;
+ if (bitD->ptr - nbBytes < bitD->start)
+ {
+ nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
+ result = BIT_DStream_endOfBuffer;
+ }
+ bitD->ptr -= nbBytes;
+ bitD->bitsConsumed -= nbBytes*8;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
+ return result;
+ }
+}
+
+/*! BIT_endOfDStream
+* @return Tells if DStream has reached its exact end
+*/
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
+{
+ return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
+}
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* BITSTREAM_H_MODULE */
+
+
+
+/* ******************************************************************
+ FSE : Finite State Entropy coder
+ header file for static linking (only)
+ Copyright (C) 2013-2015, Yann Collet
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef FSE_STATIC_H
+#define FSE_STATIC_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/* *****************************************
+* Static allocation
+*******************************************/
+/* FSE buffer bounds */
+#define FSE_NCOUNTBOUND 512
+#define FSE_BLOCKBOUND(size) (size + (size>>7))
+#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
+
+/* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
+#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
+#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
+
+
+/* *****************************************
+* FSE advanced API
+*******************************************/
+static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
+/* build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
+
+static size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
+/* build a fake FSE_DTable, designed to always generate the same symbolValue */
+
+
+
+/* *****************************************
+* FSE symbol decompression API
+*******************************************/
+typedef struct
+{
+ size_t state;
+ const void* table; /* precise table may vary, depending on U16 */
+} FSE_DState_t;
+
+
+static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
+
+static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
+
+static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
+
+
+/* *****************************************
+* FSE unsafe API
+*******************************************/
+static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
+/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
+
+
+/* *****************************************
+* Implementation of inlined functions
+*******************************************/
+/* decompression */
+
+typedef struct {
+ U16 tableLog;
+ U16 fastMode;
+} FSE_DTableHeader; /* sizeof U32 */
+
+typedef struct
+{
+ unsigned short newState;
+ unsigned char symbol;
+ unsigned char nbBits;
+} FSE_decode_t; /* size == U32 */
+
+MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
+{
+ FSE_DTableHeader DTableH;
+ memcpy(&DTableH, dt, sizeof(DTableH));
+ DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog);
+ BIT_reloadDStream(bitD);
+ DStatePtr->table = dt + 1;
+}
+
+MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+ const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ const U32 nbBits = DInfo.nbBits;
+ BYTE symbol = DInfo.symbol;
+ size_t lowBits = BIT_readBits(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+ const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ const U32 nbBits = DInfo.nbBits;
+ BYTE symbol = DInfo.symbol;
+ size_t lowBits = BIT_readBitsFast(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
+{
+ return DStatePtr->state == 0;
+}
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* FSE_STATIC_H */
+
+/* ******************************************************************
+ FSE : Finite State Entropy coder
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+#ifndef FSE_COMMONDEFS_ONLY
+
+/* **************************************************************
+* Tuning parameters
+****************************************************************/
+/*!MEMORY_USAGE :
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+* Increasing memory usage improves compression ratio
+* Reduced memory usage can improve speed, due to cache effect
+* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
+#define FSE_MAX_MEMORY_USAGE 14
+#define FSE_DEFAULT_MEMORY_USAGE 13
+
+/*!FSE_MAX_SYMBOL_VALUE :
+* Maximum symbol value authorized.
+* Required for proper stack allocation */
+#define FSE_MAX_SYMBOL_VALUE 255
+
+
+/* **************************************************************
+* template functions type & suffix
+****************************************************************/
+#define FSE_FUNCTION_TYPE BYTE
+#define FSE_FUNCTION_EXTENSION
+#define FSE_DECODE_TYPE FSE_decode_t
+
+
+#endif /* !FSE_COMMONDEFS_ONLY */
+
+/* **************************************************************
+* Compiler specifics
+****************************************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# define FORCE_INLINE static __forceinline
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
+#else
+# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# ifdef __GNUC__
+# define FORCE_INLINE static inline __attribute__((always_inline))
+# else
+# define FORCE_INLINE static inline
+# endif
+# else
+# define FORCE_INLINE static
+# endif /* __STDC_VERSION__ */
+#endif
+
+
+/* **************************************************************
+* Dependencies
+****************************************************************/
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memcpy, memset */
+#include <stdio.h> /* printf (debug) */
+
+
+/* ***************************************************************
+* Constants
+*****************************************************************/
+#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
+#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
+#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
+#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
+#define FSE_MIN_TABLELOG 5
+
+#define FSE_TABLELOG_ABSOLUTE_MAX 15
+#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
+#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
+#endif
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+/* **************************************************************
+* Complex types
+****************************************************************/
+typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
+
+
+/*-**************************************************************
+* Templates
+****************************************************************/
+/*
+ designed to be included
+ for type-specific functions (template emulation in C)
+ Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSE_FUNCTION_EXTENSION
+# error "FSE_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSE_FUNCTION_TYPE
+# error "FSE_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSE_CAT(X,Y) X##Y
+#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
+#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
+
+static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
+
+
+static size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+ FSE_DTableHeader DTableH;
+ void* const tdPtr = dt+1; /* because dt is unsigned, 32-bits aligned on 32-bits */
+ FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
+ const U32 tableSize = 1 << tableLog;
+ const U32 tableMask = tableSize-1;
+ const U32 step = FSE_tableStep(tableSize);
+ U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
+ U32 position = 0;
+ U32 highThreshold = tableSize-1;
+ const S16 largeLimit= (S16)(1 << (tableLog-1));
+ U32 noLarge = 1;
+ U32 s;
+
+ /* Sanity Checks */
+ if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
+
+ /* Init, lay down lowprob symbols */
+ memset(tableDecode, 0, sizeof(FSE_DECODE_TYPE) * (maxSymbolValue+1) ); /* useless init, but keep static analyzer happy, and we don't need to performance optimize legacy decoders */
+ DTableH.tableLog = (U16)tableLog;
+ for (s=0; s<=maxSymbolValue; s++)
+ {
+ if (normalizedCounter[s]==-1)
+ {
+ tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
+ symbolNext[s] = 1;
+ }
+ else
+ {
+ if (normalizedCounter[s] >= largeLimit) noLarge=0;
+ symbolNext[s] = normalizedCounter[s];
+ }
+ }
+
+ /* Spread symbols */
+ for (s=0; s<=maxSymbolValue; s++)
+ {
+ int i;
+ for (i=0; i<normalizedCounter[s]; i++)
+ {
+ tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
+ position = (position + step) & tableMask;
+ while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
+ }
+ }
+
+ if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
+
+ /* Build Decoding table */
+ {
+ U32 i;
+ for (i=0; i<tableSize; i++)
+ {
+ FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
+ U16 nextState = symbolNext[symbol]++;
+ tableDecode[i].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
+ tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
+ }
+ }
+
+ DTableH.fastMode = (U16)noLarge;
+ memcpy(dt, &DTableH, sizeof(DTableH));
+ return 0;
+}
+
+
+#ifndef FSE_COMMONDEFS_ONLY
+/******************************************
+* FSE helper functions
+******************************************/
+static unsigned FSE_isError(size_t code) { return ERR_isError(code); }
+
+
+/****************************************************************
+* FSE NCount encoding-decoding
+****************************************************************/
+static short FSE_abs(short a)
+{
+ return a<0 ? -a : a;
+}
+
+static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize)
+{
+ const BYTE* const istart = (const BYTE*) headerBuffer;
+ const BYTE* const iend = istart + hbSize;
+ const BYTE* ip = istart;
+ int nbBits;
+ int remaining;
+ int threshold;
+ U32 bitStream;
+ int bitCount;
+ unsigned charnum = 0;
+ int previous0 = 0;
+
+ if (hbSize < 4) return ERROR(srcSize_wrong);
+ bitStream = MEM_readLE32(ip);
+ nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
+ if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
+ bitStream >>= 4;
+ bitCount = 4;
+ *tableLogPtr = nbBits;
+ remaining = (1<<nbBits)+1;
+ threshold = 1<<nbBits;
+ nbBits++;
+
+ while ((remaining>1) && (charnum<=*maxSVPtr))
+ {
+ if (previous0)
+ {
+ unsigned n0 = charnum;
+ while ((bitStream & 0xFFFF) == 0xFFFF)
+ {
+ n0+=24;
+ if (ip < iend-5)
+ {
+ ip+=2;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ }
+ else
+ {
+ bitStream >>= 16;
+ bitCount+=16;
+ }
+ }
+ while ((bitStream & 3) == 3)
+ {
+ n0+=3;
+ bitStream>>=2;
+ bitCount+=2;
+ }
+ n0 += bitStream & 3;
+ bitCount += 2;
+ if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
+ while (charnum < n0) normalizedCounter[charnum++] = 0;
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
+ {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ }
+ else
+ bitStream >>= 2;
+ }
+ {
+ const short max = (short)((2*threshold-1)-remaining);
+ short count;
+
+ if ((bitStream & (threshold-1)) < (U32)max)
+ {
+ count = (short)(bitStream & (threshold-1));
+ bitCount += nbBits-1;
+ }
+ else
+ {
+ count = (short)(bitStream & (2*threshold-1));
+ if (count >= threshold) count -= max;
+ bitCount += nbBits;
+ }
+
+ count--; /* extra accuracy */
+ remaining -= FSE_abs(count);
+ normalizedCounter[charnum++] = count;
+ previous0 = !count;
+ while (remaining < threshold)
+ {
+ nbBits--;
+ threshold >>= 1;
+ }
+
+ {
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
+ {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ }
+ else
+ {
+ bitCount -= (int)(8 * (iend - 4 - ip));
+ ip = iend - 4;
+ }
+ bitStream = MEM_readLE32(ip) >> (bitCount & 31);
+ }
+ }
+ }
+ if (remaining != 1) return ERROR(GENERIC);
+ *maxSVPtr = charnum-1;
+
+ ip += (bitCount+7)>>3;
+ if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
+ return ip-istart;
+}
+
+
+/*********************************************************
+* Decompression (Byte symbols)
+*********************************************************/
+static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ void* dPtr = dt + 1;
+ FSE_decode_t* const cell = (FSE_decode_t*)dPtr;
+
+ DTableH->tableLog = 0;
+ DTableH->fastMode = 0;
+
+ cell->newState = 0;
+ cell->symbol = symbolValue;
+ cell->nbBits = 0;
+
+ return 0;
+}
+
+
+static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ void* dPtr = dt + 1;
+ FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
+ const unsigned tableSize = 1 << nbBits;
+ const unsigned tableMask = tableSize - 1;
+ const unsigned maxSymbolValue = tableMask;
+ unsigned s;
+
+ /* Sanity checks */
+ if (nbBits < 1) return ERROR(GENERIC); /* min size */
+
+ /* Build Decoding Table */
+ DTableH->tableLog = (U16)nbBits;
+ DTableH->fastMode = 1;
+ for (s=0; s<=maxSymbolValue; s++)
+ {
+ dinfo[s].newState = 0;
+ dinfo[s].symbol = (BYTE)s;
+ dinfo[s].nbBits = (BYTE)nbBits;
+ }
+
+ return 0;
+}
+
+FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
+ void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSE_DTable* dt, const unsigned fast)
+{
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const omax = op + maxDstSize;
+ BYTE* const olimit = omax-3;
+
+ BIT_DStream_t bitD;
+ FSE_DState_t state1;
+ FSE_DState_t state2;
+ size_t errorCode;
+
+ /* Init */
+ errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
+ if (FSE_isError(errorCode)) return errorCode;
+
+ FSE_initDState(&state1, &bitD, dt);
+ FSE_initDState(&state2, &bitD, dt);
+
+#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
+
+ /* 4 symbols per loop */
+ for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op<olimit) ; op+=4)
+ {
+ op[0] = FSE_GETSYMBOL(&state1);
+
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BIT_reloadDStream(&bitD);
+
+ op[1] = FSE_GETSYMBOL(&state2);
+
+ if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
+
+ op[2] = FSE_GETSYMBOL(&state1);
+
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BIT_reloadDStream(&bitD);
+
+ op[3] = FSE_GETSYMBOL(&state2);
+ }
+
+ /* tail */
+ /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
+ while (1)
+ {
+ if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
+ break;
+
+ *op++ = FSE_GETSYMBOL(&state1);
+
+ if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
+ break;
+
+ *op++ = FSE_GETSYMBOL(&state2);
+ }
+
+ /* end ? */
+ if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
+ return op-ostart;
+
+ if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */
+
+ return ERROR(corruption_detected);
+}
+
+
+static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSE_DTable* dt)
+{
+ FSE_DTableHeader DTableH;
+ U32 fastMode;
+
+ memcpy(&DTableH, dt, sizeof(DTableH));
+ fastMode = DTableH.fastMode;
+
+ /* select fast mode (static) */
+ if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
+ return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
+}
+
+
+static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
+{
+ const BYTE* const istart = (const BYTE*)cSrc;
+ const BYTE* ip = istart;
+ short counting[FSE_MAX_SYMBOL_VALUE+1];
+ DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
+ unsigned tableLog;
+ unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
+ size_t errorCode;
+
+ if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
+
+ /* normal FSE decoding mode */
+ errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
+ if (FSE_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
+ if (FSE_isError(errorCode)) return errorCode;
+
+ /* always return, even if it is an error code */
+ return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
+}
+
+
+
+#endif /* FSE_COMMONDEFS_ONLY */
+
+
+/* ******************************************************************
+ Huff0 : Huffman coder, part of New Generation Entropy library
+ header file
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef HUFF0_H
+#define HUFF0_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/* ****************************************
+* Dependency
+******************************************/
+#include <stddef.h> /* size_t */
+
+
+/* ****************************************
+* Huff0 simple functions
+******************************************/
+static size_t HUF_decompress(void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize);
+/*!
+HUF_decompress():
+ Decompress Huff0 data from buffer 'cSrc', of size 'cSrcSize',
+ into already allocated destination buffer 'dst', of size 'dstSize'.
+ 'dstSize' must be the exact size of original (uncompressed) data.
+ Note : in contrast with FSE, HUF_decompress can regenerate RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data, because it knows size to regenerate.
+ @return : size of regenerated data (== dstSize)
+ or an error code, which can be tested using HUF_isError()
+*/
+
+
+/* ****************************************
+* Tool functions
+******************************************/
+/* Error Management */
+static unsigned HUF_isError(size_t code); /* tells if a return value is an error code */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* HUFF0_H */
+
+
+/* ******************************************************************
+ Huff0 : Huffman coder, part of New Generation Entropy library
+ header file for static linking (only)
+ Copyright (C) 2013-2015, Yann Collet
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef HUFF0_STATIC_H
+#define HUFF0_STATIC_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+
+/* ****************************************
+* Static allocation macros
+******************************************/
+/* static allocation of Huff0's DTable */
+#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog)) /* nb Cells; use unsigned short for X2, unsigned int for X4 */
+#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
+ unsigned short DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
+#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
+ unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
+#define HUF_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
+ unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
+
+
+/* ****************************************
+* Advanced decompression functions
+******************************************/
+static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
+static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
+
+
+/* ****************************************
+* Huff0 detailed API
+******************************************/
+/*!
+HUF_decompress() does the following:
+1. select the decompression algorithm (X2, X4, X6) based on pre-computed heuristics
+2. build Huffman table from save, using HUF_readDTableXn()
+3. decode 1 or 4 segments in parallel using HUF_decompressSXn_usingDTable
+
+*/
+static size_t HUF_readDTableX2 (unsigned short* DTable, const void* src, size_t srcSize);
+static size_t HUF_readDTableX4 (unsigned* DTable, const void* src, size_t srcSize);
+
+static size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
+static size_t HUF_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* HUFF0_STATIC_H */
+
+
+
+/* ******************************************************************
+ Huff0 : Huffman coder, part of New Generation Entropy library
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+
+/* **************************************************************
+* Compiler specifics
+****************************************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+/* inline is defined */
+#elif defined(_MSC_VER)
+# define inline __inline
+#else
+# define inline /* disable inline */
+#endif
+
+
+#ifdef _MSC_VER /* Visual Studio */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+#endif
+
+
+/* **************************************************************
+* Includes
+****************************************************************/
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memcpy, memset */
+#include <stdio.h> /* printf (debug) */
+
+
+/* **************************************************************
+* Constants
+****************************************************************/
+#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
+#define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
+#define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */
+#define HUF_MAX_SYMBOL_VALUE 255
+#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
+# error "HUF_MAX_TABLELOG is too large !"
+#endif
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+static unsigned HUF_isError(size_t code) { return ERR_isError(code); }
+#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+
+/*-*******************************************************
+* Huff0 : Huffman block decompression
+*********************************************************/
+typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
+
+typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
+
+typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
+
+/*! HUF_readStats
+ Read compact Huffman tree, saved by HUF_writeCTable
+ @huffWeight : destination buffer
+ @return : size read from `src`
+*/
+static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize)
+{
+ U32 weightTotal;
+ U32 tableLog;
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize;
+ size_t oSize;
+ U32 n;
+
+ if (!srcSize) return ERROR(srcSize_wrong);
+ iSize = ip[0];
+ //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
+
+ if (iSize >= 128) /* special header */
+ {
+ if (iSize >= (242)) /* RLE */
+ {
+ static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
+ oSize = l[iSize-242];
+ memset(huffWeight, 1, hwSize);
+ iSize = 0;
+ }
+ else /* Incompressible */
+ {
+ oSize = iSize - 127;
+ iSize = ((oSize+1)/2);
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ if (oSize >= hwSize) return ERROR(corruption_detected);
+ ip += 1;
+ for (n=0; n<oSize; n+=2)
+ {
+ huffWeight[n] = ip[n/2] >> 4;
+ huffWeight[n+1] = ip[n/2] & 15;
+ }
+ }
+ }
+ else /* header compressed with FSE (normal case) */
+ {
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
+ if (FSE_isError(oSize)) return oSize;
+ }
+
+ /* collect weight stats */
+ memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
+ weightTotal = 0;
+ for (n=0; n<oSize; n++)
+ {
+ if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
+ rankStats[huffWeight[n]]++;
+ weightTotal += (1 << huffWeight[n]) >> 1;
+ }
+ if (weightTotal == 0) return ERROR(corruption_detected);
+
+ /* get last non-null symbol weight (implied, total must be 2^n) */
+ tableLog = BIT_highbit32(weightTotal) + 1;
+ if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
+ {
+ U32 total = 1 << tableLog;
+ U32 rest = total - weightTotal;
+ U32 verif = 1 << BIT_highbit32(rest);
+ U32 lastWeight = BIT_highbit32(rest) + 1;
+ if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
+ huffWeight[oSize] = (BYTE)lastWeight;
+ rankStats[lastWeight]++;
+ }
+
+ /* check tree construction validity */
+ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
+
+ /* results */
+ *nbSymbolsPtr = (U32)(oSize+1);
+ *tableLogPtr = tableLog;
+ return iSize+1;
+}
+
+
+/**************************/
+/* single-symbol decoding */
+/**************************/
+
+static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
+{
+ BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
+ U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
+ U32 tableLog = 0;
+ size_t iSize;
+ U32 nbSymbols = 0;
+ U32 n;
+ U32 nextRankStart;
+ void* const dtPtr = DTable + 1;
+ HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
+
+ HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
+ //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
+ if (HUF_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
+ DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */
+
+ /* Prepare ranks */
+ nextRankStart = 0;
+ for (n=1; n<=tableLog; n++)
+ {
+ U32 current = nextRankStart;
+ nextRankStart += (rankVal[n] << (n-1));
+ rankVal[n] = current;
+ }
+
+ /* fill DTable */
+ for (n=0; n<nbSymbols; n++)
+ {
+ const U32 w = huffWeight[n];
+ const U32 length = (1 << w) >> 1;
+ U32 i;
+ HUF_DEltX2 D;
+ D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
+ for (i = rankVal[w]; i < rankVal[w] + length; i++)
+ dt[i] = D;
+ rankVal[w] += length;
+ }
+
+ return iSize;
+}
+
+static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
+{
+ const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
+ const BYTE c = dt[val].byte;
+ BIT_skipBits(Dstream, dt[val].nbBits);
+ return c;
+}
+
+#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
+ *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
+ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 4 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
+ {
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ }
+
+ /* closer to the end */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ /* no more data to retrieve from bitstream, hence no need to reload */
+ while (p < pEnd)
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ return pEnd-pStart;
+}
+
+
+static size_t HUF_decompress4X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U16* DTable)
+{
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ {
+ const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable;
+ const HUF_DEltX2* const dt = ((const HUF_DEltX2*)dtPtr) +1;
+ const U32 dtLog = DTable[0];
+ size_t errorCode;
+
+ /* Init */
+ BIT_DStream_t bitD1;
+ BIT_DStream_t bitD2;
+ BIT_DStream_t bitD3;
+ BIT_DStream_t bitD4;
+ const size_t length1 = MEM_readLE16(istart);
+ const size_t length2 = MEM_readLE16(istart+2);
+ const size_t length3 = MEM_readLE16(istart+4);
+ size_t length4;
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+
+ length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ errorCode = BIT_initDStream(&bitD1, istart1, length1);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD2, istart2, length2);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD3, istart3, length3);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD4, istart4, length4);
+ if (HUF_isError(errorCode)) return errorCode;
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
+ {
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
+
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
+ HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
+ HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
+ HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+ if (!endSignal) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+ size_t errorCode;
+
+ errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
+ if (HUF_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+/***************************/
+/* double-symbols decoding */
+/***************************/
+
+static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
+ const U32* rankValOrigin, const int minWeight,
+ const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
+ U32 nbBitsBaseline, U16 baseSeq)
+{
+ HUF_DEltX4 DElt;
+ U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
+ U32 s;
+
+ /* get pre-calculated rankVal */
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill skipped values */
+ if (minWeight>1)
+ {
+ U32 i, skipSize = rankVal[minWeight];
+ MEM_writeLE16(&(DElt.sequence), baseSeq);
+ DElt.nbBits = (BYTE)(consumed);
+ DElt.length = 1;
+ for (i = 0; i < skipSize; i++)
+ DTable[i] = DElt;
+ }
+
+ /* fill DTable */
+ for (s=0; s<sortedListSize; s++) /* note : sortedSymbols already skipped */
+ {
+ const U32 symbol = sortedSymbols[s].symbol;
+ const U32 weight = sortedSymbols[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 length = 1 << (sizeLog-nbBits);
+ const U32 start = rankVal[weight];
+ U32 i = start;
+ const U32 end = start + length;
+
+ MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
+ DElt.nbBits = (BYTE)(nbBits + consumed);
+ DElt.length = 2;
+ do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
+
+ rankVal[weight] += length;
+ }
+}
+
+typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];
+
+static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
+ const sortedSymbol_t* sortedList, const U32 sortedListSize,
+ const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
+ const U32 nbBitsBaseline)
+{
+ U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
+ const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
+ const U32 minBits = nbBitsBaseline - maxWeight;
+ U32 s;
+
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill DTable */
+ for (s=0; s<sortedListSize; s++)
+ {
+ const U16 symbol = sortedList[s].symbol;
+ const U32 weight = sortedList[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 start = rankVal[weight];
+ const U32 length = 1 << (targetLog-nbBits);
+
+ if (targetLog-nbBits >= minBits) /* enough room for a second symbol */
+ {
+ U32 sortedRank;
+ int minWeight = nbBits + scaleLog;
+ if (minWeight < 1) minWeight = 1;
+ sortedRank = rankStart[minWeight];
+ HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
+ rankValOrigin[nbBits], minWeight,
+ sortedList+sortedRank, sortedListSize-sortedRank,
+ nbBitsBaseline, symbol);
+ }
+ else
+ {
+ U32 i;
+ const U32 end = start + length;
+ HUF_DEltX4 DElt;
+
+ MEM_writeLE16(&(DElt.sequence), symbol);
+ DElt.nbBits = (BYTE)(nbBits);
+ DElt.length = 1;
+ for (i = start; i < end; i++)
+ DTable[i] = DElt;
+ }
+ rankVal[weight] += length;
+ }
+}
+
+static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
+{
+ BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
+ sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
+ U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
+ U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
+ U32* const rankStart = rankStart0+1;
+ rankVal_t rankVal;
+ U32 tableLog, maxW, sizeOfSort, nbSymbols;
+ const U32 memLog = DTable[0];
+ size_t iSize;
+ void* dtPtr = DTable;
+ HUF_DEltX4* const dt = ((HUF_DEltX4*)dtPtr) + 1;
+
+ HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */
+ if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
+ //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
+ if (HUF_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
+
+ /* find maxWeight */
+ for (maxW = tableLog; rankStats[maxW]==0; maxW--)
+ { if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */
+
+ /* Get start index of each weight */
+ {
+ U32 w, nextRankStart = 0;
+ for (w=1; w<=maxW; w++)
+ {
+ U32 current = nextRankStart;
+ nextRankStart += rankStats[w];
+ rankStart[w] = current;
+ }
+ rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
+ sizeOfSort = nextRankStart;
+ }
+
+ /* sort symbols by weight */
+ {
+ U32 s;
+ for (s=0; s<nbSymbols; s++)
+ {
+ U32 w = weightList[s];
+ U32 r = rankStart[w]++;
+ sortedSymbol[r].symbol = (BYTE)s;
+ sortedSymbol[r].weight = (BYTE)w;
+ }
+ rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
+ }
+
+ /* Build rankVal */
+ {
+ const U32 minBits = tableLog+1 - maxW;
+ U32 nextRankVal = 0;
+ U32 w, consumed;
+ const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
+ U32* rankVal0 = rankVal[0];
+ for (w=1; w<=maxW; w++)
+ {
+ U32 current = nextRankVal;
+ nextRankVal += rankStats[w] << (w+rescale);
+ rankVal0[w] = current;
+ }
+ for (consumed = minBits; consumed <= memLog - minBits; consumed++)
+ {
+ U32* rankValPtr = rankVal[consumed];
+ for (w = 1; w <= maxW; w++)
+ {
+ rankValPtr[w] = rankVal0[w] >> consumed;
+ }
+ }
+ }
+
+ HUF_fillDTableX4(dt, memLog,
+ sortedSymbol, sizeOfSort,
+ rankStart0, rankVal, maxW,
+ tableLog+1);
+
+ return iSize;
+}
+
+
+static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
+{
+ const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 2);
+ BIT_skipBits(DStream, dt[val].nbBits);
+ return dt[val].length;
+}
+
+static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
+{
+ const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 1);
+ if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
+ else
+ {
+ if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
+ {
+ BIT_skipBits(DStream, dt[val].nbBits);
+ if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
+ DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
+ }
+ }
+ return 1;
+}
+
+
+#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
+ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
+ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 8 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7))
+ {
+ HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
+ }
+
+ /* closer to the end */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
+ HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
+
+ while (p <= pEnd-2)
+ HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
+
+ if (p < pEnd)
+ p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
+
+ return p-pStart;
+}
+
+static size_t HUF_decompress4X4_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U32* DTable)
+{
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ {
+ const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable;
+ const HUF_DEltX4* const dt = ((const HUF_DEltX4*)dtPtr) +1;
+ const U32 dtLog = DTable[0];
+ size_t errorCode;
+
+ /* Init */
+ BIT_DStream_t bitD1;
+ BIT_DStream_t bitD2;
+ BIT_DStream_t bitD3;
+ BIT_DStream_t bitD4;
+ const size_t length1 = MEM_readLE16(istart);
+ const size_t length2 = MEM_readLE16(istart+2);
+ const size_t length3 = MEM_readLE16(istart+4);
+ size_t length4;
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+
+ length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ errorCode = BIT_initDStream(&bitD1, istart1, length1);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD2, istart2, length2);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD3, istart3, length3);
+ if (HUF_isError(errorCode)) return errorCode;
+ errorCode = BIT_initDStream(&bitD4, istart4, length4);
+ if (HUF_isError(errorCode)) return errorCode;
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
+ {
+ HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
+
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
+ HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
+ HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
+ HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+ if (!endSignal) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize;
+ cSrcSize -= hSize;
+
+ return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+/**********************************/
+/* Generic decompression selector */
+/**********************************/
+
+typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
+static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
+{
+ /* single, double, quad */
+ {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
+ {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
+ {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
+ {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
+ {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
+ {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
+ {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
+ {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
+ {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
+ {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
+ {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
+ {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
+ {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
+ {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
+ {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
+ {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
+};
+
+typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
+
+static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, NULL };
+ /* estimate decompression time */
+ U32 Q;
+ const U32 D256 = (U32)(dstSize >> 8);
+ U32 Dtime[3];
+ U32 algoNb = 0;
+ int n;
+
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
+ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
+
+ /* decoder timing evaluation */
+ Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
+ for (n=0; n<3; n++)
+ Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
+
+ Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
+
+ if (Dtime[1] < Dtime[0]) algoNb = 1;
+
+ return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
+
+ //return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
+ //return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
+ //return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */
+}
+
+
+
+#endif /* ZSTD_CCOMMON_H_MODULE */
+
+
+/*
+ zstd - decompression module fo v0.4 legacy format
+ Copyright (C) 2015-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd source repository : https://github.com/Cyan4973/zstd
+ - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
+*/
+
+/* ***************************************************************
+* Tuning parameters
+*****************************************************************/
+/*!
+ * HEAPMODE :
+ * Select how default decompression function ZSTD_decompress() will allocate memory,
+ * in memory stack (0), or in memory heap (1, requires malloc())
+ */
+#ifndef ZSTD_HEAPMODE
+# define ZSTD_HEAPMODE 1
+#endif
+
+
+/* *******************************************************
+* Includes
+*********************************************************/
+#include <stdlib.h> /* calloc */
+#include <string.h> /* memcpy, memmove */
+#include <stdio.h> /* debug : printf */
+
+
+/* *******************************************************
+* Compiler specifics
+*********************************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4324) /* disable: C4324: padded structure */
+#endif
+
+
+/* *************************************
+* Local types
+***************************************/
+typedef struct
+{
+ blockType_t blockType;
+ U32 origSize;
+} blockProperties_t;
+
+
+/* *******************************************************
+* Memory operations
+**********************************************************/
+static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
+
+
+/* *************************************
+* Error Management
+***************************************/
+
+/*! ZSTD_isError
+* tells if a return value is an error code */
+static unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
+
+
+/* *************************************************************
+* Context management
+***************************************************************/
+typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
+ ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock } ZSTD_dStage;
+
+struct ZSTDv04_Dctx_s
+{
+ U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
+ U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
+ U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
+ const void* previousDstEnd;
+ const void* base;
+ const void* vBase;
+ const void* dictEnd;
+ size_t expected;
+ size_t headerSize;
+ ZSTD_parameters params;
+ blockType_t bType;
+ ZSTD_dStage stage;
+ const BYTE* litPtr;
+ size_t litSize;
+ BYTE litBuffer[BLOCKSIZE + 8 /* margin for wildcopy */];
+ BYTE headerBuffer[ZSTD_frameHeaderSize_max];
+}; /* typedef'd to ZSTD_DCtx within "zstd_static.h" */
+
+static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx)
+{
+ dctx->expected = ZSTD_frameHeaderSize_min;
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ dctx->previousDstEnd = NULL;
+ dctx->base = NULL;
+ dctx->vBase = NULL;
+ dctx->dictEnd = NULL;
+ return 0;
+}
+
+static ZSTD_DCtx* ZSTD_createDCtx(void)
+{
+ ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx));
+ if (dctx==NULL) return NULL;
+ ZSTD_resetDCtx(dctx);
+ return dctx;
+}
+
+static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
+{
+ free(dctx);
+ return 0;
+}
+
+
+/* *************************************************************
+* Decompression section
+***************************************************************/
+/** ZSTD_decodeFrameHeader_Part1
+* decode the 1st part of the Frame Header, which tells Frame Header size.
+* srcSize must be == ZSTD_frameHeaderSize_min
+* @return : the full size of the Frame Header */
+static size_t ZSTD_decodeFrameHeader_Part1(ZSTD_DCtx* zc, const void* src, size_t srcSize)
+{
+ U32 magicNumber;
+ if (srcSize != ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong);
+ magicNumber = MEM_readLE32(src);
+ if (magicNumber != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown);
+ zc->headerSize = ZSTD_frameHeaderSize_min;
+ return zc->headerSize;
+}
+
+
+static size_t ZSTD_getFrameParams(ZSTD_parameters* params, const void* src, size_t srcSize)
+{
+ U32 magicNumber;
+ if (srcSize < ZSTD_frameHeaderSize_min) return ZSTD_frameHeaderSize_max;
+ magicNumber = MEM_readLE32(src);
+ if (magicNumber != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown);
+ memset(params, 0, sizeof(*params));
+ params->windowLog = (((const BYTE*)src)[4] & 15) + ZSTD_WINDOWLOG_ABSOLUTEMIN;
+ if ((((const BYTE*)src)[4] >> 4) != 0) return ERROR(frameParameter_unsupported); /* reserved bits */
+ return 0;
+}
+
+/** ZSTD_decodeFrameHeader_Part2
+* decode the full Frame Header
+* srcSize must be the size provided by ZSTD_decodeFrameHeader_Part1
+* @return : 0, or an error code, which can be tested using ZSTD_isError() */
+static size_t ZSTD_decodeFrameHeader_Part2(ZSTD_DCtx* zc, const void* src, size_t srcSize)
+{
+ size_t result;
+ if (srcSize != zc->headerSize) return ERROR(srcSize_wrong);
+ result = ZSTD_getFrameParams(&(zc->params), src, srcSize);
+ if ((MEM_32bits()) && (zc->params.windowLog > 25)) return ERROR(frameParameter_unsupported);
+ return result;
+}
+
+
+static size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
+{
+ const BYTE* const in = (const BYTE* const)src;
+ BYTE headerFlags;
+ U32 cSize;
+
+ if (srcSize < 3) return ERROR(srcSize_wrong);
+
+ headerFlags = *in;
+ cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
+
+ bpPtr->blockType = (blockType_t)(headerFlags >> 6);
+ bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
+
+ if (bpPtr->blockType == bt_end) return 0;
+ if (bpPtr->blockType == bt_rle) return 1;
+ return cSize;
+}
+
+static size_t ZSTD_copyRawBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
+ memcpy(dst, src, srcSize);
+ return srcSize;
+}
+
+
+/** ZSTD_decompressLiterals
+ @return : nb of bytes read from src, or an error code*/
+static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr,
+ const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+
+ const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
+ const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
+
+ if (litSize > *maxDstSizePtr) return ERROR(corruption_detected);
+ if (litCSize + 5 > srcSize) return ERROR(corruption_detected);
+
+ if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected);
+
+ *maxDstSizePtr = litSize;
+ return litCSize + 5;
+}
+
+
+/** ZSTD_decodeLiteralsBlock
+ @return : nb of bytes read from src (< srcSize ) */
+static size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
+ const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
+{
+ const BYTE* const istart = (const BYTE*) src;
+
+ /* any compressed block with literals segment must be at least this size */
+ if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
+
+ switch(*istart & 3)
+ {
+ /* compressed */
+ case 0:
+ {
+ size_t litSize = BLOCKSIZE;
+ const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, 8);
+ return readSize; /* works if it's an error too */
+ }
+ case IS_RAW:
+ {
+ const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
+ if (litSize > srcSize-11) /* risk of reading too far with wildcopy */
+ {
+ if (litSize > srcSize-3) return ERROR(corruption_detected);
+ memcpy(dctx->litBuffer, istart, litSize);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, 8);
+ return litSize+3;
+ }
+ /* direct reference into compressed stream */
+ dctx->litPtr = istart+3;
+ dctx->litSize = litSize;
+ return litSize+3; }
+ case IS_RLE:
+ {
+ const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
+ if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
+ memset(dctx->litBuffer, istart[3], litSize + 8);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ return 4;
+ }
+ default:
+ return ERROR(corruption_detected); /* forbidden nominal case */
+ }
+}
+
+
+static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
+ FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
+ const void* src, size_t srcSize)
+{
+ const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* ip = istart;
+ const BYTE* const iend = istart + srcSize;
+ U32 LLtype, Offtype, MLtype;
+ U32 LLlog, Offlog, MLlog;
+ size_t dumpsLength;
+
+ /* check */
+ if (srcSize < 5) return ERROR(srcSize_wrong);
+
+ /* SeqHead */
+ *nbSeq = MEM_readLE16(ip); ip+=2;
+ LLtype = *ip >> 6;
+ Offtype = (*ip >> 4) & 3;
+ MLtype = (*ip >> 2) & 3;
+ if (*ip & 2)
+ {
+ dumpsLength = ip[2];
+ dumpsLength += ip[1] << 8;
+ ip += 3;
+ }
+ else
+ {
+ dumpsLength = ip[1];
+ dumpsLength += (ip[0] & 1) << 8;
+ ip += 2;
+ }
+ *dumpsPtr = ip;
+ ip += dumpsLength;
+ *dumpsLengthPtr = dumpsLength;
+
+ /* check */
+ if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
+
+ /* sequences */
+ {
+ S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL >= MaxOff */
+ size_t headerSize;
+
+ /* Build DTables */
+ switch(LLtype)
+ {
+ case bt_rle :
+ LLlog = 0;
+ FSE_buildDTable_rle(DTableLL, *ip++); break;
+ case bt_raw :
+ LLlog = LLbits;
+ FSE_buildDTable_raw(DTableLL, LLbits); break;
+ default :
+ { U32 max = MaxLL;
+ headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
+ if (FSE_isError(headerSize)) return ERROR(GENERIC);
+ if (LLlog > LLFSELog) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSE_buildDTable(DTableLL, norm, max, LLlog);
+ } }
+
+ switch(Offtype)
+ {
+ case bt_rle :
+ Offlog = 0;
+ if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
+ FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */
+ break;
+ case bt_raw :
+ Offlog = Offbits;
+ FSE_buildDTable_raw(DTableOffb, Offbits); break;
+ default :
+ { U32 max = MaxOff;
+ headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
+ if (FSE_isError(headerSize)) return ERROR(GENERIC);
+ if (Offlog > OffFSELog) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSE_buildDTable(DTableOffb, norm, max, Offlog);
+ } }
+
+ switch(MLtype)
+ {
+ case bt_rle :
+ MLlog = 0;
+ if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
+ FSE_buildDTable_rle(DTableML, *ip++); break;
+ case bt_raw :
+ MLlog = MLbits;
+ FSE_buildDTable_raw(DTableML, MLbits); break;
+ default :
+ { U32 max = MaxML;
+ headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
+ if (FSE_isError(headerSize)) return ERROR(GENERIC);
+ if (MLlog > MLFSELog) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSE_buildDTable(DTableML, norm, max, MLlog);
+ } } }
+
+ return ip-istart;
+}
+
+
+typedef struct {
+ size_t litLength;
+ size_t offset;
+ size_t matchLength;
+} seq_t;
+
+typedef struct {
+ BIT_DStream_t DStream;
+ FSE_DState_t stateLL;
+ FSE_DState_t stateOffb;
+ FSE_DState_t stateML;
+ size_t prevOffset;
+ const BYTE* dumps;
+ const BYTE* dumpsEnd;
+} seqState_t;
+
+
+static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
+{
+ size_t litLength;
+ size_t prevOffset;
+ size_t offset;
+ size_t matchLength;
+ const BYTE* dumps = seqState->dumps;
+ const BYTE* const de = seqState->dumpsEnd;
+
+ /* Literal length */
+ litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
+ prevOffset = litLength ? seq->offset : seqState->prevOffset;
+ if (litLength == MaxLL) {
+ const U32 add = dumps<de ? *dumps++ : 0;
+ if (add < 255) litLength += add;
+ else if (dumps + 3 <= de) {
+ litLength = MEM_readLE24(dumps);
+ dumps += 3;
+ }
+ if (dumps >= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */
+ }
+
+ /* Offset */
+ { static const U32 offsetPrefix[MaxOff+1] = {
+ 1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256,
+ 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
+ 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 };
+ U32 offsetCode, nbBits;
+ offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* <= maxOff, by table construction */
+ if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
+ nbBits = offsetCode - 1;
+ if (offsetCode==0) nbBits = 0; /* cmove */
+ offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits);
+ if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
+ if (offsetCode==0) offset = prevOffset; /* cmove */
+ if (offsetCode | !litLength) seqState->prevOffset = seq->offset; /* cmove */
+ }
+
+ /* MatchLength */
+ matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
+ if (matchLength == MaxML) {
+ const U32 add = dumps<de ? *dumps++ : 0;
+ if (add < 255) matchLength += add;
+ else if (dumps + 3 <= de){
+ matchLength = MEM_readLE24(dumps);
+ dumps += 3;
+ }
+ if (dumps >= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */
+ }
+ matchLength += MINMATCH;
+
+ /* save result */
+ seq->litLength = litLength;
+ seq->offset = offset;
+ seq->matchLength = matchLength;
+ seqState->dumps = dumps;
+}
+
+
+static size_t ZSTD_execSequence(BYTE* op,
+ BYTE* const oend, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
+{
+ static const int dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
+ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
+ BYTE* const oLitEnd = op + sequence.litLength;
+ const size_t sequenceLength = sequence.litLength + sequence.matchLength;
+ BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
+ BYTE* const oend_8 = oend-8;
+ const BYTE* const litEnd = *litPtr + sequence.litLength;
+ const BYTE* match = oLitEnd - sequence.offset;
+
+ /* check */
+ if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */
+ if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
+ if (litEnd > litLimit) return ERROR(corruption_detected); /* risk read beyond lit buffer */
+
+ /* copy Literals */
+ ZSTD_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
+ op = oLitEnd;
+ *litPtr = litEnd; /* update for next sequence */
+
+ /* copy Match */
+ if (sequence.offset > (size_t)(oLitEnd - base))
+ {
+ /* offset beyond prefix */
+ if (sequence.offset > (size_t)(oLitEnd - vBase))
+ return ERROR(corruption_detected);
+ match = dictEnd - (base-match);
+ if (match + sequence.matchLength <= dictEnd)
+ {
+ memmove(oLitEnd, match, sequence.matchLength);
+ return sequenceLength;
+ }
+ /* span extDict & currentPrefixSegment */
+ {
+ size_t length1 = dictEnd - match;
+ memmove(oLitEnd, match, length1);
+ op = oLitEnd + length1;
+ sequence.matchLength -= length1;
+ match = base;
+ if (op > oend_8 || sequence.matchLength < MINMATCH) {
+ while (op < oMatchEnd) *op++ = *match++;
+ return sequenceLength;
+ }
+ }
+ }
+ /* Requirement: op <= oend_8 */
+
+ /* match within prefix */
+ if (sequence.offset < 8) {
+ /* close range match, overlap */
+ const int sub2 = dec64table[sequence.offset];
+ op[0] = match[0];
+ op[1] = match[1];
+ op[2] = match[2];
+ op[3] = match[3];
+ match += dec32table[sequence.offset];
+ ZSTD_copy4(op+4, match);
+ match -= sub2;
+ } else {
+ ZSTD_copy8(op, match);
+ }
+ op += 8; match += 8;
+
+ if (oMatchEnd > oend-(16-MINMATCH))
+ {
+ if (op < oend_8)
+ {
+ ZSTD_wildcopy(op, match, oend_8 - op);
+ match += oend_8 - op;
+ op = oend_8;
+ }
+ while (op < oMatchEnd) *op++ = *match++;
+ }
+ else
+ {
+ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8, but must be signed */
+ }
+ return sequenceLength;
+}
+
+
+static size_t ZSTD_decompressSequences(
+ ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize)
+{
+ const BYTE* ip = (const BYTE*)seqStart;
+ const BYTE* const iend = ip + seqSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + maxDstSize;
+ size_t errorCode, dumpsLength;
+ const BYTE* litPtr = dctx->litPtr;
+ const BYTE* const litEnd = litPtr + dctx->litSize;
+ int nbSeq;
+ const BYTE* dumps;
+ U32* DTableLL = dctx->LLTable;
+ U32* DTableML = dctx->MLTable;
+ U32* DTableOffb = dctx->OffTable;
+ const BYTE* const base = (const BYTE*) (dctx->base);
+ const BYTE* const vBase = (const BYTE*) (dctx->vBase);
+ const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
+
+ /* Build Decoding Tables */
+ errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
+ DTableLL, DTableML, DTableOffb,
+ ip, iend-ip);
+ if (ZSTD_isError(errorCode)) return errorCode;
+ ip += errorCode;
+
+ /* Regen sequences */
+ {
+ seq_t sequence;
+ seqState_t seqState;
+
+ memset(&sequence, 0, sizeof(sequence));
+ sequence.offset = 4;
+ seqState.dumps = dumps;
+ seqState.dumpsEnd = dumps + dumpsLength;
+ seqState.prevOffset = 4;
+ errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip);
+ if (ERR_isError(errorCode)) return ERROR(corruption_detected);
+ FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
+ FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
+ FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
+
+ for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; )
+ {
+ size_t oneSeqSize;
+ nbSeq--;
+ ZSTD_decodeSequence(&sequence, &seqState);
+ oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd);
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+ op += oneSeqSize;
+ }
+
+ /* check if reached exact end */
+ if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* DStream should be entirely and exactly consumed; otherwise data is corrupted */
+
+ /* last literal segment */
+ {
+ size_t lastLLSize = litEnd - litPtr;
+ if (litPtr > litEnd) return ERROR(corruption_detected);
+ if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
+ if (op != litPtr) memcpy(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+ }
+
+ return op-ostart;
+}
+
+
+static void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst)
+{
+ if (dst != dctx->previousDstEnd) /* not contiguous */
+ {
+ dctx->dictEnd = dctx->previousDstEnd;
+ dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
+ dctx->base = dst;
+ dctx->previousDstEnd = dst;
+ }
+}
+
+
+static size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* src, size_t srcSize)
+{
+ /* blockType == blockCompressed */
+ const BYTE* ip = (const BYTE*)src;
+
+ /* Decode literals sub-block */
+ size_t litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
+ if (ZSTD_isError(litCSize)) return litCSize;
+ ip += litCSize;
+ srcSize -= litCSize;
+
+ return ZSTD_decompressSequences(dctx, dst, maxDstSize, ip, srcSize);
+}
+
+
+static size_t ZSTD_decompress_usingDict(ZSTD_DCtx* ctx,
+ void* dst, size_t maxDstSize,
+ const void* src, size_t srcSize,
+ const void* dict, size_t dictSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+ const BYTE* iend = ip + srcSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + maxDstSize;
+ size_t remainingSize = srcSize;
+ blockProperties_t blockProperties;
+
+ /* init */
+ ZSTD_resetDCtx(ctx);
+ if (dict)
+ {
+ ZSTD_decompress_insertDictionary(ctx, dict, dictSize);
+ ctx->dictEnd = ctx->previousDstEnd;
+ ctx->vBase = (const char*)dst - ((const char*)(ctx->previousDstEnd) - (const char*)(ctx->base));
+ ctx->base = dst;
+ }
+ else
+ {
+ ctx->vBase = ctx->base = ctx->dictEnd = dst;
+ }
+
+ /* Frame Header */
+ {
+ size_t frameHeaderSize;
+ if (srcSize < ZSTD_frameHeaderSize_min+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
+ frameHeaderSize = ZSTD_decodeFrameHeader_Part1(ctx, src, ZSTD_frameHeaderSize_min);
+ if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
+ if (srcSize < frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
+ ip += frameHeaderSize; remainingSize -= frameHeaderSize;
+ frameHeaderSize = ZSTD_decodeFrameHeader_Part2(ctx, src, frameHeaderSize);
+ if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
+ }
+
+ /* Loop on each block */
+ while (1)
+ {
+ size_t decodedSize=0;
+ size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties);
+ if (ZSTD_isError(cBlockSize)) return cBlockSize;
+
+ ip += ZSTD_blockHeaderSize;
+ remainingSize -= ZSTD_blockHeaderSize;
+ if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
+
+ switch(blockProperties.blockType)
+ {
+ case bt_compressed:
+ decodedSize = ZSTD_decompressBlock_internal(ctx, op, oend-op, ip, cBlockSize);
+ break;
+ case bt_raw :
+ decodedSize = ZSTD_copyRawBlock(op, oend-op, ip, cBlockSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet supported */
+ break;
+ case bt_end :
+ /* end of frame */
+ if (remainingSize) return ERROR(srcSize_wrong);
+ break;
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+ if (cBlockSize == 0) break; /* bt_end */
+
+ if (ZSTD_isError(decodedSize)) return decodedSize;
+ op += decodedSize;
+ ip += cBlockSize;
+ remainingSize -= cBlockSize;
+ }
+
+ return op-ostart;
+}
+
+/* ZSTD_errorFrameSizeInfoLegacy() :
+ assumes `cSize` and `dBound` are _not_ NULL */
+static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
+{
+ *cSize = ret;
+ *dBound = ZSTD_CONTENTSIZE_ERROR;
+}
+
+void ZSTDv04_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
+{
+ const BYTE* ip = (const BYTE*)src;
+ size_t remainingSize = srcSize;
+ size_t nbBlocks = 0;
+ blockProperties_t blockProperties;
+
+ /* Frame Header */
+ if (srcSize < ZSTD_frameHeaderSize_min) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+ if (MEM_readLE32(src) != ZSTD_MAGICNUMBER) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
+ return;
+ }
+ ip += ZSTD_frameHeaderSize_min; remainingSize -= ZSTD_frameHeaderSize_min;
+
+ /* Loop on each block */
+ while (1)
+ {
+ size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
+ if (ZSTD_isError(cBlockSize)) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
+ return;
+ }
+
+ ip += ZSTD_blockHeaderSize;
+ remainingSize -= ZSTD_blockHeaderSize;
+ if (cBlockSize > remainingSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+
+ if (cBlockSize == 0) break; /* bt_end */
+
+ ip += cBlockSize;
+ remainingSize -= cBlockSize;
+ nbBlocks++;
+ }
+
+ *cSize = ip - (const BYTE*)src;
+ *dBound = nbBlocks * BLOCKSIZE;
+}
+
+/* ******************************
+* Streaming Decompression API
+********************************/
+static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx)
+{
+ return dctx->expected;
+}
+
+static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ /* Sanity check */
+ if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
+ ZSTD_checkContinuity(ctx, dst);
+
+ /* Decompress : frame header; part 1 */
+ switch (ctx->stage)
+ {
+ case ZSTDds_getFrameHeaderSize :
+ /* get frame header size */
+ if (srcSize != ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong); /* impossible */
+ ctx->headerSize = ZSTD_decodeFrameHeader_Part1(ctx, src, ZSTD_frameHeaderSize_min);
+ if (ZSTD_isError(ctx->headerSize)) return ctx->headerSize;
+ memcpy(ctx->headerBuffer, src, ZSTD_frameHeaderSize_min);
+ if (ctx->headerSize > ZSTD_frameHeaderSize_min) return ERROR(GENERIC); /* impossible */
+ ctx->expected = 0; /* not necessary to copy more */
+ /* fallthrough */
+ case ZSTDds_decodeFrameHeader:
+ /* get frame header */
+ { size_t const result = ZSTD_decodeFrameHeader_Part2(ctx, ctx->headerBuffer, ctx->headerSize);
+ if (ZSTD_isError(result)) return result;
+ ctx->expected = ZSTD_blockHeaderSize;
+ ctx->stage = ZSTDds_decodeBlockHeader;
+ return 0;
+ }
+ case ZSTDds_decodeBlockHeader:
+ /* Decode block header */
+ { blockProperties_t bp;
+ size_t const blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
+ if (ZSTD_isError(blockSize)) return blockSize;
+ if (bp.blockType == bt_end)
+ {
+ ctx->expected = 0;
+ ctx->stage = ZSTDds_getFrameHeaderSize;
+ }
+ else
+ {
+ ctx->expected = blockSize;
+ ctx->bType = bp.blockType;
+ ctx->stage = ZSTDds_decompressBlock;
+ }
+ return 0;
+ }
+ case ZSTDds_decompressBlock:
+ {
+ /* Decompress : block content */
+ size_t rSize;
+ switch(ctx->bType)
+ {
+ case bt_compressed:
+ rSize = ZSTD_decompressBlock_internal(ctx, dst, maxDstSize, src, srcSize);
+ break;
+ case bt_raw :
+ rSize = ZSTD_copyRawBlock(dst, maxDstSize, src, srcSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet handled */
+ break;
+ case bt_end : /* should never happen (filtered at phase 1) */
+ rSize = 0;
+ break;
+ default:
+ return ERROR(GENERIC);
+ }
+ ctx->stage = ZSTDds_decodeBlockHeader;
+ ctx->expected = ZSTD_blockHeaderSize;
+ ctx->previousDstEnd = (char*)dst + rSize;
+ return rSize;
+ }
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+}
+
+
+static void ZSTD_decompress_insertDictionary(ZSTD_DCtx* ctx, const void* dict, size_t dictSize)
+{
+ ctx->dictEnd = ctx->previousDstEnd;
+ ctx->vBase = (const char*)dict - ((const char*)(ctx->previousDstEnd) - (const char*)(ctx->base));
+ ctx->base = dict;
+ ctx->previousDstEnd = (const char*)dict + dictSize;
+}
+
+
+
+/*
+ Buffered version of Zstd compression library
+ Copyright (C) 2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd source repository : https://github.com/Cyan4973/zstd
+ - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
+*/
+
+/* The objects defined into this file should be considered experimental.
+ * They are not labelled stable, as their prototype may change in the future.
+ * You can use them for tests, provide feedback, or if you can endure risk of future changes.
+ */
+
+/* *************************************
+* Includes
+***************************************/
+#include <stdlib.h>
+
+
+/** ************************************************
+* Streaming decompression
+*
+* A ZBUFF_DCtx object is required to track streaming operation.
+* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
+* Use ZBUFF_decompressInit() to start a new decompression operation.
+* ZBUFF_DCtx objects can be reused multiple times.
+*
+* Use ZBUFF_decompressContinue() repetitively to consume your input.
+* *srcSizePtr and *maxDstSizePtr can be any size.
+* The function will report how many bytes were read or written by modifying *srcSizePtr and *maxDstSizePtr.
+* Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input.
+* The content of dst will be overwritten (up to *maxDstSizePtr) at each function call, so save its content if it matters or change dst .
+* return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
+* or 0 when a frame is completely decoded
+* or an error code, which can be tested using ZBUFF_isError().
+*
+* Hint : recommended buffer sizes (not compulsory)
+* output : 128 KB block size is the internal unit, it ensures it's always possible to write a full block when it's decoded.
+* input : just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
+* **************************************************/
+
+typedef enum { ZBUFFds_init, ZBUFFds_readHeader, ZBUFFds_loadHeader, ZBUFFds_decodeHeader,
+ ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFF_dStage;
+
+/* *** Resource management *** */
+
+#define ZSTD_frameHeaderSize_max 5 /* too magical, should come from reference */
+struct ZBUFFv04_DCtx_s {
+ ZSTD_DCtx* zc;
+ ZSTD_parameters params;
+ char* inBuff;
+ size_t inBuffSize;
+ size_t inPos;
+ char* outBuff;
+ size_t outBuffSize;
+ size_t outStart;
+ size_t outEnd;
+ size_t hPos;
+ const char* dict;
+ size_t dictSize;
+ ZBUFF_dStage stage;
+ unsigned char headerBuffer[ZSTD_frameHeaderSize_max];
+}; /* typedef'd to ZBUFF_DCtx within "zstd_buffered.h" */
+
+typedef ZBUFFv04_DCtx ZBUFF_DCtx;
+
+
+static ZBUFF_DCtx* ZBUFF_createDCtx(void)
+{
+ ZBUFF_DCtx* zbc = (ZBUFF_DCtx*)malloc(sizeof(ZBUFF_DCtx));
+ if (zbc==NULL) return NULL;
+ memset(zbc, 0, sizeof(*zbc));
+ zbc->zc = ZSTD_createDCtx();
+ zbc->stage = ZBUFFds_init;
+ return zbc;
+}
+
+static size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbc)
+{
+ if (zbc==NULL) return 0; /* support free on null */
+ ZSTD_freeDCtx(zbc->zc);
+ free(zbc->inBuff);
+ free(zbc->outBuff);
+ free(zbc);
+ return 0;
+}
+
+
+/* *** Initialization *** */
+
+static size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbc)
+{
+ zbc->stage = ZBUFFds_readHeader;
+ zbc->hPos = zbc->inPos = zbc->outStart = zbc->outEnd = zbc->dictSize = 0;
+ return ZSTD_resetDCtx(zbc->zc);
+}
+
+
+static size_t ZBUFF_decompressWithDictionary(ZBUFF_DCtx* zbc, const void* src, size_t srcSize)
+{
+ zbc->dict = (const char*)src;
+ zbc->dictSize = srcSize;
+ return 0;
+}
+
+static size_t ZBUFF_limitCopy(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ size_t length = MIN(maxDstSize, srcSize);
+ memcpy(dst, src, length);
+ return length;
+}
+
+/* *** Decompression *** */
+
+static size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbc, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr)
+{
+ const char* const istart = (const char*)src;
+ const char* ip = istart;
+ const char* const iend = istart + *srcSizePtr;
+ char* const ostart = (char*)dst;
+ char* op = ostart;
+ char* const oend = ostart + *maxDstSizePtr;
+ U32 notDone = 1;
+
+ DEBUGLOG(5, "ZBUFF_decompressContinue");
+ while (notDone)
+ {
+ switch(zbc->stage)
+ {
+
+ case ZBUFFds_init :
+ DEBUGLOG(5, "ZBUFF_decompressContinue: stage==ZBUFFds_init => ERROR(init_missing)");
+ return ERROR(init_missing);
+
+ case ZBUFFds_readHeader :
+ /* read header from src */
+ { size_t const headerSize = ZSTD_getFrameParams(&(zbc->params), src, *srcSizePtr);
+ if (ZSTD_isError(headerSize)) return headerSize;
+ if (headerSize) {
+ /* not enough input to decode header : tell how many bytes would be necessary */
+ memcpy(zbc->headerBuffer+zbc->hPos, src, *srcSizePtr);
+ zbc->hPos += *srcSizePtr;
+ *maxDstSizePtr = 0;
+ zbc->stage = ZBUFFds_loadHeader;
+ return headerSize - zbc->hPos;
+ }
+ zbc->stage = ZBUFFds_decodeHeader;
+ break;
+ }
+
+ case ZBUFFds_loadHeader:
+ /* complete header from src */
+ { size_t headerSize = ZBUFF_limitCopy(
+ zbc->headerBuffer + zbc->hPos, ZSTD_frameHeaderSize_max - zbc->hPos,
+ src, *srcSizePtr);
+ zbc->hPos += headerSize;
+ ip += headerSize;
+ headerSize = ZSTD_getFrameParams(&(zbc->params), zbc->headerBuffer, zbc->hPos);
+ if (ZSTD_isError(headerSize)) return headerSize;
+ if (headerSize) {
+ /* not enough input to decode header : tell how many bytes would be necessary */
+ *maxDstSizePtr = 0;
+ return headerSize - zbc->hPos;
+ } }
+ /* intentional fallthrough */
+
+ case ZBUFFds_decodeHeader:
+ /* apply header to create / resize buffers */
+ { size_t const neededOutSize = (size_t)1 << zbc->params.windowLog;
+ size_t const neededInSize = BLOCKSIZE; /* a block is never > BLOCKSIZE */
+ if (zbc->inBuffSize < neededInSize) {
+ free(zbc->inBuff);
+ zbc->inBuffSize = neededInSize;
+ zbc->inBuff = (char*)malloc(neededInSize);
+ if (zbc->inBuff == NULL) return ERROR(memory_allocation);
+ }
+ if (zbc->outBuffSize < neededOutSize) {
+ free(zbc->outBuff);
+ zbc->outBuffSize = neededOutSize;
+ zbc->outBuff = (char*)malloc(neededOutSize);
+ if (zbc->outBuff == NULL) return ERROR(memory_allocation);
+ } }
+ if (zbc->dictSize)
+ ZSTD_decompress_insertDictionary(zbc->zc, zbc->dict, zbc->dictSize);
+ if (zbc->hPos) {
+ /* some data already loaded into headerBuffer : transfer into inBuff */
+ memcpy(zbc->inBuff, zbc->headerBuffer, zbc->hPos);
+ zbc->inPos = zbc->hPos;
+ zbc->hPos = 0;
+ zbc->stage = ZBUFFds_load;
+ break;
+ }
+ zbc->stage = ZBUFFds_read;
+ /* fall-through */
+ case ZBUFFds_read:
+ {
+ size_t neededInSize = ZSTD_nextSrcSizeToDecompress(zbc->zc);
+ if (neededInSize==0) /* end of frame */
+ {
+ zbc->stage = ZBUFFds_init;
+ notDone = 0;
+ break;
+ }
+ if ((size_t)(iend-ip) >= neededInSize)
+ {
+ /* directly decode from src */
+ size_t decodedSize = ZSTD_decompressContinue(zbc->zc,
+ zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart,
+ ip, neededInSize);
+ if (ZSTD_isError(decodedSize)) return decodedSize;
+ ip += neededInSize;
+ if (!decodedSize) break; /* this was just a header */
+ zbc->outEnd = zbc->outStart + decodedSize;
+ zbc->stage = ZBUFFds_flush;
+ break;
+ }
+ if (ip==iend) { notDone = 0; break; } /* no more input */
+ zbc->stage = ZBUFFds_load;
+ }
+ /* fall-through */
+ case ZBUFFds_load:
+ {
+ size_t neededInSize = ZSTD_nextSrcSizeToDecompress(zbc->zc);
+ size_t toLoad = neededInSize - zbc->inPos; /* should always be <= remaining space within inBuff */
+ size_t loadedSize;
+ if (toLoad > zbc->inBuffSize - zbc->inPos) return ERROR(corruption_detected); /* should never happen */
+ loadedSize = ZBUFF_limitCopy(zbc->inBuff + zbc->inPos, toLoad, ip, iend-ip);
+ ip += loadedSize;
+ zbc->inPos += loadedSize;
+ if (loadedSize < toLoad) { notDone = 0; break; } /* not enough input, wait for more */
+ {
+ size_t decodedSize = ZSTD_decompressContinue(zbc->zc,
+ zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart,
+ zbc->inBuff, neededInSize);
+ if (ZSTD_isError(decodedSize)) return decodedSize;
+ zbc->inPos = 0; /* input is consumed */
+ if (!decodedSize) { zbc->stage = ZBUFFds_read; break; } /* this was just a header */
+ zbc->outEnd = zbc->outStart + decodedSize;
+ zbc->stage = ZBUFFds_flush;
+ /* ZBUFFds_flush follows */
+ }
+ }
+ /* fall-through */
+ case ZBUFFds_flush:
+ {
+ size_t toFlushSize = zbc->outEnd - zbc->outStart;
+ size_t flushedSize = ZBUFF_limitCopy(op, oend-op, zbc->outBuff + zbc->outStart, toFlushSize);
+ op += flushedSize;
+ zbc->outStart += flushedSize;
+ if (flushedSize == toFlushSize)
+ {
+ zbc->stage = ZBUFFds_read;
+ if (zbc->outStart + BLOCKSIZE > zbc->outBuffSize)
+ zbc->outStart = zbc->outEnd = 0;
+ break;
+ }
+ /* cannot flush everything */
+ notDone = 0;
+ break;
+ }
+ default: return ERROR(GENERIC); /* impossible */
+ }
+ }
+
+ *srcSizePtr = ip-istart;
+ *maxDstSizePtr = op-ostart;
+
+ {
+ size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zbc->zc);
+ if (nextSrcSizeHint > 3) nextSrcSizeHint+= 3; /* get the next block header while at it */
+ nextSrcSizeHint -= zbc->inPos; /* already loaded*/
+ return nextSrcSizeHint;
+ }
+}
+
+
+/* *************************************
+* Tool functions
+***************************************/
+unsigned ZBUFFv04_isError(size_t errorCode) { return ERR_isError(errorCode); }
+const char* ZBUFFv04_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
+
+size_t ZBUFFv04_recommendedDInSize() { return BLOCKSIZE + 3; }
+size_t ZBUFFv04_recommendedDOutSize() { return BLOCKSIZE; }
+
+
+
+/*- ========================================================================= -*/
+
+/* final wrapping stage */
+
+size_t ZSTDv04_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ return ZSTD_decompress_usingDict(dctx, dst, maxDstSize, src, srcSize, NULL, 0);
+}
+
+size_t ZSTDv04_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+#if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE==1)
+ size_t regenSize;
+ ZSTD_DCtx* dctx = ZSTD_createDCtx();
+ if (dctx==NULL) return ERROR(memory_allocation);
+ regenSize = ZSTDv04_decompressDCtx(dctx, dst, maxDstSize, src, srcSize);
+ ZSTD_freeDCtx(dctx);
+ return regenSize;
+#else
+ ZSTD_DCtx dctx;
+ return ZSTDv04_decompressDCtx(&dctx, dst, maxDstSize, src, srcSize);
+#endif
+}
+
+size_t ZSTDv04_resetDCtx(ZSTDv04_Dctx* dctx) { return ZSTD_resetDCtx(dctx); }
+
+size_t ZSTDv04_nextSrcSizeToDecompress(ZSTDv04_Dctx* dctx)
+{
+ return ZSTD_nextSrcSizeToDecompress(dctx);
+}
+
+size_t ZSTDv04_decompressContinue(ZSTDv04_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ return ZSTD_decompressContinue(dctx, dst, maxDstSize, src, srcSize);
+}
+
+
+
+ZBUFFv04_DCtx* ZBUFFv04_createDCtx(void) { return ZBUFF_createDCtx(); }
+size_t ZBUFFv04_freeDCtx(ZBUFFv04_DCtx* dctx) { return ZBUFF_freeDCtx(dctx); }
+
+size_t ZBUFFv04_decompressInit(ZBUFFv04_DCtx* dctx) { return ZBUFF_decompressInit(dctx); }
+size_t ZBUFFv04_decompressWithDictionary(ZBUFFv04_DCtx* dctx, const void* src, size_t srcSize)
+{ return ZBUFF_decompressWithDictionary(dctx, src, srcSize); }
+
+size_t ZBUFFv04_decompressContinue(ZBUFFv04_DCtx* dctx, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr)
+{
+ DEBUGLOG(5, "ZBUFFv04_decompressContinue");
+ return ZBUFF_decompressContinue(dctx, dst, maxDstSizePtr, src, srcSizePtr);
+}
+
+ZSTD_DCtx* ZSTDv04_createDCtx(void) { return ZSTD_createDCtx(); }
+size_t ZSTDv04_freeDCtx(ZSTD_DCtx* dctx) { return ZSTD_freeDCtx(dctx); }
diff --git a/vendor/github.com/DataDog/zstd/zstd_v04.h b/vendor/github.com/DataDog/zstd/zstd_v04.h
new file mode 100644
index 0000000..bb5f3b7
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v04.h
@@ -0,0 +1,142 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_V04_H_91868324769238
+#define ZSTD_V04_H_91868324769238
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/* *************************************
+* Includes
+***************************************/
+#include <stddef.h> /* size_t */
+
+
+/* *************************************
+* Simple one-step function
+***************************************/
+/**
+ZSTDv04_decompress() : decompress ZSTD frames compliant with v0.4.x format
+ compressedSize : is the exact source size
+ maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
+ It must be equal or larger than originalSize, otherwise decompression will fail.
+ return : the number of bytes decompressed into destination buffer (originalSize)
+ or an errorCode if it fails (which can be tested using ZSTDv01_isError())
+*/
+size_t ZSTDv04_decompress( void* dst, size_t maxOriginalSize,
+ const void* src, size_t compressedSize);
+
+ /**
+ ZSTDv04_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.4.x format
+ srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
+ cSize (output parameter) : the number of bytes that would be read to decompress this frame
+ or an error code if it fails (which can be tested using ZSTDv01_isError())
+ dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
+ or ZSTD_CONTENTSIZE_ERROR if an error occurs
+
+ note : assumes `cSize` and `dBound` are _not_ NULL.
+ */
+ void ZSTDv04_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
+ size_t* cSize, unsigned long long* dBound);
+
+/**
+ZSTDv04_isError() : tells if the result of ZSTDv04_decompress() is an error
+*/
+unsigned ZSTDv04_isError(size_t code);
+
+
+/* *************************************
+* Advanced functions
+***************************************/
+typedef struct ZSTDv04_Dctx_s ZSTDv04_Dctx;
+ZSTDv04_Dctx* ZSTDv04_createDCtx(void);
+size_t ZSTDv04_freeDCtx(ZSTDv04_Dctx* dctx);
+
+size_t ZSTDv04_decompressDCtx(ZSTDv04_Dctx* dctx,
+ void* dst, size_t maxOriginalSize,
+ const void* src, size_t compressedSize);
+
+
+/* *************************************
+* Direct Streaming
+***************************************/
+size_t ZSTDv04_resetDCtx(ZSTDv04_Dctx* dctx);
+
+size_t ZSTDv04_nextSrcSizeToDecompress(ZSTDv04_Dctx* dctx);
+size_t ZSTDv04_decompressContinue(ZSTDv04_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
+/**
+ Use above functions alternatively.
+ ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
+ ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
+ Result is the number of bytes regenerated within 'dst'.
+ It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
+*/
+
+
+/* *************************************
+* Buffered Streaming
+***************************************/
+typedef struct ZBUFFv04_DCtx_s ZBUFFv04_DCtx;
+ZBUFFv04_DCtx* ZBUFFv04_createDCtx(void);
+size_t ZBUFFv04_freeDCtx(ZBUFFv04_DCtx* dctx);
+
+size_t ZBUFFv04_decompressInit(ZBUFFv04_DCtx* dctx);
+size_t ZBUFFv04_decompressWithDictionary(ZBUFFv04_DCtx* dctx, const void* dict, size_t dictSize);
+
+size_t ZBUFFv04_decompressContinue(ZBUFFv04_DCtx* dctx, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr);
+
+/** ************************************************
+* Streaming decompression
+*
+* A ZBUFF_DCtx object is required to track streaming operation.
+* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
+* Use ZBUFF_decompressInit() to start a new decompression operation.
+* ZBUFF_DCtx objects can be reused multiple times.
+*
+* Optionally, a reference to a static dictionary can be set, using ZBUFF_decompressWithDictionary()
+* It must be the same content as the one set during compression phase.
+* Dictionary content must remain accessible during the decompression process.
+*
+* Use ZBUFF_decompressContinue() repetitively to consume your input.
+* *srcSizePtr and *maxDstSizePtr can be any size.
+* The function will report how many bytes were read or written by modifying *srcSizePtr and *maxDstSizePtr.
+* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
+* The content of dst will be overwritten (up to *maxDstSizePtr) at each function call, so save its content if it matters or change dst.
+* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
+* or 0 when a frame is completely decoded
+* or an error code, which can be tested using ZBUFF_isError().
+*
+* Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize / ZBUFF_recommendedDOutSize
+* output : ZBUFF_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when it's decoded.
+* input : ZBUFF_recommendedDInSize==128Kb+3; just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
+* **************************************************/
+unsigned ZBUFFv04_isError(size_t errorCode);
+const char* ZBUFFv04_getErrorName(size_t errorCode);
+
+
+/** The below functions provide recommended buffer sizes for Compression or Decompression operations.
+* These sizes are not compulsory, they just tend to offer better latency */
+size_t ZBUFFv04_recommendedDInSize(void);
+size_t ZBUFFv04_recommendedDOutSize(void);
+
+
+/* *************************************
+* Prefix - version detection
+***************************************/
+#define ZSTDv04_magicNumber 0xFD2FB524 /* v0.4 */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_V04_H_91868324769238 */
diff --git a/vendor/github.com/DataDog/zstd/zstd_v05.c b/vendor/github.com/DataDog/zstd/zstd_v05.c
new file mode 100644
index 0000000..a7ea606
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v05.c
@@ -0,0 +1,4043 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+/*- Dependencies -*/
+#include "zstd_v05.h"
+#include "error_private.h"
+
+
+/* ******************************************************************
+ mem.h
+ low-level memory access routines
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSEv05 source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef MEM_H_MODULE
+#define MEM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/*-****************************************
+* Dependencies
+******************************************/
+#include <stddef.h> /* size_t, ptrdiff_t */
+#include <string.h> /* memcpy */
+
+
+/*-****************************************
+* Compiler specifics
+******************************************/
+#if defined(__GNUC__)
+# define MEM_STATIC static __attribute__((unused))
+#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define MEM_STATIC static inline
+#elif defined(_MSC_VER)
+# define MEM_STATIC static __inline
+#else
+# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
+
+
+/*-**************************************************************
+* Basic Types
+*****************************************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# include <stdint.h>
+ typedef uint8_t BYTE;
+ typedef uint16_t U16;
+ typedef int16_t S16;
+ typedef uint32_t U32;
+ typedef int32_t S32;
+ typedef uint64_t U64;
+ typedef int64_t S64;
+#else
+ typedef unsigned char BYTE;
+ typedef unsigned short U16;
+ typedef signed short S16;
+ typedef unsigned int U32;
+ typedef signed int S32;
+ typedef unsigned long long U64;
+ typedef signed long long S64;
+#endif
+
+
+/*-**************************************************************
+* Memory I/O
+*****************************************************************/
+/* MEM_FORCE_MEMORY_ACCESS :
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
+ * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method is portable but violate C standard.
+ * It can generate buggy code on targets depending on alignment.
+ * In some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
+ * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
+# define MEM_FORCE_MEMORY_ACCESS 2
+# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
+ (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# define MEM_FORCE_MEMORY_ACCESS 1
+# endif
+#endif
+
+MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; }
+MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; }
+
+MEM_STATIC unsigned MEM_isLittleEndian(void)
+{
+ const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
+ return one.c[0];
+}
+
+#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
+
+/* violates C standard, by lying on structure alignment.
+Only use if no other choice to achieve best performance on target platform */
+MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
+MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
+MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
+MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
+MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
+
+#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+typedef union { U16 u16; U32 u32; U64 u64; size_t st; } __attribute__((packed)) unalign;
+
+MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
+MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
+MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign*)memPtr)->u32 = value; }
+MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign*)memPtr)->u64 = value; }
+
+#else
+
+/* default method, safe and standard.
+ can sometimes prove slower */
+
+MEM_STATIC U16 MEM_read16(const void* memPtr)
+{
+ U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U32 MEM_read32(const void* memPtr)
+{
+ U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U64 MEM_read64(const void* memPtr)
+{
+ U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value)
+{
+ memcpy(memPtr, &value, sizeof(value));
+}
+
+MEM_STATIC void MEM_write32(void* memPtr, U32 value)
+{
+ memcpy(memPtr, &value, sizeof(value));
+}
+
+MEM_STATIC void MEM_write64(void* memPtr, U64 value)
+{
+ memcpy(memPtr, &value, sizeof(value));
+}
+
+#endif /* MEM_FORCE_MEMORY_ACCESS */
+
+
+MEM_STATIC U16 MEM_readLE16(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read16(memPtr);
+ else {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U16)(p[0] + (p[1]<<8));
+ }
+}
+
+MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
+{
+ if (MEM_isLittleEndian()) {
+ MEM_write16(memPtr, val);
+ } else {
+ BYTE* p = (BYTE*)memPtr;
+ p[0] = (BYTE)val;
+ p[1] = (BYTE)(val>>8);
+ }
+}
+
+MEM_STATIC U32 MEM_readLE24(const void* memPtr)
+{
+ return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
+}
+
+MEM_STATIC U32 MEM_readLE32(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read32(memPtr);
+ else {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
+ }
+}
+
+
+MEM_STATIC U64 MEM_readLE64(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read64(memPtr);
+ else {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
+ + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
+ }
+}
+
+
+MEM_STATIC size_t MEM_readLEST(const void* memPtr)
+{
+ if (MEM_32bits())
+ return (size_t)MEM_readLE32(memPtr);
+ else
+ return (size_t)MEM_readLE64(memPtr);
+}
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* MEM_H_MODULE */
+
+/*
+ zstd - standard compression library
+ Header File for static linking only
+ Copyright (C) 2014-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd homepage : http://www.zstd.net
+*/
+#ifndef ZSTD_STATIC_H
+#define ZSTD_STATIC_H
+
+/* The prototypes defined within this file are considered experimental.
+ * They should not be used in the context DLL as they may change in the future.
+ * Prefer static linking if you need them, to control breaking version changes issues.
+ */
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+
+/*-*************************************
+* Types
+***************************************/
+#define ZSTDv05_WINDOWLOG_ABSOLUTEMIN 11
+
+
+/*-*************************************
+* Advanced functions
+***************************************/
+/*- Advanced Decompression functions -*/
+
+/*! ZSTDv05_decompress_usingPreparedDCtx() :
+* Same as ZSTDv05_decompress_usingDict, but using a reference context `preparedDCtx`, where dictionary has been loaded.
+* It avoids reloading the dictionary each time.
+* `preparedDCtx` must have been properly initialized using ZSTDv05_decompressBegin_usingDict().
+* Requires 2 contexts : 1 for reference, which will not be modified, and 1 to run the decompression operation */
+size_t ZSTDv05_decompress_usingPreparedDCtx(
+ ZSTDv05_DCtx* dctx, const ZSTDv05_DCtx* preparedDCtx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize);
+
+
+/* **************************************
+* Streaming functions (direct mode)
+****************************************/
+size_t ZSTDv05_decompressBegin(ZSTDv05_DCtx* dctx);
+
+/*
+ Streaming decompression, direct mode (bufferless)
+
+ A ZSTDv05_DCtx object is required to track streaming operations.
+ Use ZSTDv05_createDCtx() / ZSTDv05_freeDCtx() to manage it.
+ A ZSTDv05_DCtx object can be re-used multiple times.
+
+ First typical operation is to retrieve frame parameters, using ZSTDv05_getFrameParams().
+ This operation is independent, and just needs enough input data to properly decode the frame header.
+ Objective is to retrieve *params.windowlog, to know minimum amount of memory required during decoding.
+ Result : 0 when successful, it means the ZSTDv05_parameters structure has been filled.
+ >0 : means there is not enough data into src. Provides the expected size to successfully decode header.
+ errorCode, which can be tested using ZSTDv05_isError()
+
+ Start decompression, with ZSTDv05_decompressBegin() or ZSTDv05_decompressBegin_usingDict()
+ Alternatively, you can copy a prepared context, using ZSTDv05_copyDCtx()
+
+ Then use ZSTDv05_nextSrcSizeToDecompress() and ZSTDv05_decompressContinue() alternatively.
+ ZSTDv05_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTDv05_decompressContinue().
+ ZSTDv05_decompressContinue() requires this exact amount of bytes, or it will fail.
+ ZSTDv05_decompressContinue() needs previous data blocks during decompression, up to (1 << windowlog).
+ They should preferably be located contiguously, prior to current block. Alternatively, a round buffer is also possible.
+
+ @result of ZSTDv05_decompressContinue() is the number of bytes regenerated within 'dst'.
+ It can be zero, which is not an error; it just means ZSTDv05_decompressContinue() has decoded some header.
+
+ A frame is fully decoded when ZSTDv05_nextSrcSizeToDecompress() returns zero.
+ Context can then be reset to start a new decompression.
+*/
+
+
+/* **************************************
+* Block functions
+****************************************/
+/*! Block functions produce and decode raw zstd blocks, without frame metadata.
+ User will have to take in charge required information to regenerate data, such as block sizes.
+
+ A few rules to respect :
+ - Uncompressed block size must be <= 128 KB
+ - Compressing or decompressing requires a context structure
+ + Use ZSTDv05_createCCtx() and ZSTDv05_createDCtx()
+ - It is necessary to init context before starting
+ + compression : ZSTDv05_compressBegin()
+ + decompression : ZSTDv05_decompressBegin()
+ + variants _usingDict() are also allowed
+ + copyCCtx() and copyDCtx() work too
+ - When a block is considered not compressible enough, ZSTDv05_compressBlock() result will be zero.
+ In which case, nothing is produced into `dst`.
+ + User must test for such outcome and deal directly with uncompressed data
+ + ZSTDv05_decompressBlock() doesn't accept uncompressed data as input !!
+*/
+
+size_t ZSTDv05_decompressBlock(ZSTDv05_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTDv05_STATIC_H */
+
+
+/*
+ zstd_internal - common functions to include
+ Header File for include
+ Copyright (C) 2014-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd source repository : https://github.com/Cyan4973/zstd
+*/
+#ifndef ZSTD_CCOMMON_H_MODULE
+#define ZSTD_CCOMMON_H_MODULE
+
+
+
+/*-*************************************
+* Common macros
+***************************************/
+#define MIN(a,b) ((a)<(b) ? (a) : (b))
+#define MAX(a,b) ((a)>(b) ? (a) : (b))
+
+
+/*-*************************************
+* Common constants
+***************************************/
+#define ZSTDv05_DICT_MAGIC 0xEC30A435
+
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+
+#define BLOCKSIZE (128 KB) /* define, for static allocation */
+
+static const size_t ZSTDv05_blockHeaderSize = 3;
+static const size_t ZSTDv05_frameHeaderSize_min = 5;
+#define ZSTDv05_frameHeaderSize_max 5 /* define, for static allocation */
+
+#define BITv057 128
+#define BITv056 64
+#define BITv055 32
+#define BITv054 16
+#define BITv051 2
+#define BITv050 1
+
+#define IS_HUFv05 0
+#define IS_PCH 1
+#define IS_RAW 2
+#define IS_RLE 3
+
+#define MINMATCH 4
+#define REPCODE_STARTVALUE 1
+
+#define Litbits 8
+#define MLbits 7
+#define LLbits 6
+#define Offbits 5
+#define MaxLit ((1<<Litbits) - 1)
+#define MaxML ((1<<MLbits) - 1)
+#define MaxLL ((1<<LLbits) - 1)
+#define MaxOff ((1<<Offbits)- 1)
+#define MLFSEv05Log 10
+#define LLFSEv05Log 10
+#define OffFSEv05Log 9
+#define MaxSeq MAX(MaxLL, MaxML)
+
+#define FSEv05_ENCODING_RAW 0
+#define FSEv05_ENCODING_RLE 1
+#define FSEv05_ENCODING_STATIC 2
+#define FSEv05_ENCODING_DYNAMIC 3
+
+
+#define HufLog 12
+
+#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
+#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
+
+#define WILDCOPY_OVERLENGTH 8
+
+#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
+
+typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
+
+
+/*-*******************************************
+* Shared functions to include for inlining
+*********************************************/
+static void ZSTDv05_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
+
+#define COPY8(d,s) { ZSTDv05_copy8(d,s); d+=8; s+=8; }
+
+/*! ZSTDv05_wildcopy() :
+* custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */
+MEM_STATIC void ZSTDv05_wildcopy(void* dst, const void* src, ptrdiff_t length)
+{
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + length;
+ do
+ COPY8(op, ip)
+ while (op < oend);
+}
+
+
+/*-*******************************************
+* Private interfaces
+*********************************************/
+typedef struct {
+ void* buffer;
+ U32* offsetStart;
+ U32* offset;
+ BYTE* offCodeStart;
+ BYTE* offCode;
+ BYTE* litStart;
+ BYTE* lit;
+ BYTE* litLengthStart;
+ BYTE* litLength;
+ BYTE* matchLengthStart;
+ BYTE* matchLength;
+ BYTE* dumpsStart;
+ BYTE* dumps;
+ /* opt */
+ U32* matchLengthFreq;
+ U32* litLengthFreq;
+ U32* litFreq;
+ U32* offCodeFreq;
+ U32 matchLengthSum;
+ U32 litLengthSum;
+ U32 litSum;
+ U32 offCodeSum;
+} seqStore_t;
+
+
+
+#endif /* ZSTDv05_CCOMMON_H_MODULE */
+/* ******************************************************************
+ FSEv05 : Finite State Entropy coder
+ header file
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef FSEv05_H
+#define FSEv05_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/* *****************************************
+* Includes
+******************************************/
+#include <stddef.h> /* size_t, ptrdiff_t */
+
+
+/*-****************************************
+* FSEv05 simple functions
+******************************************/
+size_t FSEv05_decompress(void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize);
+/*!
+FSEv05_decompress():
+ Decompress FSEv05 data from buffer 'cSrc', of size 'cSrcSize',
+ into already allocated destination buffer 'dst', of size 'maxDstSize'.
+ return : size of regenerated data (<= maxDstSize)
+ or an error code, which can be tested using FSEv05_isError()
+
+ ** Important ** : FSEv05_decompress() doesn't decompress non-compressible nor RLE data !!!
+ Why ? : making this distinction requires a header.
+ Header management is intentionally delegated to the user layer, which can better manage special cases.
+*/
+
+
+/* *****************************************
+* Tool functions
+******************************************/
+/* Error Management */
+unsigned FSEv05_isError(size_t code); /* tells if a return value is an error code */
+const char* FSEv05_getErrorName(size_t code); /* provides error code string (useful for debugging) */
+
+
+
+
+/* *****************************************
+* FSEv05 detailed API
+******************************************/
+/* *** DECOMPRESSION *** */
+
+/*!
+FSEv05_readNCount():
+ Read compactly saved 'normalizedCounter' from 'rBuffer'.
+ return : size read from 'rBuffer'
+ or an errorCode, which can be tested using FSEv05_isError()
+ maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
+size_t FSEv05_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
+
+/*!
+Constructor and Destructor of type FSEv05_DTable
+ Note that its size depends on 'tableLog' */
+typedef unsigned FSEv05_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
+FSEv05_DTable* FSEv05_createDTable(unsigned tableLog);
+void FSEv05_freeDTable(FSEv05_DTable* dt);
+
+/*!
+FSEv05_buildDTable():
+ Builds 'dt', which must be already allocated, using FSEv05_createDTable()
+ @return : 0,
+ or an errorCode, which can be tested using FSEv05_isError() */
+size_t FSEv05_buildDTable (FSEv05_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
+
+/*!
+FSEv05_decompress_usingDTable():
+ Decompress compressed source @cSrc of size @cSrcSize using `dt`
+ into `dst` which must be already allocated.
+ @return : size of regenerated data (necessarily <= @dstCapacity)
+ or an errorCode, which can be tested using FSEv05_isError() */
+size_t FSEv05_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSEv05_DTable* dt);
+
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* FSEv05_H */
+/* ******************************************************************
+ bitstream
+ Part of FSEv05 library
+ header file (to include)
+ Copyright (C) 2013-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef BITv05STREAM_H_MODULE
+#define BITv05STREAM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*
+* This API consists of small unitary functions, which highly benefit from being inlined.
+* Since link-time-optimization is not available for all compilers,
+* these functions are defined into a .h to be included.
+*/
+
+
+
+/*-********************************************
+* bitStream decoding API (read backward)
+**********************************************/
+typedef struct
+{
+ size_t bitContainer;
+ unsigned bitsConsumed;
+ const char* ptr;
+ const char* start;
+} BITv05_DStream_t;
+
+typedef enum { BITv05_DStream_unfinished = 0,
+ BITv05_DStream_endOfBuffer = 1,
+ BITv05_DStream_completed = 2,
+ BITv05_DStream_overflow = 3 } BITv05_DStream_status; /* result of BITv05_reloadDStream() */
+ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
+
+MEM_STATIC size_t BITv05_initDStream(BITv05_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
+MEM_STATIC size_t BITv05_readBits(BITv05_DStream_t* bitD, unsigned nbBits);
+MEM_STATIC BITv05_DStream_status BITv05_reloadDStream(BITv05_DStream_t* bitD);
+MEM_STATIC unsigned BITv05_endOfDStream(const BITv05_DStream_t* bitD);
+
+
+/*-****************************************
+* unsafe API
+******************************************/
+MEM_STATIC size_t BITv05_readBitsFast(BITv05_DStream_t* bitD, unsigned nbBits);
+/* faster, but works only if nbBits >= 1 */
+
+
+
+/*-**************************************************************
+* Helper functions
+****************************************************************/
+MEM_STATIC unsigned BITv05_highbit32 (U32 val)
+{
+# if defined(_MSC_VER) /* Visual */
+ unsigned long r=0;
+ _BitScanReverse ( &r, val );
+ return (unsigned) r;
+# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
+ return 31 - __builtin_clz (val);
+# else /* Software version */
+ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ U32 v = val;
+ unsigned r;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
+ return r;
+# endif
+}
+
+
+
+/*-********************************************************
+* bitStream decoding
+**********************************************************/
+/*!BITv05_initDStream
+* Initialize a BITv05_DStream_t.
+* @bitD : a pointer to an already allocated BITv05_DStream_t structure
+* @srcBuffer must point at the beginning of a bitStream
+* @srcSize must be the exact size of the bitStream
+* @result : size of stream (== srcSize) or an errorCode if a problem is detected
+*/
+MEM_STATIC size_t BITv05_initDStream(BITv05_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
+{
+ if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
+
+ if (srcSize >= sizeof(size_t)) { /* normal case */
+ U32 contain32;
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
+ if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
+ bitD->bitsConsumed = 8 - BITv05_highbit32(contain32);
+ } else {
+ U32 contain32;
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = bitD->start;
+ bitD->bitContainer = *(const BYTE*)(bitD->start);
+ switch(srcSize)
+ {
+ case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);/* fall-through */
+ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);/* fall-through */
+ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);/* fall-through */
+ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; /* fall-through */
+ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; /* fall-through */
+ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8; /* fall-through */
+ default: break;
+ }
+ contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
+ if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
+ bitD->bitsConsumed = 8 - BITv05_highbit32(contain32);
+ bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
+ }
+
+ return srcSize;
+}
+
+MEM_STATIC size_t BITv05_lookBits(BITv05_DStream_t* bitD, U32 nbBits)
+{
+ const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
+}
+
+/*! BITv05_lookBitsFast :
+* unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BITv05_lookBitsFast(BITv05_DStream_t* bitD, U32 nbBits)
+{
+ const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
+}
+
+MEM_STATIC void BITv05_skipBits(BITv05_DStream_t* bitD, U32 nbBits)
+{
+ bitD->bitsConsumed += nbBits;
+}
+
+MEM_STATIC size_t BITv05_readBits(BITv05_DStream_t* bitD, unsigned nbBits)
+{
+ size_t value = BITv05_lookBits(bitD, nbBits);
+ BITv05_skipBits(bitD, nbBits);
+ return value;
+}
+
+/*!BITv05_readBitsFast :
+* unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BITv05_readBitsFast(BITv05_DStream_t* bitD, unsigned nbBits)
+{
+ size_t value = BITv05_lookBitsFast(bitD, nbBits);
+ BITv05_skipBits(bitD, nbBits);
+ return value;
+}
+
+MEM_STATIC BITv05_DStream_status BITv05_reloadDStream(BITv05_DStream_t* bitD)
+{
+ if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
+ return BITv05_DStream_overflow;
+
+ if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) {
+ bitD->ptr -= bitD->bitsConsumed >> 3;
+ bitD->bitsConsumed &= 7;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ return BITv05_DStream_unfinished;
+ }
+ if (bitD->ptr == bitD->start) {
+ if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BITv05_DStream_endOfBuffer;
+ return BITv05_DStream_completed;
+ }
+ {
+ U32 nbBytes = bitD->bitsConsumed >> 3;
+ BITv05_DStream_status result = BITv05_DStream_unfinished;
+ if (bitD->ptr - nbBytes < bitD->start) {
+ nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
+ result = BITv05_DStream_endOfBuffer;
+ }
+ bitD->ptr -= nbBytes;
+ bitD->bitsConsumed -= nbBytes*8;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
+ return result;
+ }
+}
+
+/*! BITv05_endOfDStream
+* @return Tells if DStream has reached its exact end
+*/
+MEM_STATIC unsigned BITv05_endOfDStream(const BITv05_DStream_t* DStream)
+{
+ return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
+}
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* BITv05STREAM_H_MODULE */
+/* ******************************************************************
+ FSEv05 : Finite State Entropy coder
+ header file for static linking (only)
+ Copyright (C) 2013-2015, Yann Collet
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef FSEv05_STATIC_H
+#define FSEv05_STATIC_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+
+/* *****************************************
+* Static allocation
+*******************************************/
+/* It is possible to statically allocate FSEv05 CTable/DTable as a table of unsigned using below macros */
+#define FSEv05_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
+
+
+/* *****************************************
+* FSEv05 advanced API
+*******************************************/
+size_t FSEv05_buildDTable_raw (FSEv05_DTable* dt, unsigned nbBits);
+/* build a fake FSEv05_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
+
+size_t FSEv05_buildDTable_rle (FSEv05_DTable* dt, unsigned char symbolValue);
+/* build a fake FSEv05_DTable, designed to always generate the same symbolValue */
+
+
+
+/* *****************************************
+* FSEv05 symbol decompression API
+*******************************************/
+typedef struct
+{
+ size_t state;
+ const void* table; /* precise table may vary, depending on U16 */
+} FSEv05_DState_t;
+
+
+static void FSEv05_initDState(FSEv05_DState_t* DStatePtr, BITv05_DStream_t* bitD, const FSEv05_DTable* dt);
+
+static unsigned char FSEv05_decodeSymbol(FSEv05_DState_t* DStatePtr, BITv05_DStream_t* bitD);
+
+static unsigned FSEv05_endOfDState(const FSEv05_DState_t* DStatePtr);
+
+
+
+/* *****************************************
+* FSEv05 unsafe API
+*******************************************/
+static unsigned char FSEv05_decodeSymbolFast(FSEv05_DState_t* DStatePtr, BITv05_DStream_t* bitD);
+/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
+
+
+/* *****************************************
+* Implementation of inlined functions
+*******************************************/
+/* decompression */
+
+typedef struct {
+ U16 tableLog;
+ U16 fastMode;
+} FSEv05_DTableHeader; /* sizeof U32 */
+
+typedef struct
+{
+ unsigned short newState;
+ unsigned char symbol;
+ unsigned char nbBits;
+} FSEv05_decode_t; /* size == U32 */
+
+MEM_STATIC void FSEv05_initDState(FSEv05_DState_t* DStatePtr, BITv05_DStream_t* bitD, const FSEv05_DTable* dt)
+{
+ const void* ptr = dt;
+ const FSEv05_DTableHeader* const DTableH = (const FSEv05_DTableHeader*)ptr;
+ DStatePtr->state = BITv05_readBits(bitD, DTableH->tableLog);
+ BITv05_reloadDStream(bitD);
+ DStatePtr->table = dt + 1;
+}
+
+MEM_STATIC BYTE FSEv05_peakSymbol(FSEv05_DState_t* DStatePtr)
+{
+ const FSEv05_decode_t DInfo = ((const FSEv05_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ return DInfo.symbol;
+}
+
+MEM_STATIC BYTE FSEv05_decodeSymbol(FSEv05_DState_t* DStatePtr, BITv05_DStream_t* bitD)
+{
+ const FSEv05_decode_t DInfo = ((const FSEv05_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ const U32 nbBits = DInfo.nbBits;
+ BYTE symbol = DInfo.symbol;
+ size_t lowBits = BITv05_readBits(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+MEM_STATIC BYTE FSEv05_decodeSymbolFast(FSEv05_DState_t* DStatePtr, BITv05_DStream_t* bitD)
+{
+ const FSEv05_decode_t DInfo = ((const FSEv05_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ const U32 nbBits = DInfo.nbBits;
+ BYTE symbol = DInfo.symbol;
+ size_t lowBits = BITv05_readBitsFast(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+MEM_STATIC unsigned FSEv05_endOfDState(const FSEv05_DState_t* DStatePtr)
+{
+ return DStatePtr->state == 0;
+}
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* FSEv05_STATIC_H */
+/* ******************************************************************
+ FSEv05 : Finite State Entropy coder
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSEv05 source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+#ifndef FSEv05_COMMONDEFS_ONLY
+
+/* **************************************************************
+* Tuning parameters
+****************************************************************/
+/*!MEMORY_USAGE :
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+* Increasing memory usage improves compression ratio
+* Reduced memory usage can improve speed, due to cache effect
+* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
+#define FSEv05_MAX_MEMORY_USAGE 14
+#define FSEv05_DEFAULT_MEMORY_USAGE 13
+
+/*!FSEv05_MAX_SYMBOL_VALUE :
+* Maximum symbol value authorized.
+* Required for proper stack allocation */
+#define FSEv05_MAX_SYMBOL_VALUE 255
+
+
+/* **************************************************************
+* template functions type & suffix
+****************************************************************/
+#define FSEv05_FUNCTION_TYPE BYTE
+#define FSEv05_FUNCTION_EXTENSION
+#define FSEv05_DECODE_TYPE FSEv05_decode_t
+
+
+#endif /* !FSEv05_COMMONDEFS_ONLY */
+
+/* **************************************************************
+* Compiler specifics
+****************************************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# define FORCE_INLINE static __forceinline
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
+#else
+# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# ifdef __GNUC__
+# define FORCE_INLINE static inline __attribute__((always_inline))
+# else
+# define FORCE_INLINE static inline
+# endif
+# else
+# define FORCE_INLINE static
+# endif /* __STDC_VERSION__ */
+#endif
+
+
+/* **************************************************************
+* Includes
+****************************************************************/
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memcpy, memset */
+#include <stdio.h> /* printf (debug) */
+
+
+
+/* ***************************************************************
+* Constants
+*****************************************************************/
+#define FSEv05_MAX_TABLELOG (FSEv05_MAX_MEMORY_USAGE-2)
+#define FSEv05_MAX_TABLESIZE (1U<<FSEv05_MAX_TABLELOG)
+#define FSEv05_MAXTABLESIZE_MASK (FSEv05_MAX_TABLESIZE-1)
+#define FSEv05_DEFAULT_TABLELOG (FSEv05_DEFAULT_MEMORY_USAGE-2)
+#define FSEv05_MIN_TABLELOG 5
+
+#define FSEv05_TABLELOG_ABSOLUTE_MAX 15
+#if FSEv05_MAX_TABLELOG > FSEv05_TABLELOG_ABSOLUTE_MAX
+#error "FSEv05_MAX_TABLELOG > FSEv05_TABLELOG_ABSOLUTE_MAX is not supported"
+#endif
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define FSEv05_STATIC_ASSERT(c) { enum { FSEv05_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+/* **************************************************************
+* Complex types
+****************************************************************/
+typedef unsigned DTable_max_t[FSEv05_DTABLE_SIZE_U32(FSEv05_MAX_TABLELOG)];
+
+
+/* **************************************************************
+* Templates
+****************************************************************/
+/*
+ designed to be included
+ for type-specific functions (template emulation in C)
+ Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSEv05_FUNCTION_EXTENSION
+# error "FSEv05_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSEv05_FUNCTION_TYPE
+# error "FSEv05_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSEv05_CAT(X,Y) X##Y
+#define FSEv05_FUNCTION_NAME(X,Y) FSEv05_CAT(X,Y)
+#define FSEv05_TYPE_NAME(X,Y) FSEv05_CAT(X,Y)
+
+
+/* Function templates */
+static U32 FSEv05_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
+
+
+
+FSEv05_DTable* FSEv05_createDTable (unsigned tableLog)
+{
+ if (tableLog > FSEv05_TABLELOG_ABSOLUTE_MAX) tableLog = FSEv05_TABLELOG_ABSOLUTE_MAX;
+ return (FSEv05_DTable*)malloc( FSEv05_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
+}
+
+void FSEv05_freeDTable (FSEv05_DTable* dt)
+{
+ free(dt);
+}
+
+size_t FSEv05_buildDTable(FSEv05_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+ FSEv05_DTableHeader DTableH;
+ void* const tdPtr = dt+1; /* because dt is unsigned, 32-bits aligned on 32-bits */
+ FSEv05_DECODE_TYPE* const tableDecode = (FSEv05_DECODE_TYPE*) (tdPtr);
+ const U32 tableSize = 1 << tableLog;
+ const U32 tableMask = tableSize-1;
+ const U32 step = FSEv05_tableStep(tableSize);
+ U16 symbolNext[FSEv05_MAX_SYMBOL_VALUE+1];
+ U32 position = 0;
+ U32 highThreshold = tableSize-1;
+ const S16 largeLimit= (S16)(1 << (tableLog-1));
+ U32 noLarge = 1;
+ U32 s;
+
+ /* Sanity Checks */
+ if (maxSymbolValue > FSEv05_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
+ if (tableLog > FSEv05_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
+
+ /* Init, lay down lowprob symbols */
+ memset(tableDecode, 0, sizeof(FSEv05_FUNCTION_TYPE) * (maxSymbolValue+1) ); /* useless init, but keep static analyzer happy, and we don't need to performance optimize legacy decoders */
+ DTableH.tableLog = (U16)tableLog;
+ for (s=0; s<=maxSymbolValue; s++) {
+ if (normalizedCounter[s]==-1) {
+ tableDecode[highThreshold--].symbol = (FSEv05_FUNCTION_TYPE)s;
+ symbolNext[s] = 1;
+ } else {
+ if (normalizedCounter[s] >= largeLimit) noLarge=0;
+ symbolNext[s] = normalizedCounter[s];
+ } }
+
+ /* Spread symbols */
+ for (s=0; s<=maxSymbolValue; s++) {
+ int i;
+ for (i=0; i<normalizedCounter[s]; i++) {
+ tableDecode[position].symbol = (FSEv05_FUNCTION_TYPE)s;
+ position = (position + step) & tableMask;
+ while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
+ } }
+
+ if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
+
+ /* Build Decoding table */
+ {
+ U32 i;
+ for (i=0; i<tableSize; i++) {
+ FSEv05_FUNCTION_TYPE symbol = (FSEv05_FUNCTION_TYPE)(tableDecode[i].symbol);
+ U16 nextState = symbolNext[symbol]++;
+ tableDecode[i].nbBits = (BYTE) (tableLog - BITv05_highbit32 ((U32)nextState) );
+ tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
+ } }
+
+ DTableH.fastMode = (U16)noLarge;
+ memcpy(dt, &DTableH, sizeof(DTableH));
+ return 0;
+}
+
+
+#ifndef FSEv05_COMMONDEFS_ONLY
+/*-****************************************
+* FSEv05 helper functions
+******************************************/
+unsigned FSEv05_isError(size_t code) { return ERR_isError(code); }
+
+const char* FSEv05_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+
+/*-**************************************************************
+* FSEv05 NCount encoding-decoding
+****************************************************************/
+static short FSEv05_abs(short a) { return a<0 ? -a : a; }
+
+
+size_t FSEv05_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize)
+{
+ const BYTE* const istart = (const BYTE*) headerBuffer;
+ const BYTE* const iend = istart + hbSize;
+ const BYTE* ip = istart;
+ int nbBits;
+ int remaining;
+ int threshold;
+ U32 bitStream;
+ int bitCount;
+ unsigned charnum = 0;
+ int previous0 = 0;
+
+ if (hbSize < 4) return ERROR(srcSize_wrong);
+ bitStream = MEM_readLE32(ip);
+ nbBits = (bitStream & 0xF) + FSEv05_MIN_TABLELOG; /* extract tableLog */
+ if (nbBits > FSEv05_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
+ bitStream >>= 4;
+ bitCount = 4;
+ *tableLogPtr = nbBits;
+ remaining = (1<<nbBits)+1;
+ threshold = 1<<nbBits;
+ nbBits++;
+
+ while ((remaining>1) && (charnum<=*maxSVPtr)) {
+ if (previous0) {
+ unsigned n0 = charnum;
+ while ((bitStream & 0xFFFF) == 0xFFFF) {
+ n0+=24;
+ if (ip < iend-5) {
+ ip+=2;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ } else {
+ bitStream >>= 16;
+ bitCount+=16;
+ } }
+ while ((bitStream & 3) == 3) {
+ n0+=3;
+ bitStream>>=2;
+ bitCount+=2;
+ }
+ n0 += bitStream & 3;
+ bitCount += 2;
+ if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
+ while (charnum < n0) normalizedCounter[charnum++] = 0;
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ }
+ else
+ bitStream >>= 2;
+ }
+ {
+ const short max = (short)((2*threshold-1)-remaining);
+ short count;
+
+ if ((bitStream & (threshold-1)) < (U32)max) {
+ count = (short)(bitStream & (threshold-1));
+ bitCount += nbBits-1;
+ } else {
+ count = (short)(bitStream & (2*threshold-1));
+ if (count >= threshold) count -= max;
+ bitCount += nbBits;
+ }
+
+ count--; /* extra accuracy */
+ remaining -= FSEv05_abs(count);
+ normalizedCounter[charnum++] = count;
+ previous0 = !count;
+ while (remaining < threshold) {
+ nbBits--;
+ threshold >>= 1;
+ }
+
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ } else {
+ bitCount -= (int)(8 * (iend - 4 - ip));
+ ip = iend - 4;
+ }
+ bitStream = MEM_readLE32(ip) >> (bitCount & 31);
+ } }
+ if (remaining != 1) return ERROR(GENERIC);
+ *maxSVPtr = charnum-1;
+
+ ip += (bitCount+7)>>3;
+ if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
+ return ip-istart;
+}
+
+
+
+/*-*******************************************************
+* Decompression (Byte symbols)
+*********************************************************/
+size_t FSEv05_buildDTable_rle (FSEv05_DTable* dt, BYTE symbolValue)
+{
+ void* ptr = dt;
+ FSEv05_DTableHeader* const DTableH = (FSEv05_DTableHeader*)ptr;
+ void* dPtr = dt + 1;
+ FSEv05_decode_t* const cell = (FSEv05_decode_t*)dPtr;
+
+ DTableH->tableLog = 0;
+ DTableH->fastMode = 0;
+
+ cell->newState = 0;
+ cell->symbol = symbolValue;
+ cell->nbBits = 0;
+
+ return 0;
+}
+
+
+size_t FSEv05_buildDTable_raw (FSEv05_DTable* dt, unsigned nbBits)
+{
+ void* ptr = dt;
+ FSEv05_DTableHeader* const DTableH = (FSEv05_DTableHeader*)ptr;
+ void* dPtr = dt + 1;
+ FSEv05_decode_t* const dinfo = (FSEv05_decode_t*)dPtr;
+ const unsigned tableSize = 1 << nbBits;
+ const unsigned tableMask = tableSize - 1;
+ const unsigned maxSymbolValue = tableMask;
+ unsigned s;
+
+ /* Sanity checks */
+ if (nbBits < 1) return ERROR(GENERIC); /* min size */
+
+ /* Build Decoding Table */
+ DTableH->tableLog = (U16)nbBits;
+ DTableH->fastMode = 1;
+ for (s=0; s<=maxSymbolValue; s++) {
+ dinfo[s].newState = 0;
+ dinfo[s].symbol = (BYTE)s;
+ dinfo[s].nbBits = (BYTE)nbBits;
+ }
+
+ return 0;
+}
+
+FORCE_INLINE size_t FSEv05_decompress_usingDTable_generic(
+ void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSEv05_DTable* dt, const unsigned fast)
+{
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const omax = op + maxDstSize;
+ BYTE* const olimit = omax-3;
+
+ BITv05_DStream_t bitD;
+ FSEv05_DState_t state1;
+ FSEv05_DState_t state2;
+ size_t errorCode;
+
+ /* Init */
+ errorCode = BITv05_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
+ if (FSEv05_isError(errorCode)) return errorCode;
+
+ FSEv05_initDState(&state1, &bitD, dt);
+ FSEv05_initDState(&state2, &bitD, dt);
+
+#define FSEv05_GETSYMBOL(statePtr) fast ? FSEv05_decodeSymbolFast(statePtr, &bitD) : FSEv05_decodeSymbol(statePtr, &bitD)
+
+ /* 4 symbols per loop */
+ for ( ; (BITv05_reloadDStream(&bitD)==BITv05_DStream_unfinished) && (op<olimit) ; op+=4) {
+ op[0] = FSEv05_GETSYMBOL(&state1);
+
+ if (FSEv05_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BITv05_reloadDStream(&bitD);
+
+ op[1] = FSEv05_GETSYMBOL(&state2);
+
+ if (FSEv05_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ { if (BITv05_reloadDStream(&bitD) > BITv05_DStream_unfinished) { op+=2; break; } }
+
+ op[2] = FSEv05_GETSYMBOL(&state1);
+
+ if (FSEv05_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BITv05_reloadDStream(&bitD);
+
+ op[3] = FSEv05_GETSYMBOL(&state2);
+ }
+
+ /* tail */
+ /* note : BITv05_reloadDStream(&bitD) >= FSEv05_DStream_partiallyFilled; Ends at exactly BITv05_DStream_completed */
+ while (1) {
+ if ( (BITv05_reloadDStream(&bitD)>BITv05_DStream_completed) || (op==omax) || (BITv05_endOfDStream(&bitD) && (fast || FSEv05_endOfDState(&state1))) )
+ break;
+
+ *op++ = FSEv05_GETSYMBOL(&state1);
+
+ if ( (BITv05_reloadDStream(&bitD)>BITv05_DStream_completed) || (op==omax) || (BITv05_endOfDStream(&bitD) && (fast || FSEv05_endOfDState(&state2))) )
+ break;
+
+ *op++ = FSEv05_GETSYMBOL(&state2);
+ }
+
+ /* end ? */
+ if (BITv05_endOfDStream(&bitD) && FSEv05_endOfDState(&state1) && FSEv05_endOfDState(&state2))
+ return op-ostart;
+
+ if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */
+
+ return ERROR(corruption_detected);
+}
+
+
+size_t FSEv05_decompress_usingDTable(void* dst, size_t originalSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSEv05_DTable* dt)
+{
+ const void* ptr = dt;
+ const FSEv05_DTableHeader* DTableH = (const FSEv05_DTableHeader*)ptr;
+ const U32 fastMode = DTableH->fastMode;
+
+ /* select fast mode (static) */
+ if (fastMode) return FSEv05_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
+ return FSEv05_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
+}
+
+
+size_t FSEv05_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
+{
+ const BYTE* const istart = (const BYTE*)cSrc;
+ const BYTE* ip = istart;
+ short counting[FSEv05_MAX_SYMBOL_VALUE+1];
+ DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
+ unsigned tableLog;
+ unsigned maxSymbolValue = FSEv05_MAX_SYMBOL_VALUE;
+ size_t errorCode;
+
+ if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
+
+ /* normal FSEv05 decoding mode */
+ errorCode = FSEv05_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
+ if (FSEv05_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ errorCode = FSEv05_buildDTable (dt, counting, maxSymbolValue, tableLog);
+ if (FSEv05_isError(errorCode)) return errorCode;
+
+ /* always return, even if it is an error code */
+ return FSEv05_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
+}
+
+
+
+#endif /* FSEv05_COMMONDEFS_ONLY */
+/* ******************************************************************
+ Huff0 : Huffman coder, part of New Generation Entropy library
+ header file
+ Copyright (C) 2013-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef HUFF0_H
+#define HUFF0_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+
+/* ****************************************
+* Huff0 simple functions
+******************************************/
+size_t HUFv05_decompress(void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize);
+/*!
+HUFv05_decompress():
+ Decompress Huff0 data from buffer 'cSrc', of size 'cSrcSize',
+ into already allocated destination buffer 'dst', of size 'dstSize'.
+ @dstSize : must be the **exact** size of original (uncompressed) data.
+ Note : in contrast with FSEv05, HUFv05_decompress can regenerate
+ RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
+ because it knows size to regenerate.
+ @return : size of regenerated data (== dstSize)
+ or an error code, which can be tested using HUFv05_isError()
+*/
+
+
+/* ****************************************
+* Tool functions
+******************************************/
+/* Error Management */
+unsigned HUFv05_isError(size_t code); /* tells if a return value is an error code */
+const char* HUFv05_getErrorName(size_t code); /* provides error code string (useful for debugging) */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* HUF0_H */
+/* ******************************************************************
+ Huff0 : Huffman codec, part of New Generation Entropy library
+ header file, for static linking only
+ Copyright (C) 2013-2016, Yann Collet
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef HUF0_STATIC_H
+#define HUF0_STATIC_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+
+/* ****************************************
+* Static allocation
+******************************************/
+/* static allocation of Huff0's DTable */
+#define HUFv05_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog))
+#define HUFv05_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
+ unsigned short DTable[HUFv05_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
+#define HUFv05_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
+ unsigned int DTable[HUFv05_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
+#define HUFv05_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
+ unsigned int DTable[HUFv05_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
+
+
+/* ****************************************
+* Advanced decompression functions
+******************************************/
+size_t HUFv05_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
+size_t HUFv05_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
+
+
+/* ****************************************
+* Huff0 detailed API
+******************************************/
+/*!
+HUFv05_decompress() does the following:
+1. select the decompression algorithm (X2, X4, X6) based on pre-computed heuristics
+2. build Huffman table from save, using HUFv05_readDTableXn()
+3. decode 1 or 4 segments in parallel using HUFv05_decompressSXn_usingDTable
+*/
+size_t HUFv05_readDTableX2 (unsigned short* DTable, const void* src, size_t srcSize);
+size_t HUFv05_readDTableX4 (unsigned* DTable, const void* src, size_t srcSize);
+
+size_t HUFv05_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
+size_t HUFv05_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
+
+
+/* single stream variants */
+
+size_t HUFv05_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
+size_t HUFv05_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
+
+size_t HUFv05_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
+size_t HUFv05_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
+
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* HUF0_STATIC_H */
+/* ******************************************************************
+ Huff0 : Huffman coder, part of New Generation Entropy library
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSEv05+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+/* **************************************************************
+* Compiler specifics
+****************************************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+/* inline is defined */
+#elif defined(_MSC_VER)
+# define inline __inline
+#else
+# define inline /* disable inline */
+#endif
+
+
+#ifdef _MSC_VER /* Visual Studio */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+#endif
+
+
+/* **************************************************************
+* Includes
+****************************************************************/
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memcpy, memset */
+#include <stdio.h> /* printf (debug) */
+
+
+/* **************************************************************
+* Constants
+****************************************************************/
+#define HUFv05_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUFv05_MAX_TABLELOG. Beyond that value, code does not work */
+#define HUFv05_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUFv05_ABSOLUTEMAX_TABLELOG */
+#define HUFv05_DEFAULT_TABLELOG HUFv05_MAX_TABLELOG /* tableLog by default, when not specified */
+#define HUFv05_MAX_SYMBOL_VALUE 255
+#if (HUFv05_MAX_TABLELOG > HUFv05_ABSOLUTEMAX_TABLELOG)
+# error "HUFv05_MAX_TABLELOG is too large !"
+#endif
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+unsigned HUFv05_isError(size_t code) { return ERR_isError(code); }
+const char* HUFv05_getErrorName(size_t code) { return ERR_getErrorName(code); }
+#define HUFv05_STATIC_ASSERT(c) { enum { HUFv05_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+/* *******************************************************
+* Huff0 : Huffman block decompression
+*********************************************************/
+typedef struct { BYTE byte; BYTE nbBits; } HUFv05_DEltX2; /* single-symbol decoding */
+
+typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUFv05_DEltX4; /* double-symbols decoding */
+
+typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
+
+/*! HUFv05_readStats
+ Read compact Huffman tree, saved by HUFv05_writeCTable
+ @huffWeight : destination buffer
+ @return : size read from `src`
+*/
+static size_t HUFv05_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize)
+{
+ U32 weightTotal;
+ U32 tableLog;
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize;
+ size_t oSize;
+ U32 n;
+
+ if (!srcSize) return ERROR(srcSize_wrong);
+ iSize = ip[0];
+ //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
+
+ if (iSize >= 128) { /* special header */
+ if (iSize >= (242)) { /* RLE */
+ static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
+ oSize = l[iSize-242];
+ memset(huffWeight, 1, hwSize);
+ iSize = 0;
+ }
+ else { /* Incompressible */
+ oSize = iSize - 127;
+ iSize = ((oSize+1)/2);
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ if (oSize >= hwSize) return ERROR(corruption_detected);
+ ip += 1;
+ for (n=0; n<oSize; n+=2) {
+ huffWeight[n] = ip[n/2] >> 4;
+ huffWeight[n+1] = ip[n/2] & 15;
+ } } }
+ else { /* header compressed with FSEv05 (normal case) */
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ oSize = FSEv05_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
+ if (FSEv05_isError(oSize)) return oSize;
+ }
+
+ /* collect weight stats */
+ memset(rankStats, 0, (HUFv05_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
+ weightTotal = 0;
+ for (n=0; n<oSize; n++) {
+ if (huffWeight[n] >= HUFv05_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
+ rankStats[huffWeight[n]]++;
+ weightTotal += (1 << huffWeight[n]) >> 1;
+ }
+ if (weightTotal == 0) return ERROR(corruption_detected);
+
+ /* get last non-null symbol weight (implied, total must be 2^n) */
+ tableLog = BITv05_highbit32(weightTotal) + 1;
+ if (tableLog > HUFv05_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
+ { /* determine last weight */
+ U32 total = 1 << tableLog;
+ U32 rest = total - weightTotal;
+ U32 verif = 1 << BITv05_highbit32(rest);
+ U32 lastWeight = BITv05_highbit32(rest) + 1;
+ if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
+ huffWeight[oSize] = (BYTE)lastWeight;
+ rankStats[lastWeight]++;
+ }
+
+ /* check tree construction validity */
+ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
+
+ /* results */
+ *nbSymbolsPtr = (U32)(oSize+1);
+ *tableLogPtr = tableLog;
+ return iSize+1;
+}
+
+
+/*-***************************/
+/* single-symbol decoding */
+/*-***************************/
+
+size_t HUFv05_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
+{
+ BYTE huffWeight[HUFv05_MAX_SYMBOL_VALUE + 1];
+ U32 rankVal[HUFv05_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
+ U32 tableLog = 0;
+ size_t iSize;
+ U32 nbSymbols = 0;
+ U32 n;
+ U32 nextRankStart;
+ void* const dtPtr = DTable + 1;
+ HUFv05_DEltX2* const dt = (HUFv05_DEltX2*)dtPtr;
+
+ HUFv05_STATIC_ASSERT(sizeof(HUFv05_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
+ //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUFv05_readStats(huffWeight, HUFv05_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
+ if (HUFv05_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
+ DTable[0] = (U16)tableLog; /* maybe should separate sizeof allocated DTable, from used size of DTable, in case of re-use */
+
+ /* Prepare ranks */
+ nextRankStart = 0;
+ for (n=1; n<=tableLog; n++) {
+ U32 current = nextRankStart;
+ nextRankStart += (rankVal[n] << (n-1));
+ rankVal[n] = current;
+ }
+
+ /* fill DTable */
+ for (n=0; n<nbSymbols; n++) {
+ const U32 w = huffWeight[n];
+ const U32 length = (1 << w) >> 1;
+ U32 i;
+ HUFv05_DEltX2 D;
+ D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
+ for (i = rankVal[w]; i < rankVal[w] + length; i++)
+ dt[i] = D;
+ rankVal[w] += length;
+ }
+
+ return iSize;
+}
+
+static BYTE HUFv05_decodeSymbolX2(BITv05_DStream_t* Dstream, const HUFv05_DEltX2* dt, const U32 dtLog)
+{
+ const size_t val = BITv05_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
+ const BYTE c = dt[val].byte;
+ BITv05_skipBits(Dstream, dt[val].nbBits);
+ return c;
+}
+
+#define HUFv05_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
+ *ptr++ = HUFv05_decodeSymbolX2(DStreamPtr, dt, dtLog)
+
+#define HUFv05_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUFv05_MAX_TABLELOG<=12)) \
+ HUFv05_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+#define HUFv05_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ HUFv05_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+static inline size_t HUFv05_decodeStreamX2(BYTE* p, BITv05_DStream_t* const bitDPtr, BYTE* const pEnd, const HUFv05_DEltX2* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 4 symbols at a time */
+ while ((BITv05_reloadDStream(bitDPtr) == BITv05_DStream_unfinished) && (p <= pEnd-4)) {
+ HUFv05_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUFv05_DECODE_SYMBOLX2_1(p, bitDPtr);
+ HUFv05_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUFv05_DECODE_SYMBOLX2_0(p, bitDPtr);
+ }
+
+ /* closer to the end */
+ while ((BITv05_reloadDStream(bitDPtr) == BITv05_DStream_unfinished) && (p < pEnd))
+ HUFv05_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ /* no more data to retrieve from bitstream, hence no need to reload */
+ while (p < pEnd)
+ HUFv05_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ return pEnd-pStart;
+}
+
+size_t HUFv05_decompress1X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U16* DTable)
+{
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + dstSize;
+ const U32 dtLog = DTable[0];
+ const void* dtPtr = DTable;
+ const HUFv05_DEltX2* const dt = ((const HUFv05_DEltX2*)dtPtr)+1;
+ BITv05_DStream_t bitD;
+
+ if (dstSize <= cSrcSize) return ERROR(dstSize_tooSmall);
+ { size_t const errorCode = BITv05_initDStream(&bitD, cSrc, cSrcSize);
+ if (HUFv05_isError(errorCode)) return errorCode; }
+
+ HUFv05_decodeStreamX2(op, &bitD, oend, dt, dtLog);
+
+ /* check */
+ if (!BITv05_endOfDStream(&bitD)) return ERROR(corruption_detected);
+
+ return dstSize;
+}
+
+size_t HUFv05_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUFv05_CREATE_STATIC_DTABLEX2(DTable, HUFv05_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+ size_t errorCode;
+
+ errorCode = HUFv05_readDTableX2 (DTable, cSrc, cSrcSize);
+ if (HUFv05_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ return HUFv05_decompress1X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+size_t HUFv05_decompress4X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U16* DTable)
+{
+ /* Check */
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+ {
+ const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable;
+ const HUFv05_DEltX2* const dt = ((const HUFv05_DEltX2*)dtPtr) +1;
+ const U32 dtLog = DTable[0];
+ size_t errorCode;
+
+ /* Init */
+ BITv05_DStream_t bitD1;
+ BITv05_DStream_t bitD2;
+ BITv05_DStream_t bitD3;
+ BITv05_DStream_t bitD4;
+ const size_t length1 = MEM_readLE16(istart);
+ const size_t length2 = MEM_readLE16(istart+2);
+ const size_t length3 = MEM_readLE16(istart+4);
+ size_t length4;
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+
+ length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ errorCode = BITv05_initDStream(&bitD1, istart1, length1);
+ if (HUFv05_isError(errorCode)) return errorCode;
+ errorCode = BITv05_initDStream(&bitD2, istart2, length2);
+ if (HUFv05_isError(errorCode)) return errorCode;
+ errorCode = BITv05_initDStream(&bitD3, istart3, length3);
+ if (HUFv05_isError(errorCode)) return errorCode;
+ errorCode = BITv05_initDStream(&bitD4, istart4, length4);
+ if (HUFv05_isError(errorCode)) return errorCode;
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BITv05_reloadDStream(&bitD1) | BITv05_reloadDStream(&bitD2) | BITv05_reloadDStream(&bitD3) | BITv05_reloadDStream(&bitD4);
+ for ( ; (endSignal==BITv05_DStream_unfinished) && (op4<(oend-7)) ; ) {
+ HUFv05_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUFv05_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUFv05_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUFv05_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUFv05_DECODE_SYMBOLX2_1(op1, &bitD1);
+ HUFv05_DECODE_SYMBOLX2_1(op2, &bitD2);
+ HUFv05_DECODE_SYMBOLX2_1(op3, &bitD3);
+ HUFv05_DECODE_SYMBOLX2_1(op4, &bitD4);
+ HUFv05_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUFv05_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUFv05_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUFv05_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUFv05_DECODE_SYMBOLX2_0(op1, &bitD1);
+ HUFv05_DECODE_SYMBOLX2_0(op2, &bitD2);
+ HUFv05_DECODE_SYMBOLX2_0(op3, &bitD3);
+ HUFv05_DECODE_SYMBOLX2_0(op4, &bitD4);
+ endSignal = BITv05_reloadDStream(&bitD1) | BITv05_reloadDStream(&bitD2) | BITv05_reloadDStream(&bitD3) | BITv05_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUFv05_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
+ HUFv05_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
+ HUFv05_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
+ HUFv05_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ endSignal = BITv05_endOfDStream(&bitD1) & BITv05_endOfDStream(&bitD2) & BITv05_endOfDStream(&bitD3) & BITv05_endOfDStream(&bitD4);
+ if (!endSignal) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+size_t HUFv05_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUFv05_CREATE_STATIC_DTABLEX2(DTable, HUFv05_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+ size_t errorCode;
+
+ errorCode = HUFv05_readDTableX2 (DTable, cSrc, cSrcSize);
+ if (HUFv05_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ return HUFv05_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+/* *************************/
+/* double-symbols decoding */
+/* *************************/
+
+static void HUFv05_fillDTableX4Level2(HUFv05_DEltX4* DTable, U32 sizeLog, const U32 consumed,
+ const U32* rankValOrigin, const int minWeight,
+ const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
+ U32 nbBitsBaseline, U16 baseSeq)
+{
+ HUFv05_DEltX4 DElt;
+ U32 rankVal[HUFv05_ABSOLUTEMAX_TABLELOG + 1];
+ U32 s;
+
+ /* get pre-calculated rankVal */
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill skipped values */
+ if (minWeight>1) {
+ U32 i, skipSize = rankVal[minWeight];
+ MEM_writeLE16(&(DElt.sequence), baseSeq);
+ DElt.nbBits = (BYTE)(consumed);
+ DElt.length = 1;
+ for (i = 0; i < skipSize; i++)
+ DTable[i] = DElt;
+ }
+
+ /* fill DTable */
+ for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
+ const U32 symbol = sortedSymbols[s].symbol;
+ const U32 weight = sortedSymbols[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 length = 1 << (sizeLog-nbBits);
+ const U32 start = rankVal[weight];
+ U32 i = start;
+ const U32 end = start + length;
+
+ MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
+ DElt.nbBits = (BYTE)(nbBits + consumed);
+ DElt.length = 2;
+ do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
+
+ rankVal[weight] += length;
+ }
+}
+
+typedef U32 rankVal_t[HUFv05_ABSOLUTEMAX_TABLELOG][HUFv05_ABSOLUTEMAX_TABLELOG + 1];
+
+static void HUFv05_fillDTableX4(HUFv05_DEltX4* DTable, const U32 targetLog,
+ const sortedSymbol_t* sortedList, const U32 sortedListSize,
+ const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
+ const U32 nbBitsBaseline)
+{
+ U32 rankVal[HUFv05_ABSOLUTEMAX_TABLELOG + 1];
+ const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
+ const U32 minBits = nbBitsBaseline - maxWeight;
+ U32 s;
+
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill DTable */
+ for (s=0; s<sortedListSize; s++) {
+ const U16 symbol = sortedList[s].symbol;
+ const U32 weight = sortedList[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 start = rankVal[weight];
+ const U32 length = 1 << (targetLog-nbBits);
+
+ if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
+ U32 sortedRank;
+ int minWeight = nbBits + scaleLog;
+ if (minWeight < 1) minWeight = 1;
+ sortedRank = rankStart[minWeight];
+ HUFv05_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
+ rankValOrigin[nbBits], minWeight,
+ sortedList+sortedRank, sortedListSize-sortedRank,
+ nbBitsBaseline, symbol);
+ } else {
+ U32 i;
+ const U32 end = start + length;
+ HUFv05_DEltX4 DElt;
+
+ MEM_writeLE16(&(DElt.sequence), symbol);
+ DElt.nbBits = (BYTE)(nbBits);
+ DElt.length = 1;
+ for (i = start; i < end; i++)
+ DTable[i] = DElt;
+ }
+ rankVal[weight] += length;
+ }
+}
+
+size_t HUFv05_readDTableX4 (unsigned* DTable, const void* src, size_t srcSize)
+{
+ BYTE weightList[HUFv05_MAX_SYMBOL_VALUE + 1];
+ sortedSymbol_t sortedSymbol[HUFv05_MAX_SYMBOL_VALUE + 1];
+ U32 rankStats[HUFv05_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
+ U32 rankStart0[HUFv05_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
+ U32* const rankStart = rankStart0+1;
+ rankVal_t rankVal;
+ U32 tableLog, maxW, sizeOfSort, nbSymbols;
+ const U32 memLog = DTable[0];
+ size_t iSize;
+ void* dtPtr = DTable;
+ HUFv05_DEltX4* const dt = ((HUFv05_DEltX4*)dtPtr) + 1;
+
+ HUFv05_STATIC_ASSERT(sizeof(HUFv05_DEltX4) == sizeof(unsigned)); /* if compilation fails here, assertion is false */
+ if (memLog > HUFv05_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
+ //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUFv05_readStats(weightList, HUFv05_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
+ if (HUFv05_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
+
+ /* find maxWeight */
+ for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
+
+ /* Get start index of each weight */
+ {
+ U32 w, nextRankStart = 0;
+ for (w=1; w<=maxW; w++) {
+ U32 current = nextRankStart;
+ nextRankStart += rankStats[w];
+ rankStart[w] = current;
+ }
+ rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
+ sizeOfSort = nextRankStart;
+ }
+
+ /* sort symbols by weight */
+ {
+ U32 s;
+ for (s=0; s<nbSymbols; s++) {
+ U32 w = weightList[s];
+ U32 r = rankStart[w]++;
+ sortedSymbol[r].symbol = (BYTE)s;
+ sortedSymbol[r].weight = (BYTE)w;
+ }
+ rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
+ }
+
+ /* Build rankVal */
+ {
+ const U32 minBits = tableLog+1 - maxW;
+ U32 nextRankVal = 0;
+ U32 w, consumed;
+ const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
+ U32* rankVal0 = rankVal[0];
+ for (w=1; w<=maxW; w++) {
+ U32 current = nextRankVal;
+ nextRankVal += rankStats[w] << (w+rescale);
+ rankVal0[w] = current;
+ }
+ for (consumed = minBits; consumed <= memLog - minBits; consumed++) {
+ U32* rankValPtr = rankVal[consumed];
+ for (w = 1; w <= maxW; w++) {
+ rankValPtr[w] = rankVal0[w] >> consumed;
+ } } }
+
+ HUFv05_fillDTableX4(dt, memLog,
+ sortedSymbol, sizeOfSort,
+ rankStart0, rankVal, maxW,
+ tableLog+1);
+
+ return iSize;
+}
+
+
+static U32 HUFv05_decodeSymbolX4(void* op, BITv05_DStream_t* DStream, const HUFv05_DEltX4* dt, const U32 dtLog)
+{
+ const size_t val = BITv05_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 2);
+ BITv05_skipBits(DStream, dt[val].nbBits);
+ return dt[val].length;
+}
+
+static U32 HUFv05_decodeLastSymbolX4(void* op, BITv05_DStream_t* DStream, const HUFv05_DEltX4* dt, const U32 dtLog)
+{
+ const size_t val = BITv05_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 1);
+ if (dt[val].length==1) BITv05_skipBits(DStream, dt[val].nbBits);
+ else {
+ if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
+ BITv05_skipBits(DStream, dt[val].nbBits);
+ if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
+ DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
+ } }
+ return 1;
+}
+
+
+#define HUFv05_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
+ ptr += HUFv05_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUFv05_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUFv05_MAX_TABLELOG<=12)) \
+ ptr += HUFv05_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUFv05_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ ptr += HUFv05_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+static inline size_t HUFv05_decodeStreamX4(BYTE* p, BITv05_DStream_t* bitDPtr, BYTE* const pEnd, const HUFv05_DEltX4* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 8 symbols at a time */
+ while ((BITv05_reloadDStream(bitDPtr) == BITv05_DStream_unfinished) && (p < pEnd-7)) {
+ HUFv05_DECODE_SYMBOLX4_2(p, bitDPtr);
+ HUFv05_DECODE_SYMBOLX4_1(p, bitDPtr);
+ HUFv05_DECODE_SYMBOLX4_2(p, bitDPtr);
+ HUFv05_DECODE_SYMBOLX4_0(p, bitDPtr);
+ }
+
+ /* closer to the end */
+ while ((BITv05_reloadDStream(bitDPtr) == BITv05_DStream_unfinished) && (p <= pEnd-2))
+ HUFv05_DECODE_SYMBOLX4_0(p, bitDPtr);
+
+ while (p <= pEnd-2)
+ HUFv05_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
+
+ if (p < pEnd)
+ p += HUFv05_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
+
+ return p-pStart;
+}
+
+
+size_t HUFv05_decompress1X4_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const unsigned* DTable)
+{
+ const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+
+ const U32 dtLog = DTable[0];
+ const void* const dtPtr = DTable;
+ const HUFv05_DEltX4* const dt = ((const HUFv05_DEltX4*)dtPtr) +1;
+ size_t errorCode;
+
+ /* Init */
+ BITv05_DStream_t bitD;
+ errorCode = BITv05_initDStream(&bitD, istart, cSrcSize);
+ if (HUFv05_isError(errorCode)) return errorCode;
+
+ /* finish bitStreams one by one */
+ HUFv05_decodeStreamX4(ostart, &bitD, oend, dt, dtLog);
+
+ /* check */
+ if (!BITv05_endOfDStream(&bitD)) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+}
+
+size_t HUFv05_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUFv05_CREATE_STATIC_DTABLEX4(DTable, HUFv05_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t hSize = HUFv05_readDTableX4 (DTable, cSrc, cSrcSize);
+ if (HUFv05_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize;
+ cSrcSize -= hSize;
+
+ return HUFv05_decompress1X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+size_t HUFv05_decompress4X4_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const unsigned* DTable)
+{
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ {
+ const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable;
+ const HUFv05_DEltX4* const dt = ((const HUFv05_DEltX4*)dtPtr) +1;
+ const U32 dtLog = DTable[0];
+ size_t errorCode;
+
+ /* Init */
+ BITv05_DStream_t bitD1;
+ BITv05_DStream_t bitD2;
+ BITv05_DStream_t bitD3;
+ BITv05_DStream_t bitD4;
+ const size_t length1 = MEM_readLE16(istart);
+ const size_t length2 = MEM_readLE16(istart+2);
+ const size_t length3 = MEM_readLE16(istart+4);
+ size_t length4;
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+
+ length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ errorCode = BITv05_initDStream(&bitD1, istart1, length1);
+ if (HUFv05_isError(errorCode)) return errorCode;
+ errorCode = BITv05_initDStream(&bitD2, istart2, length2);
+ if (HUFv05_isError(errorCode)) return errorCode;
+ errorCode = BITv05_initDStream(&bitD3, istart3, length3);
+ if (HUFv05_isError(errorCode)) return errorCode;
+ errorCode = BITv05_initDStream(&bitD4, istart4, length4);
+ if (HUFv05_isError(errorCode)) return errorCode;
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BITv05_reloadDStream(&bitD1) | BITv05_reloadDStream(&bitD2) | BITv05_reloadDStream(&bitD3) | BITv05_reloadDStream(&bitD4);
+ for ( ; (endSignal==BITv05_DStream_unfinished) && (op4<(oend-7)) ; ) {
+ HUFv05_DECODE_SYMBOLX4_2(op1, &bitD1);
+ HUFv05_DECODE_SYMBOLX4_2(op2, &bitD2);
+ HUFv05_DECODE_SYMBOLX4_2(op3, &bitD3);
+ HUFv05_DECODE_SYMBOLX4_2(op4, &bitD4);
+ HUFv05_DECODE_SYMBOLX4_1(op1, &bitD1);
+ HUFv05_DECODE_SYMBOLX4_1(op2, &bitD2);
+ HUFv05_DECODE_SYMBOLX4_1(op3, &bitD3);
+ HUFv05_DECODE_SYMBOLX4_1(op4, &bitD4);
+ HUFv05_DECODE_SYMBOLX4_2(op1, &bitD1);
+ HUFv05_DECODE_SYMBOLX4_2(op2, &bitD2);
+ HUFv05_DECODE_SYMBOLX4_2(op3, &bitD3);
+ HUFv05_DECODE_SYMBOLX4_2(op4, &bitD4);
+ HUFv05_DECODE_SYMBOLX4_0(op1, &bitD1);
+ HUFv05_DECODE_SYMBOLX4_0(op2, &bitD2);
+ HUFv05_DECODE_SYMBOLX4_0(op3, &bitD3);
+ HUFv05_DECODE_SYMBOLX4_0(op4, &bitD4);
+
+ endSignal = BITv05_reloadDStream(&bitD1) | BITv05_reloadDStream(&bitD2) | BITv05_reloadDStream(&bitD3) | BITv05_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUFv05_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
+ HUFv05_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
+ HUFv05_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
+ HUFv05_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ endSignal = BITv05_endOfDStream(&bitD1) & BITv05_endOfDStream(&bitD2) & BITv05_endOfDStream(&bitD3) & BITv05_endOfDStream(&bitD4);
+ if (!endSignal) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+size_t HUFv05_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUFv05_CREATE_STATIC_DTABLEX4(DTable, HUFv05_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t hSize = HUFv05_readDTableX4 (DTable, cSrc, cSrcSize);
+ if (HUFv05_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize;
+ cSrcSize -= hSize;
+
+ return HUFv05_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+/* ********************************/
+/* Generic decompression selector */
+/* ********************************/
+
+typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
+static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
+{
+ /* single, double, quad */
+ {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
+ {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
+ {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
+ {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
+ {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
+ {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
+ {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
+ {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
+ {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
+ {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
+ {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
+ {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
+ {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
+ {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
+ {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
+ {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
+};
+
+typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
+
+size_t HUFv05_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ static const decompressionAlgo decompress[3] = { HUFv05_decompress4X2, HUFv05_decompress4X4, NULL };
+ /* estimate decompression time */
+ U32 Q;
+ const U32 D256 = (U32)(dstSize >> 8);
+ U32 Dtime[3];
+ U32 algoNb = 0;
+ int n;
+
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize >= dstSize) return ERROR(corruption_detected); /* invalid, or not compressed, but not compressed already dealt with */
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
+
+ /* decoder timing evaluation */
+ Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
+ for (n=0; n<3; n++)
+ Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
+
+ Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
+
+ if (Dtime[1] < Dtime[0]) algoNb = 1;
+
+ return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
+
+ //return HUFv05_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
+ //return HUFv05_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
+ //return HUFv05_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */
+}
+/*
+ zstd - standard compression library
+ Copyright (C) 2014-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd source repository : https://github.com/Cyan4973/zstd
+*/
+
+/* ***************************************************************
+* Tuning parameters
+*****************************************************************/
+/*!
+ * HEAPMODE :
+ * Select how default decompression function ZSTDv05_decompress() will allocate memory,
+ * in memory stack (0), or in memory heap (1, requires malloc())
+ */
+#ifndef ZSTDv05_HEAPMODE
+# define ZSTDv05_HEAPMODE 1
+#endif
+
+
+/*-*******************************************************
+* Dependencies
+*********************************************************/
+#include <stdlib.h> /* calloc */
+#include <string.h> /* memcpy, memmove */
+#include <stdio.h> /* debug only : printf */
+
+
+/*-*******************************************************
+* Compiler specifics
+*********************************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4324) /* disable: C4324: padded structure */
+#endif
+
+
+/*-*************************************
+* Local types
+***************************************/
+typedef struct
+{
+ blockType_t blockType;
+ U32 origSize;
+} blockProperties_t;
+
+
+/* *******************************************************
+* Memory operations
+**********************************************************/
+static void ZSTDv05_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
+
+
+/* *************************************
+* Error Management
+***************************************/
+/*! ZSTDv05_isError() :
+* tells if a return value is an error code */
+unsigned ZSTDv05_isError(size_t code) { return ERR_isError(code); }
+
+
+/*! ZSTDv05_getErrorName() :
+* provides error code string (useful for debugging) */
+const char* ZSTDv05_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+
+/* *************************************************************
+* Context management
+***************************************************************/
+typedef enum { ZSTDv05ds_getFrameHeaderSize, ZSTDv05ds_decodeFrameHeader,
+ ZSTDv05ds_decodeBlockHeader, ZSTDv05ds_decompressBlock } ZSTDv05_dStage;
+
+struct ZSTDv05_DCtx_s
+{
+ FSEv05_DTable LLTable[FSEv05_DTABLE_SIZE_U32(LLFSEv05Log)];
+ FSEv05_DTable OffTable[FSEv05_DTABLE_SIZE_U32(OffFSEv05Log)];
+ FSEv05_DTable MLTable[FSEv05_DTABLE_SIZE_U32(MLFSEv05Log)];
+ unsigned hufTableX4[HUFv05_DTABLE_SIZE(HufLog)];
+ const void* previousDstEnd;
+ const void* base;
+ const void* vBase;
+ const void* dictEnd;
+ size_t expected;
+ size_t headerSize;
+ ZSTDv05_parameters params;
+ blockType_t bType; /* used in ZSTDv05_decompressContinue(), to transfer blockType between header decoding and block decoding stages */
+ ZSTDv05_dStage stage;
+ U32 flagStaticTables;
+ const BYTE* litPtr;
+ size_t litSize;
+ BYTE litBuffer[BLOCKSIZE + WILDCOPY_OVERLENGTH];
+ BYTE headerBuffer[ZSTDv05_frameHeaderSize_max];
+}; /* typedef'd to ZSTDv05_DCtx within "zstd_static.h" */
+
+size_t ZSTDv05_sizeofDCtx (void); /* Hidden declaration */
+size_t ZSTDv05_sizeofDCtx (void) { return sizeof(ZSTDv05_DCtx); }
+
+size_t ZSTDv05_decompressBegin(ZSTDv05_DCtx* dctx)
+{
+ dctx->expected = ZSTDv05_frameHeaderSize_min;
+ dctx->stage = ZSTDv05ds_getFrameHeaderSize;
+ dctx->previousDstEnd = NULL;
+ dctx->base = NULL;
+ dctx->vBase = NULL;
+ dctx->dictEnd = NULL;
+ dctx->hufTableX4[0] = HufLog;
+ dctx->flagStaticTables = 0;
+ return 0;
+}
+
+ZSTDv05_DCtx* ZSTDv05_createDCtx(void)
+{
+ ZSTDv05_DCtx* dctx = (ZSTDv05_DCtx*)malloc(sizeof(ZSTDv05_DCtx));
+ if (dctx==NULL) return NULL;
+ ZSTDv05_decompressBegin(dctx);
+ return dctx;
+}
+
+size_t ZSTDv05_freeDCtx(ZSTDv05_DCtx* dctx)
+{
+ free(dctx);
+ return 0; /* reserved as a potential error code in the future */
+}
+
+void ZSTDv05_copyDCtx(ZSTDv05_DCtx* dstDCtx, const ZSTDv05_DCtx* srcDCtx)
+{
+ memcpy(dstDCtx, srcDCtx,
+ sizeof(ZSTDv05_DCtx) - (BLOCKSIZE+WILDCOPY_OVERLENGTH + ZSTDv05_frameHeaderSize_max)); /* no need to copy workspace */
+}
+
+
+/* *************************************************************
+* Decompression section
+***************************************************************/
+
+/* Frame format description
+ Frame Header - [ Block Header - Block ] - Frame End
+ 1) Frame Header
+ - 4 bytes - Magic Number : ZSTDv05_MAGICNUMBER (defined within zstd_internal.h)
+ - 1 byte - Window Descriptor
+ 2) Block Header
+ - 3 bytes, starting with a 2-bits descriptor
+ Uncompressed, Compressed, Frame End, unused
+ 3) Block
+ See Block Format Description
+ 4) Frame End
+ - 3 bytes, compatible with Block Header
+*/
+
+/* Block format description
+
+ Block = Literal Section - Sequences Section
+ Prerequisite : size of (compressed) block, maximum size of regenerated data
+
+ 1) Literal Section
+
+ 1.1) Header : 1-5 bytes
+ flags: 2 bits
+ 00 compressed by Huff0
+ 01 unused
+ 10 is Raw (uncompressed)
+ 11 is Rle
+ Note : using 01 => Huff0 with precomputed table ?
+ Note : delta map ? => compressed ?
+
+ 1.1.1) Huff0-compressed literal block : 3-5 bytes
+ srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream
+ srcSize < 1 KB => 3 bytes (2-2-10-10)
+ srcSize < 16KB => 4 bytes (2-2-14-14)
+ else => 5 bytes (2-2-18-18)
+ big endian convention
+
+ 1.1.2) Raw (uncompressed) literal block header : 1-3 bytes
+ size : 5 bits: (IS_RAW<<6) + (0<<4) + size
+ 12 bits: (IS_RAW<<6) + (2<<4) + (size>>8)
+ size&255
+ 20 bits: (IS_RAW<<6) + (3<<4) + (size>>16)
+ size>>8&255
+ size&255
+
+ 1.1.3) Rle (repeated single byte) literal block header : 1-3 bytes
+ size : 5 bits: (IS_RLE<<6) + (0<<4) + size
+ 12 bits: (IS_RLE<<6) + (2<<4) + (size>>8)
+ size&255
+ 20 bits: (IS_RLE<<6) + (3<<4) + (size>>16)
+ size>>8&255
+ size&255
+
+ 1.1.4) Huff0-compressed literal block, using precomputed CTables : 3-5 bytes
+ srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream
+ srcSize < 1 KB => 3 bytes (2-2-10-10)
+ srcSize < 16KB => 4 bytes (2-2-14-14)
+ else => 5 bytes (2-2-18-18)
+ big endian convention
+
+ 1- CTable available (stored into workspace ?)
+ 2- Small input (fast heuristic ? Full comparison ? depend on clevel ?)
+
+
+ 1.2) Literal block content
+
+ 1.2.1) Huff0 block, using sizes from header
+ See Huff0 format
+
+ 1.2.2) Huff0 block, using prepared table
+
+ 1.2.3) Raw content
+
+ 1.2.4) single byte
+
+
+ 2) Sequences section
+ TO DO
+*/
+
+
+/** ZSTDv05_decodeFrameHeader_Part1() :
+* decode the 1st part of the Frame Header, which tells Frame Header size.
+* srcSize must be == ZSTDv05_frameHeaderSize_min.
+* @return : the full size of the Frame Header */
+static size_t ZSTDv05_decodeFrameHeader_Part1(ZSTDv05_DCtx* zc, const void* src, size_t srcSize)
+{
+ U32 magicNumber;
+ if (srcSize != ZSTDv05_frameHeaderSize_min)
+ return ERROR(srcSize_wrong);
+ magicNumber = MEM_readLE32(src);
+ if (magicNumber != ZSTDv05_MAGICNUMBER) return ERROR(prefix_unknown);
+ zc->headerSize = ZSTDv05_frameHeaderSize_min;
+ return zc->headerSize;
+}
+
+
+size_t ZSTDv05_getFrameParams(ZSTDv05_parameters* params, const void* src, size_t srcSize)
+{
+ U32 magicNumber;
+ if (srcSize < ZSTDv05_frameHeaderSize_min) return ZSTDv05_frameHeaderSize_max;
+ magicNumber = MEM_readLE32(src);
+ if (magicNumber != ZSTDv05_MAGICNUMBER) return ERROR(prefix_unknown);
+ memset(params, 0, sizeof(*params));
+ params->windowLog = (((const BYTE*)src)[4] & 15) + ZSTDv05_WINDOWLOG_ABSOLUTEMIN;
+ if ((((const BYTE*)src)[4] >> 4) != 0) return ERROR(frameParameter_unsupported); /* reserved bits */
+ return 0;
+}
+
+/** ZSTDv05_decodeFrameHeader_Part2() :
+* decode the full Frame Header.
+* srcSize must be the size provided by ZSTDv05_decodeFrameHeader_Part1().
+* @return : 0, or an error code, which can be tested using ZSTDv05_isError() */
+static size_t ZSTDv05_decodeFrameHeader_Part2(ZSTDv05_DCtx* zc, const void* src, size_t srcSize)
+{
+ size_t result;
+ if (srcSize != zc->headerSize)
+ return ERROR(srcSize_wrong);
+ result = ZSTDv05_getFrameParams(&(zc->params), src, srcSize);
+ if ((MEM_32bits()) && (zc->params.windowLog > 25)) return ERROR(frameParameter_unsupported);
+ return result;
+}
+
+
+static size_t ZSTDv05_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
+{
+ const BYTE* const in = (const BYTE* const)src;
+ BYTE headerFlags;
+ U32 cSize;
+
+ if (srcSize < 3)
+ return ERROR(srcSize_wrong);
+
+ headerFlags = *in;
+ cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
+
+ bpPtr->blockType = (blockType_t)(headerFlags >> 6);
+ bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
+
+ if (bpPtr->blockType == bt_end) return 0;
+ if (bpPtr->blockType == bt_rle) return 1;
+ return cSize;
+}
+
+
+static size_t ZSTDv05_copyRawBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ if (dst==NULL) return ERROR(dstSize_tooSmall);
+ if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
+ memcpy(dst, src, srcSize);
+ return srcSize;
+}
+
+
+/*! ZSTDv05_decodeLiteralsBlock() :
+ @return : nb of bytes read from src (< srcSize ) */
+static size_t ZSTDv05_decodeLiteralsBlock(ZSTDv05_DCtx* dctx,
+ const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
+{
+ const BYTE* const istart = (const BYTE*) src;
+
+ /* any compressed block with literals segment must be at least this size */
+ if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
+
+ switch(istart[0]>> 6)
+ {
+ case IS_HUFv05:
+ {
+ size_t litSize, litCSize, singleStream=0;
+ U32 lhSize = ((istart[0]) >> 4) & 3;
+ if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3 */
+ switch(lhSize)
+ {
+ case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
+ /* 2 - 2 - 10 - 10 */
+ lhSize=3;
+ singleStream = istart[0] & 16;
+ litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
+ litCSize = ((istart[1] & 3) << 8) + istart[2];
+ break;
+ case 2:
+ /* 2 - 2 - 14 - 14 */
+ lhSize=4;
+ litSize = ((istart[0] & 15) << 10) + (istart[1] << 2) + (istart[2] >> 6);
+ litCSize = ((istart[2] & 63) << 8) + istart[3];
+ break;
+ case 3:
+ /* 2 - 2 - 18 - 18 */
+ lhSize=5;
+ litSize = ((istart[0] & 15) << 14) + (istart[1] << 6) + (istart[2] >> 2);
+ litCSize = ((istart[2] & 3) << 16) + (istart[3] << 8) + istart[4];
+ break;
+ }
+ if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
+ if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
+
+ if (HUFv05_isError(singleStream ?
+ HUFv05_decompress1X2(dctx->litBuffer, litSize, istart+lhSize, litCSize) :
+ HUFv05_decompress (dctx->litBuffer, litSize, istart+lhSize, litCSize) ))
+ return ERROR(corruption_detected);
+
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return litCSize + lhSize;
+ }
+ case IS_PCH:
+ {
+ size_t errorCode;
+ size_t litSize, litCSize;
+ U32 lhSize = ((istart[0]) >> 4) & 3;
+ if (lhSize != 1) /* only case supported for now : small litSize, single stream */
+ return ERROR(corruption_detected);
+ if (!dctx->flagStaticTables)
+ return ERROR(dictionary_corrupted);
+
+ /* 2 - 2 - 10 - 10 */
+ lhSize=3;
+ litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
+ litCSize = ((istart[1] & 3) << 8) + istart[2];
+ if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
+
+ errorCode = HUFv05_decompress1X4_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->hufTableX4);
+ if (HUFv05_isError(errorCode)) return ERROR(corruption_detected);
+
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return litCSize + lhSize;
+ }
+ case IS_RAW:
+ {
+ size_t litSize;
+ U32 lhSize = ((istart[0]) >> 4) & 3;
+ switch(lhSize)
+ {
+ case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
+ lhSize=1;
+ litSize = istart[0] & 31;
+ break;
+ case 2:
+ litSize = ((istart[0] & 15) << 8) + istart[1];
+ break;
+ case 3:
+ litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
+ break;
+ }
+
+ if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
+ if (litSize+lhSize > srcSize) return ERROR(corruption_detected);
+ memcpy(dctx->litBuffer, istart+lhSize, litSize);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return lhSize+litSize;
+ }
+ /* direct reference into compressed stream */
+ dctx->litPtr = istart+lhSize;
+ dctx->litSize = litSize;
+ return lhSize+litSize;
+ }
+ case IS_RLE:
+ {
+ size_t litSize;
+ U32 lhSize = ((istart[0]) >> 4) & 3;
+ switch(lhSize)
+ {
+ case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
+ lhSize = 1;
+ litSize = istart[0] & 31;
+ break;
+ case 2:
+ litSize = ((istart[0] & 15) << 8) + istart[1];
+ break;
+ case 3:
+ litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
+ if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */
+ break;
+ }
+ if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
+ memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ return lhSize+1;
+ }
+ default:
+ return ERROR(corruption_detected); /* impossible */
+ }
+}
+
+
+static size_t ZSTDv05_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
+ FSEv05_DTable* DTableLL, FSEv05_DTable* DTableML, FSEv05_DTable* DTableOffb,
+ const void* src, size_t srcSize, U32 flagStaticTable)
+{
+ const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* ip = istart;
+ const BYTE* const iend = istart + srcSize;
+ U32 LLtype, Offtype, MLtype;
+ unsigned LLlog, Offlog, MLlog;
+ size_t dumpsLength;
+
+ /* check */
+ if (srcSize < MIN_SEQUENCES_SIZE)
+ return ERROR(srcSize_wrong);
+
+ /* SeqHead */
+ *nbSeq = *ip++;
+ if (*nbSeq==0) return 1;
+ if (*nbSeq >= 128) {
+ if (ip >= iend) return ERROR(srcSize_wrong);
+ *nbSeq = ((nbSeq[0]-128)<<8) + *ip++;
+ }
+
+ if (ip >= iend) return ERROR(srcSize_wrong);
+ LLtype = *ip >> 6;
+ Offtype = (*ip >> 4) & 3;
+ MLtype = (*ip >> 2) & 3;
+ if (*ip & 2) {
+ if (ip+3 > iend) return ERROR(srcSize_wrong);
+ dumpsLength = ip[2];
+ dumpsLength += ip[1] << 8;
+ ip += 3;
+ } else {
+ if (ip+2 > iend) return ERROR(srcSize_wrong);
+ dumpsLength = ip[1];
+ dumpsLength += (ip[0] & 1) << 8;
+ ip += 2;
+ }
+ *dumpsPtr = ip;
+ ip += dumpsLength;
+ *dumpsLengthPtr = dumpsLength;
+
+ /* check */
+ if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
+
+ /* sequences */
+ {
+ S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL >= MaxOff */
+ size_t headerSize;
+
+ /* Build DTables */
+ switch(LLtype)
+ {
+ case FSEv05_ENCODING_RLE :
+ LLlog = 0;
+ FSEv05_buildDTable_rle(DTableLL, *ip++);
+ break;
+ case FSEv05_ENCODING_RAW :
+ LLlog = LLbits;
+ FSEv05_buildDTable_raw(DTableLL, LLbits);
+ break;
+ case FSEv05_ENCODING_STATIC:
+ if (!flagStaticTable) return ERROR(corruption_detected);
+ break;
+ case FSEv05_ENCODING_DYNAMIC :
+ default : /* impossible */
+ { unsigned max = MaxLL;
+ headerSize = FSEv05_readNCount(norm, &max, &LLlog, ip, iend-ip);
+ if (FSEv05_isError(headerSize)) return ERROR(GENERIC);
+ if (LLlog > LLFSEv05Log) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSEv05_buildDTable(DTableLL, norm, max, LLlog);
+ } }
+
+ switch(Offtype)
+ {
+ case FSEv05_ENCODING_RLE :
+ Offlog = 0;
+ if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
+ FSEv05_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */
+ break;
+ case FSEv05_ENCODING_RAW :
+ Offlog = Offbits;
+ FSEv05_buildDTable_raw(DTableOffb, Offbits);
+ break;
+ case FSEv05_ENCODING_STATIC:
+ if (!flagStaticTable) return ERROR(corruption_detected);
+ break;
+ case FSEv05_ENCODING_DYNAMIC :
+ default : /* impossible */
+ { unsigned max = MaxOff;
+ headerSize = FSEv05_readNCount(norm, &max, &Offlog, ip, iend-ip);
+ if (FSEv05_isError(headerSize)) return ERROR(GENERIC);
+ if (Offlog > OffFSEv05Log) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSEv05_buildDTable(DTableOffb, norm, max, Offlog);
+ } }
+
+ switch(MLtype)
+ {
+ case FSEv05_ENCODING_RLE :
+ MLlog = 0;
+ if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
+ FSEv05_buildDTable_rle(DTableML, *ip++);
+ break;
+ case FSEv05_ENCODING_RAW :
+ MLlog = MLbits;
+ FSEv05_buildDTable_raw(DTableML, MLbits);
+ break;
+ case FSEv05_ENCODING_STATIC:
+ if (!flagStaticTable) return ERROR(corruption_detected);
+ break;
+ case FSEv05_ENCODING_DYNAMIC :
+ default : /* impossible */
+ { unsigned max = MaxML;
+ headerSize = FSEv05_readNCount(norm, &max, &MLlog, ip, iend-ip);
+ if (FSEv05_isError(headerSize)) return ERROR(GENERIC);
+ if (MLlog > MLFSEv05Log) return ERROR(corruption_detected);
+ ip += headerSize;
+ FSEv05_buildDTable(DTableML, norm, max, MLlog);
+ } } }
+
+ return ip-istart;
+}
+
+
+typedef struct {
+ size_t litLength;
+ size_t matchLength;
+ size_t offset;
+} seq_t;
+
+typedef struct {
+ BITv05_DStream_t DStream;
+ FSEv05_DState_t stateLL;
+ FSEv05_DState_t stateOffb;
+ FSEv05_DState_t stateML;
+ size_t prevOffset;
+ const BYTE* dumps;
+ const BYTE* dumpsEnd;
+} seqState_t;
+
+
+
+static void ZSTDv05_decodeSequence(seq_t* seq, seqState_t* seqState)
+{
+ size_t litLength;
+ size_t prevOffset;
+ size_t offset;
+ size_t matchLength;
+ const BYTE* dumps = seqState->dumps;
+ const BYTE* const de = seqState->dumpsEnd;
+
+ /* Literal length */
+ litLength = FSEv05_peakSymbol(&(seqState->stateLL));
+ prevOffset = litLength ? seq->offset : seqState->prevOffset;
+ if (litLength == MaxLL) {
+ const U32 add = *dumps++;
+ if (add < 255) litLength += add;
+ else if (dumps + 3 <= de) {
+ litLength = MEM_readLE24(dumps);
+ if (litLength&1) litLength>>=1, dumps += 3;
+ else litLength = (U16)(litLength)>>1, dumps += 2;
+ }
+ if (dumps >= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */
+ }
+
+ /* Offset */
+ {
+ static const U32 offsetPrefix[MaxOff+1] = {
+ 1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256,
+ 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
+ 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 };
+ U32 offsetCode = FSEv05_peakSymbol(&(seqState->stateOffb)); /* <= maxOff, by table construction */
+ U32 nbBits = offsetCode - 1;
+ if (offsetCode==0) nbBits = 0; /* cmove */
+ offset = offsetPrefix[offsetCode] + BITv05_readBits(&(seqState->DStream), nbBits);
+ if (MEM_32bits()) BITv05_reloadDStream(&(seqState->DStream));
+ if (offsetCode==0) offset = prevOffset; /* repcode, cmove */
+ if (offsetCode | !litLength) seqState->prevOffset = seq->offset; /* cmove */
+ FSEv05_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* update */
+ }
+
+ /* Literal length update */
+ FSEv05_decodeSymbol(&(seqState->stateLL), &(seqState->DStream)); /* update */
+ if (MEM_32bits()) BITv05_reloadDStream(&(seqState->DStream));
+
+ /* MatchLength */
+ matchLength = FSEv05_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
+ if (matchLength == MaxML) {
+ const U32 add = dumps<de ? *dumps++ : 0;
+ if (add < 255) matchLength += add;
+ else if (dumps + 3 <= de) {
+ matchLength = MEM_readLE24(dumps);
+ if (matchLength&1) matchLength>>=1, dumps += 3;
+ else matchLength = (U16)(matchLength)>>1, dumps += 2;
+ }
+ if (dumps >= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */
+ }
+ matchLength += MINMATCH;
+
+ /* save result */
+ seq->litLength = litLength;
+ seq->offset = offset;
+ seq->matchLength = matchLength;
+ seqState->dumps = dumps;
+
+#if 0 /* debug */
+ {
+ static U64 totalDecoded = 0;
+ printf("pos %6u : %3u literals & match %3u bytes at distance %6u \n",
+ (U32)(totalDecoded), (U32)litLength, (U32)matchLength, (U32)offset);
+ totalDecoded += litLength + matchLength;
+ }
+#endif
+}
+
+
+static size_t ZSTDv05_execSequence(BYTE* op,
+ BYTE* const oend, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
+{
+ static const int dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
+ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
+ BYTE* const oLitEnd = op + sequence.litLength;
+ const size_t sequenceLength = sequence.litLength + sequence.matchLength;
+ BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
+ BYTE* const oend_8 = oend-8;
+ const BYTE* const litEnd = *litPtr + sequence.litLength;
+ const BYTE* match = oLitEnd - sequence.offset;
+
+ /* check */
+ if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */
+ if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
+ if (litEnd > litLimit) return ERROR(corruption_detected); /* risk read beyond lit buffer */
+
+ /* copy Literals */
+ ZSTDv05_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
+ op = oLitEnd;
+ *litPtr = litEnd; /* update for next sequence */
+
+ /* copy Match */
+ if (sequence.offset > (size_t)(oLitEnd - base)) {
+ /* offset beyond prefix */
+ if (sequence.offset > (size_t)(oLitEnd - vBase))
+ return ERROR(corruption_detected);
+ match = dictEnd - (base-match);
+ if (match + sequence.matchLength <= dictEnd) {
+ memmove(oLitEnd, match, sequence.matchLength);
+ return sequenceLength;
+ }
+ /* span extDict & currentPrefixSegment */
+ {
+ size_t length1 = dictEnd - match;
+ memmove(oLitEnd, match, length1);
+ op = oLitEnd + length1;
+ sequence.matchLength -= length1;
+ match = base;
+ if (op > oend_8 || sequence.matchLength < MINMATCH) {
+ while (op < oMatchEnd) *op++ = *match++;
+ return sequenceLength;
+ }
+ } }
+ /* Requirement: op <= oend_8 */
+
+ /* match within prefix */
+ if (sequence.offset < 8) {
+ /* close range match, overlap */
+ const int sub2 = dec64table[sequence.offset];
+ op[0] = match[0];
+ op[1] = match[1];
+ op[2] = match[2];
+ op[3] = match[3];
+ match += dec32table[sequence.offset];
+ ZSTDv05_copy4(op+4, match);
+ match -= sub2;
+ } else {
+ ZSTDv05_copy8(op, match);
+ }
+ op += 8; match += 8;
+
+ if (oMatchEnd > oend-(16-MINMATCH)) {
+ if (op < oend_8) {
+ ZSTDv05_wildcopy(op, match, oend_8 - op);
+ match += oend_8 - op;
+ op = oend_8;
+ }
+ while (op < oMatchEnd)
+ *op++ = *match++;
+ } else {
+ ZSTDv05_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
+ }
+ return sequenceLength;
+}
+
+
+static size_t ZSTDv05_decompressSequences(
+ ZSTDv05_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize)
+{
+ const BYTE* ip = (const BYTE*)seqStart;
+ const BYTE* const iend = ip + seqSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + maxDstSize;
+ size_t errorCode, dumpsLength=0;
+ const BYTE* litPtr = dctx->litPtr;
+ const BYTE* const litEnd = litPtr + dctx->litSize;
+ int nbSeq=0;
+ const BYTE* dumps = NULL;
+ unsigned* DTableLL = dctx->LLTable;
+ unsigned* DTableML = dctx->MLTable;
+ unsigned* DTableOffb = dctx->OffTable;
+ const BYTE* const base = (const BYTE*) (dctx->base);
+ const BYTE* const vBase = (const BYTE*) (dctx->vBase);
+ const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
+
+ /* Build Decoding Tables */
+ errorCode = ZSTDv05_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
+ DTableLL, DTableML, DTableOffb,
+ ip, seqSize, dctx->flagStaticTables);
+ if (ZSTDv05_isError(errorCode)) return errorCode;
+ ip += errorCode;
+
+ /* Regen sequences */
+ if (nbSeq) {
+ seq_t sequence;
+ seqState_t seqState;
+
+ memset(&sequence, 0, sizeof(sequence));
+ sequence.offset = REPCODE_STARTVALUE;
+ seqState.dumps = dumps;
+ seqState.dumpsEnd = dumps + dumpsLength;
+ seqState.prevOffset = REPCODE_STARTVALUE;
+ errorCode = BITv05_initDStream(&(seqState.DStream), ip, iend-ip);
+ if (ERR_isError(errorCode)) return ERROR(corruption_detected);
+ FSEv05_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
+ FSEv05_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
+ FSEv05_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
+
+ for ( ; (BITv05_reloadDStream(&(seqState.DStream)) <= BITv05_DStream_completed) && nbSeq ; ) {
+ size_t oneSeqSize;
+ nbSeq--;
+ ZSTDv05_decodeSequence(&sequence, &seqState);
+ oneSeqSize = ZSTDv05_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd);
+ if (ZSTDv05_isError(oneSeqSize)) return oneSeqSize;
+ op += oneSeqSize;
+ }
+
+ /* check if reached exact end */
+ if (nbSeq) return ERROR(corruption_detected);
+ }
+
+ /* last literal segment */
+ {
+ size_t lastLLSize = litEnd - litPtr;
+ if (litPtr > litEnd) return ERROR(corruption_detected); /* too many literals already used */
+ if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
+ memcpy(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+
+ return op-ostart;
+}
+
+
+static void ZSTDv05_checkContinuity(ZSTDv05_DCtx* dctx, const void* dst)
+{
+ if (dst != dctx->previousDstEnd) { /* not contiguous */
+ dctx->dictEnd = dctx->previousDstEnd;
+ dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
+ dctx->base = dst;
+ dctx->previousDstEnd = dst;
+ }
+}
+
+
+static size_t ZSTDv05_decompressBlock_internal(ZSTDv05_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{ /* blockType == blockCompressed */
+ const BYTE* ip = (const BYTE*)src;
+ size_t litCSize;
+
+ if (srcSize >= BLOCKSIZE) return ERROR(srcSize_wrong);
+
+ /* Decode literals sub-block */
+ litCSize = ZSTDv05_decodeLiteralsBlock(dctx, src, srcSize);
+ if (ZSTDv05_isError(litCSize)) return litCSize;
+ ip += litCSize;
+ srcSize -= litCSize;
+
+ return ZSTDv05_decompressSequences(dctx, dst, dstCapacity, ip, srcSize);
+}
+
+
+size_t ZSTDv05_decompressBlock(ZSTDv05_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ ZSTDv05_checkContinuity(dctx, dst);
+ return ZSTDv05_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
+}
+
+
+/*! ZSTDv05_decompress_continueDCtx
+* dctx must have been properly initialized */
+static size_t ZSTDv05_decompress_continueDCtx(ZSTDv05_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+ const BYTE* iend = ip + srcSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + maxDstSize;
+ size_t remainingSize = srcSize;
+ blockProperties_t blockProperties;
+ memset(&blockProperties, 0, sizeof(blockProperties));
+
+ /* Frame Header */
+ { size_t frameHeaderSize;
+ if (srcSize < ZSTDv05_frameHeaderSize_min+ZSTDv05_blockHeaderSize) return ERROR(srcSize_wrong);
+ frameHeaderSize = ZSTDv05_decodeFrameHeader_Part1(dctx, src, ZSTDv05_frameHeaderSize_min);
+ if (ZSTDv05_isError(frameHeaderSize)) return frameHeaderSize;
+ if (srcSize < frameHeaderSize+ZSTDv05_blockHeaderSize) return ERROR(srcSize_wrong);
+ ip += frameHeaderSize; remainingSize -= frameHeaderSize;
+ frameHeaderSize = ZSTDv05_decodeFrameHeader_Part2(dctx, src, frameHeaderSize);
+ if (ZSTDv05_isError(frameHeaderSize)) return frameHeaderSize;
+ }
+
+ /* Loop on each block */
+ while (1)
+ {
+ size_t decodedSize=0;
+ size_t cBlockSize = ZSTDv05_getcBlockSize(ip, iend-ip, &blockProperties);
+ if (ZSTDv05_isError(cBlockSize)) return cBlockSize;
+
+ ip += ZSTDv05_blockHeaderSize;
+ remainingSize -= ZSTDv05_blockHeaderSize;
+ if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
+
+ switch(blockProperties.blockType)
+ {
+ case bt_compressed:
+ decodedSize = ZSTDv05_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize);
+ break;
+ case bt_raw :
+ decodedSize = ZSTDv05_copyRawBlock(op, oend-op, ip, cBlockSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet supported */
+ break;
+ case bt_end :
+ /* end of frame */
+ if (remainingSize) return ERROR(srcSize_wrong);
+ break;
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+ if (cBlockSize == 0) break; /* bt_end */
+
+ if (ZSTDv05_isError(decodedSize)) return decodedSize;
+ op += decodedSize;
+ ip += cBlockSize;
+ remainingSize -= cBlockSize;
+ }
+
+ return op-ostart;
+}
+
+
+size_t ZSTDv05_decompress_usingPreparedDCtx(ZSTDv05_DCtx* dctx, const ZSTDv05_DCtx* refDCtx,
+ void* dst, size_t maxDstSize,
+ const void* src, size_t srcSize)
+{
+ ZSTDv05_copyDCtx(dctx, refDCtx);
+ ZSTDv05_checkContinuity(dctx, dst);
+ return ZSTDv05_decompress_continueDCtx(dctx, dst, maxDstSize, src, srcSize);
+}
+
+
+size_t ZSTDv05_decompress_usingDict(ZSTDv05_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* src, size_t srcSize,
+ const void* dict, size_t dictSize)
+{
+ ZSTDv05_decompressBegin_usingDict(dctx, dict, dictSize);
+ ZSTDv05_checkContinuity(dctx, dst);
+ return ZSTDv05_decompress_continueDCtx(dctx, dst, maxDstSize, src, srcSize);
+}
+
+
+size_t ZSTDv05_decompressDCtx(ZSTDv05_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ return ZSTDv05_decompress_usingDict(dctx, dst, maxDstSize, src, srcSize, NULL, 0);
+}
+
+size_t ZSTDv05_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+#if defined(ZSTDv05_HEAPMODE) && (ZSTDv05_HEAPMODE==1)
+ size_t regenSize;
+ ZSTDv05_DCtx* dctx = ZSTDv05_createDCtx();
+ if (dctx==NULL) return ERROR(memory_allocation);
+ regenSize = ZSTDv05_decompressDCtx(dctx, dst, maxDstSize, src, srcSize);
+ ZSTDv05_freeDCtx(dctx);
+ return regenSize;
+#else
+ ZSTDv05_DCtx dctx;
+ return ZSTDv05_decompressDCtx(&dctx, dst, maxDstSize, src, srcSize);
+#endif
+}
+
+/* ZSTD_errorFrameSizeInfoLegacy() :
+ assumes `cSize` and `dBound` are _not_ NULL */
+static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
+{
+ *cSize = ret;
+ *dBound = ZSTD_CONTENTSIZE_ERROR;
+}
+
+void ZSTDv05_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
+{
+ const BYTE* ip = (const BYTE*)src;
+ size_t remainingSize = srcSize;
+ size_t nbBlocks = 0;
+ blockProperties_t blockProperties;
+
+ /* Frame Header */
+ if (srcSize < ZSTDv05_frameHeaderSize_min) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+ if (MEM_readLE32(src) != ZSTDv05_MAGICNUMBER) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
+ return;
+ }
+ ip += ZSTDv05_frameHeaderSize_min; remainingSize -= ZSTDv05_frameHeaderSize_min;
+
+ /* Loop on each block */
+ while (1)
+ {
+ size_t cBlockSize = ZSTDv05_getcBlockSize(ip, remainingSize, &blockProperties);
+ if (ZSTDv05_isError(cBlockSize)) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
+ return;
+ }
+
+ ip += ZSTDv05_blockHeaderSize;
+ remainingSize -= ZSTDv05_blockHeaderSize;
+ if (cBlockSize > remainingSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+
+ if (cBlockSize == 0) break; /* bt_end */
+
+ ip += cBlockSize;
+ remainingSize -= cBlockSize;
+ nbBlocks++;
+ }
+
+ *cSize = ip - (const BYTE*)src;
+ *dBound = nbBlocks * BLOCKSIZE;
+}
+
+/* ******************************
+* Streaming Decompression API
+********************************/
+size_t ZSTDv05_nextSrcSizeToDecompress(ZSTDv05_DCtx* dctx)
+{
+ return dctx->expected;
+}
+
+size_t ZSTDv05_decompressContinue(ZSTDv05_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ /* Sanity check */
+ if (srcSize != dctx->expected) return ERROR(srcSize_wrong);
+ ZSTDv05_checkContinuity(dctx, dst);
+
+ /* Decompress : frame header; part 1 */
+ switch (dctx->stage)
+ {
+ case ZSTDv05ds_getFrameHeaderSize :
+ /* get frame header size */
+ if (srcSize != ZSTDv05_frameHeaderSize_min) return ERROR(srcSize_wrong); /* impossible */
+ dctx->headerSize = ZSTDv05_decodeFrameHeader_Part1(dctx, src, ZSTDv05_frameHeaderSize_min);
+ if (ZSTDv05_isError(dctx->headerSize)) return dctx->headerSize;
+ memcpy(dctx->headerBuffer, src, ZSTDv05_frameHeaderSize_min);
+ if (dctx->headerSize > ZSTDv05_frameHeaderSize_min) return ERROR(GENERIC); /* should never happen */
+ dctx->expected = 0; /* not necessary to copy more */
+ /* fallthrough */
+ case ZSTDv05ds_decodeFrameHeader:
+ /* get frame header */
+ { size_t const result = ZSTDv05_decodeFrameHeader_Part2(dctx, dctx->headerBuffer, dctx->headerSize);
+ if (ZSTDv05_isError(result)) return result;
+ dctx->expected = ZSTDv05_blockHeaderSize;
+ dctx->stage = ZSTDv05ds_decodeBlockHeader;
+ return 0;
+ }
+ case ZSTDv05ds_decodeBlockHeader:
+ {
+ /* Decode block header */
+ blockProperties_t bp;
+ size_t blockSize = ZSTDv05_getcBlockSize(src, ZSTDv05_blockHeaderSize, &bp);
+ if (ZSTDv05_isError(blockSize)) return blockSize;
+ if (bp.blockType == bt_end) {
+ dctx->expected = 0;
+ dctx->stage = ZSTDv05ds_getFrameHeaderSize;
+ }
+ else {
+ dctx->expected = blockSize;
+ dctx->bType = bp.blockType;
+ dctx->stage = ZSTDv05ds_decompressBlock;
+ }
+ return 0;
+ }
+ case ZSTDv05ds_decompressBlock:
+ {
+ /* Decompress : block content */
+ size_t rSize;
+ switch(dctx->bType)
+ {
+ case bt_compressed:
+ rSize = ZSTDv05_decompressBlock_internal(dctx, dst, maxDstSize, src, srcSize);
+ break;
+ case bt_raw :
+ rSize = ZSTDv05_copyRawBlock(dst, maxDstSize, src, srcSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet handled */
+ break;
+ case bt_end : /* should never happen (filtered at phase 1) */
+ rSize = 0;
+ break;
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+ dctx->stage = ZSTDv05ds_decodeBlockHeader;
+ dctx->expected = ZSTDv05_blockHeaderSize;
+ dctx->previousDstEnd = (char*)dst + rSize;
+ return rSize;
+ }
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+}
+
+
+static void ZSTDv05_refDictContent(ZSTDv05_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ dctx->dictEnd = dctx->previousDstEnd;
+ dctx->vBase = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
+ dctx->base = dict;
+ dctx->previousDstEnd = (const char*)dict + dictSize;
+}
+
+static size_t ZSTDv05_loadEntropy(ZSTDv05_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ size_t hSize, offcodeHeaderSize, matchlengthHeaderSize, errorCode, litlengthHeaderSize;
+ short offcodeNCount[MaxOff+1];
+ unsigned offcodeMaxValue=MaxOff, offcodeLog;
+ short matchlengthNCount[MaxML+1];
+ unsigned matchlengthMaxValue = MaxML, matchlengthLog;
+ short litlengthNCount[MaxLL+1];
+ unsigned litlengthMaxValue = MaxLL, litlengthLog;
+
+ hSize = HUFv05_readDTableX4(dctx->hufTableX4, dict, dictSize);
+ if (HUFv05_isError(hSize)) return ERROR(dictionary_corrupted);
+ dict = (const char*)dict + hSize;
+ dictSize -= hSize;
+
+ offcodeHeaderSize = FSEv05_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dict, dictSize);
+ if (FSEv05_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
+ if (offcodeLog > OffFSEv05Log) return ERROR(dictionary_corrupted);
+ errorCode = FSEv05_buildDTable(dctx->OffTable, offcodeNCount, offcodeMaxValue, offcodeLog);
+ if (FSEv05_isError(errorCode)) return ERROR(dictionary_corrupted);
+ dict = (const char*)dict + offcodeHeaderSize;
+ dictSize -= offcodeHeaderSize;
+
+ matchlengthHeaderSize = FSEv05_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dict, dictSize);
+ if (FSEv05_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
+ if (matchlengthLog > MLFSEv05Log) return ERROR(dictionary_corrupted);
+ errorCode = FSEv05_buildDTable(dctx->MLTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog);
+ if (FSEv05_isError(errorCode)) return ERROR(dictionary_corrupted);
+ dict = (const char*)dict + matchlengthHeaderSize;
+ dictSize -= matchlengthHeaderSize;
+
+ litlengthHeaderSize = FSEv05_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dict, dictSize);
+ if (litlengthLog > LLFSEv05Log) return ERROR(dictionary_corrupted);
+ if (FSEv05_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
+ errorCode = FSEv05_buildDTable(dctx->LLTable, litlengthNCount, litlengthMaxValue, litlengthLog);
+ if (FSEv05_isError(errorCode)) return ERROR(dictionary_corrupted);
+
+ dctx->flagStaticTables = 1;
+ return hSize + offcodeHeaderSize + matchlengthHeaderSize + litlengthHeaderSize;
+}
+
+static size_t ZSTDv05_decompress_insertDictionary(ZSTDv05_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ size_t eSize;
+ U32 magic = MEM_readLE32(dict);
+ if (magic != ZSTDv05_DICT_MAGIC) {
+ /* pure content mode */
+ ZSTDv05_refDictContent(dctx, dict, dictSize);
+ return 0;
+ }
+ /* load entropy tables */
+ dict = (const char*)dict + 4;
+ dictSize -= 4;
+ eSize = ZSTDv05_loadEntropy(dctx, dict, dictSize);
+ if (ZSTDv05_isError(eSize)) return ERROR(dictionary_corrupted);
+
+ /* reference dictionary content */
+ dict = (const char*)dict + eSize;
+ dictSize -= eSize;
+ ZSTDv05_refDictContent(dctx, dict, dictSize);
+
+ return 0;
+}
+
+
+size_t ZSTDv05_decompressBegin_usingDict(ZSTDv05_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ size_t errorCode;
+ errorCode = ZSTDv05_decompressBegin(dctx);
+ if (ZSTDv05_isError(errorCode)) return errorCode;
+
+ if (dict && dictSize) {
+ errorCode = ZSTDv05_decompress_insertDictionary(dctx, dict, dictSize);
+ if (ZSTDv05_isError(errorCode)) return ERROR(dictionary_corrupted);
+ }
+
+ return 0;
+}
+
+/*
+ Buffered version of Zstd compression library
+ Copyright (C) 2015-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd source repository : https://github.com/Cyan4973/zstd
+ - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
+*/
+
+/* The objects defined into this file should be considered experimental.
+ * They are not labelled stable, as their prototype may change in the future.
+ * You can use them for tests, provide feedback, or if you can endure risk of future changes.
+ */
+
+
+
+/* *************************************
+* Constants
+***************************************/
+static size_t ZBUFFv05_blockHeaderSize = 3;
+
+
+
+/* *** Compression *** */
+
+static size_t ZBUFFv05_limitCopy(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+ size_t length = MIN(maxDstSize, srcSize);
+ memcpy(dst, src, length);
+ return length;
+}
+
+
+
+
+/** ************************************************
+* Streaming decompression
+*
+* A ZBUFFv05_DCtx object is required to track streaming operation.
+* Use ZBUFFv05_createDCtx() and ZBUFFv05_freeDCtx() to create/release resources.
+* Use ZBUFFv05_decompressInit() to start a new decompression operation.
+* ZBUFFv05_DCtx objects can be reused multiple times.
+*
+* Use ZBUFFv05_decompressContinue() repetitively to consume your input.
+* *srcSizePtr and *maxDstSizePtr can be any size.
+* The function will report how many bytes were read or written by modifying *srcSizePtr and *maxDstSizePtr.
+* Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input.
+* The content of dst will be overwritten (up to *maxDstSizePtr) at each function call, so save its content if it matters or change dst .
+* return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
+* or 0 when a frame is completely decoded
+* or an error code, which can be tested using ZBUFFv05_isError().
+*
+* Hint : recommended buffer sizes (not compulsory)
+* output : 128 KB block size is the internal unit, it ensures it's always possible to write a full block when it's decoded.
+* input : just follow indications from ZBUFFv05_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
+* **************************************************/
+
+typedef enum { ZBUFFv05ds_init, ZBUFFv05ds_readHeader, ZBUFFv05ds_loadHeader, ZBUFFv05ds_decodeHeader,
+ ZBUFFv05ds_read, ZBUFFv05ds_load, ZBUFFv05ds_flush } ZBUFFv05_dStage;
+
+/* *** Resource management *** */
+
+#define ZSTDv05_frameHeaderSize_max 5 /* too magical, should come from reference */
+struct ZBUFFv05_DCtx_s {
+ ZSTDv05_DCtx* zc;
+ ZSTDv05_parameters params;
+ char* inBuff;
+ size_t inBuffSize;
+ size_t inPos;
+ char* outBuff;
+ size_t outBuffSize;
+ size_t outStart;
+ size_t outEnd;
+ size_t hPos;
+ ZBUFFv05_dStage stage;
+ unsigned char headerBuffer[ZSTDv05_frameHeaderSize_max];
+}; /* typedef'd to ZBUFFv05_DCtx within "zstd_buffered.h" */
+
+
+ZBUFFv05_DCtx* ZBUFFv05_createDCtx(void)
+{
+ ZBUFFv05_DCtx* zbc = (ZBUFFv05_DCtx*)malloc(sizeof(ZBUFFv05_DCtx));
+ if (zbc==NULL) return NULL;
+ memset(zbc, 0, sizeof(*zbc));
+ zbc->zc = ZSTDv05_createDCtx();
+ zbc->stage = ZBUFFv05ds_init;
+ return zbc;
+}
+
+size_t ZBUFFv05_freeDCtx(ZBUFFv05_DCtx* zbc)
+{
+ if (zbc==NULL) return 0; /* support free on null */
+ ZSTDv05_freeDCtx(zbc->zc);
+ free(zbc->inBuff);
+ free(zbc->outBuff);
+ free(zbc);
+ return 0;
+}
+
+
+/* *** Initialization *** */
+
+size_t ZBUFFv05_decompressInitDictionary(ZBUFFv05_DCtx* zbc, const void* dict, size_t dictSize)
+{
+ zbc->stage = ZBUFFv05ds_readHeader;
+ zbc->hPos = zbc->inPos = zbc->outStart = zbc->outEnd = 0;
+ return ZSTDv05_decompressBegin_usingDict(zbc->zc, dict, dictSize);
+}
+
+size_t ZBUFFv05_decompressInit(ZBUFFv05_DCtx* zbc)
+{
+ return ZBUFFv05_decompressInitDictionary(zbc, NULL, 0);
+}
+
+
+/* *** Decompression *** */
+
+size_t ZBUFFv05_decompressContinue(ZBUFFv05_DCtx* zbc, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr)
+{
+ const char* const istart = (const char*)src;
+ const char* ip = istart;
+ const char* const iend = istart + *srcSizePtr;
+ char* const ostart = (char*)dst;
+ char* op = ostart;
+ char* const oend = ostart + *maxDstSizePtr;
+ U32 notDone = 1;
+
+ while (notDone) {
+ switch(zbc->stage)
+ {
+ case ZBUFFv05ds_init :
+ return ERROR(init_missing);
+
+ case ZBUFFv05ds_readHeader :
+ /* read header from src */
+ {
+ size_t headerSize = ZSTDv05_getFrameParams(&(zbc->params), src, *srcSizePtr);
+ if (ZSTDv05_isError(headerSize)) return headerSize;
+ if (headerSize) {
+ /* not enough input to decode header : tell how many bytes would be necessary */
+ memcpy(zbc->headerBuffer+zbc->hPos, src, *srcSizePtr);
+ zbc->hPos += *srcSizePtr;
+ *maxDstSizePtr = 0;
+ zbc->stage = ZBUFFv05ds_loadHeader;
+ return headerSize - zbc->hPos;
+ }
+ zbc->stage = ZBUFFv05ds_decodeHeader;
+ break;
+ }
+ /* fall-through */
+ case ZBUFFv05ds_loadHeader:
+ /* complete header from src */
+ {
+ size_t headerSize = ZBUFFv05_limitCopy(
+ zbc->headerBuffer + zbc->hPos, ZSTDv05_frameHeaderSize_max - zbc->hPos,
+ src, *srcSizePtr);
+ zbc->hPos += headerSize;
+ ip += headerSize;
+ headerSize = ZSTDv05_getFrameParams(&(zbc->params), zbc->headerBuffer, zbc->hPos);
+ if (ZSTDv05_isError(headerSize)) return headerSize;
+ if (headerSize) {
+ /* not enough input to decode header : tell how many bytes would be necessary */
+ *maxDstSizePtr = 0;
+ return headerSize - zbc->hPos;
+ }
+ // zbc->stage = ZBUFFv05ds_decodeHeader; break; /* useless : stage follows */
+ }
+ /* fall-through */
+ case ZBUFFv05ds_decodeHeader:
+ /* apply header to create / resize buffers */
+ {
+ size_t neededOutSize = (size_t)1 << zbc->params.windowLog;
+ size_t neededInSize = BLOCKSIZE; /* a block is never > BLOCKSIZE */
+ if (zbc->inBuffSize < neededInSize) {
+ free(zbc->inBuff);
+ zbc->inBuffSize = neededInSize;
+ zbc->inBuff = (char*)malloc(neededInSize);
+ if (zbc->inBuff == NULL) return ERROR(memory_allocation);
+ }
+ if (zbc->outBuffSize < neededOutSize) {
+ free(zbc->outBuff);
+ zbc->outBuffSize = neededOutSize;
+ zbc->outBuff = (char*)malloc(neededOutSize);
+ if (zbc->outBuff == NULL) return ERROR(memory_allocation);
+ } }
+ if (zbc->hPos) {
+ /* some data already loaded into headerBuffer : transfer into inBuff */
+ memcpy(zbc->inBuff, zbc->headerBuffer, zbc->hPos);
+ zbc->inPos = zbc->hPos;
+ zbc->hPos = 0;
+ zbc->stage = ZBUFFv05ds_load;
+ break;
+ }
+ zbc->stage = ZBUFFv05ds_read;
+ /* fall-through */
+ case ZBUFFv05ds_read:
+ {
+ size_t neededInSize = ZSTDv05_nextSrcSizeToDecompress(zbc->zc);
+ if (neededInSize==0) { /* end of frame */
+ zbc->stage = ZBUFFv05ds_init;
+ notDone = 0;
+ break;
+ }
+ if ((size_t)(iend-ip) >= neededInSize) {
+ /* directly decode from src */
+ size_t decodedSize = ZSTDv05_decompressContinue(zbc->zc,
+ zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart,
+ ip, neededInSize);
+ if (ZSTDv05_isError(decodedSize)) return decodedSize;
+ ip += neededInSize;
+ if (!decodedSize) break; /* this was just a header */
+ zbc->outEnd = zbc->outStart + decodedSize;
+ zbc->stage = ZBUFFv05ds_flush;
+ break;
+ }
+ if (ip==iend) { notDone = 0; break; } /* no more input */
+ zbc->stage = ZBUFFv05ds_load;
+ }
+ /* fall-through */
+ case ZBUFFv05ds_load:
+ {
+ size_t neededInSize = ZSTDv05_nextSrcSizeToDecompress(zbc->zc);
+ size_t toLoad = neededInSize - zbc->inPos; /* should always be <= remaining space within inBuff */
+ size_t loadedSize;
+ if (toLoad > zbc->inBuffSize - zbc->inPos) return ERROR(corruption_detected); /* should never happen */
+ loadedSize = ZBUFFv05_limitCopy(zbc->inBuff + zbc->inPos, toLoad, ip, iend-ip);
+ ip += loadedSize;
+ zbc->inPos += loadedSize;
+ if (loadedSize < toLoad) { notDone = 0; break; } /* not enough input, wait for more */
+ {
+ size_t decodedSize = ZSTDv05_decompressContinue(zbc->zc,
+ zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart,
+ zbc->inBuff, neededInSize);
+ if (ZSTDv05_isError(decodedSize)) return decodedSize;
+ zbc->inPos = 0; /* input is consumed */
+ if (!decodedSize) { zbc->stage = ZBUFFv05ds_read; break; } /* this was just a header */
+ zbc->outEnd = zbc->outStart + decodedSize;
+ zbc->stage = ZBUFFv05ds_flush;
+ // break; /* ZBUFFv05ds_flush follows */
+ }
+ }
+ /* fall-through */
+ case ZBUFFv05ds_flush:
+ {
+ size_t toFlushSize = zbc->outEnd - zbc->outStart;
+ size_t flushedSize = ZBUFFv05_limitCopy(op, oend-op, zbc->outBuff + zbc->outStart, toFlushSize);
+ op += flushedSize;
+ zbc->outStart += flushedSize;
+ if (flushedSize == toFlushSize) {
+ zbc->stage = ZBUFFv05ds_read;
+ if (zbc->outStart + BLOCKSIZE > zbc->outBuffSize)
+ zbc->outStart = zbc->outEnd = 0;
+ break;
+ }
+ /* cannot flush everything */
+ notDone = 0;
+ break;
+ }
+ default: return ERROR(GENERIC); /* impossible */
+ } }
+
+ *srcSizePtr = ip-istart;
+ *maxDstSizePtr = op-ostart;
+
+ { size_t nextSrcSizeHint = ZSTDv05_nextSrcSizeToDecompress(zbc->zc);
+ if (nextSrcSizeHint > ZBUFFv05_blockHeaderSize) nextSrcSizeHint+= ZBUFFv05_blockHeaderSize; /* get next block header too */
+ nextSrcSizeHint -= zbc->inPos; /* already loaded*/
+ return nextSrcSizeHint;
+ }
+}
+
+
+
+/* *************************************
+* Tool functions
+***************************************/
+unsigned ZBUFFv05_isError(size_t errorCode) { return ERR_isError(errorCode); }
+const char* ZBUFFv05_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
+
+size_t ZBUFFv05_recommendedDInSize(void) { return BLOCKSIZE + ZBUFFv05_blockHeaderSize /* block header size*/ ; }
+size_t ZBUFFv05_recommendedDOutSize(void) { return BLOCKSIZE; }
diff --git a/vendor/github.com/DataDog/zstd/zstd_v05.h b/vendor/github.com/DataDog/zstd/zstd_v05.h
new file mode 100644
index 0000000..4a97985
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v05.h
@@ -0,0 +1,162 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTDv05_H
+#define ZSTDv05_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/*-*************************************
+* Dependencies
+***************************************/
+#include <stddef.h> /* size_t */
+#include "mem.h" /* U64, U32 */
+
+
+/* *************************************
+* Simple functions
+***************************************/
+/*! ZSTDv05_decompress() :
+ `compressedSize` : is the _exact_ size of the compressed blob, otherwise decompression will fail.
+ `dstCapacity` must be large enough, equal or larger than originalSize.
+ @return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
+ or an errorCode if it fails (which can be tested using ZSTDv05_isError()) */
+size_t ZSTDv05_decompress( void* dst, size_t dstCapacity,
+ const void* src, size_t compressedSize);
+
+ /**
+ ZSTDv05_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.5.x format
+ srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
+ cSize (output parameter) : the number of bytes that would be read to decompress this frame
+ or an error code if it fails (which can be tested using ZSTDv01_isError())
+ dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
+ or ZSTD_CONTENTSIZE_ERROR if an error occurs
+
+ note : assumes `cSize` and `dBound` are _not_ NULL.
+ */
+void ZSTDv05_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
+ size_t* cSize, unsigned long long* dBound);
+
+/* *************************************
+* Helper functions
+***************************************/
+/* Error Management */
+unsigned ZSTDv05_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
+const char* ZSTDv05_getErrorName(size_t code); /*!< provides readable string for an error code */
+
+
+/* *************************************
+* Explicit memory management
+***************************************/
+/** Decompression context */
+typedef struct ZSTDv05_DCtx_s ZSTDv05_DCtx;
+ZSTDv05_DCtx* ZSTDv05_createDCtx(void);
+size_t ZSTDv05_freeDCtx(ZSTDv05_DCtx* dctx); /*!< @return : errorCode */
+
+/** ZSTDv05_decompressDCtx() :
+* Same as ZSTDv05_decompress(), but requires an already allocated ZSTDv05_DCtx (see ZSTDv05_createDCtx()) */
+size_t ZSTDv05_decompressDCtx(ZSTDv05_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+
+/*-***********************
+* Simple Dictionary API
+*************************/
+/*! ZSTDv05_decompress_usingDict() :
+* Decompression using a pre-defined Dictionary content (see dictBuilder).
+* Dictionary must be identical to the one used during compression, otherwise regenerated data will be corrupted.
+* Note : dict can be NULL, in which case, it's equivalent to ZSTDv05_decompressDCtx() */
+size_t ZSTDv05_decompress_usingDict(ZSTDv05_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize);
+
+/*-************************
+* Advanced Streaming API
+***************************/
+typedef enum { ZSTDv05_fast, ZSTDv05_greedy, ZSTDv05_lazy, ZSTDv05_lazy2, ZSTDv05_btlazy2, ZSTDv05_opt, ZSTDv05_btopt } ZSTDv05_strategy;
+typedef struct {
+ U64 srcSize;
+ U32 windowLog; /* the only useful information to retrieve */
+ U32 contentLog; U32 hashLog; U32 searchLog; U32 searchLength; U32 targetLength; ZSTDv05_strategy strategy;
+} ZSTDv05_parameters;
+size_t ZSTDv05_getFrameParams(ZSTDv05_parameters* params, const void* src, size_t srcSize);
+
+size_t ZSTDv05_decompressBegin_usingDict(ZSTDv05_DCtx* dctx, const void* dict, size_t dictSize);
+void ZSTDv05_copyDCtx(ZSTDv05_DCtx* dstDCtx, const ZSTDv05_DCtx* srcDCtx);
+size_t ZSTDv05_nextSrcSizeToDecompress(ZSTDv05_DCtx* dctx);
+size_t ZSTDv05_decompressContinue(ZSTDv05_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+
+/*-***********************
+* ZBUFF API
+*************************/
+typedef struct ZBUFFv05_DCtx_s ZBUFFv05_DCtx;
+ZBUFFv05_DCtx* ZBUFFv05_createDCtx(void);
+size_t ZBUFFv05_freeDCtx(ZBUFFv05_DCtx* dctx);
+
+size_t ZBUFFv05_decompressInit(ZBUFFv05_DCtx* dctx);
+size_t ZBUFFv05_decompressInitDictionary(ZBUFFv05_DCtx* dctx, const void* dict, size_t dictSize);
+
+size_t ZBUFFv05_decompressContinue(ZBUFFv05_DCtx* dctx,
+ void* dst, size_t* dstCapacityPtr,
+ const void* src, size_t* srcSizePtr);
+
+/*-***************************************************************************
+* Streaming decompression
+*
+* A ZBUFFv05_DCtx object is required to track streaming operations.
+* Use ZBUFFv05_createDCtx() and ZBUFFv05_freeDCtx() to create/release resources.
+* Use ZBUFFv05_decompressInit() to start a new decompression operation,
+* or ZBUFFv05_decompressInitDictionary() if decompression requires a dictionary.
+* Note that ZBUFFv05_DCtx objects can be reused multiple times.
+*
+* Use ZBUFFv05_decompressContinue() repetitively to consume your input.
+* *srcSizePtr and *dstCapacityPtr can be any size.
+* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
+* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
+* The content of @dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters or change @dst.
+* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency)
+* or 0 when a frame is completely decoded
+* or an error code, which can be tested using ZBUFFv05_isError().
+*
+* Hint : recommended buffer sizes (not compulsory) : ZBUFFv05_recommendedDInSize() / ZBUFFv05_recommendedDOutSize()
+* output : ZBUFFv05_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
+* input : ZBUFFv05_recommendedDInSize==128Kb+3; just follow indications from ZBUFFv05_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
+* *******************************************************************************/
+
+
+/* *************************************
+* Tool functions
+***************************************/
+unsigned ZBUFFv05_isError(size_t errorCode);
+const char* ZBUFFv05_getErrorName(size_t errorCode);
+
+/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
+* These sizes are just hints, and tend to offer better latency */
+size_t ZBUFFv05_recommendedDInSize(void);
+size_t ZBUFFv05_recommendedDOutSize(void);
+
+
+
+/*-*************************************
+* Constants
+***************************************/
+#define ZSTDv05_MAGICNUMBER 0xFD2FB525 /* v0.5 */
+
+
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTDv0505_H */
diff --git a/vendor/github.com/DataDog/zstd/zstd_v06.c b/vendor/github.com/DataDog/zstd/zstd_v06.c
new file mode 100644
index 0000000..f907a3a
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v06.c
@@ -0,0 +1,4150 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+/*- Dependencies -*/
+#include "zstd_v06.h"
+#include <stddef.h> /* size_t, ptrdiff_t */
+#include <string.h> /* memcpy */
+#include <stdlib.h> /* malloc, free, qsort */
+#include "error_private.h"
+
+
+
+/* ******************************************************************
+ mem.h
+ low-level memory access routines
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef MEM_H_MODULE
+#define MEM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*-****************************************
+* Compiler specifics
+******************************************/
+#if defined(_MSC_VER) /* Visual Studio */
+# include <stdlib.h> /* _byteswap_ulong */
+# include <intrin.h> /* _byteswap_* */
+#endif
+#if defined(__GNUC__)
+# define MEM_STATIC static __attribute__((unused))
+#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define MEM_STATIC static inline
+#elif defined(_MSC_VER)
+# define MEM_STATIC static __inline
+#else
+# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
+
+
+/*-**************************************************************
+* Basic Types
+*****************************************************************/
+#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+# include <stdint.h>
+ typedef uint8_t BYTE;
+ typedef uint16_t U16;
+ typedef int16_t S16;
+ typedef uint32_t U32;
+ typedef int32_t S32;
+ typedef uint64_t U64;
+ typedef int64_t S64;
+#else
+ typedef unsigned char BYTE;
+ typedef unsigned short U16;
+ typedef signed short S16;
+ typedef unsigned int U32;
+ typedef signed int S32;
+ typedef unsigned long long U64;
+ typedef signed long long S64;
+#endif
+
+
+/*-**************************************************************
+* Memory I/O
+*****************************************************************/
+/* MEM_FORCE_MEMORY_ACCESS :
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
+ * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method is portable but violate C standard.
+ * It can generate buggy code on targets depending on alignment.
+ * In some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
+ * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
+# define MEM_FORCE_MEMORY_ACCESS 2
+# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
+ (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# define MEM_FORCE_MEMORY_ACCESS 1
+# endif
+#endif
+
+MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
+MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
+
+MEM_STATIC unsigned MEM_isLittleEndian(void)
+{
+ const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
+ return one.c[0];
+}
+
+#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
+
+/* violates C standard, by lying on structure alignment.
+Only use if no other choice to achieve best performance on target platform */
+MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
+MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
+MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
+
+#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+typedef union { U16 u16; U32 u32; U64 u64; size_t st; } __attribute__((packed)) unalign;
+
+MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
+MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
+
+#else
+
+/* default method, safe and standard.
+ can sometimes prove slower */
+
+MEM_STATIC U16 MEM_read16(const void* memPtr)
+{
+ U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U32 MEM_read32(const void* memPtr)
+{
+ U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U64 MEM_read64(const void* memPtr)
+{
+ U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value)
+{
+ memcpy(memPtr, &value, sizeof(value));
+}
+
+
+#endif /* MEM_FORCE_MEMORY_ACCESS */
+
+MEM_STATIC U32 MEM_swap32(U32 in)
+{
+#if defined(_MSC_VER) /* Visual Studio */
+ return _byteswap_ulong(in);
+#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
+ return __builtin_bswap32(in);
+#else
+ return ((in << 24) & 0xff000000 ) |
+ ((in << 8) & 0x00ff0000 ) |
+ ((in >> 8) & 0x0000ff00 ) |
+ ((in >> 24) & 0x000000ff );
+#endif
+}
+
+MEM_STATIC U64 MEM_swap64(U64 in)
+{
+#if defined(_MSC_VER) /* Visual Studio */
+ return _byteswap_uint64(in);
+#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
+ return __builtin_bswap64(in);
+#else
+ return ((in << 56) & 0xff00000000000000ULL) |
+ ((in << 40) & 0x00ff000000000000ULL) |
+ ((in << 24) & 0x0000ff0000000000ULL) |
+ ((in << 8) & 0x000000ff00000000ULL) |
+ ((in >> 8) & 0x00000000ff000000ULL) |
+ ((in >> 24) & 0x0000000000ff0000ULL) |
+ ((in >> 40) & 0x000000000000ff00ULL) |
+ ((in >> 56) & 0x00000000000000ffULL);
+#endif
+}
+
+
+/*=== Little endian r/w ===*/
+
+MEM_STATIC U16 MEM_readLE16(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read16(memPtr);
+ else {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U16)(p[0] + (p[1]<<8));
+ }
+}
+
+MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
+{
+ if (MEM_isLittleEndian()) {
+ MEM_write16(memPtr, val);
+ } else {
+ BYTE* p = (BYTE*)memPtr;
+ p[0] = (BYTE)val;
+ p[1] = (BYTE)(val>>8);
+ }
+}
+
+MEM_STATIC U32 MEM_readLE32(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read32(memPtr);
+ else
+ return MEM_swap32(MEM_read32(memPtr));
+}
+
+
+MEM_STATIC U64 MEM_readLE64(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read64(memPtr);
+ else
+ return MEM_swap64(MEM_read64(memPtr));
+}
+
+
+MEM_STATIC size_t MEM_readLEST(const void* memPtr)
+{
+ if (MEM_32bits())
+ return (size_t)MEM_readLE32(memPtr);
+ else
+ return (size_t)MEM_readLE64(memPtr);
+}
+
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* MEM_H_MODULE */
+
+/*
+ zstd - standard compression library
+ Header File for static linking only
+ Copyright (C) 2014-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd homepage : http://www.zstd.net
+*/
+#ifndef ZSTDv06_STATIC_H
+#define ZSTDv06_STATIC_H
+
+/* The prototypes defined within this file are considered experimental.
+ * They should not be used in the context DLL as they may change in the future.
+ * Prefer static linking if you need them, to control breaking version changes issues.
+ */
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+
+/*- Advanced Decompression functions -*/
+
+/*! ZSTDv06_decompress_usingPreparedDCtx() :
+* Same as ZSTDv06_decompress_usingDict, but using a reference context `preparedDCtx`, where dictionary has been loaded.
+* It avoids reloading the dictionary each time.
+* `preparedDCtx` must have been properly initialized using ZSTDv06_decompressBegin_usingDict().
+* Requires 2 contexts : 1 for reference (preparedDCtx), which will not be modified, and 1 to run the decompression operation (dctx) */
+ZSTDLIBv06_API size_t ZSTDv06_decompress_usingPreparedDCtx(
+ ZSTDv06_DCtx* dctx, const ZSTDv06_DCtx* preparedDCtx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize);
+
+
+
+#define ZSTDv06_FRAMEHEADERSIZE_MAX 13 /* for static allocation */
+static const size_t ZSTDv06_frameHeaderSize_min = 5;
+static const size_t ZSTDv06_frameHeaderSize_max = ZSTDv06_FRAMEHEADERSIZE_MAX;
+
+ZSTDLIBv06_API size_t ZSTDv06_decompressBegin(ZSTDv06_DCtx* dctx);
+
+/*
+ Streaming decompression, direct mode (bufferless)
+
+ A ZSTDv06_DCtx object is required to track streaming operations.
+ Use ZSTDv06_createDCtx() / ZSTDv06_freeDCtx() to manage it.
+ A ZSTDv06_DCtx object can be re-used multiple times.
+
+ First optional operation is to retrieve frame parameters, using ZSTDv06_getFrameParams(), which doesn't consume the input.
+ It can provide the minimum size of rolling buffer required to properly decompress data,
+ and optionally the final size of uncompressed content.
+ (Note : content size is an optional info that may not be present. 0 means : content size unknown)
+ Frame parameters are extracted from the beginning of compressed frame.
+ The amount of data to read is variable, from ZSTDv06_frameHeaderSize_min to ZSTDv06_frameHeaderSize_max (so if `srcSize` >= ZSTDv06_frameHeaderSize_max, it will always work)
+ If `srcSize` is too small for operation to succeed, function will return the minimum size it requires to produce a result.
+ Result : 0 when successful, it means the ZSTDv06_frameParams structure has been filled.
+ >0 : means there is not enough data into `src`. Provides the expected size to successfully decode header.
+ errorCode, which can be tested using ZSTDv06_isError()
+
+ Start decompression, with ZSTDv06_decompressBegin() or ZSTDv06_decompressBegin_usingDict().
+ Alternatively, you can copy a prepared context, using ZSTDv06_copyDCtx().
+
+ Then use ZSTDv06_nextSrcSizeToDecompress() and ZSTDv06_decompressContinue() alternatively.
+ ZSTDv06_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTDv06_decompressContinue().
+ ZSTDv06_decompressContinue() requires this exact amount of bytes, or it will fail.
+ ZSTDv06_decompressContinue() needs previous data blocks during decompression, up to (1 << windowlog).
+ They should preferably be located contiguously, prior to current block. Alternatively, a round buffer is also possible.
+
+ @result of ZSTDv06_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity)
+ It can be zero, which is not an error; it just means ZSTDv06_decompressContinue() has decoded some header.
+
+ A frame is fully decoded when ZSTDv06_nextSrcSizeToDecompress() returns zero.
+ Context can then be reset to start a new decompression.
+*/
+
+
+/* **************************************
+* Block functions
+****************************************/
+/*! Block functions produce and decode raw zstd blocks, without frame metadata.
+ User will have to take in charge required information to regenerate data, such as compressed and content sizes.
+
+ A few rules to respect :
+ - Uncompressed block size must be <= ZSTDv06_BLOCKSIZE_MAX (128 KB)
+ - Compressing or decompressing requires a context structure
+ + Use ZSTDv06_createCCtx() and ZSTDv06_createDCtx()
+ - It is necessary to init context before starting
+ + compression : ZSTDv06_compressBegin()
+ + decompression : ZSTDv06_decompressBegin()
+ + variants _usingDict() are also allowed
+ + copyCCtx() and copyDCtx() work too
+ - When a block is considered not compressible enough, ZSTDv06_compressBlock() result will be zero.
+ In which case, nothing is produced into `dst`.
+ + User must test for such outcome and deal directly with uncompressed data
+ + ZSTDv06_decompressBlock() doesn't accept uncompressed data as input !!
+*/
+
+#define ZSTDv06_BLOCKSIZE_MAX (128 * 1024) /* define, for static allocation */
+ZSTDLIBv06_API size_t ZSTDv06_decompressBlock(ZSTDv06_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTDv06_STATIC_H */
+/*
+ zstd_internal - common functions to include
+ Header File for include
+ Copyright (C) 2014-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd homepage : https://www.zstd.net
+*/
+#ifndef ZSTDv06_CCOMMON_H_MODULE
+#define ZSTDv06_CCOMMON_H_MODULE
+
+
+/*-*************************************
+* Common macros
+***************************************/
+#define MIN(a,b) ((a)<(b) ? (a) : (b))
+#define MAX(a,b) ((a)>(b) ? (a) : (b))
+
+
+/*-*************************************
+* Common constants
+***************************************/
+#define ZSTDv06_DICT_MAGIC 0xEC30A436
+
+#define ZSTDv06_REP_NUM 3
+#define ZSTDv06_REP_INIT ZSTDv06_REP_NUM
+#define ZSTDv06_REP_MOVE (ZSTDv06_REP_NUM-1)
+
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+
+#define BIT7 128
+#define BIT6 64
+#define BIT5 32
+#define BIT4 16
+#define BIT1 2
+#define BIT0 1
+
+#define ZSTDv06_WINDOWLOG_ABSOLUTEMIN 12
+static const size_t ZSTDv06_fcs_fieldSize[4] = { 0, 1, 2, 8 };
+
+#define ZSTDv06_BLOCKHEADERSIZE 3 /* because C standard does not allow a static const value to be defined using another static const value .... :( */
+static const size_t ZSTDv06_blockHeaderSize = ZSTDv06_BLOCKHEADERSIZE;
+typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
+
+#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
+#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
+
+#define HufLog 12
+
+#define IS_HUF 0
+#define IS_PCH 1
+#define IS_RAW 2
+#define IS_RLE 3
+
+#define LONGNBSEQ 0x7F00
+
+#define MINMATCH 3
+#define EQUAL_READ32 4
+#define REPCODE_STARTVALUE 1
+
+#define Litbits 8
+#define MaxLit ((1<<Litbits) - 1)
+#define MaxML 52
+#define MaxLL 35
+#define MaxOff 28
+#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
+#define MLFSELog 9
+#define LLFSELog 9
+#define OffFSELog 8
+
+#define FSEv06_ENCODING_RAW 0
+#define FSEv06_ENCODING_RLE 1
+#define FSEv06_ENCODING_STATIC 2
+#define FSEv06_ENCODING_DYNAMIC 3
+
+#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
+
+static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9,10,11,12,
+ 13,14,15,16 };
+static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1,
+ -1,-1,-1,-1 };
+static const U32 LL_defaultNormLog = 6;
+
+static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 9,10,11,
+ 12,13,14,15,16 };
+static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,
+ -1,-1,-1,-1,-1 };
+static const U32 ML_defaultNormLog = 6;
+
+static const S16 OF_defaultNorm[MaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1 };
+static const U32 OF_defaultNormLog = 5;
+
+
+/*-*******************************************
+* Shared functions to include for inlining
+*********************************************/
+static void ZSTDv06_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
+#define COPY8(d,s) { ZSTDv06_copy8(d,s); d+=8; s+=8; }
+
+/*! ZSTDv06_wildcopy() :
+* custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */
+#define WILDCOPY_OVERLENGTH 8
+MEM_STATIC void ZSTDv06_wildcopy(void* dst, const void* src, ptrdiff_t length)
+{
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + length;
+ do
+ COPY8(op, ip)
+ while (op < oend);
+}
+
+
+
+/*-*******************************************
+* Private interfaces
+*********************************************/
+typedef struct {
+ U32 off;
+ U32 len;
+} ZSTDv06_match_t;
+
+typedef struct {
+ U32 price;
+ U32 off;
+ U32 mlen;
+ U32 litlen;
+ U32 rep[ZSTDv06_REP_INIT];
+} ZSTDv06_optimal_t;
+
+typedef struct { U32 unused; } ZSTDv06_stats_t;
+
+typedef struct {
+ void* buffer;
+ U32* offsetStart;
+ U32* offset;
+ BYTE* offCodeStart;
+ BYTE* litStart;
+ BYTE* lit;
+ U16* litLengthStart;
+ U16* litLength;
+ BYTE* llCodeStart;
+ U16* matchLengthStart;
+ U16* matchLength;
+ BYTE* mlCodeStart;
+ U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
+ U32 longLengthPos;
+ /* opt */
+ ZSTDv06_optimal_t* priceTable;
+ ZSTDv06_match_t* matchTable;
+ U32* matchLengthFreq;
+ U32* litLengthFreq;
+ U32* litFreq;
+ U32* offCodeFreq;
+ U32 matchLengthSum;
+ U32 matchSum;
+ U32 litLengthSum;
+ U32 litSum;
+ U32 offCodeSum;
+ U32 log2matchLengthSum;
+ U32 log2matchSum;
+ U32 log2litLengthSum;
+ U32 log2litSum;
+ U32 log2offCodeSum;
+ U32 factor;
+ U32 cachedPrice;
+ U32 cachedLitLength;
+ const BYTE* cachedLiterals;
+ ZSTDv06_stats_t stats;
+} seqStore_t;
+
+void ZSTDv06_seqToCodes(const seqStore_t* seqStorePtr, size_t const nbSeq);
+
+
+#endif /* ZSTDv06_CCOMMON_H_MODULE */
+/* ******************************************************************
+ FSE : Finite State Entropy codec
+ Public Prototypes declaration
+ Copyright (C) 2013-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef FSEv06_H
+#define FSEv06_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+
+/*-****************************************
+* FSE simple functions
+******************************************/
+/*! FSEv06_decompress():
+ Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
+ into already allocated destination buffer 'dst', of size 'dstCapacity'.
+ @return : size of regenerated data (<= maxDstSize),
+ or an error code, which can be tested using FSEv06_isError() .
+
+ ** Important ** : FSEv06_decompress() does not decompress non-compressible nor RLE data !!!
+ Why ? : making this distinction requires a header.
+ Header management is intentionally delegated to the user layer, which can better manage special cases.
+*/
+size_t FSEv06_decompress(void* dst, size_t dstCapacity,
+ const void* cSrc, size_t cSrcSize);
+
+
+/*-*****************************************
+* Tool functions
+******************************************/
+size_t FSEv06_compressBound(size_t size); /* maximum compressed size */
+
+/* Error Management */
+unsigned FSEv06_isError(size_t code); /* tells if a return value is an error code */
+const char* FSEv06_getErrorName(size_t code); /* provides error code string (useful for debugging) */
+
+
+
+/*-*****************************************
+* FSE detailed API
+******************************************/
+/*!
+
+FSEv06_decompress() does the following:
+1. read normalized counters with readNCount()
+2. build decoding table 'DTable' from normalized counters
+3. decode the data stream using decoding table 'DTable'
+
+The following API allows targeting specific sub-functions for advanced tasks.
+For example, it's possible to compress several blocks using the same 'CTable',
+or to save and provide normalized distribution using external method.
+*/
+
+
+/* *** DECOMPRESSION *** */
+
+/*! FSEv06_readNCount():
+ Read compactly saved 'normalizedCounter' from 'rBuffer'.
+ @return : size read from 'rBuffer',
+ or an errorCode, which can be tested using FSEv06_isError().
+ maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
+size_t FSEv06_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
+
+/*! Constructor and Destructor of FSEv06_DTable.
+ Note that its size depends on 'tableLog' */
+typedef unsigned FSEv06_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
+FSEv06_DTable* FSEv06_createDTable(unsigned tableLog);
+void FSEv06_freeDTable(FSEv06_DTable* dt);
+
+/*! FSEv06_buildDTable():
+ Builds 'dt', which must be already allocated, using FSEv06_createDTable().
+ return : 0, or an errorCode, which can be tested using FSEv06_isError() */
+size_t FSEv06_buildDTable (FSEv06_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
+
+/*! FSEv06_decompress_usingDTable():
+ Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
+ into `dst` which must be already allocated.
+ @return : size of regenerated data (necessarily <= `dstCapacity`),
+ or an errorCode, which can be tested using FSEv06_isError() */
+size_t FSEv06_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSEv06_DTable* dt);
+
+/*!
+Tutorial :
+----------
+(Note : these functions only decompress FSE-compressed blocks.
+ If block is uncompressed, use memcpy() instead
+ If block is a single repeated byte, use memset() instead )
+
+The first step is to obtain the normalized frequencies of symbols.
+This can be performed by FSEv06_readNCount() if it was saved using FSEv06_writeNCount().
+'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
+In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
+or size the table to handle worst case situations (typically 256).
+FSEv06_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
+The result of FSEv06_readNCount() is the number of bytes read from 'rBuffer'.
+Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
+If there is an error, the function will return an error code, which can be tested using FSEv06_isError().
+
+The next step is to build the decompression tables 'FSEv06_DTable' from 'normalizedCounter'.
+This is performed by the function FSEv06_buildDTable().
+The space required by 'FSEv06_DTable' must be already allocated using FSEv06_createDTable().
+If there is an error, the function will return an error code, which can be tested using FSEv06_isError().
+
+`FSEv06_DTable` can then be used to decompress `cSrc`, with FSEv06_decompress_usingDTable().
+`cSrcSize` must be strictly correct, otherwise decompression will fail.
+FSEv06_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
+If there is an error, the function will return an error code, which can be tested using FSEv06_isError(). (ex: dst buffer too small)
+*/
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* FSEv06_H */
+/* ******************************************************************
+ bitstream
+ Part of FSE library
+ header file (to include)
+ Copyright (C) 2013-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef BITSTREAM_H_MODULE
+#define BITSTREAM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*
+* This API consists of small unitary functions, which must be inlined for best performance.
+* Since link-time-optimization is not available for all compilers,
+* these functions are defined into a .h to be included.
+*/
+
+
+/*=========================================
+* Target specific
+=========================================*/
+#if defined(__BMI__) && defined(__GNUC__)
+# include <immintrin.h> /* support for bextr (experimental) */
+#endif
+
+
+
+/*-********************************************
+* bitStream decoding API (read backward)
+**********************************************/
+typedef struct
+{
+ size_t bitContainer;
+ unsigned bitsConsumed;
+ const char* ptr;
+ const char* start;
+} BITv06_DStream_t;
+
+typedef enum { BITv06_DStream_unfinished = 0,
+ BITv06_DStream_endOfBuffer = 1,
+ BITv06_DStream_completed = 2,
+ BITv06_DStream_overflow = 3 } BITv06_DStream_status; /* result of BITv06_reloadDStream() */
+ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
+
+MEM_STATIC size_t BITv06_initDStream(BITv06_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
+MEM_STATIC size_t BITv06_readBits(BITv06_DStream_t* bitD, unsigned nbBits);
+MEM_STATIC BITv06_DStream_status BITv06_reloadDStream(BITv06_DStream_t* bitD);
+MEM_STATIC unsigned BITv06_endOfDStream(const BITv06_DStream_t* bitD);
+
+
+
+/*-****************************************
+* unsafe API
+******************************************/
+MEM_STATIC size_t BITv06_readBitsFast(BITv06_DStream_t* bitD, unsigned nbBits);
+/* faster, but works only if nbBits >= 1 */
+
+
+
+/*-**************************************************************
+* Internal functions
+****************************************************************/
+MEM_STATIC unsigned BITv06_highbit32 ( U32 val)
+{
+# if defined(_MSC_VER) /* Visual */
+ unsigned long r=0;
+ _BitScanReverse ( &r, val );
+ return (unsigned) r;
+# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
+ return 31 - __builtin_clz (val);
+# else /* Software version */
+ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ U32 v = val;
+ unsigned r;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
+ return r;
+# endif
+}
+
+
+
+/*-********************************************************
+* bitStream decoding
+**********************************************************/
+/*! BITv06_initDStream() :
+* Initialize a BITv06_DStream_t.
+* `bitD` : a pointer to an already allocated BITv06_DStream_t structure.
+* `srcSize` must be the *exact* size of the bitStream, in bytes.
+* @return : size of stream (== srcSize) or an errorCode if a problem is detected
+*/
+MEM_STATIC size_t BITv06_initDStream(BITv06_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
+{
+ if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
+
+ if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
+ if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */
+ bitD->bitsConsumed = 8 - BITv06_highbit32(lastByte); }
+ } else {
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = bitD->start;
+ bitD->bitContainer = *(const BYTE*)(bitD->start);
+ switch(srcSize)
+ {
+ case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);/* fall-through */
+ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);/* fall-through */
+ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);/* fall-through */
+ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24; /* fall-through */
+ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16; /* fall-through */
+ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8; /* fall-through */
+ default: break;
+ }
+ { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
+ if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */
+ bitD->bitsConsumed = 8 - BITv06_highbit32(lastByte); }
+ bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
+ }
+
+ return srcSize;
+}
+
+
+ MEM_STATIC size_t BITv06_lookBits(const BITv06_DStream_t* bitD, U32 nbBits)
+{
+ U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
+}
+
+/*! BITv06_lookBitsFast() :
+* unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BITv06_lookBitsFast(const BITv06_DStream_t* bitD, U32 nbBits)
+{
+ U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
+}
+
+MEM_STATIC void BITv06_skipBits(BITv06_DStream_t* bitD, U32 nbBits)
+{
+ bitD->bitsConsumed += nbBits;
+}
+
+MEM_STATIC size_t BITv06_readBits(BITv06_DStream_t* bitD, U32 nbBits)
+{
+ size_t const value = BITv06_lookBits(bitD, nbBits);
+ BITv06_skipBits(bitD, nbBits);
+ return value;
+}
+
+/*! BITv06_readBitsFast() :
+* unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BITv06_readBitsFast(BITv06_DStream_t* bitD, U32 nbBits)
+{
+ size_t const value = BITv06_lookBitsFast(bitD, nbBits);
+ BITv06_skipBits(bitD, nbBits);
+ return value;
+}
+
+MEM_STATIC BITv06_DStream_status BITv06_reloadDStream(BITv06_DStream_t* bitD)
+{
+ if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
+ return BITv06_DStream_overflow;
+
+ if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) {
+ bitD->ptr -= bitD->bitsConsumed >> 3;
+ bitD->bitsConsumed &= 7;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ return BITv06_DStream_unfinished;
+ }
+ if (bitD->ptr == bitD->start) {
+ if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BITv06_DStream_endOfBuffer;
+ return BITv06_DStream_completed;
+ }
+ { U32 nbBytes = bitD->bitsConsumed >> 3;
+ BITv06_DStream_status result = BITv06_DStream_unfinished;
+ if (bitD->ptr - nbBytes < bitD->start) {
+ nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
+ result = BITv06_DStream_endOfBuffer;
+ }
+ bitD->ptr -= nbBytes;
+ bitD->bitsConsumed -= nbBytes*8;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
+ return result;
+ }
+}
+
+/*! BITv06_endOfDStream() :
+* @return Tells if DStream has exactly reached its end (all bits consumed).
+*/
+MEM_STATIC unsigned BITv06_endOfDStream(const BITv06_DStream_t* DStream)
+{
+ return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
+}
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* BITSTREAM_H_MODULE */
+/* ******************************************************************
+ FSE : Finite State Entropy coder
+ header file for static linking (only)
+ Copyright (C) 2013-2015, Yann Collet
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef FSEv06_STATIC_H
+#define FSEv06_STATIC_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/* *****************************************
+* Static allocation
+*******************************************/
+/* FSE buffer bounds */
+#define FSEv06_NCOUNTBOUND 512
+#define FSEv06_BLOCKBOUND(size) (size + (size>>7))
+#define FSEv06_COMPRESSBOUND(size) (FSEv06_NCOUNTBOUND + FSEv06_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
+
+/* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
+#define FSEv06_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
+
+
+/* *****************************************
+* FSE advanced API
+*******************************************/
+size_t FSEv06_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
+/* same as FSEv06_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr */
+
+size_t FSEv06_buildDTable_raw (FSEv06_DTable* dt, unsigned nbBits);
+/* build a fake FSEv06_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
+
+size_t FSEv06_buildDTable_rle (FSEv06_DTable* dt, unsigned char symbolValue);
+/* build a fake FSEv06_DTable, designed to always generate the same symbolValue */
+
+
+/* *****************************************
+* FSE symbol decompression API
+*******************************************/
+typedef struct
+{
+ size_t state;
+ const void* table; /* precise table may vary, depending on U16 */
+} FSEv06_DState_t;
+
+
+static void FSEv06_initDState(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD, const FSEv06_DTable* dt);
+
+static unsigned char FSEv06_decodeSymbol(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD);
+
+
+/* *****************************************
+* FSE unsafe API
+*******************************************/
+static unsigned char FSEv06_decodeSymbolFast(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD);
+/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
+
+
+/* *****************************************
+* Implementation of inlined functions
+*******************************************/
+
+
+/* ====== Decompression ====== */
+
+typedef struct {
+ U16 tableLog;
+ U16 fastMode;
+} FSEv06_DTableHeader; /* sizeof U32 */
+
+typedef struct
+{
+ unsigned short newState;
+ unsigned char symbol;
+ unsigned char nbBits;
+} FSEv06_decode_t; /* size == U32 */
+
+MEM_STATIC void FSEv06_initDState(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD, const FSEv06_DTable* dt)
+{
+ const void* ptr = dt;
+ const FSEv06_DTableHeader* const DTableH = (const FSEv06_DTableHeader*)ptr;
+ DStatePtr->state = BITv06_readBits(bitD, DTableH->tableLog);
+ BITv06_reloadDStream(bitD);
+ DStatePtr->table = dt + 1;
+}
+
+MEM_STATIC BYTE FSEv06_peekSymbol(const FSEv06_DState_t* DStatePtr)
+{
+ FSEv06_decode_t const DInfo = ((const FSEv06_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ return DInfo.symbol;
+}
+
+MEM_STATIC void FSEv06_updateState(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD)
+{
+ FSEv06_decode_t const DInfo = ((const FSEv06_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ size_t const lowBits = BITv06_readBits(bitD, nbBits);
+ DStatePtr->state = DInfo.newState + lowBits;
+}
+
+MEM_STATIC BYTE FSEv06_decodeSymbol(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD)
+{
+ FSEv06_decode_t const DInfo = ((const FSEv06_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ BYTE const symbol = DInfo.symbol;
+ size_t const lowBits = BITv06_readBits(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+/*! FSEv06_decodeSymbolFast() :
+ unsafe, only works if no symbol has a probability > 50% */
+MEM_STATIC BYTE FSEv06_decodeSymbolFast(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD)
+{
+ FSEv06_decode_t const DInfo = ((const FSEv06_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ BYTE const symbol = DInfo.symbol;
+ size_t const lowBits = BITv06_readBitsFast(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+
+
+#ifndef FSEv06_COMMONDEFS_ONLY
+
+/* **************************************************************
+* Tuning parameters
+****************************************************************/
+/*!MEMORY_USAGE :
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+* Increasing memory usage improves compression ratio
+* Reduced memory usage can improve speed, due to cache effect
+* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
+#define FSEv06_MAX_MEMORY_USAGE 14
+#define FSEv06_DEFAULT_MEMORY_USAGE 13
+
+/*!FSEv06_MAX_SYMBOL_VALUE :
+* Maximum symbol value authorized.
+* Required for proper stack allocation */
+#define FSEv06_MAX_SYMBOL_VALUE 255
+
+
+/* **************************************************************
+* template functions type & suffix
+****************************************************************/
+#define FSEv06_FUNCTION_TYPE BYTE
+#define FSEv06_FUNCTION_EXTENSION
+#define FSEv06_DECODE_TYPE FSEv06_decode_t
+
+
+#endif /* !FSEv06_COMMONDEFS_ONLY */
+
+
+/* ***************************************************************
+* Constants
+*****************************************************************/
+#define FSEv06_MAX_TABLELOG (FSEv06_MAX_MEMORY_USAGE-2)
+#define FSEv06_MAX_TABLESIZE (1U<<FSEv06_MAX_TABLELOG)
+#define FSEv06_MAXTABLESIZE_MASK (FSEv06_MAX_TABLESIZE-1)
+#define FSEv06_DEFAULT_TABLELOG (FSEv06_DEFAULT_MEMORY_USAGE-2)
+#define FSEv06_MIN_TABLELOG 5
+
+#define FSEv06_TABLELOG_ABSOLUTE_MAX 15
+#if FSEv06_MAX_TABLELOG > FSEv06_TABLELOG_ABSOLUTE_MAX
+#error "FSEv06_MAX_TABLELOG > FSEv06_TABLELOG_ABSOLUTE_MAX is not supported"
+#endif
+
+#define FSEv06_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* FSEv06_STATIC_H */
+/*
+ Common functions of New Generation Entropy library
+ Copyright (C) 2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+*************************************************************************** */
+
+
+/*-****************************************
+* FSE Error Management
+******************************************/
+unsigned FSEv06_isError(size_t code) { return ERR_isError(code); }
+
+const char* FSEv06_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+
+/* **************************************************************
+* HUF Error Management
+****************************************************************/
+static unsigned HUFv06_isError(size_t code) { return ERR_isError(code); }
+
+
+/*-**************************************************************
+* FSE NCount encoding-decoding
+****************************************************************/
+static short FSEv06_abs(short a) { return a<0 ? -a : a; }
+
+size_t FSEv06_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize)
+{
+ const BYTE* const istart = (const BYTE*) headerBuffer;
+ const BYTE* const iend = istart + hbSize;
+ const BYTE* ip = istart;
+ int nbBits;
+ int remaining;
+ int threshold;
+ U32 bitStream;
+ int bitCount;
+ unsigned charnum = 0;
+ int previous0 = 0;
+
+ if (hbSize < 4) return ERROR(srcSize_wrong);
+ bitStream = MEM_readLE32(ip);
+ nbBits = (bitStream & 0xF) + FSEv06_MIN_TABLELOG; /* extract tableLog */
+ if (nbBits > FSEv06_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
+ bitStream >>= 4;
+ bitCount = 4;
+ *tableLogPtr = nbBits;
+ remaining = (1<<nbBits)+1;
+ threshold = 1<<nbBits;
+ nbBits++;
+
+ while ((remaining>1) && (charnum<=*maxSVPtr)) {
+ if (previous0) {
+ unsigned n0 = charnum;
+ while ((bitStream & 0xFFFF) == 0xFFFF) {
+ n0+=24;
+ if (ip < iend-5) {
+ ip+=2;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ } else {
+ bitStream >>= 16;
+ bitCount+=16;
+ } }
+ while ((bitStream & 3) == 3) {
+ n0+=3;
+ bitStream>>=2;
+ bitCount+=2;
+ }
+ n0 += bitStream & 3;
+ bitCount += 2;
+ if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
+ while (charnum < n0) normalizedCounter[charnum++] = 0;
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ }
+ else
+ bitStream >>= 2;
+ }
+ { short const max = (short)((2*threshold-1)-remaining);
+ short count;
+
+ if ((bitStream & (threshold-1)) < (U32)max) {
+ count = (short)(bitStream & (threshold-1));
+ bitCount += nbBits-1;
+ } else {
+ count = (short)(bitStream & (2*threshold-1));
+ if (count >= threshold) count -= max;
+ bitCount += nbBits;
+ }
+
+ count--; /* extra accuracy */
+ remaining -= FSEv06_abs(count);
+ normalizedCounter[charnum++] = count;
+ previous0 = !count;
+ while (remaining < threshold) {
+ nbBits--;
+ threshold >>= 1;
+ }
+
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ } else {
+ bitCount -= (int)(8 * (iend - 4 - ip));
+ ip = iend - 4;
+ }
+ bitStream = MEM_readLE32(ip) >> (bitCount & 31);
+ } } /* while ((remaining>1) && (charnum<=*maxSVPtr)) */
+ if (remaining != 1) return ERROR(GENERIC);
+ *maxSVPtr = charnum-1;
+
+ ip += (bitCount+7)>>3;
+ if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
+ return ip-istart;
+}
+/* ******************************************************************
+ FSE : Finite State Entropy decoder
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+
+/* **************************************************************
+* Compiler specifics
+****************************************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# define FORCE_INLINE static __forceinline
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
+#else
+# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# ifdef __GNUC__
+# define FORCE_INLINE static inline __attribute__((always_inline))
+# else
+# define FORCE_INLINE static inline
+# endif
+# else
+# define FORCE_INLINE static
+# endif /* __STDC_VERSION__ */
+#endif
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define FSEv06_isError ERR_isError
+#define FSEv06_STATIC_ASSERT(c) { enum { FSEv06_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+/* **************************************************************
+* Complex types
+****************************************************************/
+typedef U32 DTable_max_t[FSEv06_DTABLE_SIZE_U32(FSEv06_MAX_TABLELOG)];
+
+
+/* **************************************************************
+* Templates
+****************************************************************/
+/*
+ designed to be included
+ for type-specific functions (template emulation in C)
+ Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSEv06_FUNCTION_EXTENSION
+# error "FSEv06_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSEv06_FUNCTION_TYPE
+# error "FSEv06_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSEv06_CAT(X,Y) X##Y
+#define FSEv06_FUNCTION_NAME(X,Y) FSEv06_CAT(X,Y)
+#define FSEv06_TYPE_NAME(X,Y) FSEv06_CAT(X,Y)
+
+
+/* Function templates */
+FSEv06_DTable* FSEv06_createDTable (unsigned tableLog)
+{
+ if (tableLog > FSEv06_TABLELOG_ABSOLUTE_MAX) tableLog = FSEv06_TABLELOG_ABSOLUTE_MAX;
+ return (FSEv06_DTable*)malloc( FSEv06_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
+}
+
+void FSEv06_freeDTable (FSEv06_DTable* dt)
+{
+ free(dt);
+}
+
+size_t FSEv06_buildDTable(FSEv06_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+ void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
+ FSEv06_DECODE_TYPE* const tableDecode = (FSEv06_DECODE_TYPE*) (tdPtr);
+ U16 symbolNext[FSEv06_MAX_SYMBOL_VALUE+1];
+
+ U32 const maxSV1 = maxSymbolValue + 1;
+ U32 const tableSize = 1 << tableLog;
+ U32 highThreshold = tableSize-1;
+
+ /* Sanity Checks */
+ if (maxSymbolValue > FSEv06_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
+ if (tableLog > FSEv06_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
+
+ /* Init, lay down lowprob symbols */
+ { FSEv06_DTableHeader DTableH;
+ DTableH.tableLog = (U16)tableLog;
+ DTableH.fastMode = 1;
+ { S16 const largeLimit= (S16)(1 << (tableLog-1));
+ U32 s;
+ for (s=0; s<maxSV1; s++) {
+ if (normalizedCounter[s]==-1) {
+ tableDecode[highThreshold--].symbol = (FSEv06_FUNCTION_TYPE)s;
+ symbolNext[s] = 1;
+ } else {
+ if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
+ symbolNext[s] = normalizedCounter[s];
+ } } }
+ memcpy(dt, &DTableH, sizeof(DTableH));
+ }
+
+ /* Spread symbols */
+ { U32 const tableMask = tableSize-1;
+ U32 const step = FSEv06_TABLESTEP(tableSize);
+ U32 s, position = 0;
+ for (s=0; s<maxSV1; s++) {
+ int i;
+ for (i=0; i<normalizedCounter[s]; i++) {
+ tableDecode[position].symbol = (FSEv06_FUNCTION_TYPE)s;
+ position = (position + step) & tableMask;
+ while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
+ } }
+
+ if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
+ }
+
+ /* Build Decoding table */
+ { U32 u;
+ for (u=0; u<tableSize; u++) {
+ FSEv06_FUNCTION_TYPE const symbol = (FSEv06_FUNCTION_TYPE)(tableDecode[u].symbol);
+ U16 nextState = symbolNext[symbol]++;
+ tableDecode[u].nbBits = (BYTE) (tableLog - BITv06_highbit32 ((U32)nextState) );
+ tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
+ } }
+
+ return 0;
+}
+
+
+
+#ifndef FSEv06_COMMONDEFS_ONLY
+
+/*-*******************************************************
+* Decompression (Byte symbols)
+*********************************************************/
+size_t FSEv06_buildDTable_rle (FSEv06_DTable* dt, BYTE symbolValue)
+{
+ void* ptr = dt;
+ FSEv06_DTableHeader* const DTableH = (FSEv06_DTableHeader*)ptr;
+ void* dPtr = dt + 1;
+ FSEv06_decode_t* const cell = (FSEv06_decode_t*)dPtr;
+
+ DTableH->tableLog = 0;
+ DTableH->fastMode = 0;
+
+ cell->newState = 0;
+ cell->symbol = symbolValue;
+ cell->nbBits = 0;
+
+ return 0;
+}
+
+
+size_t FSEv06_buildDTable_raw (FSEv06_DTable* dt, unsigned nbBits)
+{
+ void* ptr = dt;
+ FSEv06_DTableHeader* const DTableH = (FSEv06_DTableHeader*)ptr;
+ void* dPtr = dt + 1;
+ FSEv06_decode_t* const dinfo = (FSEv06_decode_t*)dPtr;
+ const unsigned tableSize = 1 << nbBits;
+ const unsigned tableMask = tableSize - 1;
+ const unsigned maxSV1 = tableMask+1;
+ unsigned s;
+
+ /* Sanity checks */
+ if (nbBits < 1) return ERROR(GENERIC); /* min size */
+
+ /* Build Decoding Table */
+ DTableH->tableLog = (U16)nbBits;
+ DTableH->fastMode = 1;
+ for (s=0; s<maxSV1; s++) {
+ dinfo[s].newState = 0;
+ dinfo[s].symbol = (BYTE)s;
+ dinfo[s].nbBits = (BYTE)nbBits;
+ }
+
+ return 0;
+}
+
+FORCE_INLINE size_t FSEv06_decompress_usingDTable_generic(
+ void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSEv06_DTable* dt, const unsigned fast)
+{
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const omax = op + maxDstSize;
+ BYTE* const olimit = omax-3;
+
+ BITv06_DStream_t bitD;
+ FSEv06_DState_t state1;
+ FSEv06_DState_t state2;
+
+ /* Init */
+ { size_t const errorCode = BITv06_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
+ if (FSEv06_isError(errorCode)) return errorCode; }
+
+ FSEv06_initDState(&state1, &bitD, dt);
+ FSEv06_initDState(&state2, &bitD, dt);
+
+#define FSEv06_GETSYMBOL(statePtr) fast ? FSEv06_decodeSymbolFast(statePtr, &bitD) : FSEv06_decodeSymbol(statePtr, &bitD)
+
+ /* 4 symbols per loop */
+ for ( ; (BITv06_reloadDStream(&bitD)==BITv06_DStream_unfinished) && (op<olimit) ; op+=4) {
+ op[0] = FSEv06_GETSYMBOL(&state1);
+
+ if (FSEv06_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BITv06_reloadDStream(&bitD);
+
+ op[1] = FSEv06_GETSYMBOL(&state2);
+
+ if (FSEv06_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ { if (BITv06_reloadDStream(&bitD) > BITv06_DStream_unfinished) { op+=2; break; } }
+
+ op[2] = FSEv06_GETSYMBOL(&state1);
+
+ if (FSEv06_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BITv06_reloadDStream(&bitD);
+
+ op[3] = FSEv06_GETSYMBOL(&state2);
+ }
+
+ /* tail */
+ /* note : BITv06_reloadDStream(&bitD) >= FSEv06_DStream_partiallyFilled; Ends at exactly BITv06_DStream_completed */
+ while (1) {
+ if (op>(omax-2)) return ERROR(dstSize_tooSmall);
+
+ *op++ = FSEv06_GETSYMBOL(&state1);
+
+ if (BITv06_reloadDStream(&bitD)==BITv06_DStream_overflow) {
+ *op++ = FSEv06_GETSYMBOL(&state2);
+ break;
+ }
+
+ if (op>(omax-2)) return ERROR(dstSize_tooSmall);
+
+ *op++ = FSEv06_GETSYMBOL(&state2);
+
+ if (BITv06_reloadDStream(&bitD)==BITv06_DStream_overflow) {
+ *op++ = FSEv06_GETSYMBOL(&state1);
+ break;
+ } }
+
+ return op-ostart;
+}
+
+
+size_t FSEv06_decompress_usingDTable(void* dst, size_t originalSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSEv06_DTable* dt)
+{
+ const void* ptr = dt;
+ const FSEv06_DTableHeader* DTableH = (const FSEv06_DTableHeader*)ptr;
+ const U32 fastMode = DTableH->fastMode;
+
+ /* select fast mode (static) */
+ if (fastMode) return FSEv06_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
+ return FSEv06_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
+}
+
+
+size_t FSEv06_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
+{
+ const BYTE* const istart = (const BYTE*)cSrc;
+ const BYTE* ip = istart;
+ short counting[FSEv06_MAX_SYMBOL_VALUE+1];
+ DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
+ unsigned tableLog;
+ unsigned maxSymbolValue = FSEv06_MAX_SYMBOL_VALUE;
+
+ if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
+
+ /* normal FSE decoding mode */
+ { size_t const NCountLength = FSEv06_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
+ if (FSEv06_isError(NCountLength)) return NCountLength;
+ if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
+ ip += NCountLength;
+ cSrcSize -= NCountLength;
+ }
+
+ { size_t const errorCode = FSEv06_buildDTable (dt, counting, maxSymbolValue, tableLog);
+ if (FSEv06_isError(errorCode)) return errorCode; }
+
+ return FSEv06_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); /* always return, even if it is an error code */
+}
+
+
+
+#endif /* FSEv06_COMMONDEFS_ONLY */
+/* ******************************************************************
+ Huffman coder, part of New Generation Entropy library
+ header file
+ Copyright (C) 2013-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef HUFv06_H
+#define HUFv06_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/* ****************************************
+* HUF simple functions
+******************************************/
+size_t HUFv06_decompress(void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize);
+/*
+HUFv06_decompress() :
+ Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
+ into already allocated destination buffer 'dst', of size 'dstSize'.
+ `dstSize` : must be the **exact** size of original (uncompressed) data.
+ Note : in contrast with FSE, HUFv06_decompress can regenerate
+ RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
+ because it knows size to regenerate.
+ @return : size of regenerated data (== dstSize)
+ or an error code, which can be tested using HUFv06_isError()
+*/
+
+
+/* ****************************************
+* Tool functions
+******************************************/
+size_t HUFv06_compressBound(size_t size); /**< maximum compressed size */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* HUFv06_H */
+/* ******************************************************************
+ Huffman codec, part of New Generation Entropy library
+ header file, for static linking only
+ Copyright (C) 2013-2016, Yann Collet
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef HUFv06_STATIC_H
+#define HUFv06_STATIC_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/* ****************************************
+* Static allocation
+******************************************/
+/* HUF buffer bounds */
+#define HUFv06_CTABLEBOUND 129
+#define HUFv06_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
+#define HUFv06_COMPRESSBOUND(size) (HUFv06_CTABLEBOUND + HUFv06_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
+
+/* static allocation of HUF's DTable */
+#define HUFv06_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog))
+#define HUFv06_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
+ unsigned short DTable[HUFv06_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
+#define HUFv06_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
+ unsigned int DTable[HUFv06_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
+#define HUFv06_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
+ unsigned int DTable[HUFv06_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
+
+
+/* ****************************************
+* Advanced decompression functions
+******************************************/
+size_t HUFv06_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
+size_t HUFv06_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
+
+
+
+/*!
+HUFv06_decompress() does the following:
+1. select the decompression algorithm (X2, X4, X6) based on pre-computed heuristics
+2. build Huffman table from save, using HUFv06_readDTableXn()
+3. decode 1 or 4 segments in parallel using HUFv06_decompressSXn_usingDTable
+*/
+size_t HUFv06_readDTableX2 (unsigned short* DTable, const void* src, size_t srcSize);
+size_t HUFv06_readDTableX4 (unsigned* DTable, const void* src, size_t srcSize);
+
+size_t HUFv06_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
+size_t HUFv06_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
+
+
+/* single stream variants */
+size_t HUFv06_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
+size_t HUFv06_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
+
+size_t HUFv06_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
+size_t HUFv06_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
+
+
+
+/* **************************************************************
+* Constants
+****************************************************************/
+#define HUFv06_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUFv06_MAX_TABLELOG. Beyond that value, code does not work */
+#define HUFv06_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUFv06_ABSOLUTEMAX_TABLELOG */
+#define HUFv06_DEFAULT_TABLELOG HUFv06_MAX_TABLELOG /* tableLog by default, when not specified */
+#define HUFv06_MAX_SYMBOL_VALUE 255
+#if (HUFv06_MAX_TABLELOG > HUFv06_ABSOLUTEMAX_TABLELOG)
+# error "HUFv06_MAX_TABLELOG is too large !"
+#endif
+
+
+
+/*! HUFv06_readStats() :
+ Read compact Huffman tree, saved by HUFv06_writeCTable().
+ `huffWeight` is destination buffer.
+ @return : size read from `src`
+*/
+MEM_STATIC size_t HUFv06_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize)
+{
+ U32 weightTotal;
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize;
+ size_t oSize;
+
+ if (!srcSize) return ERROR(srcSize_wrong);
+ iSize = ip[0];
+ //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
+
+ if (iSize >= 128) { /* special header */
+ if (iSize >= (242)) { /* RLE */
+ static U32 l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
+ oSize = l[iSize-242];
+ memset(huffWeight, 1, hwSize);
+ iSize = 0;
+ }
+ else { /* Incompressible */
+ oSize = iSize - 127;
+ iSize = ((oSize+1)/2);
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ if (oSize >= hwSize) return ERROR(corruption_detected);
+ ip += 1;
+ { U32 n;
+ for (n=0; n<oSize; n+=2) {
+ huffWeight[n] = ip[n/2] >> 4;
+ huffWeight[n+1] = ip[n/2] & 15;
+ } } } }
+ else { /* header compressed with FSE (normal case) */
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ oSize = FSEv06_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
+ if (FSEv06_isError(oSize)) return oSize;
+ }
+
+ /* collect weight stats */
+ memset(rankStats, 0, (HUFv06_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
+ weightTotal = 0;
+ { U32 n; for (n=0; n<oSize; n++) {
+ if (huffWeight[n] >= HUFv06_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
+ rankStats[huffWeight[n]]++;
+ weightTotal += (1 << huffWeight[n]) >> 1;
+ } }
+ if (weightTotal == 0) return ERROR(corruption_detected);
+
+ /* get last non-null symbol weight (implied, total must be 2^n) */
+ { U32 const tableLog = BITv06_highbit32(weightTotal) + 1;
+ if (tableLog > HUFv06_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
+ *tableLogPtr = tableLog;
+ /* determine last weight */
+ { U32 const total = 1 << tableLog;
+ U32 const rest = total - weightTotal;
+ U32 const verif = 1 << BITv06_highbit32(rest);
+ U32 const lastWeight = BITv06_highbit32(rest) + 1;
+ if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
+ huffWeight[oSize] = (BYTE)lastWeight;
+ rankStats[lastWeight]++;
+ } }
+
+ /* check tree construction validity */
+ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
+
+ /* results */
+ *nbSymbolsPtr = (U32)(oSize+1);
+ return iSize+1;
+}
+
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* HUFv06_STATIC_H */
+/* ******************************************************************
+ Huffman decoder, part of New Generation Entropy library
+ Copyright (C) 2013-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+/* **************************************************************
+* Compiler specifics
+****************************************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+/* inline is defined */
+#elif defined(_MSC_VER)
+# define inline __inline
+#else
+# define inline /* disable inline */
+#endif
+
+
+#ifdef _MSC_VER /* Visual Studio */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+#endif
+
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define HUFv06_STATIC_ASSERT(c) { enum { HUFv06_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+
+/* *******************************************************
+* HUF : Huffman block decompression
+*********************************************************/
+typedef struct { BYTE byte; BYTE nbBits; } HUFv06_DEltX2; /* single-symbol decoding */
+
+typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUFv06_DEltX4; /* double-symbols decoding */
+
+typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
+
+
+
+/*-***************************/
+/* single-symbol decoding */
+/*-***************************/
+
+size_t HUFv06_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
+{
+ BYTE huffWeight[HUFv06_MAX_SYMBOL_VALUE + 1];
+ U32 rankVal[HUFv06_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
+ U32 tableLog = 0;
+ size_t iSize;
+ U32 nbSymbols = 0;
+ U32 n;
+ U32 nextRankStart;
+ void* const dtPtr = DTable + 1;
+ HUFv06_DEltX2* const dt = (HUFv06_DEltX2*)dtPtr;
+
+ HUFv06_STATIC_ASSERT(sizeof(HUFv06_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
+ //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUFv06_readStats(huffWeight, HUFv06_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
+ if (HUFv06_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
+ DTable[0] = (U16)tableLog; /* maybe should separate sizeof allocated DTable, from used size of DTable, in case of re-use */
+
+ /* Prepare ranks */
+ nextRankStart = 0;
+ for (n=1; n<tableLog+1; n++) {
+ U32 current = nextRankStart;
+ nextRankStart += (rankVal[n] << (n-1));
+ rankVal[n] = current;
+ }
+
+ /* fill DTable */
+ for (n=0; n<nbSymbols; n++) {
+ const U32 w = huffWeight[n];
+ const U32 length = (1 << w) >> 1;
+ U32 i;
+ HUFv06_DEltX2 D;
+ D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
+ for (i = rankVal[w]; i < rankVal[w] + length; i++)
+ dt[i] = D;
+ rankVal[w] += length;
+ }
+
+ return iSize;
+}
+
+
+static BYTE HUFv06_decodeSymbolX2(BITv06_DStream_t* Dstream, const HUFv06_DEltX2* dt, const U32 dtLog)
+{
+ const size_t val = BITv06_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
+ const BYTE c = dt[val].byte;
+ BITv06_skipBits(Dstream, dt[val].nbBits);
+ return c;
+}
+
+#define HUFv06_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
+ *ptr++ = HUFv06_decodeSymbolX2(DStreamPtr, dt, dtLog)
+
+#define HUFv06_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUFv06_MAX_TABLELOG<=12)) \
+ HUFv06_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+#define HUFv06_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ HUFv06_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+static inline size_t HUFv06_decodeStreamX2(BYTE* p, BITv06_DStream_t* const bitDPtr, BYTE* const pEnd, const HUFv06_DEltX2* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 4 symbols at a time */
+ while ((BITv06_reloadDStream(bitDPtr) == BITv06_DStream_unfinished) && (p <= pEnd-4)) {
+ HUFv06_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUFv06_DECODE_SYMBOLX2_1(p, bitDPtr);
+ HUFv06_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUFv06_DECODE_SYMBOLX2_0(p, bitDPtr);
+ }
+
+ /* closer to the end */
+ while ((BITv06_reloadDStream(bitDPtr) == BITv06_DStream_unfinished) && (p < pEnd))
+ HUFv06_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ /* no more data to retrieve from bitstream, hence no need to reload */
+ while (p < pEnd)
+ HUFv06_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ return pEnd-pStart;
+}
+
+size_t HUFv06_decompress1X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U16* DTable)
+{
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + dstSize;
+ const U32 dtLog = DTable[0];
+ const void* dtPtr = DTable;
+ const HUFv06_DEltX2* const dt = ((const HUFv06_DEltX2*)dtPtr)+1;
+ BITv06_DStream_t bitD;
+
+ { size_t const errorCode = BITv06_initDStream(&bitD, cSrc, cSrcSize);
+ if (HUFv06_isError(errorCode)) return errorCode; }
+
+ HUFv06_decodeStreamX2(op, &bitD, oend, dt, dtLog);
+
+ /* check */
+ if (!BITv06_endOfDStream(&bitD)) return ERROR(corruption_detected);
+
+ return dstSize;
+}
+
+size_t HUFv06_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUFv06_CREATE_STATIC_DTABLEX2(DTable, HUFv06_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const errorCode = HUFv06_readDTableX2 (DTable, cSrc, cSrcSize);
+ if (HUFv06_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ return HUFv06_decompress1X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+size_t HUFv06_decompress4X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U16* DTable)
+{
+ /* Check */
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ { const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable;
+ const HUFv06_DEltX2* const dt = ((const HUFv06_DEltX2*)dtPtr) +1;
+ const U32 dtLog = DTable[0];
+ size_t errorCode;
+
+ /* Init */
+ BITv06_DStream_t bitD1;
+ BITv06_DStream_t bitD2;
+ BITv06_DStream_t bitD3;
+ BITv06_DStream_t bitD4;
+ const size_t length1 = MEM_readLE16(istart);
+ const size_t length2 = MEM_readLE16(istart+2);
+ const size_t length3 = MEM_readLE16(istart+4);
+ size_t length4;
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+
+ length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ errorCode = BITv06_initDStream(&bitD1, istart1, length1);
+ if (HUFv06_isError(errorCode)) return errorCode;
+ errorCode = BITv06_initDStream(&bitD2, istart2, length2);
+ if (HUFv06_isError(errorCode)) return errorCode;
+ errorCode = BITv06_initDStream(&bitD3, istart3, length3);
+ if (HUFv06_isError(errorCode)) return errorCode;
+ errorCode = BITv06_initDStream(&bitD4, istart4, length4);
+ if (HUFv06_isError(errorCode)) return errorCode;
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BITv06_reloadDStream(&bitD1) | BITv06_reloadDStream(&bitD2) | BITv06_reloadDStream(&bitD3) | BITv06_reloadDStream(&bitD4);
+ for ( ; (endSignal==BITv06_DStream_unfinished) && (op4<(oend-7)) ; ) {
+ HUFv06_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUFv06_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUFv06_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUFv06_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUFv06_DECODE_SYMBOLX2_1(op1, &bitD1);
+ HUFv06_DECODE_SYMBOLX2_1(op2, &bitD2);
+ HUFv06_DECODE_SYMBOLX2_1(op3, &bitD3);
+ HUFv06_DECODE_SYMBOLX2_1(op4, &bitD4);
+ HUFv06_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUFv06_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUFv06_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUFv06_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUFv06_DECODE_SYMBOLX2_0(op1, &bitD1);
+ HUFv06_DECODE_SYMBOLX2_0(op2, &bitD2);
+ HUFv06_DECODE_SYMBOLX2_0(op3, &bitD3);
+ HUFv06_DECODE_SYMBOLX2_0(op4, &bitD4);
+ endSignal = BITv06_reloadDStream(&bitD1) | BITv06_reloadDStream(&bitD2) | BITv06_reloadDStream(&bitD3) | BITv06_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUFv06_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
+ HUFv06_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
+ HUFv06_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
+ HUFv06_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ endSignal = BITv06_endOfDStream(&bitD1) & BITv06_endOfDStream(&bitD2) & BITv06_endOfDStream(&bitD3) & BITv06_endOfDStream(&bitD4);
+ if (!endSignal) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+size_t HUFv06_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUFv06_CREATE_STATIC_DTABLEX2(DTable, HUFv06_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const errorCode = HUFv06_readDTableX2 (DTable, cSrc, cSrcSize);
+ if (HUFv06_isError(errorCode)) return errorCode;
+ if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += errorCode;
+ cSrcSize -= errorCode;
+
+ return HUFv06_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+/* *************************/
+/* double-symbols decoding */
+/* *************************/
+
+static void HUFv06_fillDTableX4Level2(HUFv06_DEltX4* DTable, U32 sizeLog, const U32 consumed,
+ const U32* rankValOrigin, const int minWeight,
+ const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
+ U32 nbBitsBaseline, U16 baseSeq)
+{
+ HUFv06_DEltX4 DElt;
+ U32 rankVal[HUFv06_ABSOLUTEMAX_TABLELOG + 1];
+
+ /* get pre-calculated rankVal */
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill skipped values */
+ if (minWeight>1) {
+ U32 i, skipSize = rankVal[minWeight];
+ MEM_writeLE16(&(DElt.sequence), baseSeq);
+ DElt.nbBits = (BYTE)(consumed);
+ DElt.length = 1;
+ for (i = 0; i < skipSize; i++)
+ DTable[i] = DElt;
+ }
+
+ /* fill DTable */
+ { U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
+ const U32 symbol = sortedSymbols[s].symbol;
+ const U32 weight = sortedSymbols[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 length = 1 << (sizeLog-nbBits);
+ const U32 start = rankVal[weight];
+ U32 i = start;
+ const U32 end = start + length;
+
+ MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
+ DElt.nbBits = (BYTE)(nbBits + consumed);
+ DElt.length = 2;
+ do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
+
+ rankVal[weight] += length;
+ }}
+}
+
+typedef U32 rankVal_t[HUFv06_ABSOLUTEMAX_TABLELOG][HUFv06_ABSOLUTEMAX_TABLELOG + 1];
+
+static void HUFv06_fillDTableX4(HUFv06_DEltX4* DTable, const U32 targetLog,
+ const sortedSymbol_t* sortedList, const U32 sortedListSize,
+ const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
+ const U32 nbBitsBaseline)
+{
+ U32 rankVal[HUFv06_ABSOLUTEMAX_TABLELOG + 1];
+ const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
+ const U32 minBits = nbBitsBaseline - maxWeight;
+ U32 s;
+
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill DTable */
+ for (s=0; s<sortedListSize; s++) {
+ const U16 symbol = sortedList[s].symbol;
+ const U32 weight = sortedList[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 start = rankVal[weight];
+ const U32 length = 1 << (targetLog-nbBits);
+
+ if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
+ U32 sortedRank;
+ int minWeight = nbBits + scaleLog;
+ if (minWeight < 1) minWeight = 1;
+ sortedRank = rankStart[minWeight];
+ HUFv06_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
+ rankValOrigin[nbBits], minWeight,
+ sortedList+sortedRank, sortedListSize-sortedRank,
+ nbBitsBaseline, symbol);
+ } else {
+ HUFv06_DEltX4 DElt;
+ MEM_writeLE16(&(DElt.sequence), symbol);
+ DElt.nbBits = (BYTE)(nbBits);
+ DElt.length = 1;
+ { U32 u;
+ const U32 end = start + length;
+ for (u = start; u < end; u++) DTable[u] = DElt;
+ } }
+ rankVal[weight] += length;
+ }
+}
+
+size_t HUFv06_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
+{
+ BYTE weightList[HUFv06_MAX_SYMBOL_VALUE + 1];
+ sortedSymbol_t sortedSymbol[HUFv06_MAX_SYMBOL_VALUE + 1];
+ U32 rankStats[HUFv06_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
+ U32 rankStart0[HUFv06_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
+ U32* const rankStart = rankStart0+1;
+ rankVal_t rankVal;
+ U32 tableLog, maxW, sizeOfSort, nbSymbols;
+ const U32 memLog = DTable[0];
+ size_t iSize;
+ void* dtPtr = DTable;
+ HUFv06_DEltX4* const dt = ((HUFv06_DEltX4*)dtPtr) + 1;
+
+ HUFv06_STATIC_ASSERT(sizeof(HUFv06_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */
+ if (memLog > HUFv06_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
+ //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUFv06_readStats(weightList, HUFv06_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
+ if (HUFv06_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
+
+ /* find maxWeight */
+ for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
+
+ /* Get start index of each weight */
+ { U32 w, nextRankStart = 0;
+ for (w=1; w<maxW+1; w++) {
+ U32 current = nextRankStart;
+ nextRankStart += rankStats[w];
+ rankStart[w] = current;
+ }
+ rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
+ sizeOfSort = nextRankStart;
+ }
+
+ /* sort symbols by weight */
+ { U32 s;
+ for (s=0; s<nbSymbols; s++) {
+ U32 const w = weightList[s];
+ U32 const r = rankStart[w]++;
+ sortedSymbol[r].symbol = (BYTE)s;
+ sortedSymbol[r].weight = (BYTE)w;
+ }
+ rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
+ }
+
+ /* Build rankVal */
+ { U32* const rankVal0 = rankVal[0];
+ { int const rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
+ U32 nextRankVal = 0;
+ U32 w;
+ for (w=1; w<maxW+1; w++) {
+ U32 current = nextRankVal;
+ nextRankVal += rankStats[w] << (w+rescale);
+ rankVal0[w] = current;
+ } }
+ { U32 const minBits = tableLog+1 - maxW;
+ U32 consumed;
+ for (consumed = minBits; consumed < memLog - minBits + 1; consumed++) {
+ U32* const rankValPtr = rankVal[consumed];
+ U32 w;
+ for (w = 1; w < maxW+1; w++) {
+ rankValPtr[w] = rankVal0[w] >> consumed;
+ } } } }
+
+ HUFv06_fillDTableX4(dt, memLog,
+ sortedSymbol, sizeOfSort,
+ rankStart0, rankVal, maxW,
+ tableLog+1);
+
+ return iSize;
+}
+
+
+static U32 HUFv06_decodeSymbolX4(void* op, BITv06_DStream_t* DStream, const HUFv06_DEltX4* dt, const U32 dtLog)
+{
+ const size_t val = BITv06_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 2);
+ BITv06_skipBits(DStream, dt[val].nbBits);
+ return dt[val].length;
+}
+
+static U32 HUFv06_decodeLastSymbolX4(void* op, BITv06_DStream_t* DStream, const HUFv06_DEltX4* dt, const U32 dtLog)
+{
+ const size_t val = BITv06_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 1);
+ if (dt[val].length==1) BITv06_skipBits(DStream, dt[val].nbBits);
+ else {
+ if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
+ BITv06_skipBits(DStream, dt[val].nbBits);
+ if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
+ DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
+ } }
+ return 1;
+}
+
+
+#define HUFv06_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
+ ptr += HUFv06_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUFv06_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUFv06_MAX_TABLELOG<=12)) \
+ ptr += HUFv06_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUFv06_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ ptr += HUFv06_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+static inline size_t HUFv06_decodeStreamX4(BYTE* p, BITv06_DStream_t* bitDPtr, BYTE* const pEnd, const HUFv06_DEltX4* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 8 symbols at a time */
+ while ((BITv06_reloadDStream(bitDPtr) == BITv06_DStream_unfinished) && (p < pEnd-7)) {
+ HUFv06_DECODE_SYMBOLX4_2(p, bitDPtr);
+ HUFv06_DECODE_SYMBOLX4_1(p, bitDPtr);
+ HUFv06_DECODE_SYMBOLX4_2(p, bitDPtr);
+ HUFv06_DECODE_SYMBOLX4_0(p, bitDPtr);
+ }
+
+ /* closer to the end */
+ while ((BITv06_reloadDStream(bitDPtr) == BITv06_DStream_unfinished) && (p <= pEnd-2))
+ HUFv06_DECODE_SYMBOLX4_0(p, bitDPtr);
+
+ while (p <= pEnd-2)
+ HUFv06_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
+
+ if (p < pEnd)
+ p += HUFv06_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
+
+ return p-pStart;
+}
+
+
+size_t HUFv06_decompress1X4_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U32* DTable)
+{
+ const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+
+ const U32 dtLog = DTable[0];
+ const void* const dtPtr = DTable;
+ const HUFv06_DEltX4* const dt = ((const HUFv06_DEltX4*)dtPtr) +1;
+
+ /* Init */
+ BITv06_DStream_t bitD;
+ { size_t const errorCode = BITv06_initDStream(&bitD, istart, cSrcSize);
+ if (HUFv06_isError(errorCode)) return errorCode; }
+
+ /* decode */
+ HUFv06_decodeStreamX4(ostart, &bitD, oend, dt, dtLog);
+
+ /* check */
+ if (!BITv06_endOfDStream(&bitD)) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+}
+
+size_t HUFv06_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUFv06_CREATE_STATIC_DTABLEX4(DTable, HUFv06_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const hSize = HUFv06_readDTableX4 (DTable, cSrc, cSrcSize);
+ if (HUFv06_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize;
+ cSrcSize -= hSize;
+
+ return HUFv06_decompress1X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+size_t HUFv06_decompress4X4_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const U32* DTable)
+{
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ { const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable;
+ const HUFv06_DEltX4* const dt = ((const HUFv06_DEltX4*)dtPtr) +1;
+ const U32 dtLog = DTable[0];
+ size_t errorCode;
+
+ /* Init */
+ BITv06_DStream_t bitD1;
+ BITv06_DStream_t bitD2;
+ BITv06_DStream_t bitD3;
+ BITv06_DStream_t bitD4;
+ const size_t length1 = MEM_readLE16(istart);
+ const size_t length2 = MEM_readLE16(istart+2);
+ const size_t length3 = MEM_readLE16(istart+4);
+ size_t length4;
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+
+ length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ errorCode = BITv06_initDStream(&bitD1, istart1, length1);
+ if (HUFv06_isError(errorCode)) return errorCode;
+ errorCode = BITv06_initDStream(&bitD2, istart2, length2);
+ if (HUFv06_isError(errorCode)) return errorCode;
+ errorCode = BITv06_initDStream(&bitD3, istart3, length3);
+ if (HUFv06_isError(errorCode)) return errorCode;
+ errorCode = BITv06_initDStream(&bitD4, istart4, length4);
+ if (HUFv06_isError(errorCode)) return errorCode;
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BITv06_reloadDStream(&bitD1) | BITv06_reloadDStream(&bitD2) | BITv06_reloadDStream(&bitD3) | BITv06_reloadDStream(&bitD4);
+ for ( ; (endSignal==BITv06_DStream_unfinished) && (op4<(oend-7)) ; ) {
+ HUFv06_DECODE_SYMBOLX4_2(op1, &bitD1);
+ HUFv06_DECODE_SYMBOLX4_2(op2, &bitD2);
+ HUFv06_DECODE_SYMBOLX4_2(op3, &bitD3);
+ HUFv06_DECODE_SYMBOLX4_2(op4, &bitD4);
+ HUFv06_DECODE_SYMBOLX4_1(op1, &bitD1);
+ HUFv06_DECODE_SYMBOLX4_1(op2, &bitD2);
+ HUFv06_DECODE_SYMBOLX4_1(op3, &bitD3);
+ HUFv06_DECODE_SYMBOLX4_1(op4, &bitD4);
+ HUFv06_DECODE_SYMBOLX4_2(op1, &bitD1);
+ HUFv06_DECODE_SYMBOLX4_2(op2, &bitD2);
+ HUFv06_DECODE_SYMBOLX4_2(op3, &bitD3);
+ HUFv06_DECODE_SYMBOLX4_2(op4, &bitD4);
+ HUFv06_DECODE_SYMBOLX4_0(op1, &bitD1);
+ HUFv06_DECODE_SYMBOLX4_0(op2, &bitD2);
+ HUFv06_DECODE_SYMBOLX4_0(op3, &bitD3);
+ HUFv06_DECODE_SYMBOLX4_0(op4, &bitD4);
+
+ endSignal = BITv06_reloadDStream(&bitD1) | BITv06_reloadDStream(&bitD2) | BITv06_reloadDStream(&bitD3) | BITv06_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUFv06_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
+ HUFv06_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
+ HUFv06_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
+ HUFv06_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ endSignal = BITv06_endOfDStream(&bitD1) & BITv06_endOfDStream(&bitD2) & BITv06_endOfDStream(&bitD3) & BITv06_endOfDStream(&bitD4);
+ if (!endSignal) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+size_t HUFv06_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUFv06_CREATE_STATIC_DTABLEX4(DTable, HUFv06_MAX_TABLELOG);
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t hSize = HUFv06_readDTableX4 (DTable, cSrc, cSrcSize);
+ if (HUFv06_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize;
+ cSrcSize -= hSize;
+
+ return HUFv06_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
+}
+
+
+
+
+/* ********************************/
+/* Generic decompression selector */
+/* ********************************/
+
+typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
+static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
+{
+ /* single, double, quad */
+ {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
+ {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
+ {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
+ {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
+ {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
+ {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
+ {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
+ {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
+ {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
+ {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
+ {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
+ {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
+ {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
+ {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
+ {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
+ {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
+};
+
+typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
+
+size_t HUFv06_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ static const decompressionAlgo decompress[3] = { HUFv06_decompress4X2, HUFv06_decompress4X4, NULL };
+ U32 Dtime[3]; /* decompression time estimation */
+
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
+ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
+
+ /* decoder timing evaluation */
+ { U32 const Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
+ U32 const D256 = (U32)(dstSize >> 8);
+ U32 n; for (n=0; n<3; n++)
+ Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
+ }
+
+ Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
+
+ { U32 algoNb = 0;
+ if (Dtime[1] < Dtime[0]) algoNb = 1;
+ // if (Dtime[2] < Dtime[algoNb]) algoNb = 2; /* current speed of HUFv06_decompress4X6 is not good */
+ return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
+ }
+
+ //return HUFv06_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
+ //return HUFv06_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
+ //return HUFv06_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */
+}
+/*
+ Common functions of Zstd compression library
+ Copyright (C) 2015-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd homepage : http://www.zstd.net/
+*/
+
+
+/*-****************************************
+* Version
+******************************************/
+
+/*-****************************************
+* ZSTD Error Management
+******************************************/
+/*! ZSTDv06_isError() :
+* tells if a return value is an error code */
+unsigned ZSTDv06_isError(size_t code) { return ERR_isError(code); }
+
+/*! ZSTDv06_getErrorName() :
+* provides error code string from function result (useful for debugging) */
+const char* ZSTDv06_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+
+/* **************************************************************
+* ZBUFF Error Management
+****************************************************************/
+unsigned ZBUFFv06_isError(size_t errorCode) { return ERR_isError(errorCode); }
+
+const char* ZBUFFv06_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
+/*
+ zstd - standard compression library
+ Copyright (C) 2014-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd homepage : http://www.zstd.net
+*/
+
+/* ***************************************************************
+* Tuning parameters
+*****************************************************************/
+/*!
+ * HEAPMODE :
+ * Select how default decompression function ZSTDv06_decompress() will allocate memory,
+ * in memory stack (0), or in memory heap (1, requires malloc())
+ */
+#ifndef ZSTDv06_HEAPMODE
+# define ZSTDv06_HEAPMODE 1
+#endif
+
+
+
+/*-*******************************************************
+* Compiler specifics
+*********************************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4324) /* disable: C4324: padded structure */
+#endif
+
+
+/*-*************************************
+* Macros
+***************************************/
+#define ZSTDv06_isError ERR_isError /* for inlining */
+#define FSEv06_isError ERR_isError
+#define HUFv06_isError ERR_isError
+
+
+/*_*******************************************************
+* Memory operations
+**********************************************************/
+static void ZSTDv06_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
+
+
+/*-*************************************************************
+* Context management
+***************************************************************/
+typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
+ ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock } ZSTDv06_dStage;
+
+struct ZSTDv06_DCtx_s
+{
+ FSEv06_DTable LLTable[FSEv06_DTABLE_SIZE_U32(LLFSELog)];
+ FSEv06_DTable OffTable[FSEv06_DTABLE_SIZE_U32(OffFSELog)];
+ FSEv06_DTable MLTable[FSEv06_DTABLE_SIZE_U32(MLFSELog)];
+ unsigned hufTableX4[HUFv06_DTABLE_SIZE(HufLog)];
+ const void* previousDstEnd;
+ const void* base;
+ const void* vBase;
+ const void* dictEnd;
+ size_t expected;
+ size_t headerSize;
+ ZSTDv06_frameParams fParams;
+ blockType_t bType; /* used in ZSTDv06_decompressContinue(), to transfer blockType between header decoding and block decoding stages */
+ ZSTDv06_dStage stage;
+ U32 flagRepeatTable;
+ const BYTE* litPtr;
+ size_t litSize;
+ BYTE litBuffer[ZSTDv06_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH];
+ BYTE headerBuffer[ZSTDv06_FRAMEHEADERSIZE_MAX];
+}; /* typedef'd to ZSTDv06_DCtx within "zstd_static.h" */
+
+size_t ZSTDv06_sizeofDCtx (void); /* Hidden declaration */
+size_t ZSTDv06_sizeofDCtx (void) { return sizeof(ZSTDv06_DCtx); }
+
+size_t ZSTDv06_decompressBegin(ZSTDv06_DCtx* dctx)
+{
+ dctx->expected = ZSTDv06_frameHeaderSize_min;
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ dctx->previousDstEnd = NULL;
+ dctx->base = NULL;
+ dctx->vBase = NULL;
+ dctx->dictEnd = NULL;
+ dctx->hufTableX4[0] = HufLog;
+ dctx->flagRepeatTable = 0;
+ return 0;
+}
+
+ZSTDv06_DCtx* ZSTDv06_createDCtx(void)
+{
+ ZSTDv06_DCtx* dctx = (ZSTDv06_DCtx*)malloc(sizeof(ZSTDv06_DCtx));
+ if (dctx==NULL) return NULL;
+ ZSTDv06_decompressBegin(dctx);
+ return dctx;
+}
+
+size_t ZSTDv06_freeDCtx(ZSTDv06_DCtx* dctx)
+{
+ free(dctx);
+ return 0; /* reserved as a potential error code in the future */
+}
+
+void ZSTDv06_copyDCtx(ZSTDv06_DCtx* dstDCtx, const ZSTDv06_DCtx* srcDCtx)
+{
+ memcpy(dstDCtx, srcDCtx,
+ sizeof(ZSTDv06_DCtx) - (ZSTDv06_BLOCKSIZE_MAX+WILDCOPY_OVERLENGTH + ZSTDv06_frameHeaderSize_max)); /* no need to copy workspace */
+}
+
+
+/*-*************************************************************
+* Decompression section
+***************************************************************/
+
+/* Frame format description
+ Frame Header - [ Block Header - Block ] - Frame End
+ 1) Frame Header
+ - 4 bytes - Magic Number : ZSTDv06_MAGICNUMBER (defined within zstd_static.h)
+ - 1 byte - Frame Descriptor
+ 2) Block Header
+ - 3 bytes, starting with a 2-bits descriptor
+ Uncompressed, Compressed, Frame End, unused
+ 3) Block
+ See Block Format Description
+ 4) Frame End
+ - 3 bytes, compatible with Block Header
+*/
+
+
+/* Frame descriptor
+
+ 1 byte, using :
+ bit 0-3 : windowLog - ZSTDv06_WINDOWLOG_ABSOLUTEMIN (see zstd_internal.h)
+ bit 4 : minmatch 4(0) or 3(1)
+ bit 5 : reserved (must be zero)
+ bit 6-7 : Frame content size : unknown, 1 byte, 2 bytes, 8 bytes
+
+ Optional : content size (0, 1, 2 or 8 bytes)
+ 0 : unknown
+ 1 : 0-255 bytes
+ 2 : 256 - 65535+256
+ 8 : up to 16 exa
+*/
+
+
+/* Compressed Block, format description
+
+ Block = Literal Section - Sequences Section
+ Prerequisite : size of (compressed) block, maximum size of regenerated data
+
+ 1) Literal Section
+
+ 1.1) Header : 1-5 bytes
+ flags: 2 bits
+ 00 compressed by Huff0
+ 01 unused
+ 10 is Raw (uncompressed)
+ 11 is Rle
+ Note : using 01 => Huff0 with precomputed table ?
+ Note : delta map ? => compressed ?
+
+ 1.1.1) Huff0-compressed literal block : 3-5 bytes
+ srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream
+ srcSize < 1 KB => 3 bytes (2-2-10-10)
+ srcSize < 16KB => 4 bytes (2-2-14-14)
+ else => 5 bytes (2-2-18-18)
+ big endian convention
+
+ 1.1.2) Raw (uncompressed) literal block header : 1-3 bytes
+ size : 5 bits: (IS_RAW<<6) + (0<<4) + size
+ 12 bits: (IS_RAW<<6) + (2<<4) + (size>>8)
+ size&255
+ 20 bits: (IS_RAW<<6) + (3<<4) + (size>>16)
+ size>>8&255
+ size&255
+
+ 1.1.3) Rle (repeated single byte) literal block header : 1-3 bytes
+ size : 5 bits: (IS_RLE<<6) + (0<<4) + size
+ 12 bits: (IS_RLE<<6) + (2<<4) + (size>>8)
+ size&255
+ 20 bits: (IS_RLE<<6) + (3<<4) + (size>>16)
+ size>>8&255
+ size&255
+
+ 1.1.4) Huff0-compressed literal block, using precomputed CTables : 3-5 bytes
+ srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream
+ srcSize < 1 KB => 3 bytes (2-2-10-10)
+ srcSize < 16KB => 4 bytes (2-2-14-14)
+ else => 5 bytes (2-2-18-18)
+ big endian convention
+
+ 1- CTable available (stored into workspace ?)
+ 2- Small input (fast heuristic ? Full comparison ? depend on clevel ?)
+
+
+ 1.2) Literal block content
+
+ 1.2.1) Huff0 block, using sizes from header
+ See Huff0 format
+
+ 1.2.2) Huff0 block, using prepared table
+
+ 1.2.3) Raw content
+
+ 1.2.4) single byte
+
+
+ 2) Sequences section
+ TO DO
+*/
+
+/** ZSTDv06_frameHeaderSize() :
+* srcSize must be >= ZSTDv06_frameHeaderSize_min.
+* @return : size of the Frame Header */
+static size_t ZSTDv06_frameHeaderSize(const void* src, size_t srcSize)
+{
+ if (srcSize < ZSTDv06_frameHeaderSize_min) return ERROR(srcSize_wrong);
+ { U32 const fcsId = (((const BYTE*)src)[4]) >> 6;
+ return ZSTDv06_frameHeaderSize_min + ZSTDv06_fcs_fieldSize[fcsId]; }
+}
+
+
+/** ZSTDv06_getFrameParams() :
+* decode Frame Header, or provide expected `srcSize`.
+* @return : 0, `fparamsPtr` is correctly filled,
+* >0, `srcSize` is too small, result is expected `srcSize`,
+* or an error code, which can be tested using ZSTDv06_isError() */
+size_t ZSTDv06_getFrameParams(ZSTDv06_frameParams* fparamsPtr, const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+
+ if (srcSize < ZSTDv06_frameHeaderSize_min) return ZSTDv06_frameHeaderSize_min;
+ if (MEM_readLE32(src) != ZSTDv06_MAGICNUMBER) return ERROR(prefix_unknown);
+
+ /* ensure there is enough `srcSize` to fully read/decode frame header */
+ { size_t const fhsize = ZSTDv06_frameHeaderSize(src, srcSize);
+ if (srcSize < fhsize) return fhsize; }
+
+ memset(fparamsPtr, 0, sizeof(*fparamsPtr));
+ { BYTE const frameDesc = ip[4];
+ fparamsPtr->windowLog = (frameDesc & 0xF) + ZSTDv06_WINDOWLOG_ABSOLUTEMIN;
+ if ((frameDesc & 0x20) != 0) return ERROR(frameParameter_unsupported); /* reserved 1 bit */
+ switch(frameDesc >> 6) /* fcsId */
+ {
+ default: /* impossible */
+ case 0 : fparamsPtr->frameContentSize = 0; break;
+ case 1 : fparamsPtr->frameContentSize = ip[5]; break;
+ case 2 : fparamsPtr->frameContentSize = MEM_readLE16(ip+5)+256; break;
+ case 3 : fparamsPtr->frameContentSize = MEM_readLE64(ip+5); break;
+ } }
+ return 0;
+}
+
+
+/** ZSTDv06_decodeFrameHeader() :
+* `srcSize` must be the size provided by ZSTDv06_frameHeaderSize().
+* @return : 0 if success, or an error code, which can be tested using ZSTDv06_isError() */
+static size_t ZSTDv06_decodeFrameHeader(ZSTDv06_DCtx* zc, const void* src, size_t srcSize)
+{
+ size_t const result = ZSTDv06_getFrameParams(&(zc->fParams), src, srcSize);
+ if ((MEM_32bits()) && (zc->fParams.windowLog > 25)) return ERROR(frameParameter_unsupported);
+ return result;
+}
+
+
+typedef struct
+{
+ blockType_t blockType;
+ U32 origSize;
+} blockProperties_t;
+
+/*! ZSTDv06_getcBlockSize() :
+* Provides the size of compressed block from block header `src` */
+static size_t ZSTDv06_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
+{
+ const BYTE* const in = (const BYTE* const)src;
+ U32 cSize;
+
+ if (srcSize < ZSTDv06_blockHeaderSize) return ERROR(srcSize_wrong);
+
+ bpPtr->blockType = (blockType_t)((*in) >> 6);
+ cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
+ bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
+
+ if (bpPtr->blockType == bt_end) return 0;
+ if (bpPtr->blockType == bt_rle) return 1;
+ return cSize;
+}
+
+
+static size_t ZSTDv06_copyRawBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ if (dst==NULL) return ERROR(dstSize_tooSmall);
+ if (srcSize > dstCapacity) return ERROR(dstSize_tooSmall);
+ memcpy(dst, src, srcSize);
+ return srcSize;
+}
+
+
+/*! ZSTDv06_decodeLiteralsBlock() :
+ @return : nb of bytes read from src (< srcSize ) */
+static size_t ZSTDv06_decodeLiteralsBlock(ZSTDv06_DCtx* dctx,
+ const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
+{
+ const BYTE* const istart = (const BYTE*) src;
+
+ /* any compressed block with literals segment must be at least this size */
+ if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
+
+ switch(istart[0]>> 6)
+ {
+ case IS_HUF:
+ { size_t litSize, litCSize, singleStream=0;
+ U32 lhSize = ((istart[0]) >> 4) & 3;
+ if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for lhSize, + cSize (+nbSeq) */
+ switch(lhSize)
+ {
+ case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
+ /* 2 - 2 - 10 - 10 */
+ lhSize=3;
+ singleStream = istart[0] & 16;
+ litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
+ litCSize = ((istart[1] & 3) << 8) + istart[2];
+ break;
+ case 2:
+ /* 2 - 2 - 14 - 14 */
+ lhSize=4;
+ litSize = ((istart[0] & 15) << 10) + (istart[1] << 2) + (istart[2] >> 6);
+ litCSize = ((istart[2] & 63) << 8) + istart[3];
+ break;
+ case 3:
+ /* 2 - 2 - 18 - 18 */
+ lhSize=5;
+ litSize = ((istart[0] & 15) << 14) + (istart[1] << 6) + (istart[2] >> 2);
+ litCSize = ((istart[2] & 3) << 16) + (istart[3] << 8) + istart[4];
+ break;
+ }
+ if (litSize > ZSTDv06_BLOCKSIZE_MAX) return ERROR(corruption_detected);
+ if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
+
+ if (HUFv06_isError(singleStream ?
+ HUFv06_decompress1X2(dctx->litBuffer, litSize, istart+lhSize, litCSize) :
+ HUFv06_decompress (dctx->litBuffer, litSize, istart+lhSize, litCSize) ))
+ return ERROR(corruption_detected);
+
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return litCSize + lhSize;
+ }
+ case IS_PCH:
+ { size_t litSize, litCSize;
+ U32 lhSize = ((istart[0]) >> 4) & 3;
+ if (lhSize != 1) /* only case supported for now : small litSize, single stream */
+ return ERROR(corruption_detected);
+ if (!dctx->flagRepeatTable)
+ return ERROR(dictionary_corrupted);
+
+ /* 2 - 2 - 10 - 10 */
+ lhSize=3;
+ litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
+ litCSize = ((istart[1] & 3) << 8) + istart[2];
+ if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
+
+ { size_t const errorCode = HUFv06_decompress1X4_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->hufTableX4);
+ if (HUFv06_isError(errorCode)) return ERROR(corruption_detected);
+ }
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return litCSize + lhSize;
+ }
+ case IS_RAW:
+ { size_t litSize;
+ U32 lhSize = ((istart[0]) >> 4) & 3;
+ switch(lhSize)
+ {
+ case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
+ lhSize=1;
+ litSize = istart[0] & 31;
+ break;
+ case 2:
+ litSize = ((istart[0] & 15) << 8) + istart[1];
+ break;
+ case 3:
+ litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
+ break;
+ }
+
+ if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
+ if (litSize+lhSize > srcSize) return ERROR(corruption_detected);
+ memcpy(dctx->litBuffer, istart+lhSize, litSize);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return lhSize+litSize;
+ }
+ /* direct reference into compressed stream */
+ dctx->litPtr = istart+lhSize;
+ dctx->litSize = litSize;
+ return lhSize+litSize;
+ }
+ case IS_RLE:
+ { size_t litSize;
+ U32 lhSize = ((istart[0]) >> 4) & 3;
+ switch(lhSize)
+ {
+ case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
+ lhSize = 1;
+ litSize = istart[0] & 31;
+ break;
+ case 2:
+ litSize = ((istart[0] & 15) << 8) + istart[1];
+ break;
+ case 3:
+ litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
+ if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */
+ break;
+ }
+ if (litSize > ZSTDv06_BLOCKSIZE_MAX) return ERROR(corruption_detected);
+ memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ return lhSize+1;
+ }
+ default:
+ return ERROR(corruption_detected); /* impossible */
+ }
+}
+
+
+/*! ZSTDv06_buildSeqTable() :
+ @return : nb bytes read from src,
+ or an error code if it fails, testable with ZSTDv06_isError()
+*/
+static size_t ZSTDv06_buildSeqTable(FSEv06_DTable* DTable, U32 type, U32 max, U32 maxLog,
+ const void* src, size_t srcSize,
+ const S16* defaultNorm, U32 defaultLog, U32 flagRepeatTable)
+{
+ switch(type)
+ {
+ case FSEv06_ENCODING_RLE :
+ if (!srcSize) return ERROR(srcSize_wrong);
+ if ( (*(const BYTE*)src) > max) return ERROR(corruption_detected);
+ FSEv06_buildDTable_rle(DTable, *(const BYTE*)src); /* if *src > max, data is corrupted */
+ return 1;
+ case FSEv06_ENCODING_RAW :
+ FSEv06_buildDTable(DTable, defaultNorm, max, defaultLog);
+ return 0;
+ case FSEv06_ENCODING_STATIC:
+ if (!flagRepeatTable) return ERROR(corruption_detected);
+ return 0;
+ default : /* impossible */
+ case FSEv06_ENCODING_DYNAMIC :
+ { U32 tableLog;
+ S16 norm[MaxSeq+1];
+ size_t const headerSize = FSEv06_readNCount(norm, &max, &tableLog, src, srcSize);
+ if (FSEv06_isError(headerSize)) return ERROR(corruption_detected);
+ if (tableLog > maxLog) return ERROR(corruption_detected);
+ FSEv06_buildDTable(DTable, norm, max, tableLog);
+ return headerSize;
+ } }
+}
+
+
+static size_t ZSTDv06_decodeSeqHeaders(int* nbSeqPtr,
+ FSEv06_DTable* DTableLL, FSEv06_DTable* DTableML, FSEv06_DTable* DTableOffb, U32 flagRepeatTable,
+ const void* src, size_t srcSize)
+{
+ const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* ip = istart;
+
+ /* check */
+ if (srcSize < MIN_SEQUENCES_SIZE) return ERROR(srcSize_wrong);
+
+ /* SeqHead */
+ { int nbSeq = *ip++;
+ if (!nbSeq) { *nbSeqPtr=0; return 1; }
+ if (nbSeq > 0x7F) {
+ if (nbSeq == 0xFF) {
+ if (ip+2 > iend) return ERROR(srcSize_wrong);
+ nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2;
+ } else {
+ if (ip >= iend) return ERROR(srcSize_wrong);
+ nbSeq = ((nbSeq-0x80)<<8) + *ip++;
+ }
+ }
+ *nbSeqPtr = nbSeq;
+ }
+
+ /* FSE table descriptors */
+ if (ip + 4 > iend) return ERROR(srcSize_wrong); /* min : header byte + all 3 are "raw", hence no header, but at least xxLog bits per type */
+ { U32 const LLtype = *ip >> 6;
+ U32 const Offtype = (*ip >> 4) & 3;
+ U32 const MLtype = (*ip >> 2) & 3;
+ ip++;
+
+ /* Build DTables */
+ { size_t const bhSize = ZSTDv06_buildSeqTable(DTableLL, LLtype, MaxLL, LLFSELog, ip, iend-ip, LL_defaultNorm, LL_defaultNormLog, flagRepeatTable);
+ if (ZSTDv06_isError(bhSize)) return ERROR(corruption_detected);
+ ip += bhSize;
+ }
+ { size_t const bhSize = ZSTDv06_buildSeqTable(DTableOffb, Offtype, MaxOff, OffFSELog, ip, iend-ip, OF_defaultNorm, OF_defaultNormLog, flagRepeatTable);
+ if (ZSTDv06_isError(bhSize)) return ERROR(corruption_detected);
+ ip += bhSize;
+ }
+ { size_t const bhSize = ZSTDv06_buildSeqTable(DTableML, MLtype, MaxML, MLFSELog, ip, iend-ip, ML_defaultNorm, ML_defaultNormLog, flagRepeatTable);
+ if (ZSTDv06_isError(bhSize)) return ERROR(corruption_detected);
+ ip += bhSize;
+ } }
+
+ return ip-istart;
+}
+
+
+typedef struct {
+ size_t litLength;
+ size_t matchLength;
+ size_t offset;
+} seq_t;
+
+typedef struct {
+ BITv06_DStream_t DStream;
+ FSEv06_DState_t stateLL;
+ FSEv06_DState_t stateOffb;
+ FSEv06_DState_t stateML;
+ size_t prevOffset[ZSTDv06_REP_INIT];
+} seqState_t;
+
+
+
+static void ZSTDv06_decodeSequence(seq_t* seq, seqState_t* seqState)
+{
+ /* Literal length */
+ U32 const llCode = FSEv06_peekSymbol(&(seqState->stateLL));
+ U32 const mlCode = FSEv06_peekSymbol(&(seqState->stateML));
+ U32 const ofCode = FSEv06_peekSymbol(&(seqState->stateOffb)); /* <= maxOff, by table construction */
+
+ U32 const llBits = LL_bits[llCode];
+ U32 const mlBits = ML_bits[mlCode];
+ U32 const ofBits = ofCode;
+ U32 const totalBits = llBits+mlBits+ofBits;
+
+ static const U32 LL_base[MaxLL+1] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
+ 0x2000, 0x4000, 0x8000, 0x10000 };
+
+ static const U32 ML_base[MaxML+1] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 34, 36, 38, 40, 44, 48, 56, 64, 80, 96, 0x80, 0x100, 0x200, 0x400, 0x800,
+ 0x1000, 0x2000, 0x4000, 0x8000, 0x10000 };
+
+ static const U32 OF_base[MaxOff+1] = {
+ 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F,
+ 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF,
+ 0xFFFF, 0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF,
+ 0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, /*fake*/ 1, 1 };
+
+ /* sequence */
+ { size_t offset;
+ if (!ofCode)
+ offset = 0;
+ else {
+ offset = OF_base[ofCode] + BITv06_readBits(&(seqState->DStream), ofBits); /* <= 26 bits */
+ if (MEM_32bits()) BITv06_reloadDStream(&(seqState->DStream));
+ }
+
+ if (offset < ZSTDv06_REP_NUM) {
+ if (llCode == 0 && offset <= 1) offset = 1-offset;
+
+ if (offset != 0) {
+ size_t temp = seqState->prevOffset[offset];
+ if (offset != 1) {
+ seqState->prevOffset[2] = seqState->prevOffset[1];
+ }
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset = temp;
+
+ } else {
+ offset = seqState->prevOffset[0];
+ }
+ } else {
+ offset -= ZSTDv06_REP_MOVE;
+ seqState->prevOffset[2] = seqState->prevOffset[1];
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset;
+ }
+ seq->offset = offset;
+ }
+
+ seq->matchLength = ML_base[mlCode] + MINMATCH + ((mlCode>31) ? BITv06_readBits(&(seqState->DStream), mlBits) : 0); /* <= 16 bits */
+ if (MEM_32bits() && (mlBits+llBits>24)) BITv06_reloadDStream(&(seqState->DStream));
+
+ seq->litLength = LL_base[llCode] + ((llCode>15) ? BITv06_readBits(&(seqState->DStream), llBits) : 0); /* <= 16 bits */
+ if (MEM_32bits() ||
+ (totalBits > 64 - 7 - (LLFSELog+MLFSELog+OffFSELog)) ) BITv06_reloadDStream(&(seqState->DStream));
+
+ /* ANS state update */
+ FSEv06_updateState(&(seqState->stateLL), &(seqState->DStream)); /* <= 9 bits */
+ FSEv06_updateState(&(seqState->stateML), &(seqState->DStream)); /* <= 9 bits */
+ if (MEM_32bits()) BITv06_reloadDStream(&(seqState->DStream)); /* <= 18 bits */
+ FSEv06_updateState(&(seqState->stateOffb), &(seqState->DStream)); /* <= 8 bits */
+}
+
+
+static size_t ZSTDv06_execSequence(BYTE* op,
+ BYTE* const oend, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
+{
+ BYTE* const oLitEnd = op + sequence.litLength;
+ size_t const sequenceLength = sequence.litLength + sequence.matchLength;
+ BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
+ BYTE* const oend_8 = oend-8;
+ const BYTE* const iLitEnd = *litPtr + sequence.litLength;
+ const BYTE* match = oLitEnd - sequence.offset;
+
+ /* check */
+ if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */
+ if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
+ if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */
+
+ /* copy Literals */
+ ZSTDv06_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
+ op = oLitEnd;
+ *litPtr = iLitEnd; /* update for next sequence */
+
+ /* copy Match */
+ if (sequence.offset > (size_t)(oLitEnd - base)) {
+ /* offset beyond prefix */
+ if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected);
+ match = dictEnd - (base-match);
+ if (match + sequence.matchLength <= dictEnd) {
+ memmove(oLitEnd, match, sequence.matchLength);
+ return sequenceLength;
+ }
+ /* span extDict & currentPrefixSegment */
+ { size_t const length1 = dictEnd - match;
+ memmove(oLitEnd, match, length1);
+ op = oLitEnd + length1;
+ sequence.matchLength -= length1;
+ match = base;
+ if (op > oend_8 || sequence.matchLength < MINMATCH) {
+ while (op < oMatchEnd) *op++ = *match++;
+ return sequenceLength;
+ }
+ } }
+ /* Requirement: op <= oend_8 */
+
+ /* match within prefix */
+ if (sequence.offset < 8) {
+ /* close range match, overlap */
+ static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
+ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
+ int const sub2 = dec64table[sequence.offset];
+ op[0] = match[0];
+ op[1] = match[1];
+ op[2] = match[2];
+ op[3] = match[3];
+ match += dec32table[sequence.offset];
+ ZSTDv06_copy4(op+4, match);
+ match -= sub2;
+ } else {
+ ZSTDv06_copy8(op, match);
+ }
+ op += 8; match += 8;
+
+ if (oMatchEnd > oend-(16-MINMATCH)) {
+ if (op < oend_8) {
+ ZSTDv06_wildcopy(op, match, oend_8 - op);
+ match += oend_8 - op;
+ op = oend_8;
+ }
+ while (op < oMatchEnd) *op++ = *match++;
+ } else {
+ ZSTDv06_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
+ }
+ return sequenceLength;
+}
+
+
+static size_t ZSTDv06_decompressSequences(
+ ZSTDv06_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize)
+{
+ const BYTE* ip = (const BYTE*)seqStart;
+ const BYTE* const iend = ip + seqSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const oend = ostart + maxDstSize;
+ BYTE* op = ostart;
+ const BYTE* litPtr = dctx->litPtr;
+ const BYTE* const litEnd = litPtr + dctx->litSize;
+ FSEv06_DTable* DTableLL = dctx->LLTable;
+ FSEv06_DTable* DTableML = dctx->MLTable;
+ FSEv06_DTable* DTableOffb = dctx->OffTable;
+ const BYTE* const base = (const BYTE*) (dctx->base);
+ const BYTE* const vBase = (const BYTE*) (dctx->vBase);
+ const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
+ int nbSeq;
+
+ /* Build Decoding Tables */
+ { size_t const seqHSize = ZSTDv06_decodeSeqHeaders(&nbSeq, DTableLL, DTableML, DTableOffb, dctx->flagRepeatTable, ip, seqSize);
+ if (ZSTDv06_isError(seqHSize)) return seqHSize;
+ ip += seqHSize;
+ dctx->flagRepeatTable = 0;
+ }
+
+ /* Regen sequences */
+ if (nbSeq) {
+ seq_t sequence;
+ seqState_t seqState;
+
+ memset(&sequence, 0, sizeof(sequence));
+ sequence.offset = REPCODE_STARTVALUE;
+ { U32 i; for (i=0; i<ZSTDv06_REP_INIT; i++) seqState.prevOffset[i] = REPCODE_STARTVALUE; }
+ { size_t const errorCode = BITv06_initDStream(&(seqState.DStream), ip, iend-ip);
+ if (ERR_isError(errorCode)) return ERROR(corruption_detected); }
+ FSEv06_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
+ FSEv06_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
+ FSEv06_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
+
+ for ( ; (BITv06_reloadDStream(&(seqState.DStream)) <= BITv06_DStream_completed) && nbSeq ; ) {
+ nbSeq--;
+ ZSTDv06_decodeSequence(&sequence, &seqState);
+
+#if 0 /* debug */
+ static BYTE* start = NULL;
+ if (start==NULL) start = op;
+ size_t pos = (size_t)(op-start);
+ if ((pos >= 5810037) && (pos < 5810400))
+ printf("Dpos %6u :%5u literals & match %3u bytes at distance %6u \n",
+ pos, (U32)sequence.litLength, (U32)sequence.matchLength, (U32)sequence.offset);
+#endif
+
+ { size_t const oneSeqSize = ZSTDv06_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd);
+ if (ZSTDv06_isError(oneSeqSize)) return oneSeqSize;
+ op += oneSeqSize;
+ } }
+
+ /* check if reached exact end */
+ if (nbSeq) return ERROR(corruption_detected);
+ }
+
+ /* last literal segment */
+ { size_t const lastLLSize = litEnd - litPtr;
+ if (litPtr > litEnd) return ERROR(corruption_detected); /* too many literals already used */
+ if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
+ memcpy(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+
+ return op-ostart;
+}
+
+
+static void ZSTDv06_checkContinuity(ZSTDv06_DCtx* dctx, const void* dst)
+{
+ if (dst != dctx->previousDstEnd) { /* not contiguous */
+ dctx->dictEnd = dctx->previousDstEnd;
+ dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
+ dctx->base = dst;
+ dctx->previousDstEnd = dst;
+ }
+}
+
+
+static size_t ZSTDv06_decompressBlock_internal(ZSTDv06_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{ /* blockType == blockCompressed */
+ const BYTE* ip = (const BYTE*)src;
+
+ if (srcSize >= ZSTDv06_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);
+
+ /* Decode literals sub-block */
+ { size_t const litCSize = ZSTDv06_decodeLiteralsBlock(dctx, src, srcSize);
+ if (ZSTDv06_isError(litCSize)) return litCSize;
+ ip += litCSize;
+ srcSize -= litCSize;
+ }
+ return ZSTDv06_decompressSequences(dctx, dst, dstCapacity, ip, srcSize);
+}
+
+
+size_t ZSTDv06_decompressBlock(ZSTDv06_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ ZSTDv06_checkContinuity(dctx, dst);
+ return ZSTDv06_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
+}
+
+
+/*! ZSTDv06_decompressFrame() :
+* `dctx` must be properly initialized */
+static size_t ZSTDv06_decompressFrame(ZSTDv06_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+ const BYTE* const iend = ip + srcSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + dstCapacity;
+ size_t remainingSize = srcSize;
+ blockProperties_t blockProperties = { bt_compressed, 0 };
+
+ /* check */
+ if (srcSize < ZSTDv06_frameHeaderSize_min+ZSTDv06_blockHeaderSize) return ERROR(srcSize_wrong);
+
+ /* Frame Header */
+ { size_t const frameHeaderSize = ZSTDv06_frameHeaderSize(src, ZSTDv06_frameHeaderSize_min);
+ if (ZSTDv06_isError(frameHeaderSize)) return frameHeaderSize;
+ if (srcSize < frameHeaderSize+ZSTDv06_blockHeaderSize) return ERROR(srcSize_wrong);
+ if (ZSTDv06_decodeFrameHeader(dctx, src, frameHeaderSize)) return ERROR(corruption_detected);
+ ip += frameHeaderSize; remainingSize -= frameHeaderSize;
+ }
+
+ /* Loop on each block */
+ while (1) {
+ size_t decodedSize=0;
+ size_t const cBlockSize = ZSTDv06_getcBlockSize(ip, iend-ip, &blockProperties);
+ if (ZSTDv06_isError(cBlockSize)) return cBlockSize;
+
+ ip += ZSTDv06_blockHeaderSize;
+ remainingSize -= ZSTDv06_blockHeaderSize;
+ if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
+
+ switch(blockProperties.blockType)
+ {
+ case bt_compressed:
+ decodedSize = ZSTDv06_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize);
+ break;
+ case bt_raw :
+ decodedSize = ZSTDv06_copyRawBlock(op, oend-op, ip, cBlockSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet supported */
+ break;
+ case bt_end :
+ /* end of frame */
+ if (remainingSize) return ERROR(srcSize_wrong);
+ break;
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+ if (cBlockSize == 0) break; /* bt_end */
+
+ if (ZSTDv06_isError(decodedSize)) return decodedSize;
+ op += decodedSize;
+ ip += cBlockSize;
+ remainingSize -= cBlockSize;
+ }
+
+ return op-ostart;
+}
+
+
+size_t ZSTDv06_decompress_usingPreparedDCtx(ZSTDv06_DCtx* dctx, const ZSTDv06_DCtx* refDCtx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ ZSTDv06_copyDCtx(dctx, refDCtx);
+ ZSTDv06_checkContinuity(dctx, dst);
+ return ZSTDv06_decompressFrame(dctx, dst, dstCapacity, src, srcSize);
+}
+
+
+size_t ZSTDv06_decompress_usingDict(ZSTDv06_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict, size_t dictSize)
+{
+ ZSTDv06_decompressBegin_usingDict(dctx, dict, dictSize);
+ ZSTDv06_checkContinuity(dctx, dst);
+ return ZSTDv06_decompressFrame(dctx, dst, dstCapacity, src, srcSize);
+}
+
+
+size_t ZSTDv06_decompressDCtx(ZSTDv06_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ return ZSTDv06_decompress_usingDict(dctx, dst, dstCapacity, src, srcSize, NULL, 0);
+}
+
+
+size_t ZSTDv06_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+#if defined(ZSTDv06_HEAPMODE) && (ZSTDv06_HEAPMODE==1)
+ size_t regenSize;
+ ZSTDv06_DCtx* dctx = ZSTDv06_createDCtx();
+ if (dctx==NULL) return ERROR(memory_allocation);
+ regenSize = ZSTDv06_decompressDCtx(dctx, dst, dstCapacity, src, srcSize);
+ ZSTDv06_freeDCtx(dctx);
+ return regenSize;
+#else /* stack mode */
+ ZSTDv06_DCtx dctx;
+ return ZSTDv06_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize);
+#endif
+}
+
+/* ZSTD_errorFrameSizeInfoLegacy() :
+ assumes `cSize` and `dBound` are _not_ NULL */
+static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
+{
+ *cSize = ret;
+ *dBound = ZSTD_CONTENTSIZE_ERROR;
+}
+
+void ZSTDv06_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
+{
+ const BYTE* ip = (const BYTE*)src;
+ size_t remainingSize = srcSize;
+ size_t nbBlocks = 0;
+ blockProperties_t blockProperties = { bt_compressed, 0 };
+
+ /* Frame Header */
+ { size_t const frameHeaderSize = ZSTDv06_frameHeaderSize(src, srcSize);
+ if (ZSTDv06_isError(frameHeaderSize)) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, frameHeaderSize);
+ return;
+ }
+ if (MEM_readLE32(src) != ZSTDv06_MAGICNUMBER) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
+ return;
+ }
+ if (srcSize < frameHeaderSize+ZSTDv06_blockHeaderSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+ ip += frameHeaderSize; remainingSize -= frameHeaderSize;
+ }
+
+ /* Loop on each block */
+ while (1) {
+ size_t const cBlockSize = ZSTDv06_getcBlockSize(ip, remainingSize, &blockProperties);
+ if (ZSTDv06_isError(cBlockSize)) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
+ return;
+ }
+
+ ip += ZSTDv06_blockHeaderSize;
+ remainingSize -= ZSTDv06_blockHeaderSize;
+ if (cBlockSize > remainingSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+
+ if (cBlockSize == 0) break; /* bt_end */
+
+ ip += cBlockSize;
+ remainingSize -= cBlockSize;
+ nbBlocks++;
+ }
+
+ *cSize = ip - (const BYTE*)src;
+ *dBound = nbBlocks * ZSTDv06_BLOCKSIZE_MAX;
+}
+
+/*_******************************
+* Streaming Decompression API
+********************************/
+size_t ZSTDv06_nextSrcSizeToDecompress(ZSTDv06_DCtx* dctx)
+{
+ return dctx->expected;
+}
+
+size_t ZSTDv06_decompressContinue(ZSTDv06_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ /* Sanity check */
+ if (srcSize != dctx->expected) return ERROR(srcSize_wrong);
+ if (dstCapacity) ZSTDv06_checkContinuity(dctx, dst);
+
+ /* Decompress : frame header; part 1 */
+ switch (dctx->stage)
+ {
+ case ZSTDds_getFrameHeaderSize :
+ if (srcSize != ZSTDv06_frameHeaderSize_min) return ERROR(srcSize_wrong); /* impossible */
+ dctx->headerSize = ZSTDv06_frameHeaderSize(src, ZSTDv06_frameHeaderSize_min);
+ if (ZSTDv06_isError(dctx->headerSize)) return dctx->headerSize;
+ memcpy(dctx->headerBuffer, src, ZSTDv06_frameHeaderSize_min);
+ if (dctx->headerSize > ZSTDv06_frameHeaderSize_min) {
+ dctx->expected = dctx->headerSize - ZSTDv06_frameHeaderSize_min;
+ dctx->stage = ZSTDds_decodeFrameHeader;
+ return 0;
+ }
+ dctx->expected = 0; /* not necessary to copy more */
+ /* fall-through */
+ case ZSTDds_decodeFrameHeader:
+ { size_t result;
+ memcpy(dctx->headerBuffer + ZSTDv06_frameHeaderSize_min, src, dctx->expected);
+ result = ZSTDv06_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize);
+ if (ZSTDv06_isError(result)) return result;
+ dctx->expected = ZSTDv06_blockHeaderSize;
+ dctx->stage = ZSTDds_decodeBlockHeader;
+ return 0;
+ }
+ case ZSTDds_decodeBlockHeader:
+ { blockProperties_t bp;
+ size_t const cBlockSize = ZSTDv06_getcBlockSize(src, ZSTDv06_blockHeaderSize, &bp);
+ if (ZSTDv06_isError(cBlockSize)) return cBlockSize;
+ if (bp.blockType == bt_end) {
+ dctx->expected = 0;
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ } else {
+ dctx->expected = cBlockSize;
+ dctx->bType = bp.blockType;
+ dctx->stage = ZSTDds_decompressBlock;
+ }
+ return 0;
+ }
+ case ZSTDds_decompressBlock:
+ { size_t rSize;
+ switch(dctx->bType)
+ {
+ case bt_compressed:
+ rSize = ZSTDv06_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
+ break;
+ case bt_raw :
+ rSize = ZSTDv06_copyRawBlock(dst, dstCapacity, src, srcSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet handled */
+ break;
+ case bt_end : /* should never happen (filtered at phase 1) */
+ rSize = 0;
+ break;
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+ dctx->stage = ZSTDds_decodeBlockHeader;
+ dctx->expected = ZSTDv06_blockHeaderSize;
+ dctx->previousDstEnd = (char*)dst + rSize;
+ return rSize;
+ }
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+}
+
+
+static void ZSTDv06_refDictContent(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ dctx->dictEnd = dctx->previousDstEnd;
+ dctx->vBase = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
+ dctx->base = dict;
+ dctx->previousDstEnd = (const char*)dict + dictSize;
+}
+
+static size_t ZSTDv06_loadEntropy(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ size_t hSize, offcodeHeaderSize, matchlengthHeaderSize, litlengthHeaderSize;
+
+ hSize = HUFv06_readDTableX4(dctx->hufTableX4, dict, dictSize);
+ if (HUFv06_isError(hSize)) return ERROR(dictionary_corrupted);
+ dict = (const char*)dict + hSize;
+ dictSize -= hSize;
+
+ { short offcodeNCount[MaxOff+1];
+ U32 offcodeMaxValue=MaxOff, offcodeLog;
+ offcodeHeaderSize = FSEv06_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dict, dictSize);
+ if (FSEv06_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
+ if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted);
+ { size_t const errorCode = FSEv06_buildDTable(dctx->OffTable, offcodeNCount, offcodeMaxValue, offcodeLog);
+ if (FSEv06_isError(errorCode)) return ERROR(dictionary_corrupted); }
+ dict = (const char*)dict + offcodeHeaderSize;
+ dictSize -= offcodeHeaderSize;
+ }
+
+ { short matchlengthNCount[MaxML+1];
+ unsigned matchlengthMaxValue = MaxML, matchlengthLog;
+ matchlengthHeaderSize = FSEv06_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dict, dictSize);
+ if (FSEv06_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
+ if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted);
+ { size_t const errorCode = FSEv06_buildDTable(dctx->MLTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog);
+ if (FSEv06_isError(errorCode)) return ERROR(dictionary_corrupted); }
+ dict = (const char*)dict + matchlengthHeaderSize;
+ dictSize -= matchlengthHeaderSize;
+ }
+
+ { short litlengthNCount[MaxLL+1];
+ unsigned litlengthMaxValue = MaxLL, litlengthLog;
+ litlengthHeaderSize = FSEv06_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dict, dictSize);
+ if (FSEv06_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
+ if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted);
+ { size_t const errorCode = FSEv06_buildDTable(dctx->LLTable, litlengthNCount, litlengthMaxValue, litlengthLog);
+ if (FSEv06_isError(errorCode)) return ERROR(dictionary_corrupted); }
+ }
+
+ dctx->flagRepeatTable = 1;
+ return hSize + offcodeHeaderSize + matchlengthHeaderSize + litlengthHeaderSize;
+}
+
+static size_t ZSTDv06_decompress_insertDictionary(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ size_t eSize;
+ U32 const magic = MEM_readLE32(dict);
+ if (magic != ZSTDv06_DICT_MAGIC) {
+ /* pure content mode */
+ ZSTDv06_refDictContent(dctx, dict, dictSize);
+ return 0;
+ }
+ /* load entropy tables */
+ dict = (const char*)dict + 4;
+ dictSize -= 4;
+ eSize = ZSTDv06_loadEntropy(dctx, dict, dictSize);
+ if (ZSTDv06_isError(eSize)) return ERROR(dictionary_corrupted);
+
+ /* reference dictionary content */
+ dict = (const char*)dict + eSize;
+ dictSize -= eSize;
+ ZSTDv06_refDictContent(dctx, dict, dictSize);
+
+ return 0;
+}
+
+
+size_t ZSTDv06_decompressBegin_usingDict(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ { size_t const errorCode = ZSTDv06_decompressBegin(dctx);
+ if (ZSTDv06_isError(errorCode)) return errorCode; }
+
+ if (dict && dictSize) {
+ size_t const errorCode = ZSTDv06_decompress_insertDictionary(dctx, dict, dictSize);
+ if (ZSTDv06_isError(errorCode)) return ERROR(dictionary_corrupted);
+ }
+
+ return 0;
+}
+
+/*
+ Buffered version of Zstd compression library
+ Copyright (C) 2015-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd homepage : http://www.zstd.net/
+*/
+
+
+/*-***************************************************************************
+* Streaming decompression howto
+*
+* A ZBUFFv06_DCtx object is required to track streaming operations.
+* Use ZBUFFv06_createDCtx() and ZBUFFv06_freeDCtx() to create/release resources.
+* Use ZBUFFv06_decompressInit() to start a new decompression operation,
+* or ZBUFFv06_decompressInitDictionary() if decompression requires a dictionary.
+* Note that ZBUFFv06_DCtx objects can be re-init multiple times.
+*
+* Use ZBUFFv06_decompressContinue() repetitively to consume your input.
+* *srcSizePtr and *dstCapacityPtr can be any size.
+* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
+* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
+* The content of @dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change @dst.
+* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
+* or 0 when a frame is completely decoded,
+* or an error code, which can be tested using ZBUFFv06_isError().
+*
+* Hint : recommended buffer sizes (not compulsory) : ZBUFFv06_recommendedDInSize() and ZBUFFv06_recommendedDOutSize()
+* output : ZBUFFv06_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
+* input : ZBUFFv06_recommendedDInSize == 128KB + 3;
+* just follow indications from ZBUFFv06_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
+* *******************************************************************************/
+
+typedef enum { ZBUFFds_init, ZBUFFds_loadHeader,
+ ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFFv06_dStage;
+
+/* *** Resource management *** */
+struct ZBUFFv06_DCtx_s {
+ ZSTDv06_DCtx* zd;
+ ZSTDv06_frameParams fParams;
+ ZBUFFv06_dStage stage;
+ char* inBuff;
+ size_t inBuffSize;
+ size_t inPos;
+ char* outBuff;
+ size_t outBuffSize;
+ size_t outStart;
+ size_t outEnd;
+ size_t blockSize;
+ BYTE headerBuffer[ZSTDv06_FRAMEHEADERSIZE_MAX];
+ size_t lhSize;
+}; /* typedef'd to ZBUFFv06_DCtx within "zstd_buffered.h" */
+
+
+ZBUFFv06_DCtx* ZBUFFv06_createDCtx(void)
+{
+ ZBUFFv06_DCtx* zbd = (ZBUFFv06_DCtx*)malloc(sizeof(ZBUFFv06_DCtx));
+ if (zbd==NULL) return NULL;
+ memset(zbd, 0, sizeof(*zbd));
+ zbd->zd = ZSTDv06_createDCtx();
+ zbd->stage = ZBUFFds_init;
+ return zbd;
+}
+
+size_t ZBUFFv06_freeDCtx(ZBUFFv06_DCtx* zbd)
+{
+ if (zbd==NULL) return 0; /* support free on null */
+ ZSTDv06_freeDCtx(zbd->zd);
+ free(zbd->inBuff);
+ free(zbd->outBuff);
+ free(zbd);
+ return 0;
+}
+
+
+/* *** Initialization *** */
+
+size_t ZBUFFv06_decompressInitDictionary(ZBUFFv06_DCtx* zbd, const void* dict, size_t dictSize)
+{
+ zbd->stage = ZBUFFds_loadHeader;
+ zbd->lhSize = zbd->inPos = zbd->outStart = zbd->outEnd = 0;
+ return ZSTDv06_decompressBegin_usingDict(zbd->zd, dict, dictSize);
+}
+
+size_t ZBUFFv06_decompressInit(ZBUFFv06_DCtx* zbd)
+{
+ return ZBUFFv06_decompressInitDictionary(zbd, NULL, 0);
+}
+
+
+
+MEM_STATIC size_t ZBUFFv06_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ size_t length = MIN(dstCapacity, srcSize);
+ memcpy(dst, src, length);
+ return length;
+}
+
+
+/* *** Decompression *** */
+
+size_t ZBUFFv06_decompressContinue(ZBUFFv06_DCtx* zbd,
+ void* dst, size_t* dstCapacityPtr,
+ const void* src, size_t* srcSizePtr)
+{
+ const char* const istart = (const char*)src;
+ const char* const iend = istart + *srcSizePtr;
+ const char* ip = istart;
+ char* const ostart = (char*)dst;
+ char* const oend = ostart + *dstCapacityPtr;
+ char* op = ostart;
+ U32 notDone = 1;
+
+ while (notDone) {
+ switch(zbd->stage)
+ {
+ case ZBUFFds_init :
+ return ERROR(init_missing);
+
+ case ZBUFFds_loadHeader :
+ { size_t const hSize = ZSTDv06_getFrameParams(&(zbd->fParams), zbd->headerBuffer, zbd->lhSize);
+ if (hSize != 0) {
+ size_t const toLoad = hSize - zbd->lhSize; /* if hSize!=0, hSize > zbd->lhSize */
+ if (ZSTDv06_isError(hSize)) return hSize;
+ if (toLoad > (size_t)(iend-ip)) { /* not enough input to load full header */
+ memcpy(zbd->headerBuffer + zbd->lhSize, ip, iend-ip);
+ zbd->lhSize += iend-ip;
+ *dstCapacityPtr = 0;
+ return (hSize - zbd->lhSize) + ZSTDv06_blockHeaderSize; /* remaining header bytes + next block header */
+ }
+ memcpy(zbd->headerBuffer + zbd->lhSize, ip, toLoad); zbd->lhSize = hSize; ip += toLoad;
+ break;
+ } }
+
+ /* Consume header */
+ { size_t const h1Size = ZSTDv06_nextSrcSizeToDecompress(zbd->zd); /* == ZSTDv06_frameHeaderSize_min */
+ size_t const h1Result = ZSTDv06_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer, h1Size);
+ if (ZSTDv06_isError(h1Result)) return h1Result;
+ if (h1Size < zbd->lhSize) { /* long header */
+ size_t const h2Size = ZSTDv06_nextSrcSizeToDecompress(zbd->zd);
+ size_t const h2Result = ZSTDv06_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer+h1Size, h2Size);
+ if (ZSTDv06_isError(h2Result)) return h2Result;
+ } }
+
+ /* Frame header instruct buffer sizes */
+ { size_t const blockSize = MIN(1 << zbd->fParams.windowLog, ZSTDv06_BLOCKSIZE_MAX);
+ zbd->blockSize = blockSize;
+ if (zbd->inBuffSize < blockSize) {
+ free(zbd->inBuff);
+ zbd->inBuffSize = blockSize;
+ zbd->inBuff = (char*)malloc(blockSize);
+ if (zbd->inBuff == NULL) return ERROR(memory_allocation);
+ }
+ { size_t const neededOutSize = ((size_t)1 << zbd->fParams.windowLog) + blockSize + WILDCOPY_OVERLENGTH * 2;
+ if (zbd->outBuffSize < neededOutSize) {
+ free(zbd->outBuff);
+ zbd->outBuffSize = neededOutSize;
+ zbd->outBuff = (char*)malloc(neededOutSize);
+ if (zbd->outBuff == NULL) return ERROR(memory_allocation);
+ } } }
+ zbd->stage = ZBUFFds_read;
+ /* fall-through */
+ case ZBUFFds_read:
+ { size_t const neededInSize = ZSTDv06_nextSrcSizeToDecompress(zbd->zd);
+ if (neededInSize==0) { /* end of frame */
+ zbd->stage = ZBUFFds_init;
+ notDone = 0;
+ break;
+ }
+ if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */
+ size_t const decodedSize = ZSTDv06_decompressContinue(zbd->zd,
+ zbd->outBuff + zbd->outStart, zbd->outBuffSize - zbd->outStart,
+ ip, neededInSize);
+ if (ZSTDv06_isError(decodedSize)) return decodedSize;
+ ip += neededInSize;
+ if (!decodedSize) break; /* this was just a header */
+ zbd->outEnd = zbd->outStart + decodedSize;
+ zbd->stage = ZBUFFds_flush;
+ break;
+ }
+ if (ip==iend) { notDone = 0; break; } /* no more input */
+ zbd->stage = ZBUFFds_load;
+ }
+ /* fall-through */
+ case ZBUFFds_load:
+ { size_t const neededInSize = ZSTDv06_nextSrcSizeToDecompress(zbd->zd);
+ size_t const toLoad = neededInSize - zbd->inPos; /* should always be <= remaining space within inBuff */
+ size_t loadedSize;
+ if (toLoad > zbd->inBuffSize - zbd->inPos) return ERROR(corruption_detected); /* should never happen */
+ loadedSize = ZBUFFv06_limitCopy(zbd->inBuff + zbd->inPos, toLoad, ip, iend-ip);
+ ip += loadedSize;
+ zbd->inPos += loadedSize;
+ if (loadedSize < toLoad) { notDone = 0; break; } /* not enough input, wait for more */
+
+ /* decode loaded input */
+ { size_t const decodedSize = ZSTDv06_decompressContinue(zbd->zd,
+ zbd->outBuff + zbd->outStart, zbd->outBuffSize - zbd->outStart,
+ zbd->inBuff, neededInSize);
+ if (ZSTDv06_isError(decodedSize)) return decodedSize;
+ zbd->inPos = 0; /* input is consumed */
+ if (!decodedSize) { zbd->stage = ZBUFFds_read; break; } /* this was just a header */
+ zbd->outEnd = zbd->outStart + decodedSize;
+ zbd->stage = ZBUFFds_flush;
+ // break; /* ZBUFFds_flush follows */
+ }
+ }
+ /* fall-through */
+ case ZBUFFds_flush:
+ { size_t const toFlushSize = zbd->outEnd - zbd->outStart;
+ size_t const flushedSize = ZBUFFv06_limitCopy(op, oend-op, zbd->outBuff + zbd->outStart, toFlushSize);
+ op += flushedSize;
+ zbd->outStart += flushedSize;
+ if (flushedSize == toFlushSize) {
+ zbd->stage = ZBUFFds_read;
+ if (zbd->outStart + zbd->blockSize > zbd->outBuffSize)
+ zbd->outStart = zbd->outEnd = 0;
+ break;
+ }
+ /* cannot flush everything */
+ notDone = 0;
+ break;
+ }
+ default: return ERROR(GENERIC); /* impossible */
+ } }
+
+ /* result */
+ *srcSizePtr = ip-istart;
+ *dstCapacityPtr = op-ostart;
+ { size_t nextSrcSizeHint = ZSTDv06_nextSrcSizeToDecompress(zbd->zd);
+ if (nextSrcSizeHint > ZSTDv06_blockHeaderSize) nextSrcSizeHint+= ZSTDv06_blockHeaderSize; /* get following block header too */
+ nextSrcSizeHint -= zbd->inPos; /* already loaded*/
+ return nextSrcSizeHint;
+ }
+}
+
+
+
+/* *************************************
+* Tool functions
+***************************************/
+size_t ZBUFFv06_recommendedDInSize(void) { return ZSTDv06_BLOCKSIZE_MAX + ZSTDv06_blockHeaderSize /* block header size*/ ; }
+size_t ZBUFFv06_recommendedDOutSize(void) { return ZSTDv06_BLOCKSIZE_MAX; }
diff --git a/vendor/github.com/DataDog/zstd/zstd_v06.h b/vendor/github.com/DataDog/zstd/zstd_v06.h
new file mode 100644
index 0000000..0781857
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v06.h
@@ -0,0 +1,172 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTDv06_H
+#define ZSTDv06_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/*====== Dependency ======*/
+#include <stddef.h> /* size_t */
+
+
+/*====== Export for Windows ======*/
+/*!
+* ZSTDv06_DLL_EXPORT :
+* Enable exporting of functions when building a Windows DLL
+*/
+#if defined(_WIN32) && defined(ZSTDv06_DLL_EXPORT) && (ZSTDv06_DLL_EXPORT==1)
+# define ZSTDLIBv06_API __declspec(dllexport)
+#else
+# define ZSTDLIBv06_API
+#endif
+
+
+/* *************************************
+* Simple functions
+***************************************/
+/*! ZSTDv06_decompress() :
+ `compressedSize` : is the _exact_ size of the compressed blob, otherwise decompression will fail.
+ `dstCapacity` must be large enough, equal or larger than originalSize.
+ @return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
+ or an errorCode if it fails (which can be tested using ZSTDv06_isError()) */
+ZSTDLIBv06_API size_t ZSTDv06_decompress( void* dst, size_t dstCapacity,
+ const void* src, size_t compressedSize);
+
+/**
+ZSTDv06_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.6.x format
+ srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
+ cSize (output parameter) : the number of bytes that would be read to decompress this frame
+ or an error code if it fails (which can be tested using ZSTDv01_isError())
+ dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
+ or ZSTD_CONTENTSIZE_ERROR if an error occurs
+
+ note : assumes `cSize` and `dBound` are _not_ NULL.
+*/
+void ZSTDv06_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
+ size_t* cSize, unsigned long long* dBound);
+
+/* *************************************
+* Helper functions
+***************************************/
+ZSTDLIBv06_API size_t ZSTDv06_compressBound(size_t srcSize); /*!< maximum compressed size (worst case scenario) */
+
+/* Error Management */
+ZSTDLIBv06_API unsigned ZSTDv06_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
+ZSTDLIBv06_API const char* ZSTDv06_getErrorName(size_t code); /*!< provides readable string for an error code */
+
+
+/* *************************************
+* Explicit memory management
+***************************************/
+/** Decompression context */
+typedef struct ZSTDv06_DCtx_s ZSTDv06_DCtx;
+ZSTDLIBv06_API ZSTDv06_DCtx* ZSTDv06_createDCtx(void);
+ZSTDLIBv06_API size_t ZSTDv06_freeDCtx(ZSTDv06_DCtx* dctx); /*!< @return : errorCode */
+
+/** ZSTDv06_decompressDCtx() :
+* Same as ZSTDv06_decompress(), but requires an already allocated ZSTDv06_DCtx (see ZSTDv06_createDCtx()) */
+ZSTDLIBv06_API size_t ZSTDv06_decompressDCtx(ZSTDv06_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+
+/*-***********************
+* Dictionary API
+*************************/
+/*! ZSTDv06_decompress_usingDict() :
+* Decompression using a pre-defined Dictionary content (see dictBuilder).
+* Dictionary must be identical to the one used during compression, otherwise regenerated data will be corrupted.
+* Note : dict can be NULL, in which case, it's equivalent to ZSTDv06_decompressDCtx() */
+ZSTDLIBv06_API size_t ZSTDv06_decompress_usingDict(ZSTDv06_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize);
+
+
+/*-************************
+* Advanced Streaming API
+***************************/
+struct ZSTDv06_frameParams_s { unsigned long long frameContentSize; unsigned windowLog; };
+typedef struct ZSTDv06_frameParams_s ZSTDv06_frameParams;
+
+ZSTDLIBv06_API size_t ZSTDv06_getFrameParams(ZSTDv06_frameParams* fparamsPtr, const void* src, size_t srcSize); /**< doesn't consume input */
+ZSTDLIBv06_API size_t ZSTDv06_decompressBegin_usingDict(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize);
+ZSTDLIBv06_API void ZSTDv06_copyDCtx(ZSTDv06_DCtx* dctx, const ZSTDv06_DCtx* preparedDCtx);
+
+ZSTDLIBv06_API size_t ZSTDv06_nextSrcSizeToDecompress(ZSTDv06_DCtx* dctx);
+ZSTDLIBv06_API size_t ZSTDv06_decompressContinue(ZSTDv06_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+
+
+/* *************************************
+* ZBUFF API
+***************************************/
+
+typedef struct ZBUFFv06_DCtx_s ZBUFFv06_DCtx;
+ZSTDLIBv06_API ZBUFFv06_DCtx* ZBUFFv06_createDCtx(void);
+ZSTDLIBv06_API size_t ZBUFFv06_freeDCtx(ZBUFFv06_DCtx* dctx);
+
+ZSTDLIBv06_API size_t ZBUFFv06_decompressInit(ZBUFFv06_DCtx* dctx);
+ZSTDLIBv06_API size_t ZBUFFv06_decompressInitDictionary(ZBUFFv06_DCtx* dctx, const void* dict, size_t dictSize);
+
+ZSTDLIBv06_API size_t ZBUFFv06_decompressContinue(ZBUFFv06_DCtx* dctx,
+ void* dst, size_t* dstCapacityPtr,
+ const void* src, size_t* srcSizePtr);
+
+/*-***************************************************************************
+* Streaming decompression howto
+*
+* A ZBUFFv06_DCtx object is required to track streaming operations.
+* Use ZBUFFv06_createDCtx() and ZBUFFv06_freeDCtx() to create/release resources.
+* Use ZBUFFv06_decompressInit() to start a new decompression operation,
+* or ZBUFFv06_decompressInitDictionary() if decompression requires a dictionary.
+* Note that ZBUFFv06_DCtx objects can be re-init multiple times.
+*
+* Use ZBUFFv06_decompressContinue() repetitively to consume your input.
+* *srcSizePtr and *dstCapacityPtr can be any size.
+* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
+* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
+* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
+* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
+* or 0 when a frame is completely decoded,
+* or an error code, which can be tested using ZBUFFv06_isError().
+*
+* Hint : recommended buffer sizes (not compulsory) : ZBUFFv06_recommendedDInSize() and ZBUFFv06_recommendedDOutSize()
+* output : ZBUFFv06_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
+* input : ZBUFFv06_recommendedDInSize == 128KB + 3;
+* just follow indications from ZBUFFv06_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
+* *******************************************************************************/
+
+
+/* *************************************
+* Tool functions
+***************************************/
+ZSTDLIBv06_API unsigned ZBUFFv06_isError(size_t errorCode);
+ZSTDLIBv06_API const char* ZBUFFv06_getErrorName(size_t errorCode);
+
+/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
+* These sizes are just hints, they tend to offer better latency */
+ZSTDLIBv06_API size_t ZBUFFv06_recommendedDInSize(void);
+ZSTDLIBv06_API size_t ZBUFFv06_recommendedDOutSize(void);
+
+
+/*-*************************************
+* Constants
+***************************************/
+#define ZSTDv06_MAGICNUMBER 0xFD2FB526 /* v0.6 */
+
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTDv06_BUFFERED_H */
diff --git a/vendor/github.com/DataDog/zstd/zstd_v07.c b/vendor/github.com/DataDog/zstd/zstd_v07.c
new file mode 100644
index 0000000..a83ddc9
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v07.c
@@ -0,0 +1,4533 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+/*- Dependencies -*/
+#include <stddef.h> /* size_t, ptrdiff_t */
+#include <string.h> /* memcpy */
+#include <stdlib.h> /* malloc, free, qsort */
+
+#ifndef XXH_STATIC_LINKING_ONLY
+# define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
+#endif
+#include "xxhash.h" /* XXH64_* */
+#include "zstd_v07.h"
+
+#define FSEv07_STATIC_LINKING_ONLY /* FSEv07_MIN_TABLELOG */
+#define HUFv07_STATIC_LINKING_ONLY /* HUFv07_TABLELOG_ABSOLUTEMAX */
+#define ZSTDv07_STATIC_LINKING_ONLY
+
+#include "error_private.h"
+
+
+#ifdef ZSTDv07_STATIC_LINKING_ONLY
+
+/* ====================================================================================
+ * The definitions in this section are considered experimental.
+ * They should never be used with a dynamic library, as they may change in the future.
+ * They are provided for advanced usages.
+ * Use them only in association with static linking.
+ * ==================================================================================== */
+
+/*--- Constants ---*/
+#define ZSTDv07_MAGIC_SKIPPABLE_START 0x184D2A50U
+
+#define ZSTDv07_WINDOWLOG_MAX_32 25
+#define ZSTDv07_WINDOWLOG_MAX_64 27
+#define ZSTDv07_WINDOWLOG_MAX ((U32)(MEM_32bits() ? ZSTDv07_WINDOWLOG_MAX_32 : ZSTDv07_WINDOWLOG_MAX_64))
+#define ZSTDv07_WINDOWLOG_MIN 18
+#define ZSTDv07_CHAINLOG_MAX (ZSTDv07_WINDOWLOG_MAX+1)
+#define ZSTDv07_CHAINLOG_MIN 4
+#define ZSTDv07_HASHLOG_MAX ZSTDv07_WINDOWLOG_MAX
+#define ZSTDv07_HASHLOG_MIN 12
+#define ZSTDv07_HASHLOG3_MAX 17
+#define ZSTDv07_SEARCHLOG_MAX (ZSTDv07_WINDOWLOG_MAX-1)
+#define ZSTDv07_SEARCHLOG_MIN 1
+#define ZSTDv07_SEARCHLENGTH_MAX 7
+#define ZSTDv07_SEARCHLENGTH_MIN 3
+#define ZSTDv07_TARGETLENGTH_MIN 4
+#define ZSTDv07_TARGETLENGTH_MAX 999
+
+#define ZSTDv07_FRAMEHEADERSIZE_MAX 18 /* for static allocation */
+static const size_t ZSTDv07_frameHeaderSize_min = 5;
+static const size_t ZSTDv07_frameHeaderSize_max = ZSTDv07_FRAMEHEADERSIZE_MAX;
+static const size_t ZSTDv07_skippableHeaderSize = 8; /* magic number + skippable frame length */
+
+
+/* custom memory allocation functions */
+typedef void* (*ZSTDv07_allocFunction) (void* opaque, size_t size);
+typedef void (*ZSTDv07_freeFunction) (void* opaque, void* address);
+typedef struct { ZSTDv07_allocFunction customAlloc; ZSTDv07_freeFunction customFree; void* opaque; } ZSTDv07_customMem;
+
+
+/*--- Advanced Decompression functions ---*/
+
+/*! ZSTDv07_estimateDCtxSize() :
+ * Gives the potential amount of memory allocated to create a ZSTDv07_DCtx */
+ZSTDLIBv07_API size_t ZSTDv07_estimateDCtxSize(void);
+
+/*! ZSTDv07_createDCtx_advanced() :
+ * Create a ZSTD decompression context using external alloc and free functions */
+ZSTDLIBv07_API ZSTDv07_DCtx* ZSTDv07_createDCtx_advanced(ZSTDv07_customMem customMem);
+
+/*! ZSTDv07_sizeofDCtx() :
+ * Gives the amount of memory used by a given ZSTDv07_DCtx */
+ZSTDLIBv07_API size_t ZSTDv07_sizeofDCtx(const ZSTDv07_DCtx* dctx);
+
+
+/* ******************************************************************
+* Buffer-less streaming functions (synchronous mode)
+********************************************************************/
+
+ZSTDLIBv07_API size_t ZSTDv07_decompressBegin(ZSTDv07_DCtx* dctx);
+ZSTDLIBv07_API size_t ZSTDv07_decompressBegin_usingDict(ZSTDv07_DCtx* dctx, const void* dict, size_t dictSize);
+ZSTDLIBv07_API void ZSTDv07_copyDCtx(ZSTDv07_DCtx* dctx, const ZSTDv07_DCtx* preparedDCtx);
+
+ZSTDLIBv07_API size_t ZSTDv07_nextSrcSizeToDecompress(ZSTDv07_DCtx* dctx);
+ZSTDLIBv07_API size_t ZSTDv07_decompressContinue(ZSTDv07_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+/*
+ Buffer-less streaming decompression (synchronous mode)
+
+ A ZSTDv07_DCtx object is required to track streaming operations.
+ Use ZSTDv07_createDCtx() / ZSTDv07_freeDCtx() to manage it.
+ A ZSTDv07_DCtx object can be re-used multiple times.
+
+ First optional operation is to retrieve frame parameters, using ZSTDv07_getFrameParams(), which doesn't consume the input.
+ It can provide the minimum size of rolling buffer required to properly decompress data (`windowSize`),
+ and optionally the final size of uncompressed content.
+ (Note : content size is an optional info that may not be present. 0 means : content size unknown)
+ Frame parameters are extracted from the beginning of compressed frame.
+ The amount of data to read is variable, from ZSTDv07_frameHeaderSize_min to ZSTDv07_frameHeaderSize_max (so if `srcSize` >= ZSTDv07_frameHeaderSize_max, it will always work)
+ If `srcSize` is too small for operation to succeed, function will return the minimum size it requires to produce a result.
+ Result : 0 when successful, it means the ZSTDv07_frameParams structure has been filled.
+ >0 : means there is not enough data into `src`. Provides the expected size to successfully decode header.
+ errorCode, which can be tested using ZSTDv07_isError()
+
+ Start decompression, with ZSTDv07_decompressBegin() or ZSTDv07_decompressBegin_usingDict().
+ Alternatively, you can copy a prepared context, using ZSTDv07_copyDCtx().
+
+ Then use ZSTDv07_nextSrcSizeToDecompress() and ZSTDv07_decompressContinue() alternatively.
+ ZSTDv07_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTDv07_decompressContinue().
+ ZSTDv07_decompressContinue() requires this exact amount of bytes, or it will fail.
+
+ @result of ZSTDv07_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity).
+ It can be zero, which is not an error; it just means ZSTDv07_decompressContinue() has decoded some header.
+
+ ZSTDv07_decompressContinue() needs previous data blocks during decompression, up to `windowSize`.
+ They should preferably be located contiguously, prior to current block.
+ Alternatively, a round buffer of sufficient size is also possible. Sufficient size is determined by frame parameters.
+ ZSTDv07_decompressContinue() is very sensitive to contiguity,
+ if 2 blocks don't follow each other, make sure that either the compressor breaks contiguity at the same place,
+ or that previous contiguous segment is large enough to properly handle maximum back-reference.
+
+ A frame is fully decoded when ZSTDv07_nextSrcSizeToDecompress() returns zero.
+ Context can then be reset to start a new decompression.
+
+
+ == Special case : skippable frames ==
+
+ Skippable frames allow the integration of user-defined data into a flow of concatenated frames.
+ Skippable frames will be ignored (skipped) by a decompressor. The format of skippable frame is following:
+ a) Skippable frame ID - 4 Bytes, Little endian format, any value from 0x184D2A50 to 0x184D2A5F
+ b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits
+ c) Frame Content - any content (User Data) of length equal to Frame Size
+ For skippable frames ZSTDv07_decompressContinue() always returns 0.
+ For skippable frames ZSTDv07_getFrameParams() returns fparamsPtr->windowLog==0 what means that a frame is skippable.
+ It also returns Frame Size as fparamsPtr->frameContentSize.
+*/
+
+
+/* **************************************
+* Block functions
+****************************************/
+/*! Block functions produce and decode raw zstd blocks, without frame metadata.
+ Frame metadata cost is typically ~18 bytes, which can be non-negligible for very small blocks (< 100 bytes).
+ User will have to take in charge required information to regenerate data, such as compressed and content sizes.
+
+ A few rules to respect :
+ - Compressing and decompressing require a context structure
+ + Use ZSTDv07_createCCtx() and ZSTDv07_createDCtx()
+ - It is necessary to init context before starting
+ + compression : ZSTDv07_compressBegin()
+ + decompression : ZSTDv07_decompressBegin()
+ + variants _usingDict() are also allowed
+ + copyCCtx() and copyDCtx() work too
+ - Block size is limited, it must be <= ZSTDv07_getBlockSizeMax()
+ + If you need to compress more, cut data into multiple blocks
+ + Consider using the regular ZSTDv07_compress() instead, as frame metadata costs become negligible when source size is large.
+ - When a block is considered not compressible enough, ZSTDv07_compressBlock() result will be zero.
+ In which case, nothing is produced into `dst`.
+ + User must test for such outcome and deal directly with uncompressed data
+ + ZSTDv07_decompressBlock() doesn't accept uncompressed data as input !!!
+ + In case of multiple successive blocks, decoder must be informed of uncompressed block existence to follow proper history.
+ Use ZSTDv07_insertBlock() in such a case.
+*/
+
+#define ZSTDv07_BLOCKSIZE_ABSOLUTEMAX (128 * 1024) /* define, for static allocation */
+ZSTDLIBv07_API size_t ZSTDv07_decompressBlock(ZSTDv07_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIBv07_API size_t ZSTDv07_insertBlock(ZSTDv07_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert block into `dctx` history. Useful for uncompressed blocks */
+
+
+#endif /* ZSTDv07_STATIC_LINKING_ONLY */
+
+
+/* ******************************************************************
+ mem.h
+ low-level memory access routines
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+#ifndef MEM_H_MODULE
+#define MEM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/*-****************************************
+* Compiler specifics
+******************************************/
+#if defined(_MSC_VER) /* Visual Studio */
+# include <stdlib.h> /* _byteswap_ulong */
+# include <intrin.h> /* _byteswap_* */
+#endif
+#if defined(__GNUC__)
+# define MEM_STATIC static __attribute__((unused))
+#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define MEM_STATIC static inline
+#elif defined(_MSC_VER)
+# define MEM_STATIC static __inline
+#else
+# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
+
+
+/*-**************************************************************
+* Basic Types
+*****************************************************************/
+#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+# include <stdint.h>
+ typedef uint8_t BYTE;
+ typedef uint16_t U16;
+ typedef int16_t S16;
+ typedef uint32_t U32;
+ typedef int32_t S32;
+ typedef uint64_t U64;
+ typedef int64_t S64;
+#else
+ typedef unsigned char BYTE;
+ typedef unsigned short U16;
+ typedef signed short S16;
+ typedef unsigned int U32;
+ typedef signed int S32;
+ typedef unsigned long long U64;
+ typedef signed long long S64;
+#endif
+
+
+/*-**************************************************************
+* Memory I/O
+*****************************************************************/
+/* MEM_FORCE_MEMORY_ACCESS :
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
+ * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method is portable but violate C standard.
+ * It can generate buggy code on targets depending on alignment.
+ * In some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
+ * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
+# define MEM_FORCE_MEMORY_ACCESS 2
+# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
+ (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+# define MEM_FORCE_MEMORY_ACCESS 1
+# endif
+#endif
+
+MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
+MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
+
+MEM_STATIC unsigned MEM_isLittleEndian(void)
+{
+ const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
+ return one.c[0];
+}
+
+#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
+
+/* violates C standard, by lying on structure alignment.
+Only use if no other choice to achieve best performance on target platform */
+MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
+MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
+MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
+
+#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+typedef union { U16 u16; U32 u32; U64 u64; size_t st; } __attribute__((packed)) unalign;
+
+MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
+MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
+
+#else
+
+/* default method, safe and standard.
+ can sometimes prove slower */
+
+MEM_STATIC U16 MEM_read16(const void* memPtr)
+{
+ U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U32 MEM_read32(const void* memPtr)
+{
+ U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U64 MEM_read64(const void* memPtr)
+{
+ U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value)
+{
+ memcpy(memPtr, &value, sizeof(value));
+}
+
+#endif /* MEM_FORCE_MEMORY_ACCESS */
+
+MEM_STATIC U32 MEM_swap32(U32 in)
+{
+#if defined(_MSC_VER) /* Visual Studio */
+ return _byteswap_ulong(in);
+#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
+ return __builtin_bswap32(in);
+#else
+ return ((in << 24) & 0xff000000 ) |
+ ((in << 8) & 0x00ff0000 ) |
+ ((in >> 8) & 0x0000ff00 ) |
+ ((in >> 24) & 0x000000ff );
+#endif
+}
+
+MEM_STATIC U64 MEM_swap64(U64 in)
+{
+#if defined(_MSC_VER) /* Visual Studio */
+ return _byteswap_uint64(in);
+#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
+ return __builtin_bswap64(in);
+#else
+ return ((in << 56) & 0xff00000000000000ULL) |
+ ((in << 40) & 0x00ff000000000000ULL) |
+ ((in << 24) & 0x0000ff0000000000ULL) |
+ ((in << 8) & 0x000000ff00000000ULL) |
+ ((in >> 8) & 0x00000000ff000000ULL) |
+ ((in >> 24) & 0x0000000000ff0000ULL) |
+ ((in >> 40) & 0x000000000000ff00ULL) |
+ ((in >> 56) & 0x00000000000000ffULL);
+#endif
+}
+
+
+/*=== Little endian r/w ===*/
+
+MEM_STATIC U16 MEM_readLE16(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read16(memPtr);
+ else {
+ const BYTE* p = (const BYTE*)memPtr;
+ return (U16)(p[0] + (p[1]<<8));
+ }
+}
+
+MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
+{
+ if (MEM_isLittleEndian()) {
+ MEM_write16(memPtr, val);
+ } else {
+ BYTE* p = (BYTE*)memPtr;
+ p[0] = (BYTE)val;
+ p[1] = (BYTE)(val>>8);
+ }
+}
+
+MEM_STATIC U32 MEM_readLE32(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read32(memPtr);
+ else
+ return MEM_swap32(MEM_read32(memPtr));
+}
+
+
+MEM_STATIC U64 MEM_readLE64(const void* memPtr)
+{
+ if (MEM_isLittleEndian())
+ return MEM_read64(memPtr);
+ else
+ return MEM_swap64(MEM_read64(memPtr));
+}
+
+MEM_STATIC size_t MEM_readLEST(const void* memPtr)
+{
+ if (MEM_32bits())
+ return (size_t)MEM_readLE32(memPtr);
+ else
+ return (size_t)MEM_readLE64(memPtr);
+}
+
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* MEM_H_MODULE */
+/* ******************************************************************
+ bitstream
+ Part of FSE library
+ header file (to include)
+ Copyright (C) 2013-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef BITSTREAM_H_MODULE
+#define BITSTREAM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*
+* This API consists of small unitary functions, which must be inlined for best performance.
+* Since link-time-optimization is not available for all compilers,
+* these functions are defined into a .h to be included.
+*/
+
+
+/*=========================================
+* Target specific
+=========================================*/
+#if defined(__BMI__) && defined(__GNUC__)
+# include <immintrin.h> /* support for bextr (experimental) */
+#endif
+
+/*-********************************************
+* bitStream decoding API (read backward)
+**********************************************/
+typedef struct
+{
+ size_t bitContainer;
+ unsigned bitsConsumed;
+ const char* ptr;
+ const char* start;
+} BITv07_DStream_t;
+
+typedef enum { BITv07_DStream_unfinished = 0,
+ BITv07_DStream_endOfBuffer = 1,
+ BITv07_DStream_completed = 2,
+ BITv07_DStream_overflow = 3 } BITv07_DStream_status; /* result of BITv07_reloadDStream() */
+ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
+
+MEM_STATIC size_t BITv07_initDStream(BITv07_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
+MEM_STATIC size_t BITv07_readBits(BITv07_DStream_t* bitD, unsigned nbBits);
+MEM_STATIC BITv07_DStream_status BITv07_reloadDStream(BITv07_DStream_t* bitD);
+MEM_STATIC unsigned BITv07_endOfDStream(const BITv07_DStream_t* bitD);
+
+
+
+/*-****************************************
+* unsafe API
+******************************************/
+MEM_STATIC size_t BITv07_readBitsFast(BITv07_DStream_t* bitD, unsigned nbBits);
+/* faster, but works only if nbBits >= 1 */
+
+
+
+/*-**************************************************************
+* Internal functions
+****************************************************************/
+MEM_STATIC unsigned BITv07_highbit32 (U32 val)
+{
+# if defined(_MSC_VER) /* Visual */
+ unsigned long r=0;
+ _BitScanReverse ( &r, val );
+ return (unsigned) r;
+# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
+ return 31 - __builtin_clz (val);
+# else /* Software version */
+ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ U32 v = val;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
+# endif
+}
+
+
+
+/*-********************************************************
+* bitStream decoding
+**********************************************************/
+/*! BITv07_initDStream() :
+* Initialize a BITv07_DStream_t.
+* `bitD` : a pointer to an already allocated BITv07_DStream_t structure.
+* `srcSize` must be the *exact* size of the bitStream, in bytes.
+* @return : size of stream (== srcSize) or an errorCode if a problem is detected
+*/
+MEM_STATIC size_t BITv07_initDStream(BITv07_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
+{
+ if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
+
+ if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
+ bitD->bitsConsumed = lastByte ? 8 - BITv07_highbit32(lastByte) : 0;
+ if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
+ } else {
+ bitD->start = (const char*)srcBuffer;
+ bitD->ptr = bitD->start;
+ bitD->bitContainer = *(const BYTE*)(bitD->start);
+ switch(srcSize)
+ {
+ case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);/* fall-through */
+ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);/* fall-through */
+ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);/* fall-through */
+ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24; /* fall-through */
+ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16; /* fall-through */
+ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8; /* fall-through */
+ default: break;
+ }
+ { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
+ bitD->bitsConsumed = lastByte ? 8 - BITv07_highbit32(lastByte) : 0;
+ if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
+ bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
+ }
+
+ return srcSize;
+}
+
+
+ MEM_STATIC size_t BITv07_lookBits(const BITv07_DStream_t* bitD, U32 nbBits)
+{
+ U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
+}
+
+/*! BITv07_lookBitsFast() :
+* unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BITv07_lookBitsFast(const BITv07_DStream_t* bitD, U32 nbBits)
+{
+ U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
+ return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
+}
+
+MEM_STATIC void BITv07_skipBits(BITv07_DStream_t* bitD, U32 nbBits)
+{
+ bitD->bitsConsumed += nbBits;
+}
+
+MEM_STATIC size_t BITv07_readBits(BITv07_DStream_t* bitD, U32 nbBits)
+{
+ size_t const value = BITv07_lookBits(bitD, nbBits);
+ BITv07_skipBits(bitD, nbBits);
+ return value;
+}
+
+/*! BITv07_readBitsFast() :
+* unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BITv07_readBitsFast(BITv07_DStream_t* bitD, U32 nbBits)
+{
+ size_t const value = BITv07_lookBitsFast(bitD, nbBits);
+ BITv07_skipBits(bitD, nbBits);
+ return value;
+}
+
+MEM_STATIC BITv07_DStream_status BITv07_reloadDStream(BITv07_DStream_t* bitD)
+{
+ if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should not happen => corruption detected */
+ return BITv07_DStream_overflow;
+
+ if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) {
+ bitD->ptr -= bitD->bitsConsumed >> 3;
+ bitD->bitsConsumed &= 7;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ return BITv07_DStream_unfinished;
+ }
+ if (bitD->ptr == bitD->start) {
+ if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BITv07_DStream_endOfBuffer;
+ return BITv07_DStream_completed;
+ }
+ { U32 nbBytes = bitD->bitsConsumed >> 3;
+ BITv07_DStream_status result = BITv07_DStream_unfinished;
+ if (bitD->ptr - nbBytes < bitD->start) {
+ nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
+ result = BITv07_DStream_endOfBuffer;
+ }
+ bitD->ptr -= nbBytes;
+ bitD->bitsConsumed -= nbBytes*8;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
+ return result;
+ }
+}
+
+/*! BITv07_endOfDStream() :
+* @return Tells if DStream has exactly reached its end (all bits consumed).
+*/
+MEM_STATIC unsigned BITv07_endOfDStream(const BITv07_DStream_t* DStream)
+{
+ return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
+}
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* BITSTREAM_H_MODULE */
+/* ******************************************************************
+ FSE : Finite State Entropy codec
+ Public Prototypes declaration
+ Copyright (C) 2013-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef FSEv07_H
+#define FSEv07_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+
+/*-****************************************
+* FSE simple functions
+******************************************/
+
+/*! FSEv07_decompress():
+ Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
+ into already allocated destination buffer 'dst', of size 'dstCapacity'.
+ @return : size of regenerated data (<= maxDstSize),
+ or an error code, which can be tested using FSEv07_isError() .
+
+ ** Important ** : FSEv07_decompress() does not decompress non-compressible nor RLE data !!!
+ Why ? : making this distinction requires a header.
+ Header management is intentionally delegated to the user layer, which can better manage special cases.
+*/
+size_t FSEv07_decompress(void* dst, size_t dstCapacity,
+ const void* cSrc, size_t cSrcSize);
+
+
+/* Error Management */
+unsigned FSEv07_isError(size_t code); /* tells if a return value is an error code */
+const char* FSEv07_getErrorName(size_t code); /* provides error code string (useful for debugging) */
+
+
+/*-*****************************************
+* FSE detailed API
+******************************************/
+/*!
+FSEv07_decompress() does the following:
+1. read normalized counters with readNCount()
+2. build decoding table 'DTable' from normalized counters
+3. decode the data stream using decoding table 'DTable'
+
+The following API allows targeting specific sub-functions for advanced tasks.
+For example, it's possible to compress several blocks using the same 'CTable',
+or to save and provide normalized distribution using external method.
+*/
+
+
+/* *** DECOMPRESSION *** */
+
+/*! FSEv07_readNCount():
+ Read compactly saved 'normalizedCounter' from 'rBuffer'.
+ @return : size read from 'rBuffer',
+ or an errorCode, which can be tested using FSEv07_isError().
+ maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
+size_t FSEv07_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
+
+/*! Constructor and Destructor of FSEv07_DTable.
+ Note that its size depends on 'tableLog' */
+typedef unsigned FSEv07_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
+FSEv07_DTable* FSEv07_createDTable(unsigned tableLog);
+void FSEv07_freeDTable(FSEv07_DTable* dt);
+
+/*! FSEv07_buildDTable():
+ Builds 'dt', which must be already allocated, using FSEv07_createDTable().
+ return : 0, or an errorCode, which can be tested using FSEv07_isError() */
+size_t FSEv07_buildDTable (FSEv07_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
+
+/*! FSEv07_decompress_usingDTable():
+ Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
+ into `dst` which must be already allocated.
+ @return : size of regenerated data (necessarily <= `dstCapacity`),
+ or an errorCode, which can be tested using FSEv07_isError() */
+size_t FSEv07_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSEv07_DTable* dt);
+
+/*!
+Tutorial :
+----------
+(Note : these functions only decompress FSE-compressed blocks.
+ If block is uncompressed, use memcpy() instead
+ If block is a single repeated byte, use memset() instead )
+
+The first step is to obtain the normalized frequencies of symbols.
+This can be performed by FSEv07_readNCount() if it was saved using FSEv07_writeNCount().
+'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
+In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
+or size the table to handle worst case situations (typically 256).
+FSEv07_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
+The result of FSEv07_readNCount() is the number of bytes read from 'rBuffer'.
+Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
+If there is an error, the function will return an error code, which can be tested using FSEv07_isError().
+
+The next step is to build the decompression tables 'FSEv07_DTable' from 'normalizedCounter'.
+This is performed by the function FSEv07_buildDTable().
+The space required by 'FSEv07_DTable' must be already allocated using FSEv07_createDTable().
+If there is an error, the function will return an error code, which can be tested using FSEv07_isError().
+
+`FSEv07_DTable` can then be used to decompress `cSrc`, with FSEv07_decompress_usingDTable().
+`cSrcSize` must be strictly correct, otherwise decompression will fail.
+FSEv07_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
+If there is an error, the function will return an error code, which can be tested using FSEv07_isError(). (ex: dst buffer too small)
+*/
+
+
+#ifdef FSEv07_STATIC_LINKING_ONLY
+
+
+/* *****************************************
+* Static allocation
+*******************************************/
+/* FSE buffer bounds */
+#define FSEv07_NCOUNTBOUND 512
+#define FSEv07_BLOCKBOUND(size) (size + (size>>7))
+
+/* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
+#define FSEv07_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
+
+
+/* *****************************************
+* FSE advanced API
+*******************************************/
+size_t FSEv07_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
+/**< same as FSEv07_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr */
+
+unsigned FSEv07_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
+/**< same as FSEv07_optimalTableLog(), which used `minus==2` */
+
+size_t FSEv07_buildDTable_raw (FSEv07_DTable* dt, unsigned nbBits);
+/**< build a fake FSEv07_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
+
+size_t FSEv07_buildDTable_rle (FSEv07_DTable* dt, unsigned char symbolValue);
+/**< build a fake FSEv07_DTable, designed to always generate the same symbolValue */
+
+
+
+/* *****************************************
+* FSE symbol decompression API
+*******************************************/
+typedef struct
+{
+ size_t state;
+ const void* table; /* precise table may vary, depending on U16 */
+} FSEv07_DState_t;
+
+
+static void FSEv07_initDState(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD, const FSEv07_DTable* dt);
+
+static unsigned char FSEv07_decodeSymbol(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD);
+
+
+
+/* *****************************************
+* FSE unsafe API
+*******************************************/
+static unsigned char FSEv07_decodeSymbolFast(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD);
+/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
+
+
+/* ====== Decompression ====== */
+
+typedef struct {
+ U16 tableLog;
+ U16 fastMode;
+} FSEv07_DTableHeader; /* sizeof U32 */
+
+typedef struct
+{
+ unsigned short newState;
+ unsigned char symbol;
+ unsigned char nbBits;
+} FSEv07_decode_t; /* size == U32 */
+
+MEM_STATIC void FSEv07_initDState(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD, const FSEv07_DTable* dt)
+{
+ const void* ptr = dt;
+ const FSEv07_DTableHeader* const DTableH = (const FSEv07_DTableHeader*)ptr;
+ DStatePtr->state = BITv07_readBits(bitD, DTableH->tableLog);
+ BITv07_reloadDStream(bitD);
+ DStatePtr->table = dt + 1;
+}
+
+MEM_STATIC BYTE FSEv07_peekSymbol(const FSEv07_DState_t* DStatePtr)
+{
+ FSEv07_decode_t const DInfo = ((const FSEv07_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ return DInfo.symbol;
+}
+
+MEM_STATIC void FSEv07_updateState(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD)
+{
+ FSEv07_decode_t const DInfo = ((const FSEv07_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ size_t const lowBits = BITv07_readBits(bitD, nbBits);
+ DStatePtr->state = DInfo.newState + lowBits;
+}
+
+MEM_STATIC BYTE FSEv07_decodeSymbol(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD)
+{
+ FSEv07_decode_t const DInfo = ((const FSEv07_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ BYTE const symbol = DInfo.symbol;
+ size_t const lowBits = BITv07_readBits(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+/*! FSEv07_decodeSymbolFast() :
+ unsafe, only works if no symbol has a probability > 50% */
+MEM_STATIC BYTE FSEv07_decodeSymbolFast(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD)
+{
+ FSEv07_decode_t const DInfo = ((const FSEv07_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ BYTE const symbol = DInfo.symbol;
+ size_t const lowBits = BITv07_readBitsFast(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+
+
+#ifndef FSEv07_COMMONDEFS_ONLY
+
+/* **************************************************************
+* Tuning parameters
+****************************************************************/
+/*!MEMORY_USAGE :
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+* Increasing memory usage improves compression ratio
+* Reduced memory usage can improve speed, due to cache effect
+* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
+#define FSEv07_MAX_MEMORY_USAGE 14
+#define FSEv07_DEFAULT_MEMORY_USAGE 13
+
+/*!FSEv07_MAX_SYMBOL_VALUE :
+* Maximum symbol value authorized.
+* Required for proper stack allocation */
+#define FSEv07_MAX_SYMBOL_VALUE 255
+
+
+/* **************************************************************
+* template functions type & suffix
+****************************************************************/
+#define FSEv07_FUNCTION_TYPE BYTE
+#define FSEv07_FUNCTION_EXTENSION
+#define FSEv07_DECODE_TYPE FSEv07_decode_t
+
+
+#endif /* !FSEv07_COMMONDEFS_ONLY */
+
+
+/* ***************************************************************
+* Constants
+*****************************************************************/
+#define FSEv07_MAX_TABLELOG (FSEv07_MAX_MEMORY_USAGE-2)
+#define FSEv07_MAX_TABLESIZE (1U<<FSEv07_MAX_TABLELOG)
+#define FSEv07_MAXTABLESIZE_MASK (FSEv07_MAX_TABLESIZE-1)
+#define FSEv07_DEFAULT_TABLELOG (FSEv07_DEFAULT_MEMORY_USAGE-2)
+#define FSEv07_MIN_TABLELOG 5
+
+#define FSEv07_TABLELOG_ABSOLUTE_MAX 15
+#if FSEv07_MAX_TABLELOG > FSEv07_TABLELOG_ABSOLUTE_MAX
+# error "FSEv07_MAX_TABLELOG > FSEv07_TABLELOG_ABSOLUTE_MAX is not supported"
+#endif
+
+#define FSEv07_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
+
+
+#endif /* FSEv07_STATIC_LINKING_ONLY */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* FSEv07_H */
+/* ******************************************************************
+ Huffman coder, part of New Generation Entropy library
+ header file
+ Copyright (C) 2013-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef HUFv07_H_298734234
+#define HUFv07_H_298734234
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+
+/* *** simple functions *** */
+/**
+HUFv07_decompress() :
+ Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
+ into already allocated buffer 'dst', of minimum size 'dstSize'.
+ `dstSize` : **must** be the ***exact*** size of original (uncompressed) data.
+ Note : in contrast with FSE, HUFv07_decompress can regenerate
+ RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
+ because it knows size to regenerate.
+ @return : size of regenerated data (== dstSize),
+ or an error code, which can be tested using HUFv07_isError()
+*/
+size_t HUFv07_decompress(void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize);
+
+
+/* ****************************************
+* Tool functions
+******************************************/
+#define HUFv07_BLOCKSIZE_MAX (128 * 1024)
+
+/* Error Management */
+unsigned HUFv07_isError(size_t code); /**< tells if a return value is an error code */
+const char* HUFv07_getErrorName(size_t code); /**< provides error code string (useful for debugging) */
+
+
+/* *** Advanced function *** */
+
+
+#ifdef HUFv07_STATIC_LINKING_ONLY
+
+
+/* *** Constants *** */
+#define HUFv07_TABLELOG_ABSOLUTEMAX 16 /* absolute limit of HUFv07_MAX_TABLELOG. Beyond that value, code does not work */
+#define HUFv07_TABLELOG_MAX 12 /* max configured tableLog (for static allocation); can be modified up to HUFv07_ABSOLUTEMAX_TABLELOG */
+#define HUFv07_TABLELOG_DEFAULT 11 /* tableLog by default, when not specified */
+#define HUFv07_SYMBOLVALUE_MAX 255
+#if (HUFv07_TABLELOG_MAX > HUFv07_TABLELOG_ABSOLUTEMAX)
+# error "HUFv07_TABLELOG_MAX is too large !"
+#endif
+
+
+/* ****************************************
+* Static allocation
+******************************************/
+/* HUF buffer bounds */
+#define HUFv07_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
+
+/* static allocation of HUF's DTable */
+typedef U32 HUFv07_DTable;
+#define HUFv07_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog)))
+#define HUFv07_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
+ HUFv07_DTable DTable[HUFv07_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1)*0x1000001) }
+#define HUFv07_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
+ HUFv07_DTable DTable[HUFv07_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog)*0x1000001) }
+
+
+/* ****************************************
+* Advanced decompression functions
+******************************************/
+size_t HUFv07_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
+size_t HUFv07_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
+
+size_t HUFv07_decompress4X_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */
+size_t HUFv07_decompress4X_hufOnly(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */
+size_t HUFv07_decompress4X2_DCtx(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
+size_t HUFv07_decompress4X4_DCtx(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
+
+size_t HUFv07_decompress1X_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
+size_t HUFv07_decompress1X2_DCtx(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
+size_t HUFv07_decompress1X4_DCtx(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
+
+
+/* ****************************************
+* HUF detailed API
+******************************************/
+/*!
+The following API allows targeting specific sub-functions for advanced tasks.
+For example, it's possible to compress several blocks using the same 'CTable',
+or to save and regenerate 'CTable' using external methods.
+*/
+/* FSEv07_count() : find it within "fse.h" */
+
+/*! HUFv07_readStats() :
+ Read compact Huffman tree, saved by HUFv07_writeCTable().
+ `huffWeight` is destination buffer.
+ @return : size read from `src` , or an error Code .
+ Note : Needed by HUFv07_readCTable() and HUFv07_readDTableXn() . */
+size_t HUFv07_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize);
+
+
+/*
+HUFv07_decompress() does the following:
+1. select the decompression algorithm (X2, X4) based on pre-computed heuristics
+2. build Huffman table from save, using HUFv07_readDTableXn()
+3. decode 1 or 4 segments in parallel using HUFv07_decompressSXn_usingDTable
+*/
+
+/** HUFv07_selectDecoder() :
+* Tells which decoder is likely to decode faster,
+* based on a set of pre-determined metrics.
+* @return : 0==HUFv07_decompress4X2, 1==HUFv07_decompress4X4 .
+* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
+U32 HUFv07_selectDecoder (size_t dstSize, size_t cSrcSize);
+
+size_t HUFv07_readDTableX2 (HUFv07_DTable* DTable, const void* src, size_t srcSize);
+size_t HUFv07_readDTableX4 (HUFv07_DTable* DTable, const void* src, size_t srcSize);
+
+size_t HUFv07_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable);
+size_t HUFv07_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable);
+size_t HUFv07_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable);
+
+
+/* single stream variants */
+size_t HUFv07_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
+size_t HUFv07_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
+
+size_t HUFv07_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable);
+size_t HUFv07_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable);
+size_t HUFv07_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable);
+
+
+#endif /* HUFv07_STATIC_LINKING_ONLY */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* HUFv07_H_298734234 */
+/*
+ Common functions of New Generation Entropy library
+ Copyright (C) 2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+*************************************************************************** */
+
+
+
+/*-****************************************
+* FSE Error Management
+******************************************/
+unsigned FSEv07_isError(size_t code) { return ERR_isError(code); }
+
+const char* FSEv07_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+
+/* **************************************************************
+* HUF Error Management
+****************************************************************/
+unsigned HUFv07_isError(size_t code) { return ERR_isError(code); }
+
+const char* HUFv07_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+
+/*-**************************************************************
+* FSE NCount encoding-decoding
+****************************************************************/
+static short FSEv07_abs(short a) { return (short)(a<0 ? -a : a); }
+
+size_t FSEv07_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize)
+{
+ const BYTE* const istart = (const BYTE*) headerBuffer;
+ const BYTE* const iend = istart + hbSize;
+ const BYTE* ip = istart;
+ int nbBits;
+ int remaining;
+ int threshold;
+ U32 bitStream;
+ int bitCount;
+ unsigned charnum = 0;
+ int previous0 = 0;
+
+ if (hbSize < 4) return ERROR(srcSize_wrong);
+ bitStream = MEM_readLE32(ip);
+ nbBits = (bitStream & 0xF) + FSEv07_MIN_TABLELOG; /* extract tableLog */
+ if (nbBits > FSEv07_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
+ bitStream >>= 4;
+ bitCount = 4;
+ *tableLogPtr = nbBits;
+ remaining = (1<<nbBits)+1;
+ threshold = 1<<nbBits;
+ nbBits++;
+
+ while ((remaining>1) && (charnum<=*maxSVPtr)) {
+ if (previous0) {
+ unsigned n0 = charnum;
+ while ((bitStream & 0xFFFF) == 0xFFFF) {
+ n0+=24;
+ if (ip < iend-5) {
+ ip+=2;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ } else {
+ bitStream >>= 16;
+ bitCount+=16;
+ } }
+ while ((bitStream & 3) == 3) {
+ n0+=3;
+ bitStream>>=2;
+ bitCount+=2;
+ }
+ n0 += bitStream & 3;
+ bitCount += 2;
+ if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
+ while (charnum < n0) normalizedCounter[charnum++] = 0;
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ }
+ else
+ bitStream >>= 2;
+ }
+ { short const max = (short)((2*threshold-1)-remaining);
+ short count;
+
+ if ((bitStream & (threshold-1)) < (U32)max) {
+ count = (short)(bitStream & (threshold-1));
+ bitCount += nbBits-1;
+ } else {
+ count = (short)(bitStream & (2*threshold-1));
+ if (count >= threshold) count -= max;
+ bitCount += nbBits;
+ }
+
+ count--; /* extra accuracy */
+ remaining -= FSEv07_abs(count);
+ normalizedCounter[charnum++] = count;
+ previous0 = !count;
+ while (remaining < threshold) {
+ nbBits--;
+ threshold >>= 1;
+ }
+
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ } else {
+ bitCount -= (int)(8 * (iend - 4 - ip));
+ ip = iend - 4;
+ }
+ bitStream = MEM_readLE32(ip) >> (bitCount & 31);
+ } } /* while ((remaining>1) && (charnum<=*maxSVPtr)) */
+ if (remaining != 1) return ERROR(GENERIC);
+ *maxSVPtr = charnum-1;
+
+ ip += (bitCount+7)>>3;
+ if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
+ return ip-istart;
+}
+
+
+/*! HUFv07_readStats() :
+ Read compact Huffman tree, saved by HUFv07_writeCTable().
+ `huffWeight` is destination buffer.
+ @return : size read from `src` , or an error Code .
+ Note : Needed by HUFv07_readCTable() and HUFv07_readDTableXn() .
+*/
+size_t HUFv07_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize)
+{
+ U32 weightTotal;
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize;
+ size_t oSize;
+
+ if (!srcSize) return ERROR(srcSize_wrong);
+ iSize = ip[0];
+ //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
+
+ if (iSize >= 128) { /* special header */
+ if (iSize >= (242)) { /* RLE */
+ static U32 l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
+ oSize = l[iSize-242];
+ memset(huffWeight, 1, hwSize);
+ iSize = 0;
+ }
+ else { /* Incompressible */
+ oSize = iSize - 127;
+ iSize = ((oSize+1)/2);
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ if (oSize >= hwSize) return ERROR(corruption_detected);
+ ip += 1;
+ { U32 n;
+ for (n=0; n<oSize; n+=2) {
+ huffWeight[n] = ip[n/2] >> 4;
+ huffWeight[n+1] = ip[n/2] & 15;
+ } } } }
+ else { /* header compressed with FSE (normal case) */
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ oSize = FSEv07_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
+ if (FSEv07_isError(oSize)) return oSize;
+ }
+
+ /* collect weight stats */
+ memset(rankStats, 0, (HUFv07_TABLELOG_ABSOLUTEMAX + 1) * sizeof(U32));
+ weightTotal = 0;
+ { U32 n; for (n=0; n<oSize; n++) {
+ if (huffWeight[n] >= HUFv07_TABLELOG_ABSOLUTEMAX) return ERROR(corruption_detected);
+ rankStats[huffWeight[n]]++;
+ weightTotal += (1 << huffWeight[n]) >> 1;
+ } }
+ if (weightTotal == 0) return ERROR(corruption_detected);
+
+ /* get last non-null symbol weight (implied, total must be 2^n) */
+ { U32 const tableLog = BITv07_highbit32(weightTotal) + 1;
+ if (tableLog > HUFv07_TABLELOG_ABSOLUTEMAX) return ERROR(corruption_detected);
+ *tableLogPtr = tableLog;
+ /* determine last weight */
+ { U32 const total = 1 << tableLog;
+ U32 const rest = total - weightTotal;
+ U32 const verif = 1 << BITv07_highbit32(rest);
+ U32 const lastWeight = BITv07_highbit32(rest) + 1;
+ if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
+ huffWeight[oSize] = (BYTE)lastWeight;
+ rankStats[lastWeight]++;
+ } }
+
+ /* check tree construction validity */
+ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
+
+ /* results */
+ *nbSymbolsPtr = (U32)(oSize+1);
+ return iSize+1;
+}
+/* ******************************************************************
+ FSE : Finite State Entropy decoder
+ Copyright (C) 2013-2015, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+
+/* **************************************************************
+* Compiler specifics
+****************************************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# define FORCE_INLINE static __forceinline
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
+#else
+# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# ifdef __GNUC__
+# define FORCE_INLINE static inline __attribute__((always_inline))
+# else
+# define FORCE_INLINE static inline
+# endif
+# else
+# define FORCE_INLINE static
+# endif /* __STDC_VERSION__ */
+#endif
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define FSEv07_isError ERR_isError
+#define FSEv07_STATIC_ASSERT(c) { enum { FSEv07_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+/* **************************************************************
+* Complex types
+****************************************************************/
+typedef U32 DTable_max_t[FSEv07_DTABLE_SIZE_U32(FSEv07_MAX_TABLELOG)];
+
+
+/* **************************************************************
+* Templates
+****************************************************************/
+/*
+ designed to be included
+ for type-specific functions (template emulation in C)
+ Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSEv07_FUNCTION_EXTENSION
+# error "FSEv07_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSEv07_FUNCTION_TYPE
+# error "FSEv07_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSEv07_CAT(X,Y) X##Y
+#define FSEv07_FUNCTION_NAME(X,Y) FSEv07_CAT(X,Y)
+#define FSEv07_TYPE_NAME(X,Y) FSEv07_CAT(X,Y)
+
+
+/* Function templates */
+FSEv07_DTable* FSEv07_createDTable (unsigned tableLog)
+{
+ if (tableLog > FSEv07_TABLELOG_ABSOLUTE_MAX) tableLog = FSEv07_TABLELOG_ABSOLUTE_MAX;
+ return (FSEv07_DTable*)malloc( FSEv07_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
+}
+
+void FSEv07_freeDTable (FSEv07_DTable* dt)
+{
+ free(dt);
+}
+
+size_t FSEv07_buildDTable(FSEv07_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+ void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
+ FSEv07_DECODE_TYPE* const tableDecode = (FSEv07_DECODE_TYPE*) (tdPtr);
+ U16 symbolNext[FSEv07_MAX_SYMBOL_VALUE+1];
+
+ U32 const maxSV1 = maxSymbolValue + 1;
+ U32 const tableSize = 1 << tableLog;
+ U32 highThreshold = tableSize-1;
+
+ /* Sanity Checks */
+ if (maxSymbolValue > FSEv07_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
+ if (tableLog > FSEv07_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
+
+ /* Init, lay down lowprob symbols */
+ { FSEv07_DTableHeader DTableH;
+ DTableH.tableLog = (U16)tableLog;
+ DTableH.fastMode = 1;
+ { S16 const largeLimit= (S16)(1 << (tableLog-1));
+ U32 s;
+ for (s=0; s<maxSV1; s++) {
+ if (normalizedCounter[s]==-1) {
+ tableDecode[highThreshold--].symbol = (FSEv07_FUNCTION_TYPE)s;
+ symbolNext[s] = 1;
+ } else {
+ if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
+ symbolNext[s] = normalizedCounter[s];
+ } } }
+ memcpy(dt, &DTableH, sizeof(DTableH));
+ }
+
+ /* Spread symbols */
+ { U32 const tableMask = tableSize-1;
+ U32 const step = FSEv07_TABLESTEP(tableSize);
+ U32 s, position = 0;
+ for (s=0; s<maxSV1; s++) {
+ int i;
+ for (i=0; i<normalizedCounter[s]; i++) {
+ tableDecode[position].symbol = (FSEv07_FUNCTION_TYPE)s;
+ position = (position + step) & tableMask;
+ while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
+ } }
+
+ if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
+ }
+
+ /* Build Decoding table */
+ { U32 u;
+ for (u=0; u<tableSize; u++) {
+ FSEv07_FUNCTION_TYPE const symbol = (FSEv07_FUNCTION_TYPE)(tableDecode[u].symbol);
+ U16 nextState = symbolNext[symbol]++;
+ tableDecode[u].nbBits = (BYTE) (tableLog - BITv07_highbit32 ((U32)nextState) );
+ tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
+ } }
+
+ return 0;
+}
+
+
+
+#ifndef FSEv07_COMMONDEFS_ONLY
+
+/*-*******************************************************
+* Decompression (Byte symbols)
+*********************************************************/
+size_t FSEv07_buildDTable_rle (FSEv07_DTable* dt, BYTE symbolValue)
+{
+ void* ptr = dt;
+ FSEv07_DTableHeader* const DTableH = (FSEv07_DTableHeader*)ptr;
+ void* dPtr = dt + 1;
+ FSEv07_decode_t* const cell = (FSEv07_decode_t*)dPtr;
+
+ DTableH->tableLog = 0;
+ DTableH->fastMode = 0;
+
+ cell->newState = 0;
+ cell->symbol = symbolValue;
+ cell->nbBits = 0;
+
+ return 0;
+}
+
+
+size_t FSEv07_buildDTable_raw (FSEv07_DTable* dt, unsigned nbBits)
+{
+ void* ptr = dt;
+ FSEv07_DTableHeader* const DTableH = (FSEv07_DTableHeader*)ptr;
+ void* dPtr = dt + 1;
+ FSEv07_decode_t* const dinfo = (FSEv07_decode_t*)dPtr;
+ const unsigned tableSize = 1 << nbBits;
+ const unsigned tableMask = tableSize - 1;
+ const unsigned maxSV1 = tableMask+1;
+ unsigned s;
+
+ /* Sanity checks */
+ if (nbBits < 1) return ERROR(GENERIC); /* min size */
+
+ /* Build Decoding Table */
+ DTableH->tableLog = (U16)nbBits;
+ DTableH->fastMode = 1;
+ for (s=0; s<maxSV1; s++) {
+ dinfo[s].newState = 0;
+ dinfo[s].symbol = (BYTE)s;
+ dinfo[s].nbBits = (BYTE)nbBits;
+ }
+
+ return 0;
+}
+
+FORCE_INLINE size_t FSEv07_decompress_usingDTable_generic(
+ void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSEv07_DTable* dt, const unsigned fast)
+{
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const omax = op + maxDstSize;
+ BYTE* const olimit = omax-3;
+
+ BITv07_DStream_t bitD;
+ FSEv07_DState_t state1;
+ FSEv07_DState_t state2;
+
+ /* Init */
+ { size_t const errorCode = BITv07_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
+ if (FSEv07_isError(errorCode)) return errorCode; }
+
+ FSEv07_initDState(&state1, &bitD, dt);
+ FSEv07_initDState(&state2, &bitD, dt);
+
+#define FSEv07_GETSYMBOL(statePtr) fast ? FSEv07_decodeSymbolFast(statePtr, &bitD) : FSEv07_decodeSymbol(statePtr, &bitD)
+
+ /* 4 symbols per loop */
+ for ( ; (BITv07_reloadDStream(&bitD)==BITv07_DStream_unfinished) && (op<olimit) ; op+=4) {
+ op[0] = FSEv07_GETSYMBOL(&state1);
+
+ if (FSEv07_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BITv07_reloadDStream(&bitD);
+
+ op[1] = FSEv07_GETSYMBOL(&state2);
+
+ if (FSEv07_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ { if (BITv07_reloadDStream(&bitD) > BITv07_DStream_unfinished) { op+=2; break; } }
+
+ op[2] = FSEv07_GETSYMBOL(&state1);
+
+ if (FSEv07_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BITv07_reloadDStream(&bitD);
+
+ op[3] = FSEv07_GETSYMBOL(&state2);
+ }
+
+ /* tail */
+ /* note : BITv07_reloadDStream(&bitD) >= FSEv07_DStream_partiallyFilled; Ends at exactly BITv07_DStream_completed */
+ while (1) {
+ if (op>(omax-2)) return ERROR(dstSize_tooSmall);
+
+ *op++ = FSEv07_GETSYMBOL(&state1);
+
+ if (BITv07_reloadDStream(&bitD)==BITv07_DStream_overflow) {
+ *op++ = FSEv07_GETSYMBOL(&state2);
+ break;
+ }
+
+ if (op>(omax-2)) return ERROR(dstSize_tooSmall);
+
+ *op++ = FSEv07_GETSYMBOL(&state2);
+
+ if (BITv07_reloadDStream(&bitD)==BITv07_DStream_overflow) {
+ *op++ = FSEv07_GETSYMBOL(&state1);
+ break;
+ } }
+
+ return op-ostart;
+}
+
+
+size_t FSEv07_decompress_usingDTable(void* dst, size_t originalSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSEv07_DTable* dt)
+{
+ const void* ptr = dt;
+ const FSEv07_DTableHeader* DTableH = (const FSEv07_DTableHeader*)ptr;
+ const U32 fastMode = DTableH->fastMode;
+
+ /* select fast mode (static) */
+ if (fastMode) return FSEv07_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
+ return FSEv07_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
+}
+
+
+size_t FSEv07_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
+{
+ const BYTE* const istart = (const BYTE*)cSrc;
+ const BYTE* ip = istart;
+ short counting[FSEv07_MAX_SYMBOL_VALUE+1];
+ DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
+ unsigned tableLog;
+ unsigned maxSymbolValue = FSEv07_MAX_SYMBOL_VALUE;
+
+ if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
+
+ /* normal FSE decoding mode */
+ { size_t const NCountLength = FSEv07_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
+ if (FSEv07_isError(NCountLength)) return NCountLength;
+ if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
+ ip += NCountLength;
+ cSrcSize -= NCountLength;
+ }
+
+ { size_t const errorCode = FSEv07_buildDTable (dt, counting, maxSymbolValue, tableLog);
+ if (FSEv07_isError(errorCode)) return errorCode; }
+
+ return FSEv07_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); /* always return, even if it is an error code */
+}
+
+
+
+#endif /* FSEv07_COMMONDEFS_ONLY */
+
+/* ******************************************************************
+ Huffman decoder, part of New Generation Entropy library
+ Copyright (C) 2013-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+/* **************************************************************
+* Compiler specifics
+****************************************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+/* inline is defined */
+#elif defined(_MSC_VER)
+# define inline __inline
+#else
+# define inline /* disable inline */
+#endif
+
+
+#ifdef _MSC_VER /* Visual Studio */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+#endif
+
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define HUFv07_STATIC_ASSERT(c) { enum { HUFv07_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
+
+
+/*-***************************/
+/* generic DTableDesc */
+/*-***************************/
+
+typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
+
+static DTableDesc HUFv07_getDTableDesc(const HUFv07_DTable* table)
+{
+ DTableDesc dtd;
+ memcpy(&dtd, table, sizeof(dtd));
+ return dtd;
+}
+
+
+/*-***************************/
+/* single-symbol decoding */
+/*-***************************/
+
+typedef struct { BYTE byte; BYTE nbBits; } HUFv07_DEltX2; /* single-symbol decoding */
+
+size_t HUFv07_readDTableX2 (HUFv07_DTable* DTable, const void* src, size_t srcSize)
+{
+ BYTE huffWeight[HUFv07_SYMBOLVALUE_MAX + 1];
+ U32 rankVal[HUFv07_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
+ U32 tableLog = 0;
+ U32 nbSymbols = 0;
+ size_t iSize;
+ void* const dtPtr = DTable + 1;
+ HUFv07_DEltX2* const dt = (HUFv07_DEltX2*)dtPtr;
+
+ HUFv07_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUFv07_DTable));
+ //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUFv07_readStats(huffWeight, HUFv07_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
+ if (HUFv07_isError(iSize)) return iSize;
+
+ /* Table header */
+ { DTableDesc dtd = HUFv07_getDTableDesc(DTable);
+ if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, huffman tree cannot fit in */
+ dtd.tableType = 0;
+ dtd.tableLog = (BYTE)tableLog;
+ memcpy(DTable, &dtd, sizeof(dtd));
+ }
+
+ /* Prepare ranks */
+ { U32 n, nextRankStart = 0;
+ for (n=1; n<tableLog+1; n++) {
+ U32 current = nextRankStart;
+ nextRankStart += (rankVal[n] << (n-1));
+ rankVal[n] = current;
+ } }
+
+ /* fill DTable */
+ { U32 n;
+ for (n=0; n<nbSymbols; n++) {
+ U32 const w = huffWeight[n];
+ U32 const length = (1 << w) >> 1;
+ U32 i;
+ HUFv07_DEltX2 D;
+ D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
+ for (i = rankVal[w]; i < rankVal[w] + length; i++)
+ dt[i] = D;
+ rankVal[w] += length;
+ } }
+
+ return iSize;
+}
+
+
+static BYTE HUFv07_decodeSymbolX2(BITv07_DStream_t* Dstream, const HUFv07_DEltX2* dt, const U32 dtLog)
+{
+ size_t const val = BITv07_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
+ BYTE const c = dt[val].byte;
+ BITv07_skipBits(Dstream, dt[val].nbBits);
+ return c;
+}
+
+#define HUFv07_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
+ *ptr++ = HUFv07_decodeSymbolX2(DStreamPtr, dt, dtLog)
+
+#define HUFv07_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUFv07_TABLELOG_MAX<=12)) \
+ HUFv07_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+#define HUFv07_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ HUFv07_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+static inline size_t HUFv07_decodeStreamX2(BYTE* p, BITv07_DStream_t* const bitDPtr, BYTE* const pEnd, const HUFv07_DEltX2* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 4 symbols at a time */
+ while ((BITv07_reloadDStream(bitDPtr) == BITv07_DStream_unfinished) && (p <= pEnd-4)) {
+ HUFv07_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUFv07_DECODE_SYMBOLX2_1(p, bitDPtr);
+ HUFv07_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUFv07_DECODE_SYMBOLX2_0(p, bitDPtr);
+ }
+
+ /* closer to the end */
+ while ((BITv07_reloadDStream(bitDPtr) == BITv07_DStream_unfinished) && (p < pEnd))
+ HUFv07_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ /* no more data to retrieve from bitstream, hence no need to reload */
+ while (p < pEnd)
+ HUFv07_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ return pEnd-pStart;
+}
+
+static size_t HUFv07_decompress1X2_usingDTable_internal(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUFv07_DTable* DTable)
+{
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + dstSize;
+ const void* dtPtr = DTable + 1;
+ const HUFv07_DEltX2* const dt = (const HUFv07_DEltX2*)dtPtr;
+ BITv07_DStream_t bitD;
+ DTableDesc const dtd = HUFv07_getDTableDesc(DTable);
+ U32 const dtLog = dtd.tableLog;
+
+ { size_t const errorCode = BITv07_initDStream(&bitD, cSrc, cSrcSize);
+ if (HUFv07_isError(errorCode)) return errorCode; }
+
+ HUFv07_decodeStreamX2(op, &bitD, oend, dt, dtLog);
+
+ /* check */
+ if (!BITv07_endOfDStream(&bitD)) return ERROR(corruption_detected);
+
+ return dstSize;
+}
+
+size_t HUFv07_decompress1X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUFv07_DTable* DTable)
+{
+ DTableDesc dtd = HUFv07_getDTableDesc(DTable);
+ if (dtd.tableType != 0) return ERROR(GENERIC);
+ return HUFv07_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
+}
+
+size_t HUFv07_decompress1X2_DCtx (HUFv07_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const hSize = HUFv07_readDTableX2 (DCtx, cSrc, cSrcSize);
+ if (HUFv07_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUFv07_decompress1X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
+}
+
+size_t HUFv07_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUFv07_CREATE_STATIC_DTABLEX2(DTable, HUFv07_TABLELOG_MAX);
+ return HUFv07_decompress1X2_DCtx (DTable, dst, dstSize, cSrc, cSrcSize);
+}
+
+
+static size_t HUFv07_decompress4X2_usingDTable_internal(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUFv07_DTable* DTable)
+{
+ /* Check */
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ { const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable + 1;
+ const HUFv07_DEltX2* const dt = (const HUFv07_DEltX2*)dtPtr;
+
+ /* Init */
+ BITv07_DStream_t bitD1;
+ BITv07_DStream_t bitD2;
+ BITv07_DStream_t bitD3;
+ BITv07_DStream_t bitD4;
+ size_t const length1 = MEM_readLE16(istart);
+ size_t const length2 = MEM_readLE16(istart+2);
+ size_t const length3 = MEM_readLE16(istart+4);
+ size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+ DTableDesc const dtd = HUFv07_getDTableDesc(DTable);
+ U32 const dtLog = dtd.tableLog;
+
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ { size_t const errorCode = BITv07_initDStream(&bitD1, istart1, length1);
+ if (HUFv07_isError(errorCode)) return errorCode; }
+ { size_t const errorCode = BITv07_initDStream(&bitD2, istart2, length2);
+ if (HUFv07_isError(errorCode)) return errorCode; }
+ { size_t const errorCode = BITv07_initDStream(&bitD3, istart3, length3);
+ if (HUFv07_isError(errorCode)) return errorCode; }
+ { size_t const errorCode = BITv07_initDStream(&bitD4, istart4, length4);
+ if (HUFv07_isError(errorCode)) return errorCode; }
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BITv07_reloadDStream(&bitD1) | BITv07_reloadDStream(&bitD2) | BITv07_reloadDStream(&bitD3) | BITv07_reloadDStream(&bitD4);
+ for ( ; (endSignal==BITv07_DStream_unfinished) && (op4<(oend-7)) ; ) {
+ HUFv07_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUFv07_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUFv07_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUFv07_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUFv07_DECODE_SYMBOLX2_1(op1, &bitD1);
+ HUFv07_DECODE_SYMBOLX2_1(op2, &bitD2);
+ HUFv07_DECODE_SYMBOLX2_1(op3, &bitD3);
+ HUFv07_DECODE_SYMBOLX2_1(op4, &bitD4);
+ HUFv07_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUFv07_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUFv07_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUFv07_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUFv07_DECODE_SYMBOLX2_0(op1, &bitD1);
+ HUFv07_DECODE_SYMBOLX2_0(op2, &bitD2);
+ HUFv07_DECODE_SYMBOLX2_0(op3, &bitD3);
+ HUFv07_DECODE_SYMBOLX2_0(op4, &bitD4);
+ endSignal = BITv07_reloadDStream(&bitD1) | BITv07_reloadDStream(&bitD2) | BITv07_reloadDStream(&bitD3) | BITv07_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUFv07_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
+ HUFv07_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
+ HUFv07_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
+ HUFv07_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ endSignal = BITv07_endOfDStream(&bitD1) & BITv07_endOfDStream(&bitD2) & BITv07_endOfDStream(&bitD3) & BITv07_endOfDStream(&bitD4);
+ if (!endSignal) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+size_t HUFv07_decompress4X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUFv07_DTable* DTable)
+{
+ DTableDesc dtd = HUFv07_getDTableDesc(DTable);
+ if (dtd.tableType != 0) return ERROR(GENERIC);
+ return HUFv07_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
+}
+
+
+size_t HUFv07_decompress4X2_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const hSize = HUFv07_readDTableX2 (dctx, cSrc, cSrcSize);
+ if (HUFv07_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUFv07_decompress4X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, dctx);
+}
+
+size_t HUFv07_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUFv07_CREATE_STATIC_DTABLEX2(DTable, HUFv07_TABLELOG_MAX);
+ return HUFv07_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
+}
+
+
+/* *************************/
+/* double-symbols decoding */
+/* *************************/
+typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUFv07_DEltX4; /* double-symbols decoding */
+
+typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
+
+static void HUFv07_fillDTableX4Level2(HUFv07_DEltX4* DTable, U32 sizeLog, const U32 consumed,
+ const U32* rankValOrigin, const int minWeight,
+ const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
+ U32 nbBitsBaseline, U16 baseSeq)
+{
+ HUFv07_DEltX4 DElt;
+ U32 rankVal[HUFv07_TABLELOG_ABSOLUTEMAX + 1];
+
+ /* get pre-calculated rankVal */
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill skipped values */
+ if (minWeight>1) {
+ U32 i, skipSize = rankVal[minWeight];
+ MEM_writeLE16(&(DElt.sequence), baseSeq);
+ DElt.nbBits = (BYTE)(consumed);
+ DElt.length = 1;
+ for (i = 0; i < skipSize; i++)
+ DTable[i] = DElt;
+ }
+
+ /* fill DTable */
+ { U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
+ const U32 symbol = sortedSymbols[s].symbol;
+ const U32 weight = sortedSymbols[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 length = 1 << (sizeLog-nbBits);
+ const U32 start = rankVal[weight];
+ U32 i = start;
+ const U32 end = start + length;
+
+ MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
+ DElt.nbBits = (BYTE)(nbBits + consumed);
+ DElt.length = 2;
+ do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
+
+ rankVal[weight] += length;
+ }}
+}
+
+typedef U32 rankVal_t[HUFv07_TABLELOG_ABSOLUTEMAX][HUFv07_TABLELOG_ABSOLUTEMAX + 1];
+
+static void HUFv07_fillDTableX4(HUFv07_DEltX4* DTable, const U32 targetLog,
+ const sortedSymbol_t* sortedList, const U32 sortedListSize,
+ const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
+ const U32 nbBitsBaseline)
+{
+ U32 rankVal[HUFv07_TABLELOG_ABSOLUTEMAX + 1];
+ const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
+ const U32 minBits = nbBitsBaseline - maxWeight;
+ U32 s;
+
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+ /* fill DTable */
+ for (s=0; s<sortedListSize; s++) {
+ const U16 symbol = sortedList[s].symbol;
+ const U32 weight = sortedList[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 start = rankVal[weight];
+ const U32 length = 1 << (targetLog-nbBits);
+
+ if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
+ U32 sortedRank;
+ int minWeight = nbBits + scaleLog;
+ if (minWeight < 1) minWeight = 1;
+ sortedRank = rankStart[minWeight];
+ HUFv07_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
+ rankValOrigin[nbBits], minWeight,
+ sortedList+sortedRank, sortedListSize-sortedRank,
+ nbBitsBaseline, symbol);
+ } else {
+ HUFv07_DEltX4 DElt;
+ MEM_writeLE16(&(DElt.sequence), symbol);
+ DElt.nbBits = (BYTE)(nbBits);
+ DElt.length = 1;
+ { U32 u;
+ const U32 end = start + length;
+ for (u = start; u < end; u++) DTable[u] = DElt;
+ } }
+ rankVal[weight] += length;
+ }
+}
+
+size_t HUFv07_readDTableX4 (HUFv07_DTable* DTable, const void* src, size_t srcSize)
+{
+ BYTE weightList[HUFv07_SYMBOLVALUE_MAX + 1];
+ sortedSymbol_t sortedSymbol[HUFv07_SYMBOLVALUE_MAX + 1];
+ U32 rankStats[HUFv07_TABLELOG_ABSOLUTEMAX + 1] = { 0 };
+ U32 rankStart0[HUFv07_TABLELOG_ABSOLUTEMAX + 2] = { 0 };
+ U32* const rankStart = rankStart0+1;
+ rankVal_t rankVal;
+ U32 tableLog, maxW, sizeOfSort, nbSymbols;
+ DTableDesc dtd = HUFv07_getDTableDesc(DTable);
+ U32 const maxTableLog = dtd.maxTableLog;
+ size_t iSize;
+ void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
+ HUFv07_DEltX4* const dt = (HUFv07_DEltX4*)dtPtr;
+
+ HUFv07_STATIC_ASSERT(sizeof(HUFv07_DEltX4) == sizeof(HUFv07_DTable)); /* if compilation fails here, assertion is false */
+ if (maxTableLog > HUFv07_TABLELOG_ABSOLUTEMAX) return ERROR(tableLog_tooLarge);
+ //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUFv07_readStats(weightList, HUFv07_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
+ if (HUFv07_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
+
+ /* find maxWeight */
+ for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
+
+ /* Get start index of each weight */
+ { U32 w, nextRankStart = 0;
+ for (w=1; w<maxW+1; w++) {
+ U32 current = nextRankStart;
+ nextRankStart += rankStats[w];
+ rankStart[w] = current;
+ }
+ rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
+ sizeOfSort = nextRankStart;
+ }
+
+ /* sort symbols by weight */
+ { U32 s;
+ for (s=0; s<nbSymbols; s++) {
+ U32 const w = weightList[s];
+ U32 const r = rankStart[w]++;
+ sortedSymbol[r].symbol = (BYTE)s;
+ sortedSymbol[r].weight = (BYTE)w;
+ }
+ rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
+ }
+
+ /* Build rankVal */
+ { U32* const rankVal0 = rankVal[0];
+ { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
+ U32 nextRankVal = 0;
+ U32 w;
+ for (w=1; w<maxW+1; w++) {
+ U32 current = nextRankVal;
+ nextRankVal += rankStats[w] << (w+rescale);
+ rankVal0[w] = current;
+ } }
+ { U32 const minBits = tableLog+1 - maxW;
+ U32 consumed;
+ for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
+ U32* const rankValPtr = rankVal[consumed];
+ U32 w;
+ for (w = 1; w < maxW+1; w++) {
+ rankValPtr[w] = rankVal0[w] >> consumed;
+ } } } }
+
+ HUFv07_fillDTableX4(dt, maxTableLog,
+ sortedSymbol, sizeOfSort,
+ rankStart0, rankVal, maxW,
+ tableLog+1);
+
+ dtd.tableLog = (BYTE)maxTableLog;
+ dtd.tableType = 1;
+ memcpy(DTable, &dtd, sizeof(dtd));
+ return iSize;
+}
+
+
+static U32 HUFv07_decodeSymbolX4(void* op, BITv07_DStream_t* DStream, const HUFv07_DEltX4* dt, const U32 dtLog)
+{
+ const size_t val = BITv07_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 2);
+ BITv07_skipBits(DStream, dt[val].nbBits);
+ return dt[val].length;
+}
+
+static U32 HUFv07_decodeLastSymbolX4(void* op, BITv07_DStream_t* DStream, const HUFv07_DEltX4* dt, const U32 dtLog)
+{
+ const size_t val = BITv07_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ memcpy(op, dt+val, 1);
+ if (dt[val].length==1) BITv07_skipBits(DStream, dt[val].nbBits);
+ else {
+ if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
+ BITv07_skipBits(DStream, dt[val].nbBits);
+ if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
+ DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
+ } }
+ return 1;
+}
+
+
+#define HUFv07_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
+ ptr += HUFv07_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUFv07_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUFv07_TABLELOG_MAX<=12)) \
+ ptr += HUFv07_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUFv07_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ ptr += HUFv07_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+static inline size_t HUFv07_decodeStreamX4(BYTE* p, BITv07_DStream_t* bitDPtr, BYTE* const pEnd, const HUFv07_DEltX4* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 8 symbols at a time */
+ while ((BITv07_reloadDStream(bitDPtr) == BITv07_DStream_unfinished) && (p < pEnd-7)) {
+ HUFv07_DECODE_SYMBOLX4_2(p, bitDPtr);
+ HUFv07_DECODE_SYMBOLX4_1(p, bitDPtr);
+ HUFv07_DECODE_SYMBOLX4_2(p, bitDPtr);
+ HUFv07_DECODE_SYMBOLX4_0(p, bitDPtr);
+ }
+
+ /* closer to end : up to 2 symbols at a time */
+ while ((BITv07_reloadDStream(bitDPtr) == BITv07_DStream_unfinished) && (p <= pEnd-2))
+ HUFv07_DECODE_SYMBOLX4_0(p, bitDPtr);
+
+ while (p <= pEnd-2)
+ HUFv07_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
+
+ if (p < pEnd)
+ p += HUFv07_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
+
+ return p-pStart;
+}
+
+
+static size_t HUFv07_decompress1X4_usingDTable_internal(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUFv07_DTable* DTable)
+{
+ BITv07_DStream_t bitD;
+
+ /* Init */
+ { size_t const errorCode = BITv07_initDStream(&bitD, cSrc, cSrcSize);
+ if (HUFv07_isError(errorCode)) return errorCode;
+ }
+
+ /* decode */
+ { BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
+ const HUFv07_DEltX4* const dt = (const HUFv07_DEltX4*)dtPtr;
+ DTableDesc const dtd = HUFv07_getDTableDesc(DTable);
+ HUFv07_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog);
+ }
+
+ /* check */
+ if (!BITv07_endOfDStream(&bitD)) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+}
+
+size_t HUFv07_decompress1X4_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUFv07_DTable* DTable)
+{
+ DTableDesc dtd = HUFv07_getDTableDesc(DTable);
+ if (dtd.tableType != 1) return ERROR(GENERIC);
+ return HUFv07_decompress1X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
+}
+
+size_t HUFv07_decompress1X4_DCtx (HUFv07_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const hSize = HUFv07_readDTableX4 (DCtx, cSrc, cSrcSize);
+ if (HUFv07_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUFv07_decompress1X4_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
+}
+
+size_t HUFv07_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUFv07_CREATE_STATIC_DTABLEX4(DTable, HUFv07_TABLELOG_MAX);
+ return HUFv07_decompress1X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
+}
+
+static size_t HUFv07_decompress4X4_usingDTable_internal(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUFv07_DTable* DTable)
+{
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ { const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable+1;
+ const HUFv07_DEltX4* const dt = (const HUFv07_DEltX4*)dtPtr;
+
+ /* Init */
+ BITv07_DStream_t bitD1;
+ BITv07_DStream_t bitD2;
+ BITv07_DStream_t bitD3;
+ BITv07_DStream_t bitD4;
+ size_t const length1 = MEM_readLE16(istart);
+ size_t const length2 = MEM_readLE16(istart+2);
+ size_t const length3 = MEM_readLE16(istart+4);
+ size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ size_t const segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal;
+ DTableDesc const dtd = HUFv07_getDTableDesc(DTable);
+ U32 const dtLog = dtd.tableLog;
+
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ { size_t const errorCode = BITv07_initDStream(&bitD1, istart1, length1);
+ if (HUFv07_isError(errorCode)) return errorCode; }
+ { size_t const errorCode = BITv07_initDStream(&bitD2, istart2, length2);
+ if (HUFv07_isError(errorCode)) return errorCode; }
+ { size_t const errorCode = BITv07_initDStream(&bitD3, istart3, length3);
+ if (HUFv07_isError(errorCode)) return errorCode; }
+ { size_t const errorCode = BITv07_initDStream(&bitD4, istart4, length4);
+ if (HUFv07_isError(errorCode)) return errorCode; }
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ endSignal = BITv07_reloadDStream(&bitD1) | BITv07_reloadDStream(&bitD2) | BITv07_reloadDStream(&bitD3) | BITv07_reloadDStream(&bitD4);
+ for ( ; (endSignal==BITv07_DStream_unfinished) && (op4<(oend-7)) ; ) {
+ HUFv07_DECODE_SYMBOLX4_2(op1, &bitD1);
+ HUFv07_DECODE_SYMBOLX4_2(op2, &bitD2);
+ HUFv07_DECODE_SYMBOLX4_2(op3, &bitD3);
+ HUFv07_DECODE_SYMBOLX4_2(op4, &bitD4);
+ HUFv07_DECODE_SYMBOLX4_1(op1, &bitD1);
+ HUFv07_DECODE_SYMBOLX4_1(op2, &bitD2);
+ HUFv07_DECODE_SYMBOLX4_1(op3, &bitD3);
+ HUFv07_DECODE_SYMBOLX4_1(op4, &bitD4);
+ HUFv07_DECODE_SYMBOLX4_2(op1, &bitD1);
+ HUFv07_DECODE_SYMBOLX4_2(op2, &bitD2);
+ HUFv07_DECODE_SYMBOLX4_2(op3, &bitD3);
+ HUFv07_DECODE_SYMBOLX4_2(op4, &bitD4);
+ HUFv07_DECODE_SYMBOLX4_0(op1, &bitD1);
+ HUFv07_DECODE_SYMBOLX4_0(op2, &bitD2);
+ HUFv07_DECODE_SYMBOLX4_0(op3, &bitD3);
+ HUFv07_DECODE_SYMBOLX4_0(op4, &bitD4);
+
+ endSignal = BITv07_reloadDStream(&bitD1) | BITv07_reloadDStream(&bitD2) | BITv07_reloadDStream(&bitD3) | BITv07_reloadDStream(&bitD4);
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUFv07_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
+ HUFv07_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
+ HUFv07_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
+ HUFv07_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ { U32 const endCheck = BITv07_endOfDStream(&bitD1) & BITv07_endOfDStream(&bitD2) & BITv07_endOfDStream(&bitD3) & BITv07_endOfDStream(&bitD4);
+ if (!endCheck) return ERROR(corruption_detected); }
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+size_t HUFv07_decompress4X4_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUFv07_DTable* DTable)
+{
+ DTableDesc dtd = HUFv07_getDTableDesc(DTable);
+ if (dtd.tableType != 1) return ERROR(GENERIC);
+ return HUFv07_decompress4X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
+}
+
+
+size_t HUFv07_decompress4X4_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t hSize = HUFv07_readDTableX4 (dctx, cSrc, cSrcSize);
+ if (HUFv07_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUFv07_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx);
+}
+
+size_t HUFv07_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ HUFv07_CREATE_STATIC_DTABLEX4(DTable, HUFv07_TABLELOG_MAX);
+ return HUFv07_decompress4X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
+}
+
+
+/* ********************************/
+/* Generic decompression selector */
+/* ********************************/
+
+size_t HUFv07_decompress1X_usingDTable(void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUFv07_DTable* DTable)
+{
+ DTableDesc const dtd = HUFv07_getDTableDesc(DTable);
+ return dtd.tableType ? HUFv07_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
+ HUFv07_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
+}
+
+size_t HUFv07_decompress4X_usingDTable(void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUFv07_DTable* DTable)
+{
+ DTableDesc const dtd = HUFv07_getDTableDesc(DTable);
+ return dtd.tableType ? HUFv07_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
+ HUFv07_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
+}
+
+
+typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
+static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
+{
+ /* single, double, quad */
+ {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
+ {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
+ {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
+ {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
+ {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
+ {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
+ {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
+ {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
+ {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
+ {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
+ {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
+ {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
+ {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
+ {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
+ {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
+ {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
+};
+
+/** HUFv07_selectDecoder() :
+* Tells which decoder is likely to decode faster,
+* based on a set of pre-determined metrics.
+* @return : 0==HUFv07_decompress4X2, 1==HUFv07_decompress4X4 .
+* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
+U32 HUFv07_selectDecoder (size_t dstSize, size_t cSrcSize)
+{
+ /* decoder timing evaluation */
+ U32 const Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
+ U32 const D256 = (U32)(dstSize >> 8);
+ U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
+ U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
+ DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, for cache eviction */
+
+ return DTime1 < DTime0;
+}
+
+
+typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
+
+size_t HUFv07_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ static const decompressionAlgo decompress[2] = { HUFv07_decompress4X2, HUFv07_decompress4X4 };
+
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
+ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
+
+ { U32 const algoNb = HUFv07_selectDecoder(dstSize, cSrcSize);
+ return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
+ }
+
+ //return HUFv07_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
+ //return HUFv07_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
+}
+
+size_t HUFv07_decompress4X_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
+ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
+
+ { U32 const algoNb = HUFv07_selectDecoder(dstSize, cSrcSize);
+ return algoNb ? HUFv07_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
+ HUFv07_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
+ }
+}
+
+size_t HUFv07_decompress4X_hufOnly (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if ((cSrcSize >= dstSize) || (cSrcSize <= 1)) return ERROR(corruption_detected); /* invalid */
+
+ { U32 const algoNb = HUFv07_selectDecoder(dstSize, cSrcSize);
+ return algoNb ? HUFv07_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
+ HUFv07_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
+ }
+}
+
+size_t HUFv07_decompress1X_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
+ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
+
+ { U32 const algoNb = HUFv07_selectDecoder(dstSize, cSrcSize);
+ return algoNb ? HUFv07_decompress1X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
+ HUFv07_decompress1X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
+ }
+}
+/*
+ Common functions of Zstd compression library
+ Copyright (C) 2015-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd homepage : http://www.zstd.net/
+*/
+
+
+
+/*-****************************************
+* ZSTD Error Management
+******************************************/
+/*! ZSTDv07_isError() :
+* tells if a return value is an error code */
+unsigned ZSTDv07_isError(size_t code) { return ERR_isError(code); }
+
+/*! ZSTDv07_getErrorName() :
+* provides error code string from function result (useful for debugging) */
+const char* ZSTDv07_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+
+
+/* **************************************************************
+* ZBUFF Error Management
+****************************************************************/
+unsigned ZBUFFv07_isError(size_t errorCode) { return ERR_isError(errorCode); }
+
+const char* ZBUFFv07_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
+
+
+
+static void* ZSTDv07_defaultAllocFunction(void* opaque, size_t size)
+{
+ void* address = malloc(size);
+ (void)opaque;
+ /* printf("alloc %p, %d opaque=%p \n", address, (int)size, opaque); */
+ return address;
+}
+
+static void ZSTDv07_defaultFreeFunction(void* opaque, void* address)
+{
+ (void)opaque;
+ /* if (address) printf("free %p opaque=%p \n", address, opaque); */
+ free(address);
+}
+/*
+ zstd_internal - common functions to include
+ Header File for include
+ Copyright (C) 2014-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd homepage : https://www.zstd.net
+*/
+#ifndef ZSTDv07_CCOMMON_H_MODULE
+#define ZSTDv07_CCOMMON_H_MODULE
+
+
+/*-*************************************
+* Common macros
+***************************************/
+#define MIN(a,b) ((a)<(b) ? (a) : (b))
+#define MAX(a,b) ((a)>(b) ? (a) : (b))
+
+
+/*-*************************************
+* Common constants
+***************************************/
+#define ZSTDv07_OPT_NUM (1<<12)
+#define ZSTDv07_DICT_MAGIC 0xEC30A437 /* v0.7 */
+
+#define ZSTDv07_REP_NUM 3
+#define ZSTDv07_REP_INIT ZSTDv07_REP_NUM
+#define ZSTDv07_REP_MOVE (ZSTDv07_REP_NUM-1)
+static const U32 repStartValue[ZSTDv07_REP_NUM] = { 1, 4, 8 };
+
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+
+#define BIT7 128
+#define BIT6 64
+#define BIT5 32
+#define BIT4 16
+#define BIT1 2
+#define BIT0 1
+
+#define ZSTDv07_WINDOWLOG_ABSOLUTEMIN 10
+static const size_t ZSTDv07_fcs_fieldSize[4] = { 0, 2, 4, 8 };
+static const size_t ZSTDv07_did_fieldSize[4] = { 0, 1, 2, 4 };
+
+#define ZSTDv07_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
+static const size_t ZSTDv07_blockHeaderSize = ZSTDv07_BLOCKHEADERSIZE;
+typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
+
+#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
+#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
+
+#define HufLog 12
+typedef enum { lbt_huffman, lbt_repeat, lbt_raw, lbt_rle } litBlockType_t;
+
+#define LONGNBSEQ 0x7F00
+
+#define MINMATCH 3
+#define EQUAL_READ32 4
+
+#define Litbits 8
+#define MaxLit ((1<<Litbits) - 1)
+#define MaxML 52
+#define MaxLL 35
+#define MaxOff 28
+#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
+#define MLFSELog 9
+#define LLFSELog 9
+#define OffFSELog 8
+
+#define FSEv07_ENCODING_RAW 0
+#define FSEv07_ENCODING_RLE 1
+#define FSEv07_ENCODING_STATIC 2
+#define FSEv07_ENCODING_DYNAMIC 3
+
+#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
+
+static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9,10,11,12,
+ 13,14,15,16 };
+static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1,
+ -1,-1,-1,-1 };
+static const U32 LL_defaultNormLog = 6;
+
+static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 9,10,11,
+ 12,13,14,15,16 };
+static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,
+ -1,-1,-1,-1,-1 };
+static const U32 ML_defaultNormLog = 6;
+
+static const S16 OF_defaultNorm[MaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1 };
+static const U32 OF_defaultNormLog = 5;
+
+
+/*-*******************************************
+* Shared functions to include for inlining
+*********************************************/
+static void ZSTDv07_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
+#define COPY8(d,s) { ZSTDv07_copy8(d,s); d+=8; s+=8; }
+
+/*! ZSTDv07_wildcopy() :
+* custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */
+#define WILDCOPY_OVERLENGTH 8
+MEM_STATIC void ZSTDv07_wildcopy(void* dst, const void* src, ptrdiff_t length)
+{
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + length;
+ do
+ COPY8(op, ip)
+ while (op < oend);
+}
+
+
+/*-*******************************************
+* Private interfaces
+*********************************************/
+typedef struct ZSTDv07_stats_s ZSTDv07_stats_t;
+
+typedef struct {
+ U32 off;
+ U32 len;
+} ZSTDv07_match_t;
+
+typedef struct {
+ U32 price;
+ U32 off;
+ U32 mlen;
+ U32 litlen;
+ U32 rep[ZSTDv07_REP_INIT];
+} ZSTDv07_optimal_t;
+
+struct ZSTDv07_stats_s { U32 unused; };
+
+typedef struct {
+ void* buffer;
+ U32* offsetStart;
+ U32* offset;
+ BYTE* offCodeStart;
+ BYTE* litStart;
+ BYTE* lit;
+ U16* litLengthStart;
+ U16* litLength;
+ BYTE* llCodeStart;
+ U16* matchLengthStart;
+ U16* matchLength;
+ BYTE* mlCodeStart;
+ U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
+ U32 longLengthPos;
+ /* opt */
+ ZSTDv07_optimal_t* priceTable;
+ ZSTDv07_match_t* matchTable;
+ U32* matchLengthFreq;
+ U32* litLengthFreq;
+ U32* litFreq;
+ U32* offCodeFreq;
+ U32 matchLengthSum;
+ U32 matchSum;
+ U32 litLengthSum;
+ U32 litSum;
+ U32 offCodeSum;
+ U32 log2matchLengthSum;
+ U32 log2matchSum;
+ U32 log2litLengthSum;
+ U32 log2litSum;
+ U32 log2offCodeSum;
+ U32 factor;
+ U32 cachedPrice;
+ U32 cachedLitLength;
+ const BYTE* cachedLiterals;
+ ZSTDv07_stats_t stats;
+} seqStore_t;
+
+void ZSTDv07_seqToCodes(const seqStore_t* seqStorePtr, size_t const nbSeq);
+
+/* custom memory allocation functions */
+static const ZSTDv07_customMem defaultCustomMem = { ZSTDv07_defaultAllocFunction, ZSTDv07_defaultFreeFunction, NULL };
+
+#endif /* ZSTDv07_CCOMMON_H_MODULE */
+/*
+ zstd - standard compression library
+ Copyright (C) 2014-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd homepage : http://www.zstd.net
+*/
+
+/* ***************************************************************
+* Tuning parameters
+*****************************************************************/
+/*!
+ * HEAPMODE :
+ * Select how default decompression function ZSTDv07_decompress() will allocate memory,
+ * in memory stack (0), or in memory heap (1, requires malloc())
+ */
+#ifndef ZSTDv07_HEAPMODE
+# define ZSTDv07_HEAPMODE 1
+#endif
+
+
+/*-*******************************************************
+* Compiler specifics
+*********************************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# include <intrin.h> /* For Visual 2005 */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# pragma warning(disable : 4324) /* disable: C4324: padded structure */
+# pragma warning(disable : 4100) /* disable: C4100: unreferenced formal parameter */
+#endif
+
+
+/*-*************************************
+* Macros
+***************************************/
+#define ZSTDv07_isError ERR_isError /* for inlining */
+#define FSEv07_isError ERR_isError
+#define HUFv07_isError ERR_isError
+
+
+/*_*******************************************************
+* Memory operations
+**********************************************************/
+static void ZSTDv07_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
+
+
+/*-*************************************************************
+* Context management
+***************************************************************/
+typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
+ ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock,
+ ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTDv07_dStage;
+
+struct ZSTDv07_DCtx_s
+{
+ FSEv07_DTable LLTable[FSEv07_DTABLE_SIZE_U32(LLFSELog)];
+ FSEv07_DTable OffTable[FSEv07_DTABLE_SIZE_U32(OffFSELog)];
+ FSEv07_DTable MLTable[FSEv07_DTABLE_SIZE_U32(MLFSELog)];
+ HUFv07_DTable hufTable[HUFv07_DTABLE_SIZE(HufLog)]; /* can accommodate HUFv07_decompress4X */
+ const void* previousDstEnd;
+ const void* base;
+ const void* vBase;
+ const void* dictEnd;
+ size_t expected;
+ U32 rep[3];
+ ZSTDv07_frameParams fParams;
+ blockType_t bType; /* used in ZSTDv07_decompressContinue(), to transfer blockType between header decoding and block decoding stages */
+ ZSTDv07_dStage stage;
+ U32 litEntropy;
+ U32 fseEntropy;
+ XXH64_state_t xxhState;
+ size_t headerSize;
+ U32 dictID;
+ const BYTE* litPtr;
+ ZSTDv07_customMem customMem;
+ size_t litSize;
+ BYTE litBuffer[ZSTDv07_BLOCKSIZE_ABSOLUTEMAX + WILDCOPY_OVERLENGTH];
+ BYTE headerBuffer[ZSTDv07_FRAMEHEADERSIZE_MAX];
+}; /* typedef'd to ZSTDv07_DCtx within "zstd_static.h" */
+
+int ZSTDv07_isSkipFrame(ZSTDv07_DCtx* dctx);
+
+size_t ZSTDv07_sizeofDCtx (const ZSTDv07_DCtx* dctx) { return sizeof(*dctx); }
+
+size_t ZSTDv07_estimateDCtxSize(void) { return sizeof(ZSTDv07_DCtx); }
+
+size_t ZSTDv07_decompressBegin(ZSTDv07_DCtx* dctx)
+{
+ dctx->expected = ZSTDv07_frameHeaderSize_min;
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ dctx->previousDstEnd = NULL;
+ dctx->base = NULL;
+ dctx->vBase = NULL;
+ dctx->dictEnd = NULL;
+ dctx->hufTable[0] = (HUFv07_DTable)((HufLog)*0x1000001);
+ dctx->litEntropy = dctx->fseEntropy = 0;
+ dctx->dictID = 0;
+ { int i; for (i=0; i<ZSTDv07_REP_NUM; i++) dctx->rep[i] = repStartValue[i]; }
+ return 0;
+}
+
+ZSTDv07_DCtx* ZSTDv07_createDCtx_advanced(ZSTDv07_customMem customMem)
+{
+ ZSTDv07_DCtx* dctx;
+
+ if (!customMem.customAlloc && !customMem.customFree)
+ customMem = defaultCustomMem;
+
+ if (!customMem.customAlloc || !customMem.customFree)
+ return NULL;
+
+ dctx = (ZSTDv07_DCtx*) customMem.customAlloc(customMem.opaque, sizeof(ZSTDv07_DCtx));
+ if (!dctx) return NULL;
+ memcpy(&dctx->customMem, &customMem, sizeof(ZSTDv07_customMem));
+ ZSTDv07_decompressBegin(dctx);
+ return dctx;
+}
+
+ZSTDv07_DCtx* ZSTDv07_createDCtx(void)
+{
+ return ZSTDv07_createDCtx_advanced(defaultCustomMem);
+}
+
+size_t ZSTDv07_freeDCtx(ZSTDv07_DCtx* dctx)
+{
+ if (dctx==NULL) return 0; /* support free on NULL */
+ dctx->customMem.customFree(dctx->customMem.opaque, dctx);
+ return 0; /* reserved as a potential error code in the future */
+}
+
+void ZSTDv07_copyDCtx(ZSTDv07_DCtx* dstDCtx, const ZSTDv07_DCtx* srcDCtx)
+{
+ memcpy(dstDCtx, srcDCtx,
+ sizeof(ZSTDv07_DCtx) - (ZSTDv07_BLOCKSIZE_ABSOLUTEMAX+WILDCOPY_OVERLENGTH + ZSTDv07_frameHeaderSize_max)); /* no need to copy workspace */
+}
+
+
+/*-*************************************************************
+* Decompression section
+***************************************************************/
+
+/* Frame format description
+ Frame Header - [ Block Header - Block ] - Frame End
+ 1) Frame Header
+ - 4 bytes - Magic Number : ZSTDv07_MAGICNUMBER (defined within zstd.h)
+ - 1 byte - Frame Descriptor
+ 2) Block Header
+ - 3 bytes, starting with a 2-bits descriptor
+ Uncompressed, Compressed, Frame End, unused
+ 3) Block
+ See Block Format Description
+ 4) Frame End
+ - 3 bytes, compatible with Block Header
+*/
+
+
+/* Frame Header :
+
+ 1 byte - FrameHeaderDescription :
+ bit 0-1 : dictID (0, 1, 2 or 4 bytes)
+ bit 2 : checksumFlag
+ bit 3 : reserved (must be zero)
+ bit 4 : reserved (unused, can be any value)
+ bit 5 : Single Segment (if 1, WindowLog byte is not present)
+ bit 6-7 : FrameContentFieldSize (0, 2, 4, or 8)
+ if (SkippedWindowLog && !FrameContentFieldsize) FrameContentFieldsize=1;
+
+ Optional : WindowLog (0 or 1 byte)
+ bit 0-2 : octal Fractional (1/8th)
+ bit 3-7 : Power of 2, with 0 = 1 KB (up to 2 TB)
+
+ Optional : dictID (0, 1, 2 or 4 bytes)
+ Automatic adaptation
+ 0 : no dictID
+ 1 : 1 - 255
+ 2 : 256 - 65535
+ 4 : all other values
+
+ Optional : content size (0, 1, 2, 4 or 8 bytes)
+ 0 : unknown (fcfs==0 and swl==0)
+ 1 : 0-255 bytes (fcfs==0 and swl==1)
+ 2 : 256 - 65535+256 (fcfs==1)
+ 4 : 0 - 4GB-1 (fcfs==2)
+ 8 : 0 - 16EB-1 (fcfs==3)
+*/
+
+
+/* Compressed Block, format description
+
+ Block = Literal Section - Sequences Section
+ Prerequisite : size of (compressed) block, maximum size of regenerated data
+
+ 1) Literal Section
+
+ 1.1) Header : 1-5 bytes
+ flags: 2 bits
+ 00 compressed by Huff0
+ 01 unused
+ 10 is Raw (uncompressed)
+ 11 is Rle
+ Note : using 01 => Huff0 with precomputed table ?
+ Note : delta map ? => compressed ?
+
+ 1.1.1) Huff0-compressed literal block : 3-5 bytes
+ srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream
+ srcSize < 1 KB => 3 bytes (2-2-10-10)
+ srcSize < 16KB => 4 bytes (2-2-14-14)
+ else => 5 bytes (2-2-18-18)
+ big endian convention
+
+ 1.1.2) Raw (uncompressed) literal block header : 1-3 bytes
+ size : 5 bits: (IS_RAW<<6) + (0<<4) + size
+ 12 bits: (IS_RAW<<6) + (2<<4) + (size>>8)
+ size&255
+ 20 bits: (IS_RAW<<6) + (3<<4) + (size>>16)
+ size>>8&255
+ size&255
+
+ 1.1.3) Rle (repeated single byte) literal block header : 1-3 bytes
+ size : 5 bits: (IS_RLE<<6) + (0<<4) + size
+ 12 bits: (IS_RLE<<6) + (2<<4) + (size>>8)
+ size&255
+ 20 bits: (IS_RLE<<6) + (3<<4) + (size>>16)
+ size>>8&255
+ size&255
+
+ 1.1.4) Huff0-compressed literal block, using precomputed CTables : 3-5 bytes
+ srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream
+ srcSize < 1 KB => 3 bytes (2-2-10-10)
+ srcSize < 16KB => 4 bytes (2-2-14-14)
+ else => 5 bytes (2-2-18-18)
+ big endian convention
+
+ 1- CTable available (stored into workspace ?)
+ 2- Small input (fast heuristic ? Full comparison ? depend on clevel ?)
+
+
+ 1.2) Literal block content
+
+ 1.2.1) Huff0 block, using sizes from header
+ See Huff0 format
+
+ 1.2.2) Huff0 block, using prepared table
+
+ 1.2.3) Raw content
+
+ 1.2.4) single byte
+
+
+ 2) Sequences section
+ TO DO
+*/
+
+/** ZSTDv07_frameHeaderSize() :
+* srcSize must be >= ZSTDv07_frameHeaderSize_min.
+* @return : size of the Frame Header */
+static size_t ZSTDv07_frameHeaderSize(const void* src, size_t srcSize)
+{
+ if (srcSize < ZSTDv07_frameHeaderSize_min) return ERROR(srcSize_wrong);
+ { BYTE const fhd = ((const BYTE*)src)[4];
+ U32 const dictID= fhd & 3;
+ U32 const directMode = (fhd >> 5) & 1;
+ U32 const fcsId = fhd >> 6;
+ return ZSTDv07_frameHeaderSize_min + !directMode + ZSTDv07_did_fieldSize[dictID] + ZSTDv07_fcs_fieldSize[fcsId]
+ + (directMode && !ZSTDv07_fcs_fieldSize[fcsId]);
+ }
+}
+
+
+/** ZSTDv07_getFrameParams() :
+* decode Frame Header, or require larger `srcSize`.
+* @return : 0, `fparamsPtr` is correctly filled,
+* >0, `srcSize` is too small, result is expected `srcSize`,
+* or an error code, which can be tested using ZSTDv07_isError() */
+size_t ZSTDv07_getFrameParams(ZSTDv07_frameParams* fparamsPtr, const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+
+ if (srcSize < ZSTDv07_frameHeaderSize_min) return ZSTDv07_frameHeaderSize_min;
+ memset(fparamsPtr, 0, sizeof(*fparamsPtr));
+ if (MEM_readLE32(src) != ZSTDv07_MAGICNUMBER) {
+ if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTDv07_MAGIC_SKIPPABLE_START) {
+ if (srcSize < ZSTDv07_skippableHeaderSize) return ZSTDv07_skippableHeaderSize; /* magic number + skippable frame length */
+ fparamsPtr->frameContentSize = MEM_readLE32((const char *)src + 4);
+ fparamsPtr->windowSize = 0; /* windowSize==0 means a frame is skippable */
+ return 0;
+ }
+ return ERROR(prefix_unknown);
+ }
+
+ /* ensure there is enough `srcSize` to fully read/decode frame header */
+ { size_t const fhsize = ZSTDv07_frameHeaderSize(src, srcSize);
+ if (srcSize < fhsize) return fhsize; }
+
+ { BYTE const fhdByte = ip[4];
+ size_t pos = 5;
+ U32 const dictIDSizeCode = fhdByte&3;
+ U32 const checksumFlag = (fhdByte>>2)&1;
+ U32 const directMode = (fhdByte>>5)&1;
+ U32 const fcsID = fhdByte>>6;
+ U32 const windowSizeMax = 1U << ZSTDv07_WINDOWLOG_MAX;
+ U32 windowSize = 0;
+ U32 dictID = 0;
+ U64 frameContentSize = 0;
+ if ((fhdByte & 0x08) != 0) /* reserved bits, which must be zero */
+ return ERROR(frameParameter_unsupported);
+ if (!directMode) {
+ BYTE const wlByte = ip[pos++];
+ U32 const windowLog = (wlByte >> 3) + ZSTDv07_WINDOWLOG_ABSOLUTEMIN;
+ if (windowLog > ZSTDv07_WINDOWLOG_MAX)
+ return ERROR(frameParameter_unsupported);
+ windowSize = (1U << windowLog);
+ windowSize += (windowSize >> 3) * (wlByte&7);
+ }
+
+ switch(dictIDSizeCode)
+ {
+ default: /* impossible */
+ case 0 : break;
+ case 1 : dictID = ip[pos]; pos++; break;
+ case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break;
+ case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break;
+ }
+ switch(fcsID)
+ {
+ default: /* impossible */
+ case 0 : if (directMode) frameContentSize = ip[pos]; break;
+ case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break;
+ case 2 : frameContentSize = MEM_readLE32(ip+pos); break;
+ case 3 : frameContentSize = MEM_readLE64(ip+pos); break;
+ }
+ if (!windowSize) windowSize = (U32)frameContentSize;
+ if (windowSize > windowSizeMax)
+ return ERROR(frameParameter_unsupported);
+ fparamsPtr->frameContentSize = frameContentSize;
+ fparamsPtr->windowSize = windowSize;
+ fparamsPtr->dictID = dictID;
+ fparamsPtr->checksumFlag = checksumFlag;
+ }
+ return 0;
+}
+
+
+/** ZSTDv07_getDecompressedSize() :
+* compatible with legacy mode
+* @return : decompressed size if known, 0 otherwise
+ note : 0 can mean any of the following :
+ - decompressed size is not provided within frame header
+ - frame header unknown / not supported
+ - frame header not completely provided (`srcSize` too small) */
+unsigned long long ZSTDv07_getDecompressedSize(const void* src, size_t srcSize)
+{
+ ZSTDv07_frameParams fparams;
+ size_t const frResult = ZSTDv07_getFrameParams(&fparams, src, srcSize);
+ if (frResult!=0) return 0;
+ return fparams.frameContentSize;
+}
+
+
+/** ZSTDv07_decodeFrameHeader() :
+* `srcSize` must be the size provided by ZSTDv07_frameHeaderSize().
+* @return : 0 if success, or an error code, which can be tested using ZSTDv07_isError() */
+static size_t ZSTDv07_decodeFrameHeader(ZSTDv07_DCtx* dctx, const void* src, size_t srcSize)
+{
+ size_t const result = ZSTDv07_getFrameParams(&(dctx->fParams), src, srcSize);
+ if (dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID)) return ERROR(dictionary_wrong);
+ if (dctx->fParams.checksumFlag) XXH64_reset(&dctx->xxhState, 0);
+ return result;
+}
+
+
+typedef struct
+{
+ blockType_t blockType;
+ U32 origSize;
+} blockProperties_t;
+
+/*! ZSTDv07_getcBlockSize() :
+* Provides the size of compressed block from block header `src` */
+static size_t ZSTDv07_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
+{
+ const BYTE* const in = (const BYTE* const)src;
+ U32 cSize;
+
+ if (srcSize < ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong);
+
+ bpPtr->blockType = (blockType_t)((*in) >> 6);
+ cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
+ bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
+
+ if (bpPtr->blockType == bt_end) return 0;
+ if (bpPtr->blockType == bt_rle) return 1;
+ return cSize;
+}
+
+
+static size_t ZSTDv07_copyRawBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ if (srcSize > dstCapacity) return ERROR(dstSize_tooSmall);
+ memcpy(dst, src, srcSize);
+ return srcSize;
+}
+
+
+/*! ZSTDv07_decodeLiteralsBlock() :
+ @return : nb of bytes read from src (< srcSize ) */
+static size_t ZSTDv07_decodeLiteralsBlock(ZSTDv07_DCtx* dctx,
+ const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
+{
+ const BYTE* const istart = (const BYTE*) src;
+
+ if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
+
+ switch((litBlockType_t)(istart[0]>> 6))
+ {
+ case lbt_huffman:
+ { size_t litSize, litCSize, singleStream=0;
+ U32 lhSize = (istart[0] >> 4) & 3;
+ if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for lhSize, + cSize (+nbSeq) */
+ switch(lhSize)
+ {
+ case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
+ /* 2 - 2 - 10 - 10 */
+ lhSize=3;
+ singleStream = istart[0] & 16;
+ litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
+ litCSize = ((istart[1] & 3) << 8) + istart[2];
+ break;
+ case 2:
+ /* 2 - 2 - 14 - 14 */
+ lhSize=4;
+ litSize = ((istart[0] & 15) << 10) + (istart[1] << 2) + (istart[2] >> 6);
+ litCSize = ((istart[2] & 63) << 8) + istart[3];
+ break;
+ case 3:
+ /* 2 - 2 - 18 - 18 */
+ lhSize=5;
+ litSize = ((istart[0] & 15) << 14) + (istart[1] << 6) + (istart[2] >> 2);
+ litCSize = ((istart[2] & 3) << 16) + (istart[3] << 8) + istart[4];
+ break;
+ }
+ if (litSize > ZSTDv07_BLOCKSIZE_ABSOLUTEMAX) return ERROR(corruption_detected);
+ if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
+
+ if (HUFv07_isError(singleStream ?
+ HUFv07_decompress1X2_DCtx(dctx->hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize) :
+ HUFv07_decompress4X_hufOnly (dctx->hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize) ))
+ return ERROR(corruption_detected);
+
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ dctx->litEntropy = 1;
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return litCSize + lhSize;
+ }
+ case lbt_repeat:
+ { size_t litSize, litCSize;
+ U32 lhSize = ((istart[0]) >> 4) & 3;
+ if (lhSize != 1) /* only case supported for now : small litSize, single stream */
+ return ERROR(corruption_detected);
+ if (dctx->litEntropy==0)
+ return ERROR(dictionary_corrupted);
+
+ /* 2 - 2 - 10 - 10 */
+ lhSize=3;
+ litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
+ litCSize = ((istart[1] & 3) << 8) + istart[2];
+ if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
+
+ { size_t const errorCode = HUFv07_decompress1X4_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->hufTable);
+ if (HUFv07_isError(errorCode)) return ERROR(corruption_detected);
+ }
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return litCSize + lhSize;
+ }
+ case lbt_raw:
+ { size_t litSize;
+ U32 lhSize = ((istart[0]) >> 4) & 3;
+ switch(lhSize)
+ {
+ case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
+ lhSize=1;
+ litSize = istart[0] & 31;
+ break;
+ case 2:
+ litSize = ((istart[0] & 15) << 8) + istart[1];
+ break;
+ case 3:
+ litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
+ break;
+ }
+
+ if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
+ if (litSize+lhSize > srcSize) return ERROR(corruption_detected);
+ memcpy(dctx->litBuffer, istart+lhSize, litSize);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return lhSize+litSize;
+ }
+ /* direct reference into compressed stream */
+ dctx->litPtr = istart+lhSize;
+ dctx->litSize = litSize;
+ return lhSize+litSize;
+ }
+ case lbt_rle:
+ { size_t litSize;
+ U32 lhSize = ((istart[0]) >> 4) & 3;
+ switch(lhSize)
+ {
+ case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
+ lhSize = 1;
+ litSize = istart[0] & 31;
+ break;
+ case 2:
+ litSize = ((istart[0] & 15) << 8) + istart[1];
+ break;
+ case 3:
+ litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
+ if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */
+ break;
+ }
+ if (litSize > ZSTDv07_BLOCKSIZE_ABSOLUTEMAX) return ERROR(corruption_detected);
+ memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ return lhSize+1;
+ }
+ default:
+ return ERROR(corruption_detected); /* impossible */
+ }
+}
+
+
+/*! ZSTDv07_buildSeqTable() :
+ @return : nb bytes read from src,
+ or an error code if it fails, testable with ZSTDv07_isError()
+*/
+static size_t ZSTDv07_buildSeqTable(FSEv07_DTable* DTable, U32 type, U32 max, U32 maxLog,
+ const void* src, size_t srcSize,
+ const S16* defaultNorm, U32 defaultLog, U32 flagRepeatTable)
+{
+ switch(type)
+ {
+ case FSEv07_ENCODING_RLE :
+ if (!srcSize) return ERROR(srcSize_wrong);
+ if ( (*(const BYTE*)src) > max) return ERROR(corruption_detected);
+ FSEv07_buildDTable_rle(DTable, *(const BYTE*)src); /* if *src > max, data is corrupted */
+ return 1;
+ case FSEv07_ENCODING_RAW :
+ FSEv07_buildDTable(DTable, defaultNorm, max, defaultLog);
+ return 0;
+ case FSEv07_ENCODING_STATIC:
+ if (!flagRepeatTable) return ERROR(corruption_detected);
+ return 0;
+ default : /* impossible */
+ case FSEv07_ENCODING_DYNAMIC :
+ { U32 tableLog;
+ S16 norm[MaxSeq+1];
+ size_t const headerSize = FSEv07_readNCount(norm, &max, &tableLog, src, srcSize);
+ if (FSEv07_isError(headerSize)) return ERROR(corruption_detected);
+ if (tableLog > maxLog) return ERROR(corruption_detected);
+ FSEv07_buildDTable(DTable, norm, max, tableLog);
+ return headerSize;
+ } }
+}
+
+
+static size_t ZSTDv07_decodeSeqHeaders(int* nbSeqPtr,
+ FSEv07_DTable* DTableLL, FSEv07_DTable* DTableML, FSEv07_DTable* DTableOffb, U32 flagRepeatTable,
+ const void* src, size_t srcSize)
+{
+ const BYTE* const istart = (const BYTE* const)src;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* ip = istart;
+
+ /* check */
+ if (srcSize < MIN_SEQUENCES_SIZE) return ERROR(srcSize_wrong);
+
+ /* SeqHead */
+ { int nbSeq = *ip++;
+ if (!nbSeq) { *nbSeqPtr=0; return 1; }
+ if (nbSeq > 0x7F) {
+ if (nbSeq == 0xFF) {
+ if (ip+2 > iend) return ERROR(srcSize_wrong);
+ nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2;
+ } else {
+ if (ip >= iend) return ERROR(srcSize_wrong);
+ nbSeq = ((nbSeq-0x80)<<8) + *ip++;
+ }
+ }
+ *nbSeqPtr = nbSeq;
+ }
+
+ /* FSE table descriptors */
+ if (ip + 4 > iend) return ERROR(srcSize_wrong); /* min : header byte + all 3 are "raw", hence no header, but at least xxLog bits per type */
+ { U32 const LLtype = *ip >> 6;
+ U32 const OFtype = (*ip >> 4) & 3;
+ U32 const MLtype = (*ip >> 2) & 3;
+ ip++;
+
+ /* Build DTables */
+ { size_t const llhSize = ZSTDv07_buildSeqTable(DTableLL, LLtype, MaxLL, LLFSELog, ip, iend-ip, LL_defaultNorm, LL_defaultNormLog, flagRepeatTable);
+ if (ZSTDv07_isError(llhSize)) return ERROR(corruption_detected);
+ ip += llhSize;
+ }
+ { size_t const ofhSize = ZSTDv07_buildSeqTable(DTableOffb, OFtype, MaxOff, OffFSELog, ip, iend-ip, OF_defaultNorm, OF_defaultNormLog, flagRepeatTable);
+ if (ZSTDv07_isError(ofhSize)) return ERROR(corruption_detected);
+ ip += ofhSize;
+ }
+ { size_t const mlhSize = ZSTDv07_buildSeqTable(DTableML, MLtype, MaxML, MLFSELog, ip, iend-ip, ML_defaultNorm, ML_defaultNormLog, flagRepeatTable);
+ if (ZSTDv07_isError(mlhSize)) return ERROR(corruption_detected);
+ ip += mlhSize;
+ } }
+
+ return ip-istart;
+}
+
+
+typedef struct {
+ size_t litLength;
+ size_t matchLength;
+ size_t offset;
+} seq_t;
+
+typedef struct {
+ BITv07_DStream_t DStream;
+ FSEv07_DState_t stateLL;
+ FSEv07_DState_t stateOffb;
+ FSEv07_DState_t stateML;
+ size_t prevOffset[ZSTDv07_REP_INIT];
+} seqState_t;
+
+
+static seq_t ZSTDv07_decodeSequence(seqState_t* seqState)
+{
+ seq_t seq;
+
+ U32 const llCode = FSEv07_peekSymbol(&(seqState->stateLL));
+ U32 const mlCode = FSEv07_peekSymbol(&(seqState->stateML));
+ U32 const ofCode = FSEv07_peekSymbol(&(seqState->stateOffb)); /* <= maxOff, by table construction */
+
+ U32 const llBits = LL_bits[llCode];
+ U32 const mlBits = ML_bits[mlCode];
+ U32 const ofBits = ofCode;
+ U32 const totalBits = llBits+mlBits+ofBits;
+
+ static const U32 LL_base[MaxLL+1] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
+ 0x2000, 0x4000, 0x8000, 0x10000 };
+
+ static const U32 ML_base[MaxML+1] = {
+ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
+ 35, 37, 39, 41, 43, 47, 51, 59, 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803,
+ 0x1003, 0x2003, 0x4003, 0x8003, 0x10003 };
+
+ static const U32 OF_base[MaxOff+1] = {
+ 0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D,
+ 0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD,
+ 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD,
+ 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD };
+
+ /* sequence */
+ { size_t offset;
+ if (!ofCode)
+ offset = 0;
+ else {
+ offset = OF_base[ofCode] + BITv07_readBits(&(seqState->DStream), ofBits); /* <= (ZSTDv07_WINDOWLOG_MAX-1) bits */
+ if (MEM_32bits()) BITv07_reloadDStream(&(seqState->DStream));
+ }
+
+ if (ofCode <= 1) {
+ if ((llCode == 0) & (offset <= 1)) offset = 1-offset;
+ if (offset) {
+ size_t const temp = seqState->prevOffset[offset];
+ if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset = temp;
+ } else {
+ offset = seqState->prevOffset[0];
+ }
+ } else {
+ seqState->prevOffset[2] = seqState->prevOffset[1];
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset;
+ }
+ seq.offset = offset;
+ }
+
+ seq.matchLength = ML_base[mlCode] + ((mlCode>31) ? BITv07_readBits(&(seqState->DStream), mlBits) : 0); /* <= 16 bits */
+ if (MEM_32bits() && (mlBits+llBits>24)) BITv07_reloadDStream(&(seqState->DStream));
+
+ seq.litLength = LL_base[llCode] + ((llCode>15) ? BITv07_readBits(&(seqState->DStream), llBits) : 0); /* <= 16 bits */
+ if (MEM_32bits() ||
+ (totalBits > 64 - 7 - (LLFSELog+MLFSELog+OffFSELog)) ) BITv07_reloadDStream(&(seqState->DStream));
+
+ /* ANS state update */
+ FSEv07_updateState(&(seqState->stateLL), &(seqState->DStream)); /* <= 9 bits */
+ FSEv07_updateState(&(seqState->stateML), &(seqState->DStream)); /* <= 9 bits */
+ if (MEM_32bits()) BITv07_reloadDStream(&(seqState->DStream)); /* <= 18 bits */
+ FSEv07_updateState(&(seqState->stateOffb), &(seqState->DStream)); /* <= 8 bits */
+
+ return seq;
+}
+
+
+static
+size_t ZSTDv07_execSequence(BYTE* op,
+ BYTE* const oend, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
+{
+ BYTE* const oLitEnd = op + sequence.litLength;
+ size_t const sequenceLength = sequence.litLength + sequence.matchLength;
+ BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
+ BYTE* const oend_w = oend-WILDCOPY_OVERLENGTH;
+ const BYTE* const iLitEnd = *litPtr + sequence.litLength;
+ const BYTE* match = oLitEnd - sequence.offset;
+
+ /* check */
+ if ((oLitEnd>oend_w) | (oMatchEnd>oend)) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
+ if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */
+
+ /* copy Literals */
+ ZSTDv07_wildcopy(op, *litPtr, sequence.litLength); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
+ op = oLitEnd;
+ *litPtr = iLitEnd; /* update for next sequence */
+
+ /* copy Match */
+ if (sequence.offset > (size_t)(oLitEnd - base)) {
+ /* offset beyond prefix */
+ if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected);
+ match = dictEnd - (base-match);
+ if (match + sequence.matchLength <= dictEnd) {
+ memmove(oLitEnd, match, sequence.matchLength);
+ return sequenceLength;
+ }
+ /* span extDict & currentPrefixSegment */
+ { size_t const length1 = dictEnd - match;
+ memmove(oLitEnd, match, length1);
+ op = oLitEnd + length1;
+ sequence.matchLength -= length1;
+ match = base;
+ if (op > oend_w || sequence.matchLength < MINMATCH) {
+ while (op < oMatchEnd) *op++ = *match++;
+ return sequenceLength;
+ }
+ } }
+ /* Requirement: op <= oend_w */
+
+ /* match within prefix */
+ if (sequence.offset < 8) {
+ /* close range match, overlap */
+ static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
+ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
+ int const sub2 = dec64table[sequence.offset];
+ op[0] = match[0];
+ op[1] = match[1];
+ op[2] = match[2];
+ op[3] = match[3];
+ match += dec32table[sequence.offset];
+ ZSTDv07_copy4(op+4, match);
+ match -= sub2;
+ } else {
+ ZSTDv07_copy8(op, match);
+ }
+ op += 8; match += 8;
+
+ if (oMatchEnd > oend-(16-MINMATCH)) {
+ if (op < oend_w) {
+ ZSTDv07_wildcopy(op, match, oend_w - op);
+ match += oend_w - op;
+ op = oend_w;
+ }
+ while (op < oMatchEnd) *op++ = *match++;
+ } else {
+ ZSTDv07_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
+ }
+ return sequenceLength;
+}
+
+
+static size_t ZSTDv07_decompressSequences(
+ ZSTDv07_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize)
+{
+ const BYTE* ip = (const BYTE*)seqStart;
+ const BYTE* const iend = ip + seqSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const oend = ostart + maxDstSize;
+ BYTE* op = ostart;
+ const BYTE* litPtr = dctx->litPtr;
+ const BYTE* const litEnd = litPtr + dctx->litSize;
+ FSEv07_DTable* DTableLL = dctx->LLTable;
+ FSEv07_DTable* DTableML = dctx->MLTable;
+ FSEv07_DTable* DTableOffb = dctx->OffTable;
+ const BYTE* const base = (const BYTE*) (dctx->base);
+ const BYTE* const vBase = (const BYTE*) (dctx->vBase);
+ const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
+ int nbSeq;
+
+ /* Build Decoding Tables */
+ { size_t const seqHSize = ZSTDv07_decodeSeqHeaders(&nbSeq, DTableLL, DTableML, DTableOffb, dctx->fseEntropy, ip, seqSize);
+ if (ZSTDv07_isError(seqHSize)) return seqHSize;
+ ip += seqHSize;
+ }
+
+ /* Regen sequences */
+ if (nbSeq) {
+ seqState_t seqState;
+ dctx->fseEntropy = 1;
+ { U32 i; for (i=0; i<ZSTDv07_REP_INIT; i++) seqState.prevOffset[i] = dctx->rep[i]; }
+ { size_t const errorCode = BITv07_initDStream(&(seqState.DStream), ip, iend-ip);
+ if (ERR_isError(errorCode)) return ERROR(corruption_detected); }
+ FSEv07_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
+ FSEv07_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
+ FSEv07_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
+
+ for ( ; (BITv07_reloadDStream(&(seqState.DStream)) <= BITv07_DStream_completed) && nbSeq ; ) {
+ nbSeq--;
+ { seq_t const sequence = ZSTDv07_decodeSequence(&seqState);
+ size_t const oneSeqSize = ZSTDv07_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd);
+ if (ZSTDv07_isError(oneSeqSize)) return oneSeqSize;
+ op += oneSeqSize;
+ } }
+
+ /* check if reached exact end */
+ if (nbSeq) return ERROR(corruption_detected);
+ /* save reps for next block */
+ { U32 i; for (i=0; i<ZSTDv07_REP_INIT; i++) dctx->rep[i] = (U32)(seqState.prevOffset[i]); }
+ }
+
+ /* last literal segment */
+ { size_t const lastLLSize = litEnd - litPtr;
+ //if (litPtr > litEnd) return ERROR(corruption_detected); /* too many literals already used */
+ if (lastLLSize > (size_t)(oend-op)) return ERROR(dstSize_tooSmall);
+ memcpy(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+
+ return op-ostart;
+}
+
+
+static void ZSTDv07_checkContinuity(ZSTDv07_DCtx* dctx, const void* dst)
+{
+ if (dst != dctx->previousDstEnd) { /* not contiguous */
+ dctx->dictEnd = dctx->previousDstEnd;
+ dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
+ dctx->base = dst;
+ dctx->previousDstEnd = dst;
+ }
+}
+
+
+static size_t ZSTDv07_decompressBlock_internal(ZSTDv07_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{ /* blockType == blockCompressed */
+ const BYTE* ip = (const BYTE*)src;
+
+ if (srcSize >= ZSTDv07_BLOCKSIZE_ABSOLUTEMAX) return ERROR(srcSize_wrong);
+
+ /* Decode literals sub-block */
+ { size_t const litCSize = ZSTDv07_decodeLiteralsBlock(dctx, src, srcSize);
+ if (ZSTDv07_isError(litCSize)) return litCSize;
+ ip += litCSize;
+ srcSize -= litCSize;
+ }
+ return ZSTDv07_decompressSequences(dctx, dst, dstCapacity, ip, srcSize);
+}
+
+
+size_t ZSTDv07_decompressBlock(ZSTDv07_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ size_t dSize;
+ ZSTDv07_checkContinuity(dctx, dst);
+ dSize = ZSTDv07_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
+ dctx->previousDstEnd = (char*)dst + dSize;
+ return dSize;
+}
+
+
+/** ZSTDv07_insertBlock() :
+ insert `src` block into `dctx` history. Useful to track uncompressed blocks. */
+ZSTDLIBv07_API size_t ZSTDv07_insertBlock(ZSTDv07_DCtx* dctx, const void* blockStart, size_t blockSize)
+{
+ ZSTDv07_checkContinuity(dctx, blockStart);
+ dctx->previousDstEnd = (const char*)blockStart + blockSize;
+ return blockSize;
+}
+
+
+static size_t ZSTDv07_generateNxBytes(void* dst, size_t dstCapacity, BYTE byte, size_t length)
+{
+ if (length > dstCapacity) return ERROR(dstSize_tooSmall);
+ memset(dst, byte, length);
+ return length;
+}
+
+
+/*! ZSTDv07_decompressFrame() :
+* `dctx` must be properly initialized */
+static size_t ZSTDv07_decompressFrame(ZSTDv07_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+ const BYTE* const iend = ip + srcSize;
+ BYTE* const ostart = (BYTE* const)dst;
+ BYTE* const oend = ostart + dstCapacity;
+ BYTE* op = ostart;
+ size_t remainingSize = srcSize;
+
+ /* check */
+ if (srcSize < ZSTDv07_frameHeaderSize_min+ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong);
+
+ /* Frame Header */
+ { size_t const frameHeaderSize = ZSTDv07_frameHeaderSize(src, ZSTDv07_frameHeaderSize_min);
+ if (ZSTDv07_isError(frameHeaderSize)) return frameHeaderSize;
+ if (srcSize < frameHeaderSize+ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong);
+ if (ZSTDv07_decodeFrameHeader(dctx, src, frameHeaderSize)) return ERROR(corruption_detected);
+ ip += frameHeaderSize; remainingSize -= frameHeaderSize;
+ }
+
+ /* Loop on each block */
+ while (1) {
+ size_t decodedSize;
+ blockProperties_t blockProperties;
+ size_t const cBlockSize = ZSTDv07_getcBlockSize(ip, iend-ip, &blockProperties);
+ if (ZSTDv07_isError(cBlockSize)) return cBlockSize;
+
+ ip += ZSTDv07_blockHeaderSize;
+ remainingSize -= ZSTDv07_blockHeaderSize;
+ if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
+
+ switch(blockProperties.blockType)
+ {
+ case bt_compressed:
+ decodedSize = ZSTDv07_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize);
+ break;
+ case bt_raw :
+ decodedSize = ZSTDv07_copyRawBlock(op, oend-op, ip, cBlockSize);
+ break;
+ case bt_rle :
+ decodedSize = ZSTDv07_generateNxBytes(op, oend-op, *ip, blockProperties.origSize);
+ break;
+ case bt_end :
+ /* end of frame */
+ if (remainingSize) return ERROR(srcSize_wrong);
+ decodedSize = 0;
+ break;
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+ if (blockProperties.blockType == bt_end) break; /* bt_end */
+
+ if (ZSTDv07_isError(decodedSize)) return decodedSize;
+ if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, op, decodedSize);
+ op += decodedSize;
+ ip += cBlockSize;
+ remainingSize -= cBlockSize;
+ }
+
+ return op-ostart;
+}
+
+
+/*! ZSTDv07_decompress_usingPreparedDCtx() :
+* Same as ZSTDv07_decompress_usingDict, but using a reference context `preparedDCtx`, where dictionary has been loaded.
+* It avoids reloading the dictionary each time.
+* `preparedDCtx` must have been properly initialized using ZSTDv07_decompressBegin_usingDict().
+* Requires 2 contexts : 1 for reference (preparedDCtx), which will not be modified, and 1 to run the decompression operation (dctx) */
+static size_t ZSTDv07_decompress_usingPreparedDCtx(ZSTDv07_DCtx* dctx, const ZSTDv07_DCtx* refDCtx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ ZSTDv07_copyDCtx(dctx, refDCtx);
+ ZSTDv07_checkContinuity(dctx, dst);
+ return ZSTDv07_decompressFrame(dctx, dst, dstCapacity, src, srcSize);
+}
+
+
+size_t ZSTDv07_decompress_usingDict(ZSTDv07_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict, size_t dictSize)
+{
+ ZSTDv07_decompressBegin_usingDict(dctx, dict, dictSize);
+ ZSTDv07_checkContinuity(dctx, dst);
+ return ZSTDv07_decompressFrame(dctx, dst, dstCapacity, src, srcSize);
+}
+
+
+size_t ZSTDv07_decompressDCtx(ZSTDv07_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ return ZSTDv07_decompress_usingDict(dctx, dst, dstCapacity, src, srcSize, NULL, 0);
+}
+
+
+size_t ZSTDv07_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+#if defined(ZSTDv07_HEAPMODE) && (ZSTDv07_HEAPMODE==1)
+ size_t regenSize;
+ ZSTDv07_DCtx* const dctx = ZSTDv07_createDCtx();
+ if (dctx==NULL) return ERROR(memory_allocation);
+ regenSize = ZSTDv07_decompressDCtx(dctx, dst, dstCapacity, src, srcSize);
+ ZSTDv07_freeDCtx(dctx);
+ return regenSize;
+#else /* stack mode */
+ ZSTDv07_DCtx dctx;
+ return ZSTDv07_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize);
+#endif
+}
+
+/* ZSTD_errorFrameSizeInfoLegacy() :
+ assumes `cSize` and `dBound` are _not_ NULL */
+static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
+{
+ *cSize = ret;
+ *dBound = ZSTD_CONTENTSIZE_ERROR;
+}
+
+void ZSTDv07_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
+{
+ const BYTE* ip = (const BYTE*)src;
+ size_t remainingSize = srcSize;
+ size_t nbBlocks = 0;
+
+ /* check */
+ if (srcSize < ZSTDv07_frameHeaderSize_min+ZSTDv07_blockHeaderSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+
+ /* Frame Header */
+ { size_t const frameHeaderSize = ZSTDv07_frameHeaderSize(src, srcSize);
+ if (ZSTDv07_isError(frameHeaderSize)) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, frameHeaderSize);
+ return;
+ }
+ if (MEM_readLE32(src) != ZSTDv07_MAGICNUMBER) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
+ return;
+ }
+ if (srcSize < frameHeaderSize+ZSTDv07_blockHeaderSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+ ip += frameHeaderSize; remainingSize -= frameHeaderSize;
+ }
+
+ /* Loop on each block */
+ while (1) {
+ blockProperties_t blockProperties;
+ size_t const cBlockSize = ZSTDv07_getcBlockSize(ip, remainingSize, &blockProperties);
+ if (ZSTDv07_isError(cBlockSize)) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
+ return;
+ }
+
+ ip += ZSTDv07_blockHeaderSize;
+ remainingSize -= ZSTDv07_blockHeaderSize;
+
+ if (blockProperties.blockType == bt_end) break;
+
+ if (cBlockSize > remainingSize) {
+ ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
+ return;
+ }
+
+ ip += cBlockSize;
+ remainingSize -= cBlockSize;
+ nbBlocks++;
+ }
+
+ *cSize = ip - (const BYTE*)src;
+ *dBound = nbBlocks * ZSTDv07_BLOCKSIZE_ABSOLUTEMAX;
+}
+
+/*_******************************
+* Streaming Decompression API
+********************************/
+size_t ZSTDv07_nextSrcSizeToDecompress(ZSTDv07_DCtx* dctx)
+{
+ return dctx->expected;
+}
+
+int ZSTDv07_isSkipFrame(ZSTDv07_DCtx* dctx)
+{
+ return dctx->stage == ZSTDds_skipFrame;
+}
+
+/** ZSTDv07_decompressContinue() :
+* @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity)
+* or an error code, which can be tested using ZSTDv07_isError() */
+size_t ZSTDv07_decompressContinue(ZSTDv07_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ /* Sanity check */
+ if (srcSize != dctx->expected) return ERROR(srcSize_wrong);
+ if (dstCapacity) ZSTDv07_checkContinuity(dctx, dst);
+
+ switch (dctx->stage)
+ {
+ case ZSTDds_getFrameHeaderSize :
+ if (srcSize != ZSTDv07_frameHeaderSize_min) return ERROR(srcSize_wrong); /* impossible */
+ if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTDv07_MAGIC_SKIPPABLE_START) {
+ memcpy(dctx->headerBuffer, src, ZSTDv07_frameHeaderSize_min);
+ dctx->expected = ZSTDv07_skippableHeaderSize - ZSTDv07_frameHeaderSize_min; /* magic number + skippable frame length */
+ dctx->stage = ZSTDds_decodeSkippableHeader;
+ return 0;
+ }
+ dctx->headerSize = ZSTDv07_frameHeaderSize(src, ZSTDv07_frameHeaderSize_min);
+ if (ZSTDv07_isError(dctx->headerSize)) return dctx->headerSize;
+ memcpy(dctx->headerBuffer, src, ZSTDv07_frameHeaderSize_min);
+ if (dctx->headerSize > ZSTDv07_frameHeaderSize_min) {
+ dctx->expected = dctx->headerSize - ZSTDv07_frameHeaderSize_min;
+ dctx->stage = ZSTDds_decodeFrameHeader;
+ return 0;
+ }
+ dctx->expected = 0; /* not necessary to copy more */
+ /* fall-through */
+ case ZSTDds_decodeFrameHeader:
+ { size_t result;
+ memcpy(dctx->headerBuffer + ZSTDv07_frameHeaderSize_min, src, dctx->expected);
+ result = ZSTDv07_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize);
+ if (ZSTDv07_isError(result)) return result;
+ dctx->expected = ZSTDv07_blockHeaderSize;
+ dctx->stage = ZSTDds_decodeBlockHeader;
+ return 0;
+ }
+ case ZSTDds_decodeBlockHeader:
+ { blockProperties_t bp;
+ size_t const cBlockSize = ZSTDv07_getcBlockSize(src, ZSTDv07_blockHeaderSize, &bp);
+ if (ZSTDv07_isError(cBlockSize)) return cBlockSize;
+ if (bp.blockType == bt_end) {
+ if (dctx->fParams.checksumFlag) {
+ U64 const h64 = XXH64_digest(&dctx->xxhState);
+ U32 const h32 = (U32)(h64>>11) & ((1<<22)-1);
+ const BYTE* const ip = (const BYTE*)src;
+ U32 const check32 = ip[2] + (ip[1] << 8) + ((ip[0] & 0x3F) << 16);
+ if (check32 != h32) return ERROR(checksum_wrong);
+ }
+ dctx->expected = 0;
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ } else {
+ dctx->expected = cBlockSize;
+ dctx->bType = bp.blockType;
+ dctx->stage = ZSTDds_decompressBlock;
+ }
+ return 0;
+ }
+ case ZSTDds_decompressBlock:
+ { size_t rSize;
+ switch(dctx->bType)
+ {
+ case bt_compressed:
+ rSize = ZSTDv07_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
+ break;
+ case bt_raw :
+ rSize = ZSTDv07_copyRawBlock(dst, dstCapacity, src, srcSize);
+ break;
+ case bt_rle :
+ return ERROR(GENERIC); /* not yet handled */
+ break;
+ case bt_end : /* should never happen (filtered at phase 1) */
+ rSize = 0;
+ break;
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+ dctx->stage = ZSTDds_decodeBlockHeader;
+ dctx->expected = ZSTDv07_blockHeaderSize;
+ dctx->previousDstEnd = (char*)dst + rSize;
+ if (ZSTDv07_isError(rSize)) return rSize;
+ if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, dst, rSize);
+ return rSize;
+ }
+ case ZSTDds_decodeSkippableHeader:
+ { memcpy(dctx->headerBuffer + ZSTDv07_frameHeaderSize_min, src, dctx->expected);
+ dctx->expected = MEM_readLE32(dctx->headerBuffer + 4);
+ dctx->stage = ZSTDds_skipFrame;
+ return 0;
+ }
+ case ZSTDds_skipFrame:
+ { dctx->expected = 0;
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ return 0;
+ }
+ default:
+ return ERROR(GENERIC); /* impossible */
+ }
+}
+
+
+static size_t ZSTDv07_refDictContent(ZSTDv07_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ dctx->dictEnd = dctx->previousDstEnd;
+ dctx->vBase = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
+ dctx->base = dict;
+ dctx->previousDstEnd = (const char*)dict + dictSize;
+ return 0;
+}
+
+static size_t ZSTDv07_loadEntropy(ZSTDv07_DCtx* dctx, const void* const dict, size_t const dictSize)
+{
+ const BYTE* dictPtr = (const BYTE*)dict;
+ const BYTE* const dictEnd = dictPtr + dictSize;
+
+ { size_t const hSize = HUFv07_readDTableX4(dctx->hufTable, dict, dictSize);
+ if (HUFv07_isError(hSize)) return ERROR(dictionary_corrupted);
+ dictPtr += hSize;
+ }
+
+ { short offcodeNCount[MaxOff+1];
+ U32 offcodeMaxValue=MaxOff, offcodeLog;
+ size_t const offcodeHeaderSize = FSEv07_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
+ if (FSEv07_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
+ if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted);
+ { size_t const errorCode = FSEv07_buildDTable(dctx->OffTable, offcodeNCount, offcodeMaxValue, offcodeLog);
+ if (FSEv07_isError(errorCode)) return ERROR(dictionary_corrupted); }
+ dictPtr += offcodeHeaderSize;
+ }
+
+ { short matchlengthNCount[MaxML+1];
+ unsigned matchlengthMaxValue = MaxML, matchlengthLog;
+ size_t const matchlengthHeaderSize = FSEv07_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
+ if (FSEv07_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
+ if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted);
+ { size_t const errorCode = FSEv07_buildDTable(dctx->MLTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog);
+ if (FSEv07_isError(errorCode)) return ERROR(dictionary_corrupted); }
+ dictPtr += matchlengthHeaderSize;
+ }
+
+ { short litlengthNCount[MaxLL+1];
+ unsigned litlengthMaxValue = MaxLL, litlengthLog;
+ size_t const litlengthHeaderSize = FSEv07_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
+ if (FSEv07_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
+ if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted);
+ { size_t const errorCode = FSEv07_buildDTable(dctx->LLTable, litlengthNCount, litlengthMaxValue, litlengthLog);
+ if (FSEv07_isError(errorCode)) return ERROR(dictionary_corrupted); }
+ dictPtr += litlengthHeaderSize;
+ }
+
+ if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted);
+ dctx->rep[0] = MEM_readLE32(dictPtr+0); if (dctx->rep[0] == 0 || dctx->rep[0] >= dictSize) return ERROR(dictionary_corrupted);
+ dctx->rep[1] = MEM_readLE32(dictPtr+4); if (dctx->rep[1] == 0 || dctx->rep[1] >= dictSize) return ERROR(dictionary_corrupted);
+ dctx->rep[2] = MEM_readLE32(dictPtr+8); if (dctx->rep[2] == 0 || dctx->rep[2] >= dictSize) return ERROR(dictionary_corrupted);
+ dictPtr += 12;
+
+ dctx->litEntropy = dctx->fseEntropy = 1;
+ return dictPtr - (const BYTE*)dict;
+}
+
+static size_t ZSTDv07_decompress_insertDictionary(ZSTDv07_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ if (dictSize < 8) return ZSTDv07_refDictContent(dctx, dict, dictSize);
+ { U32 const magic = MEM_readLE32(dict);
+ if (magic != ZSTDv07_DICT_MAGIC) {
+ return ZSTDv07_refDictContent(dctx, dict, dictSize); /* pure content mode */
+ } }
+ dctx->dictID = MEM_readLE32((const char*)dict + 4);
+
+ /* load entropy tables */
+ dict = (const char*)dict + 8;
+ dictSize -= 8;
+ { size_t const eSize = ZSTDv07_loadEntropy(dctx, dict, dictSize);
+ if (ZSTDv07_isError(eSize)) return ERROR(dictionary_corrupted);
+ dict = (const char*)dict + eSize;
+ dictSize -= eSize;
+ }
+
+ /* reference dictionary content */
+ return ZSTDv07_refDictContent(dctx, dict, dictSize);
+}
+
+
+size_t ZSTDv07_decompressBegin_usingDict(ZSTDv07_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ { size_t const errorCode = ZSTDv07_decompressBegin(dctx);
+ if (ZSTDv07_isError(errorCode)) return errorCode; }
+
+ if (dict && dictSize) {
+ size_t const errorCode = ZSTDv07_decompress_insertDictionary(dctx, dict, dictSize);
+ if (ZSTDv07_isError(errorCode)) return ERROR(dictionary_corrupted);
+ }
+
+ return 0;
+}
+
+
+struct ZSTDv07_DDict_s {
+ void* dict;
+ size_t dictSize;
+ ZSTDv07_DCtx* refContext;
+}; /* typedef'd tp ZSTDv07_CDict within zstd.h */
+
+static ZSTDv07_DDict* ZSTDv07_createDDict_advanced(const void* dict, size_t dictSize, ZSTDv07_customMem customMem)
+{
+ if (!customMem.customAlloc && !customMem.customFree)
+ customMem = defaultCustomMem;
+
+ if (!customMem.customAlloc || !customMem.customFree)
+ return NULL;
+
+ { ZSTDv07_DDict* const ddict = (ZSTDv07_DDict*) customMem.customAlloc(customMem.opaque, sizeof(*ddict));
+ void* const dictContent = customMem.customAlloc(customMem.opaque, dictSize);
+ ZSTDv07_DCtx* const dctx = ZSTDv07_createDCtx_advanced(customMem);
+
+ if (!dictContent || !ddict || !dctx) {
+ customMem.customFree(customMem.opaque, dictContent);
+ customMem.customFree(customMem.opaque, ddict);
+ customMem.customFree(customMem.opaque, dctx);
+ return NULL;
+ }
+
+ memcpy(dictContent, dict, dictSize);
+ { size_t const errorCode = ZSTDv07_decompressBegin_usingDict(dctx, dictContent, dictSize);
+ if (ZSTDv07_isError(errorCode)) {
+ customMem.customFree(customMem.opaque, dictContent);
+ customMem.customFree(customMem.opaque, ddict);
+ customMem.customFree(customMem.opaque, dctx);
+ return NULL;
+ } }
+
+ ddict->dict = dictContent;
+ ddict->dictSize = dictSize;
+ ddict->refContext = dctx;
+ return ddict;
+ }
+}
+
+/*! ZSTDv07_createDDict() :
+* Create a digested dictionary, ready to start decompression without startup delay.
+* `dict` can be released after `ZSTDv07_DDict` creation */
+ZSTDv07_DDict* ZSTDv07_createDDict(const void* dict, size_t dictSize)
+{
+ ZSTDv07_customMem const allocator = { NULL, NULL, NULL };
+ return ZSTDv07_createDDict_advanced(dict, dictSize, allocator);
+}
+
+size_t ZSTDv07_freeDDict(ZSTDv07_DDict* ddict)
+{
+ ZSTDv07_freeFunction const cFree = ddict->refContext->customMem.customFree;
+ void* const opaque = ddict->refContext->customMem.opaque;
+ ZSTDv07_freeDCtx(ddict->refContext);
+ cFree(opaque, ddict->dict);
+ cFree(opaque, ddict);
+ return 0;
+}
+
+/*! ZSTDv07_decompress_usingDDict() :
+* Decompression using a pre-digested Dictionary
+* Use dictionary without significant overhead. */
+ZSTDLIBv07_API size_t ZSTDv07_decompress_usingDDict(ZSTDv07_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTDv07_DDict* ddict)
+{
+ return ZSTDv07_decompress_usingPreparedDCtx(dctx, ddict->refContext,
+ dst, dstCapacity,
+ src, srcSize);
+}
+/*
+ Buffered version of Zstd compression library
+ Copyright (C) 2015-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - zstd homepage : http://www.zstd.net/
+*/
+
+
+
+/*-***************************************************************************
+* Streaming decompression howto
+*
+* A ZBUFFv07_DCtx object is required to track streaming operations.
+* Use ZBUFFv07_createDCtx() and ZBUFFv07_freeDCtx() to create/release resources.
+* Use ZBUFFv07_decompressInit() to start a new decompression operation,
+* or ZBUFFv07_decompressInitDictionary() if decompression requires a dictionary.
+* Note that ZBUFFv07_DCtx objects can be re-init multiple times.
+*
+* Use ZBUFFv07_decompressContinue() repetitively to consume your input.
+* *srcSizePtr and *dstCapacityPtr can be any size.
+* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
+* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
+* The content of @dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change @dst.
+* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
+* or 0 when a frame is completely decoded,
+* or an error code, which can be tested using ZBUFFv07_isError().
+*
+* Hint : recommended buffer sizes (not compulsory) : ZBUFFv07_recommendedDInSize() and ZBUFFv07_recommendedDOutSize()
+* output : ZBUFFv07_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
+* input : ZBUFFv07_recommendedDInSize == 128KB + 3;
+* just follow indications from ZBUFFv07_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
+* *******************************************************************************/
+
+typedef enum { ZBUFFds_init, ZBUFFds_loadHeader,
+ ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFFv07_dStage;
+
+/* *** Resource management *** */
+struct ZBUFFv07_DCtx_s {
+ ZSTDv07_DCtx* zd;
+ ZSTDv07_frameParams fParams;
+ ZBUFFv07_dStage stage;
+ char* inBuff;
+ size_t inBuffSize;
+ size_t inPos;
+ char* outBuff;
+ size_t outBuffSize;
+ size_t outStart;
+ size_t outEnd;
+ size_t blockSize;
+ BYTE headerBuffer[ZSTDv07_FRAMEHEADERSIZE_MAX];
+ size_t lhSize;
+ ZSTDv07_customMem customMem;
+}; /* typedef'd to ZBUFFv07_DCtx within "zstd_buffered.h" */
+
+ZSTDLIBv07_API ZBUFFv07_DCtx* ZBUFFv07_createDCtx_advanced(ZSTDv07_customMem customMem);
+
+ZBUFFv07_DCtx* ZBUFFv07_createDCtx(void)
+{
+ return ZBUFFv07_createDCtx_advanced(defaultCustomMem);
+}
+
+ZBUFFv07_DCtx* ZBUFFv07_createDCtx_advanced(ZSTDv07_customMem customMem)
+{
+ ZBUFFv07_DCtx* zbd;
+
+ if (!customMem.customAlloc && !customMem.customFree)
+ customMem = defaultCustomMem;
+
+ if (!customMem.customAlloc || !customMem.customFree)
+ return NULL;
+
+ zbd = (ZBUFFv07_DCtx*)customMem.customAlloc(customMem.opaque, sizeof(ZBUFFv07_DCtx));
+ if (zbd==NULL) return NULL;
+ memset(zbd, 0, sizeof(ZBUFFv07_DCtx));
+ memcpy(&zbd->customMem, &customMem, sizeof(ZSTDv07_customMem));
+ zbd->zd = ZSTDv07_createDCtx_advanced(customMem);
+ if (zbd->zd == NULL) { ZBUFFv07_freeDCtx(zbd); return NULL; }
+ zbd->stage = ZBUFFds_init;
+ return zbd;
+}
+
+size_t ZBUFFv07_freeDCtx(ZBUFFv07_DCtx* zbd)
+{
+ if (zbd==NULL) return 0; /* support free on null */
+ ZSTDv07_freeDCtx(zbd->zd);
+ if (zbd->inBuff) zbd->customMem.customFree(zbd->customMem.opaque, zbd->inBuff);
+ if (zbd->outBuff) zbd->customMem.customFree(zbd->customMem.opaque, zbd->outBuff);
+ zbd->customMem.customFree(zbd->customMem.opaque, zbd);
+ return 0;
+}
+
+
+/* *** Initialization *** */
+
+size_t ZBUFFv07_decompressInitDictionary(ZBUFFv07_DCtx* zbd, const void* dict, size_t dictSize)
+{
+ zbd->stage = ZBUFFds_loadHeader;
+ zbd->lhSize = zbd->inPos = zbd->outStart = zbd->outEnd = 0;
+ return ZSTDv07_decompressBegin_usingDict(zbd->zd, dict, dictSize);
+}
+
+size_t ZBUFFv07_decompressInit(ZBUFFv07_DCtx* zbd)
+{
+ return ZBUFFv07_decompressInitDictionary(zbd, NULL, 0);
+}
+
+
+/* internal util function */
+MEM_STATIC size_t ZBUFFv07_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ size_t const length = MIN(dstCapacity, srcSize);
+ memcpy(dst, src, length);
+ return length;
+}
+
+
+/* *** Decompression *** */
+
+size_t ZBUFFv07_decompressContinue(ZBUFFv07_DCtx* zbd,
+ void* dst, size_t* dstCapacityPtr,
+ const void* src, size_t* srcSizePtr)
+{
+ const char* const istart = (const char*)src;
+ const char* const iend = istart + *srcSizePtr;
+ const char* ip = istart;
+ char* const ostart = (char*)dst;
+ char* const oend = ostart + *dstCapacityPtr;
+ char* op = ostart;
+ U32 notDone = 1;
+
+ while (notDone) {
+ switch(zbd->stage)
+ {
+ case ZBUFFds_init :
+ return ERROR(init_missing);
+
+ case ZBUFFds_loadHeader :
+ { size_t const hSize = ZSTDv07_getFrameParams(&(zbd->fParams), zbd->headerBuffer, zbd->lhSize);
+ if (ZSTDv07_isError(hSize)) return hSize;
+ if (hSize != 0) {
+ size_t const toLoad = hSize - zbd->lhSize; /* if hSize!=0, hSize > zbd->lhSize */
+ if (toLoad > (size_t)(iend-ip)) { /* not enough input to load full header */
+ memcpy(zbd->headerBuffer + zbd->lhSize, ip, iend-ip);
+ zbd->lhSize += iend-ip;
+ *dstCapacityPtr = 0;
+ return (hSize - zbd->lhSize) + ZSTDv07_blockHeaderSize; /* remaining header bytes + next block header */
+ }
+ memcpy(zbd->headerBuffer + zbd->lhSize, ip, toLoad); zbd->lhSize = hSize; ip += toLoad;
+ break;
+ } }
+
+ /* Consume header */
+ { size_t const h1Size = ZSTDv07_nextSrcSizeToDecompress(zbd->zd); /* == ZSTDv07_frameHeaderSize_min */
+ size_t const h1Result = ZSTDv07_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer, h1Size);
+ if (ZSTDv07_isError(h1Result)) return h1Result;
+ if (h1Size < zbd->lhSize) { /* long header */
+ size_t const h2Size = ZSTDv07_nextSrcSizeToDecompress(zbd->zd);
+ size_t const h2Result = ZSTDv07_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer+h1Size, h2Size);
+ if (ZSTDv07_isError(h2Result)) return h2Result;
+ } }
+
+ zbd->fParams.windowSize = MAX(zbd->fParams.windowSize, 1U << ZSTDv07_WINDOWLOG_ABSOLUTEMIN);
+
+ /* Frame header instruct buffer sizes */
+ { size_t const blockSize = MIN(zbd->fParams.windowSize, ZSTDv07_BLOCKSIZE_ABSOLUTEMAX);
+ zbd->blockSize = blockSize;
+ if (zbd->inBuffSize < blockSize) {
+ zbd->customMem.customFree(zbd->customMem.opaque, zbd->inBuff);
+ zbd->inBuffSize = blockSize;
+ zbd->inBuff = (char*)zbd->customMem.customAlloc(zbd->customMem.opaque, blockSize);
+ if (zbd->inBuff == NULL) return ERROR(memory_allocation);
+ }
+ { size_t const neededOutSize = zbd->fParams.windowSize + blockSize + WILDCOPY_OVERLENGTH * 2;
+ if (zbd->outBuffSize < neededOutSize) {
+ zbd->customMem.customFree(zbd->customMem.opaque, zbd->outBuff);
+ zbd->outBuffSize = neededOutSize;
+ zbd->outBuff = (char*)zbd->customMem.customAlloc(zbd->customMem.opaque, neededOutSize);
+ if (zbd->outBuff == NULL) return ERROR(memory_allocation);
+ } } }
+ zbd->stage = ZBUFFds_read;
+ /* pass-through */
+ /* fall-through */
+ case ZBUFFds_read:
+ { size_t const neededInSize = ZSTDv07_nextSrcSizeToDecompress(zbd->zd);
+ if (neededInSize==0) { /* end of frame */
+ zbd->stage = ZBUFFds_init;
+ notDone = 0;
+ break;
+ }
+ if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */
+ const int isSkipFrame = ZSTDv07_isSkipFrame(zbd->zd);
+ size_t const decodedSize = ZSTDv07_decompressContinue(zbd->zd,
+ zbd->outBuff + zbd->outStart, (isSkipFrame ? 0 : zbd->outBuffSize - zbd->outStart),
+ ip, neededInSize);
+ if (ZSTDv07_isError(decodedSize)) return decodedSize;
+ ip += neededInSize;
+ if (!decodedSize && !isSkipFrame) break; /* this was just a header */
+ zbd->outEnd = zbd->outStart + decodedSize;
+ zbd->stage = ZBUFFds_flush;
+ break;
+ }
+ if (ip==iend) { notDone = 0; break; } /* no more input */
+ zbd->stage = ZBUFFds_load;
+ }
+ /* fall-through */
+ case ZBUFFds_load:
+ { size_t const neededInSize = ZSTDv07_nextSrcSizeToDecompress(zbd->zd);
+ size_t const toLoad = neededInSize - zbd->inPos; /* should always be <= remaining space within inBuff */
+ size_t loadedSize;
+ if (toLoad > zbd->inBuffSize - zbd->inPos) return ERROR(corruption_detected); /* should never happen */
+ loadedSize = ZBUFFv07_limitCopy(zbd->inBuff + zbd->inPos, toLoad, ip, iend-ip);
+ ip += loadedSize;
+ zbd->inPos += loadedSize;
+ if (loadedSize < toLoad) { notDone = 0; break; } /* not enough input, wait for more */
+
+ /* decode loaded input */
+ { const int isSkipFrame = ZSTDv07_isSkipFrame(zbd->zd);
+ size_t const decodedSize = ZSTDv07_decompressContinue(zbd->zd,
+ zbd->outBuff + zbd->outStart, zbd->outBuffSize - zbd->outStart,
+ zbd->inBuff, neededInSize);
+ if (ZSTDv07_isError(decodedSize)) return decodedSize;
+ zbd->inPos = 0; /* input is consumed */
+ if (!decodedSize && !isSkipFrame) { zbd->stage = ZBUFFds_read; break; } /* this was just a header */
+ zbd->outEnd = zbd->outStart + decodedSize;
+ zbd->stage = ZBUFFds_flush;
+ /* break; */
+ /* pass-through */
+ }
+ }
+ /* fall-through */
+ case ZBUFFds_flush:
+ { size_t const toFlushSize = zbd->outEnd - zbd->outStart;
+ size_t const flushedSize = ZBUFFv07_limitCopy(op, oend-op, zbd->outBuff + zbd->outStart, toFlushSize);
+ op += flushedSize;
+ zbd->outStart += flushedSize;
+ if (flushedSize == toFlushSize) {
+ zbd->stage = ZBUFFds_read;
+ if (zbd->outStart + zbd->blockSize > zbd->outBuffSize)
+ zbd->outStart = zbd->outEnd = 0;
+ break;
+ }
+ /* cannot flush everything */
+ notDone = 0;
+ break;
+ }
+ default: return ERROR(GENERIC); /* impossible */
+ } }
+
+ /* result */
+ *srcSizePtr = ip-istart;
+ *dstCapacityPtr = op-ostart;
+ { size_t nextSrcSizeHint = ZSTDv07_nextSrcSizeToDecompress(zbd->zd);
+ nextSrcSizeHint -= zbd->inPos; /* already loaded*/
+ return nextSrcSizeHint;
+ }
+}
+
+
+
+/* *************************************
+* Tool functions
+***************************************/
+size_t ZBUFFv07_recommendedDInSize(void) { return ZSTDv07_BLOCKSIZE_ABSOLUTEMAX + ZSTDv07_blockHeaderSize /* block header size*/ ; }
+size_t ZBUFFv07_recommendedDOutSize(void) { return ZSTDv07_BLOCKSIZE_ABSOLUTEMAX; }
diff --git a/vendor/github.com/DataDog/zstd/zstd_v07.h b/vendor/github.com/DataDog/zstd/zstd_v07.h
new file mode 100644
index 0000000..a566c1d
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstd_v07.h
@@ -0,0 +1,187 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTDv07_H_235446
+#define ZSTDv07_H_235446
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/*====== Dependency ======*/
+#include <stddef.h> /* size_t */
+
+
+/*====== Export for Windows ======*/
+/*!
+* ZSTDv07_DLL_EXPORT :
+* Enable exporting of functions when building a Windows DLL
+*/
+#if defined(_WIN32) && defined(ZSTDv07_DLL_EXPORT) && (ZSTDv07_DLL_EXPORT==1)
+# define ZSTDLIBv07_API __declspec(dllexport)
+#else
+# define ZSTDLIBv07_API
+#endif
+
+
+/* *************************************
+* Simple API
+***************************************/
+/*! ZSTDv07_getDecompressedSize() :
+* @return : decompressed size if known, 0 otherwise.
+ note 1 : if `0`, follow up with ZSTDv07_getFrameParams() to know precise failure cause.
+ note 2 : decompressed size could be wrong or intentionally modified !
+ always ensure results fit within application's authorized limits */
+unsigned long long ZSTDv07_getDecompressedSize(const void* src, size_t srcSize);
+
+/*! ZSTDv07_decompress() :
+ `compressedSize` : must be _exact_ size of compressed input, otherwise decompression will fail.
+ `dstCapacity` must be equal or larger than originalSize.
+ @return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
+ or an errorCode if it fails (which can be tested using ZSTDv07_isError()) */
+ZSTDLIBv07_API size_t ZSTDv07_decompress( void* dst, size_t dstCapacity,
+ const void* src, size_t compressedSize);
+
+/**
+ZSTDv07_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.7.x format
+ srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
+ cSize (output parameter) : the number of bytes that would be read to decompress this frame
+ or an error code if it fails (which can be tested using ZSTDv01_isError())
+ dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
+ or ZSTD_CONTENTSIZE_ERROR if an error occurs
+
+ note : assumes `cSize` and `dBound` are _not_ NULL.
+*/
+void ZSTDv07_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
+ size_t* cSize, unsigned long long* dBound);
+
+/*====== Helper functions ======*/
+ZSTDLIBv07_API unsigned ZSTDv07_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
+ZSTDLIBv07_API const char* ZSTDv07_getErrorName(size_t code); /*!< provides readable string from an error code */
+
+
+/*-*************************************
+* Explicit memory management
+***************************************/
+/** Decompression context */
+typedef struct ZSTDv07_DCtx_s ZSTDv07_DCtx;
+ZSTDLIBv07_API ZSTDv07_DCtx* ZSTDv07_createDCtx(void);
+ZSTDLIBv07_API size_t ZSTDv07_freeDCtx(ZSTDv07_DCtx* dctx); /*!< @return : errorCode */
+
+/** ZSTDv07_decompressDCtx() :
+* Same as ZSTDv07_decompress(), requires an allocated ZSTDv07_DCtx (see ZSTDv07_createDCtx()) */
+ZSTDLIBv07_API size_t ZSTDv07_decompressDCtx(ZSTDv07_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+
+/*-************************
+* Simple dictionary API
+***************************/
+/*! ZSTDv07_decompress_usingDict() :
+* Decompression using a pre-defined Dictionary content (see dictBuilder).
+* Dictionary must be identical to the one used during compression.
+* Note : This function load the dictionary, resulting in a significant startup time */
+ZSTDLIBv07_API size_t ZSTDv07_decompress_usingDict(ZSTDv07_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize);
+
+
+/*-**************************
+* Advanced Dictionary API
+****************************/
+/*! ZSTDv07_createDDict() :
+* Create a digested dictionary, ready to start decompression operation without startup delay.
+* `dict` can be released after creation */
+typedef struct ZSTDv07_DDict_s ZSTDv07_DDict;
+ZSTDLIBv07_API ZSTDv07_DDict* ZSTDv07_createDDict(const void* dict, size_t dictSize);
+ZSTDLIBv07_API size_t ZSTDv07_freeDDict(ZSTDv07_DDict* ddict);
+
+/*! ZSTDv07_decompress_usingDDict() :
+* Decompression using a pre-digested Dictionary
+* Faster startup than ZSTDv07_decompress_usingDict(), recommended when same dictionary is used multiple times. */
+ZSTDLIBv07_API size_t ZSTDv07_decompress_usingDDict(ZSTDv07_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTDv07_DDict* ddict);
+
+typedef struct {
+ unsigned long long frameContentSize;
+ unsigned windowSize;
+ unsigned dictID;
+ unsigned checksumFlag;
+} ZSTDv07_frameParams;
+
+ZSTDLIBv07_API size_t ZSTDv07_getFrameParams(ZSTDv07_frameParams* fparamsPtr, const void* src, size_t srcSize); /**< doesn't consume input */
+
+
+
+
+/* *************************************
+* Streaming functions
+***************************************/
+typedef struct ZBUFFv07_DCtx_s ZBUFFv07_DCtx;
+ZSTDLIBv07_API ZBUFFv07_DCtx* ZBUFFv07_createDCtx(void);
+ZSTDLIBv07_API size_t ZBUFFv07_freeDCtx(ZBUFFv07_DCtx* dctx);
+
+ZSTDLIBv07_API size_t ZBUFFv07_decompressInit(ZBUFFv07_DCtx* dctx);
+ZSTDLIBv07_API size_t ZBUFFv07_decompressInitDictionary(ZBUFFv07_DCtx* dctx, const void* dict, size_t dictSize);
+
+ZSTDLIBv07_API size_t ZBUFFv07_decompressContinue(ZBUFFv07_DCtx* dctx,
+ void* dst, size_t* dstCapacityPtr,
+ const void* src, size_t* srcSizePtr);
+
+/*-***************************************************************************
+* Streaming decompression howto
+*
+* A ZBUFFv07_DCtx object is required to track streaming operations.
+* Use ZBUFFv07_createDCtx() and ZBUFFv07_freeDCtx() to create/release resources.
+* Use ZBUFFv07_decompressInit() to start a new decompression operation,
+* or ZBUFFv07_decompressInitDictionary() if decompression requires a dictionary.
+* Note that ZBUFFv07_DCtx objects can be re-init multiple times.
+*
+* Use ZBUFFv07_decompressContinue() repetitively to consume your input.
+* *srcSizePtr and *dstCapacityPtr can be any size.
+* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
+* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
+* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
+* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
+* or 0 when a frame is completely decoded,
+* or an error code, which can be tested using ZBUFFv07_isError().
+*
+* Hint : recommended buffer sizes (not compulsory) : ZBUFFv07_recommendedDInSize() and ZBUFFv07_recommendedDOutSize()
+* output : ZBUFFv07_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
+* input : ZBUFFv07_recommendedDInSize == 128KB + 3;
+* just follow indications from ZBUFFv07_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
+* *******************************************************************************/
+
+
+/* *************************************
+* Tool functions
+***************************************/
+ZSTDLIBv07_API unsigned ZBUFFv07_isError(size_t errorCode);
+ZSTDLIBv07_API const char* ZBUFFv07_getErrorName(size_t errorCode);
+
+/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
+* These sizes are just hints, they tend to offer better latency */
+ZSTDLIBv07_API size_t ZBUFFv07_recommendedDInSize(void);
+ZSTDLIBv07_API size_t ZBUFFv07_recommendedDOutSize(void);
+
+
+/*-*************************************
+* Constants
+***************************************/
+#define ZSTDv07_MAGICNUMBER 0xFD2FB527 /* v0.7 */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTDv07_H_235446 */
diff --git a/vendor/github.com/DataDog/zstd/zstdmt_compress.c b/vendor/github.com/DataDog/zstd/zstdmt_compress.c
new file mode 100644
index 0000000..9e537b8
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstdmt_compress.c
@@ -0,0 +1,2110 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+/* ====== Compiler specifics ====== */
+#if defined(_MSC_VER)
+# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
+#endif
+
+
+/* ====== Constants ====== */
+#define ZSTDMT_OVERLAPLOG_DEFAULT 0
+
+
+/* ====== Dependencies ====== */
+#include <string.h> /* memcpy, memset */
+#include <limits.h> /* INT_MAX, UINT_MAX */
+#include "mem.h" /* MEM_STATIC */
+#include "pool.h" /* threadpool */
+#include "threading.h" /* mutex */
+#include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
+#include "zstd_ldm.h"
+#include "zstdmt_compress.h"
+
+/* Guards code to support resizing the SeqPool.
+ * We will want to resize the SeqPool to save memory in the future.
+ * Until then, comment the code out since it is unused.
+ */
+#define ZSTD_RESIZE_SEQPOOL 0
+
+/* ====== Debug ====== */
+#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
+ && !defined(_MSC_VER) \
+ && !defined(__MINGW32__)
+
+# include <stdio.h>
+# include <unistd.h>
+# include <sys/times.h>
+
+# define DEBUG_PRINTHEX(l,p,n) { \
+ unsigned debug_u; \
+ for (debug_u=0; debug_u<(n); debug_u++) \
+ RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
+ RAWLOG(l, " \n"); \
+}
+
+static unsigned long long GetCurrentClockTimeMicroseconds(void)
+{
+ static clock_t _ticksPerSecond = 0;
+ if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
+
+ { struct tms junk; clock_t newTicks = (clock_t) times(&junk);
+ return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
+} }
+
+#define MUTEX_WAIT_TIME_DLEVEL 6
+#define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \
+ if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \
+ unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
+ ZSTD_pthread_mutex_lock(mutex); \
+ { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
+ unsigned long long const elapsedTime = (afterTime-beforeTime); \
+ if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \
+ DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
+ elapsedTime, #mutex); \
+ } } \
+ } else { \
+ ZSTD_pthread_mutex_lock(mutex); \
+ } \
+}
+
+#else
+
+# define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
+# define DEBUG_PRINTHEX(l,p,n) {}
+
+#endif
+
+
+/* ===== Buffer Pool ===== */
+/* a single Buffer Pool can be invoked from multiple threads in parallel */
+
+typedef struct buffer_s {
+ void* start;
+ size_t capacity;
+} buffer_t;
+
+static const buffer_t g_nullBuffer = { NULL, 0 };
+
+typedef struct ZSTDMT_bufferPool_s {
+ ZSTD_pthread_mutex_t poolMutex;
+ size_t bufferSize;
+ unsigned totalBuffers;
+ unsigned nbBuffers;
+ ZSTD_customMem cMem;
+ buffer_t bTable[1]; /* variable size */
+} ZSTDMT_bufferPool;
+
+static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbWorkers, ZSTD_customMem cMem)
+{
+ unsigned const maxNbBuffers = 2*nbWorkers + 3;
+ ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_calloc(
+ sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem);
+ if (bufPool==NULL) return NULL;
+ if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
+ ZSTD_free(bufPool, cMem);
+ return NULL;
+ }
+ bufPool->bufferSize = 64 KB;
+ bufPool->totalBuffers = maxNbBuffers;
+ bufPool->nbBuffers = 0;
+ bufPool->cMem = cMem;
+ return bufPool;
+}
+
+static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
+{
+ unsigned u;
+ DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
+ if (!bufPool) return; /* compatibility with free on NULL */
+ for (u=0; u<bufPool->totalBuffers; u++) {
+ DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start);
+ ZSTD_free(bufPool->bTable[u].start, bufPool->cMem);
+ }
+ ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
+ ZSTD_free(bufPool, bufPool->cMem);
+}
+
+/* only works at initialization, not during compression */
+static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
+{
+ size_t const poolSize = sizeof(*bufPool)
+ + (bufPool->totalBuffers - 1) * sizeof(buffer_t);
+ unsigned u;
+ size_t totalBufferSize = 0;
+ ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
+ for (u=0; u<bufPool->totalBuffers; u++)
+ totalBufferSize += bufPool->bTable[u].capacity;
+ ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
+
+ return poolSize + totalBufferSize;
+}
+
+/* ZSTDMT_setBufferSize() :
+ * all future buffers provided by this buffer pool will have _at least_ this size
+ * note : it's better for all buffers to have same size,
+ * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
+static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
+{
+ ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
+ DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
+ bufPool->bufferSize = bSize;
+ ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
+}
+
+
+static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, U32 nbWorkers)
+{
+ unsigned const maxNbBuffers = 2*nbWorkers + 3;
+ if (srcBufPool==NULL) return NULL;
+ if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
+ return srcBufPool;
+ /* need a larger buffer pool */
+ { ZSTD_customMem const cMem = srcBufPool->cMem;
+ size_t const bSize = srcBufPool->bufferSize; /* forward parameters */
+ ZSTDMT_bufferPool* newBufPool;
+ ZSTDMT_freeBufferPool(srcBufPool);
+ newBufPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
+ if (newBufPool==NULL) return newBufPool;
+ ZSTDMT_setBufferSize(newBufPool, bSize);
+ return newBufPool;
+ }
+}
+
+/** ZSTDMT_getBuffer() :
+ * assumption : bufPool must be valid
+ * @return : a buffer, with start pointer and size
+ * note: allocation may fail, in this case, start==NULL and size==0 */
+static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
+{
+ size_t const bSize = bufPool->bufferSize;
+ DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
+ ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
+ if (bufPool->nbBuffers) { /* try to use an existing buffer */
+ buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)];
+ size_t const availBufferSize = buf.capacity;
+ bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer;
+ if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
+ /* large enough, but not too much */
+ DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
+ bufPool->nbBuffers, (U32)buf.capacity);
+ ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
+ return buf;
+ }
+ /* size conditions not respected : scratch this buffer, create new one */
+ DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
+ ZSTD_free(buf.start, bufPool->cMem);
+ }
+ ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
+ /* create new buffer */
+ DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
+ { buffer_t buffer;
+ void* const start = ZSTD_malloc(bSize, bufPool->cMem);
+ buffer.start = start; /* note : start can be NULL if malloc fails ! */
+ buffer.capacity = (start==NULL) ? 0 : bSize;
+ if (start==NULL) {
+ DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
+ } else {
+ DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
+ }
+ return buffer;
+ }
+}
+
+#if ZSTD_RESIZE_SEQPOOL
+/** ZSTDMT_resizeBuffer() :
+ * assumption : bufPool must be valid
+ * @return : a buffer that is at least the buffer pool buffer size.
+ * If a reallocation happens, the data in the input buffer is copied.
+ */
+static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer)
+{
+ size_t const bSize = bufPool->bufferSize;
+ if (buffer.capacity < bSize) {
+ void* const start = ZSTD_malloc(bSize, bufPool->cMem);
+ buffer_t newBuffer;
+ newBuffer.start = start;
+ newBuffer.capacity = start == NULL ? 0 : bSize;
+ if (start != NULL) {
+ assert(newBuffer.capacity >= buffer.capacity);
+ memcpy(newBuffer.start, buffer.start, buffer.capacity);
+ DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
+ return newBuffer;
+ }
+ DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
+ }
+ return buffer;
+}
+#endif
+
+/* store buffer for later re-use, up to pool capacity */
+static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
+{
+ DEBUGLOG(5, "ZSTDMT_releaseBuffer");
+ if (buf.start == NULL) return; /* compatible with release on NULL */
+ ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
+ if (bufPool->nbBuffers < bufPool->totalBuffers) {
+ bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */
+ DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
+ (U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
+ ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
+ return;
+ }
+ ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
+ /* Reached bufferPool capacity (should not happen) */
+ DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
+ ZSTD_free(buf.start, bufPool->cMem);
+}
+
+
+/* ===== Seq Pool Wrapper ====== */
+
+static rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0};
+
+typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
+
+static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
+{
+ return ZSTDMT_sizeof_bufferPool(seqPool);
+}
+
+static rawSeqStore_t bufferToSeq(buffer_t buffer)
+{
+ rawSeqStore_t seq = {NULL, 0, 0, 0};
+ seq.seq = (rawSeq*)buffer.start;
+ seq.capacity = buffer.capacity / sizeof(rawSeq);
+ return seq;
+}
+
+static buffer_t seqToBuffer(rawSeqStore_t seq)
+{
+ buffer_t buffer;
+ buffer.start = seq.seq;
+ buffer.capacity = seq.capacity * sizeof(rawSeq);
+ return buffer;
+}
+
+static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
+{
+ if (seqPool->bufferSize == 0) {
+ return kNullRawSeqStore;
+ }
+ return bufferToSeq(ZSTDMT_getBuffer(seqPool));
+}
+
+#if ZSTD_RESIZE_SEQPOOL
+static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
+{
+ return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
+}
+#endif
+
+static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
+{
+ ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
+}
+
+static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
+{
+ ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
+}
+
+static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
+{
+ ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
+ if (seqPool == NULL) return NULL;
+ ZSTDMT_setNbSeq(seqPool, 0);
+ return seqPool;
+}
+
+static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
+{
+ ZSTDMT_freeBufferPool(seqPool);
+}
+
+static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
+{
+ return ZSTDMT_expandBufferPool(pool, nbWorkers);
+}
+
+
+/* ===== CCtx Pool ===== */
+/* a single CCtx Pool can be invoked from multiple threads in parallel */
+
+typedef struct {
+ ZSTD_pthread_mutex_t poolMutex;
+ int totalCCtx;
+ int availCCtx;
+ ZSTD_customMem cMem;
+ ZSTD_CCtx* cctx[1]; /* variable size */
+} ZSTDMT_CCtxPool;
+
+/* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
+static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
+{
+ int cid;
+ for (cid=0; cid<pool->totalCCtx; cid++)
+ ZSTD_freeCCtx(pool->cctx[cid]); /* note : compatible with free on NULL */
+ ZSTD_pthread_mutex_destroy(&pool->poolMutex);
+ ZSTD_free(pool, pool->cMem);
+}
+
+/* ZSTDMT_createCCtxPool() :
+ * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
+static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
+ ZSTD_customMem cMem)
+{
+ ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_calloc(
+ sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem);
+ assert(nbWorkers > 0);
+ if (!cctxPool) return NULL;
+ if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
+ ZSTD_free(cctxPool, cMem);
+ return NULL;
+ }
+ cctxPool->cMem = cMem;
+ cctxPool->totalCCtx = nbWorkers;
+ cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */
+ cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem);
+ if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
+ DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
+ return cctxPool;
+}
+
+static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
+ int nbWorkers)
+{
+ if (srcPool==NULL) return NULL;
+ if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */
+ /* need a larger cctx pool */
+ { ZSTD_customMem const cMem = srcPool->cMem;
+ ZSTDMT_freeCCtxPool(srcPool);
+ return ZSTDMT_createCCtxPool(nbWorkers, cMem);
+ }
+}
+
+/* only works during initialization phase, not during compression */
+static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
+{
+ ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
+ { unsigned const nbWorkers = cctxPool->totalCCtx;
+ size_t const poolSize = sizeof(*cctxPool)
+ + (nbWorkers-1) * sizeof(ZSTD_CCtx*);
+ unsigned u;
+ size_t totalCCtxSize = 0;
+ for (u=0; u<nbWorkers; u++) {
+ totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]);
+ }
+ ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
+ assert(nbWorkers > 0);
+ return poolSize + totalCCtxSize;
+ }
+}
+
+static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
+{
+ DEBUGLOG(5, "ZSTDMT_getCCtx");
+ ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
+ if (cctxPool->availCCtx) {
+ cctxPool->availCCtx--;
+ { ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx];
+ ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
+ return cctx;
+ } }
+ ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
+ DEBUGLOG(5, "create one more CCtx");
+ return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */
+}
+
+static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
+{
+ if (cctx==NULL) return; /* compatibility with release on NULL */
+ ZSTD_pthread_mutex_lock(&pool->poolMutex);
+ if (pool->availCCtx < pool->totalCCtx)
+ pool->cctx[pool->availCCtx++] = cctx;
+ else {
+ /* pool overflow : should not happen, since totalCCtx==nbWorkers */
+ DEBUGLOG(4, "CCtx pool overflow : free cctx");
+ ZSTD_freeCCtx(cctx);
+ }
+ ZSTD_pthread_mutex_unlock(&pool->poolMutex);
+}
+
+/* ==== Serial State ==== */
+
+typedef struct {
+ void const* start;
+ size_t size;
+} range_t;
+
+typedef struct {
+ /* All variables in the struct are protected by mutex. */
+ ZSTD_pthread_mutex_t mutex;
+ ZSTD_pthread_cond_t cond;
+ ZSTD_CCtx_params params;
+ ldmState_t ldmState;
+ XXH64_state_t xxhState;
+ unsigned nextJobID;
+ /* Protects ldmWindow.
+ * Must be acquired after the main mutex when acquiring both.
+ */
+ ZSTD_pthread_mutex_t ldmWindowMutex;
+ ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */
+ ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */
+} serialState_t;
+
+static int ZSTDMT_serialState_reset(serialState_t* serialState, ZSTDMT_seqPool* seqPool, ZSTD_CCtx_params params, size_t jobSize)
+{
+ /* Adjust parameters */
+ if (params.ldmParams.enableLdm) {
+ DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
+ ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams);
+ assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
+ assert(params.ldmParams.hashRateLog < 32);
+ serialState->ldmState.hashPower =
+ ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength);
+ } else {
+ memset(¶ms.ldmParams, 0, sizeof(params.ldmParams));
+ }
+ serialState->nextJobID = 0;
+ if (params.fParams.checksumFlag)
+ XXH64_reset(&serialState->xxhState, 0);
+ if (params.ldmParams.enableLdm) {
+ ZSTD_customMem cMem = params.customMem;
+ unsigned const hashLog = params.ldmParams.hashLog;
+ size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
+ unsigned const bucketLog =
+ params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
+ size_t const bucketSize = (size_t)1 << bucketLog;
+ unsigned const prevBucketLog =
+ serialState->params.ldmParams.hashLog -
+ serialState->params.ldmParams.bucketSizeLog;
+ /* Size the seq pool tables */
+ ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
+ /* Reset the window */
+ ZSTD_window_clear(&serialState->ldmState.window);
+ serialState->ldmWindow = serialState->ldmState.window;
+ /* Resize tables and output space if necessary. */
+ if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
+ ZSTD_free(serialState->ldmState.hashTable, cMem);
+ serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_malloc(hashSize, cMem);
+ }
+ if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
+ ZSTD_free(serialState->ldmState.bucketOffsets, cMem);
+ serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_malloc(bucketSize, cMem);
+ }
+ if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
+ return 1;
+ /* Zero the tables */
+ memset(serialState->ldmState.hashTable, 0, hashSize);
+ memset(serialState->ldmState.bucketOffsets, 0, bucketSize);
+ }
+ serialState->params = params;
+ serialState->params.jobSize = (U32)jobSize;
+ return 0;
+}
+
+static int ZSTDMT_serialState_init(serialState_t* serialState)
+{
+ int initError = 0;
+ memset(serialState, 0, sizeof(*serialState));
+ initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
+ initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
+ initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
+ initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
+ return initError;
+}
+
+static void ZSTDMT_serialState_free(serialState_t* serialState)
+{
+ ZSTD_customMem cMem = serialState->params.customMem;
+ ZSTD_pthread_mutex_destroy(&serialState->mutex);
+ ZSTD_pthread_cond_destroy(&serialState->cond);
+ ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
+ ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
+ ZSTD_free(serialState->ldmState.hashTable, cMem);
+ ZSTD_free(serialState->ldmState.bucketOffsets, cMem);
+}
+
+static void ZSTDMT_serialState_update(serialState_t* serialState,
+ ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore,
+ range_t src, unsigned jobID)
+{
+ /* Wait for our turn */
+ ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
+ while (serialState->nextJobID < jobID) {
+ DEBUGLOG(5, "wait for serialState->cond");
+ ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
+ }
+ /* A future job may error and skip our job */
+ if (serialState->nextJobID == jobID) {
+ /* It is now our turn, do any processing necessary */
+ if (serialState->params.ldmParams.enableLdm) {
+ size_t error;
+ assert(seqStore.seq != NULL && seqStore.pos == 0 &&
+ seqStore.size == 0 && seqStore.capacity > 0);
+ assert(src.size <= serialState->params.jobSize);
+ ZSTD_window_update(&serialState->ldmState.window, src.start, src.size);
+ error = ZSTD_ldm_generateSequences(
+ &serialState->ldmState, &seqStore,
+ &serialState->params.ldmParams, src.start, src.size);
+ /* We provide a large enough buffer to never fail. */
+ assert(!ZSTD_isError(error)); (void)error;
+ /* Update ldmWindow to match the ldmState.window and signal the main
+ * thread if it is waiting for a buffer.
+ */
+ ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
+ serialState->ldmWindow = serialState->ldmState.window;
+ ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
+ ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
+ }
+ if (serialState->params.fParams.checksumFlag && src.size > 0)
+ XXH64_update(&serialState->xxhState, src.start, src.size);
+ }
+ /* Now it is the next jobs turn */
+ serialState->nextJobID++;
+ ZSTD_pthread_cond_broadcast(&serialState->cond);
+ ZSTD_pthread_mutex_unlock(&serialState->mutex);
+
+ if (seqStore.size > 0) {
+ size_t const err = ZSTD_referenceExternalSequences(
+ jobCCtx, seqStore.seq, seqStore.size);
+ assert(serialState->params.ldmParams.enableLdm);
+ assert(!ZSTD_isError(err));
+ (void)err;
+ }
+}
+
+static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState,
+ unsigned jobID, size_t cSize)
+{
+ ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
+ if (serialState->nextJobID <= jobID) {
+ assert(ZSTD_isError(cSize)); (void)cSize;
+ DEBUGLOG(5, "Skipping past job %u because of error", jobID);
+ serialState->nextJobID = jobID + 1;
+ ZSTD_pthread_cond_broadcast(&serialState->cond);
+
+ ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
+ ZSTD_window_clear(&serialState->ldmWindow);
+ ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
+ ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
+ }
+ ZSTD_pthread_mutex_unlock(&serialState->mutex);
+
+}
+
+
+/* ------------------------------------------ */
+/* ===== Worker thread ===== */
+/* ------------------------------------------ */
+
+static const range_t kNullRange = { NULL, 0 };
+
+typedef struct {
+ size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
+ size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
+ ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */
+ ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */
+ ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */
+ ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */
+ ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */
+ serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */
+ buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
+ range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */
+ range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */
+ unsigned jobID; /* set by mtctx, then read by worker => no barrier */
+ unsigned firstJob; /* set by mtctx, then read by worker => no barrier */
+ unsigned lastJob; /* set by mtctx, then read by worker => no barrier */
+ ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */
+ const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */
+ unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */
+ size_t dstFlushed; /* used only by mtctx */
+ unsigned frameChecksumNeeded; /* used only by mtctx */
+} ZSTDMT_jobDescription;
+
+#define JOB_ERROR(e) { \
+ ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \
+ job->cSize = e; \
+ ZSTD_pthread_mutex_unlock(&job->job_mutex); \
+ goto _endJob; \
+}
+
+/* ZSTDMT_compressionJob() is a POOL_function type */
+static void ZSTDMT_compressionJob(void* jobDescription)
+{
+ ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
+ ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */
+ ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
+ rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
+ buffer_t dstBuff = job->dstBuff;
+ size_t lastCBlockSize = 0;
+
+ /* resources */
+ if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
+ if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */
+ dstBuff = ZSTDMT_getBuffer(job->bufPool);
+ if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
+ job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */
+ }
+ if (jobParams.ldmParams.enableLdm && rawSeqStore.seq == NULL)
+ JOB_ERROR(ERROR(memory_allocation));
+
+ /* Don't compute the checksum for chunks, since we compute it externally,
+ * but write it in the header.
+ */
+ if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
+ /* Don't run LDM for the chunks, since we handle it externally */
+ jobParams.ldmParams.enableLdm = 0;
+
+
+ /* init */
+ if (job->cdict) {
+ size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, jobParams, job->fullFrameSize);
+ assert(job->firstJob); /* only allowed for first job */
+ if (ZSTD_isError(initError)) JOB_ERROR(initError);
+ } else { /* srcStart points at reloaded section */
+ U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
+ { size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
+ if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
+ }
+ { size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
+ job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */
+ ZSTD_dtlm_fast,
+ NULL, /*cdict*/
+ jobParams, pledgedSrcSize);
+ if (ZSTD_isError(initError)) JOB_ERROR(initError);
+ } }
+
+ /* Perform serial step as early as possible, but after CCtx initialization */
+ ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID);
+
+ if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */
+ size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
+ if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
+ DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
+ ZSTD_invalidateRepCodes(cctx);
+ }
+
+ /* compress */
+ { size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
+ int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
+ const BYTE* ip = (const BYTE*) job->src.start;
+ BYTE* const ostart = (BYTE*)dstBuff.start;
+ BYTE* op = ostart;
+ BYTE* oend = op + dstBuff.capacity;
+ int chunkNb;
+ if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */
+ DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
+ assert(job->cSize == 0);
+ for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
+ size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize);
+ if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
+ ip += chunkSize;
+ op += cSize; assert(op < oend);
+ /* stats */
+ ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
+ job->cSize += cSize;
+ job->consumed = chunkSize * chunkNb;
+ DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
+ (U32)cSize, (U32)job->cSize);
+ ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */
+ ZSTD_pthread_mutex_unlock(&job->job_mutex);
+ }
+ /* last block */
+ assert(chunkSize > 0);
+ assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
+ if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
+ size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
+ size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
+ size_t const cSize = (job->lastJob) ?
+ ZSTD_compressEnd (cctx, op, oend-op, ip, lastBlockSize) :
+ ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize);
+ if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
+ lastCBlockSize = cSize;
+ } }
+
+_endJob:
+ ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
+ if (job->prefix.size > 0)
+ DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
+ DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
+ /* release resources */
+ ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
+ ZSTDMT_releaseCCtx(job->cctxPool, cctx);
+ /* report */
+ ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
+ if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
+ job->cSize += lastCBlockSize;
+ job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */
+ ZSTD_pthread_cond_signal(&job->job_cond);
+ ZSTD_pthread_mutex_unlock(&job->job_mutex);
+}
+
+
+/* ------------------------------------------ */
+/* ===== Multi-threaded compression ===== */
+/* ------------------------------------------ */
+
+typedef struct {
+ range_t prefix; /* read-only non-owned prefix buffer */
+ buffer_t buffer;
+ size_t filled;
+} inBuff_t;
+
+typedef struct {
+ BYTE* buffer; /* The round input buffer. All jobs get references
+ * to pieces of the buffer. ZSTDMT_tryGetInputRange()
+ * handles handing out job input buffers, and makes
+ * sure it doesn't overlap with any pieces still in use.
+ */
+ size_t capacity; /* The capacity of buffer. */
+ size_t pos; /* The position of the current inBuff in the round
+ * buffer. Updated past the end if the inBuff once
+ * the inBuff is sent to the worker thread.
+ * pos <= capacity.
+ */
+} roundBuff_t;
+
+static const roundBuff_t kNullRoundBuff = {NULL, 0, 0};
+
+#define RSYNC_LENGTH 32
+
+typedef struct {
+ U64 hash;
+ U64 hitMask;
+ U64 primePower;
+} rsyncState_t;
+
+struct ZSTDMT_CCtx_s {
+ POOL_ctx* factory;
+ ZSTDMT_jobDescription* jobs;
+ ZSTDMT_bufferPool* bufPool;
+ ZSTDMT_CCtxPool* cctxPool;
+ ZSTDMT_seqPool* seqPool;
+ ZSTD_CCtx_params params;
+ size_t targetSectionSize;
+ size_t targetPrefixSize;
+ int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
+ inBuff_t inBuff;
+ roundBuff_t roundBuff;
+ serialState_t serial;
+ rsyncState_t rsync;
+ unsigned singleBlockingThread;
+ unsigned jobIDMask;
+ unsigned doneJobID;
+ unsigned nextJobID;
+ unsigned frameEnded;
+ unsigned allJobsCompleted;
+ unsigned long long frameContentSize;
+ unsigned long long consumed;
+ unsigned long long produced;
+ ZSTD_customMem cMem;
+ ZSTD_CDict* cdictLocal;
+ const ZSTD_CDict* cdict;
+};
+
+static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
+{
+ U32 jobNb;
+ if (jobTable == NULL) return;
+ for (jobNb=0; jobNb<nbJobs; jobNb++) {
+ ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
+ ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
+ }
+ ZSTD_free(jobTable, cMem);
+}
+
+/* ZSTDMT_allocJobsTable()
+ * allocate and init a job table.
+ * update *nbJobsPtr to next power of 2 value, as size of table */
+static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
+{
+ U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
+ U32 const nbJobs = 1 << nbJobsLog2;
+ U32 jobNb;
+ ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
+ ZSTD_calloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
+ int initError = 0;
+ if (jobTable==NULL) return NULL;
+ *nbJobsPtr = nbJobs;
+ for (jobNb=0; jobNb<nbJobs; jobNb++) {
+ initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
+ initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
+ }
+ if (initError != 0) {
+ ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
+ return NULL;
+ }
+ return jobTable;
+}
+
+static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
+ U32 nbJobs = nbWorkers + 2;
+ if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */
+ ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
+ mtctx->jobIDMask = 0;
+ mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
+ if (mtctx->jobs==NULL) return ERROR(memory_allocation);
+ assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */
+ mtctx->jobIDMask = nbJobs - 1;
+ }
+ return 0;
+}
+
+
+/* ZSTDMT_CCtxParam_setNbWorkers():
+ * Internal use only */
+size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
+{
+ return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
+}
+
+MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem)
+{
+ ZSTDMT_CCtx* mtctx;
+ U32 nbJobs = nbWorkers + 2;
+ int initError;
+ DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
+
+ if (nbWorkers < 1) return NULL;
+ nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
+ if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
+ /* invalid custom allocator */
+ return NULL;
+
+ mtctx = (ZSTDMT_CCtx*) ZSTD_calloc(sizeof(ZSTDMT_CCtx), cMem);
+ if (!mtctx) return NULL;
+ ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
+ mtctx->cMem = cMem;
+ mtctx->allJobsCompleted = 1;
+ mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
+ mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
+ assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */
+ mtctx->jobIDMask = nbJobs - 1;
+ mtctx->bufPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
+ mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
+ mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
+ initError = ZSTDMT_serialState_init(&mtctx->serial);
+ mtctx->roundBuff = kNullRoundBuff;
+ if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
+ ZSTDMT_freeCCtx(mtctx);
+ return NULL;
+ }
+ DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
+ return mtctx;
+}
+
+ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem)
+{
+#ifdef ZSTD_MULTITHREAD
+ return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem);
+#else
+ (void)nbWorkers;
+ (void)cMem;
+ return NULL;
+#endif
+}
+
+ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers)
+{
+ return ZSTDMT_createCCtx_advanced(nbWorkers, ZSTD_defaultCMem);
+}
+
+
+/* ZSTDMT_releaseAllJobResources() :
+ * note : ensure all workers are killed first ! */
+static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
+{
+ unsigned jobID;
+ DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
+ for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
+ DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
+ ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
+ mtctx->jobs[jobID].dstBuff = g_nullBuffer;
+ mtctx->jobs[jobID].cSize = 0;
+ }
+ memset(mtctx->jobs, 0, (mtctx->jobIDMask+1)*sizeof(ZSTDMT_jobDescription));
+ mtctx->inBuff.buffer = g_nullBuffer;
+ mtctx->inBuff.filled = 0;
+ mtctx->allJobsCompleted = 1;
+}
+
+static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
+{
+ DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
+ while (mtctx->doneJobID < mtctx->nextJobID) {
+ unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
+ ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
+ while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
+ DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */
+ ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
+ }
+ ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
+ mtctx->doneJobID++;
+ }
+}
+
+size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
+{
+ if (mtctx==NULL) return 0; /* compatible with free on NULL */
+ POOL_free(mtctx->factory); /* stop and free worker threads */
+ ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */
+ ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
+ ZSTDMT_freeBufferPool(mtctx->bufPool);
+ ZSTDMT_freeCCtxPool(mtctx->cctxPool);
+ ZSTDMT_freeSeqPool(mtctx->seqPool);
+ ZSTDMT_serialState_free(&mtctx->serial);
+ ZSTD_freeCDict(mtctx->cdictLocal);
+ if (mtctx->roundBuff.buffer)
+ ZSTD_free(mtctx->roundBuff.buffer, mtctx->cMem);
+ ZSTD_free(mtctx, mtctx->cMem);
+ return 0;
+}
+
+size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
+{
+ if (mtctx == NULL) return 0; /* supports sizeof NULL */
+ return sizeof(*mtctx)
+ + POOL_sizeof(mtctx->factory)
+ + ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
+ + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
+ + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
+ + ZSTDMT_sizeof_seqPool(mtctx->seqPool)
+ + ZSTD_sizeof_CDict(mtctx->cdictLocal)
+ + mtctx->roundBuff.capacity;
+}
+
+/* Internal only */
+size_t
+ZSTDMT_CCtxParam_setMTCtxParameter(ZSTD_CCtx_params* params,
+ ZSTDMT_parameter parameter,
+ int value)
+{
+ DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter");
+ switch(parameter)
+ {
+ case ZSTDMT_p_jobSize :
+ DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter : set jobSize to %i", value);
+ return ZSTD_CCtxParams_setParameter(params, ZSTD_c_jobSize, value);
+ case ZSTDMT_p_overlapLog :
+ DEBUGLOG(4, "ZSTDMT_p_overlapLog : %i", value);
+ return ZSTD_CCtxParams_setParameter(params, ZSTD_c_overlapLog, value);
+ case ZSTDMT_p_rsyncable :
+ DEBUGLOG(4, "ZSTD_p_rsyncable : %i", value);
+ return ZSTD_CCtxParams_setParameter(params, ZSTD_c_rsyncable, value);
+ default :
+ return ERROR(parameter_unsupported);
+ }
+}
+
+size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int value)
+{
+ DEBUGLOG(4, "ZSTDMT_setMTCtxParameter");
+ return ZSTDMT_CCtxParam_setMTCtxParameter(&mtctx->params, parameter, value);
+}
+
+size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int* value)
+{
+ switch (parameter) {
+ case ZSTDMT_p_jobSize:
+ return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_jobSize, value);
+ case ZSTDMT_p_overlapLog:
+ return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_overlapLog, value);
+ case ZSTDMT_p_rsyncable:
+ return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_rsyncable, value);
+ default:
+ return ERROR(parameter_unsupported);
+ }
+}
+
+/* Sets parameters relevant to the compression job,
+ * initializing others to default values. */
+static ZSTD_CCtx_params ZSTDMT_initJobCCtxParams(ZSTD_CCtx_params const params)
+{
+ ZSTD_CCtx_params jobParams = params;
+ /* Clear parameters related to multithreading */
+ jobParams.forceWindow = 0;
+ jobParams.nbWorkers = 0;
+ jobParams.jobSize = 0;
+ jobParams.overlapLog = 0;
+ jobParams.rsyncable = 0;
+ memset(&jobParams.ldmParams, 0, sizeof(ldmParams_t));
+ memset(&jobParams.customMem, 0, sizeof(ZSTD_customMem));
+ return jobParams;
+}
+
+
+/* ZSTDMT_resize() :
+ * @return : error code if fails, 0 on success */
+static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
+{
+ if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
+ FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) );
+ mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, nbWorkers);
+ if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
+ mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
+ if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
+ mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
+ if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
+ ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
+ return 0;
+}
+
+
+/*! ZSTDMT_updateCParams_whileCompressing() :
+ * Updates a selected set of compression parameters, remaining compatible with currently active frame.
+ * New parameters will be applied to next compression job. */
+void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
+{
+ U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */
+ int const compressionLevel = cctxParams->compressionLevel;
+ DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
+ compressionLevel);
+ mtctx->params.compressionLevel = compressionLevel;
+ { ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, 0, 0);
+ cParams.windowLog = saved_wlog;
+ mtctx->params.cParams = cParams;
+ }
+}
+
+/* ZSTDMT_getFrameProgression():
+ * tells how much data has been consumed (input) and produced (output) for current frame.
+ * able to count progression inside worker threads.
+ * Note : mutex will be acquired during statistics collection inside workers. */
+ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
+{
+ ZSTD_frameProgression fps;
+ DEBUGLOG(5, "ZSTDMT_getFrameProgression");
+ fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
+ fps.consumed = mtctx->consumed;
+ fps.produced = fps.flushed = mtctx->produced;
+ fps.currentJobID = mtctx->nextJobID;
+ fps.nbActiveWorkers = 0;
+ { unsigned jobNb;
+ unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
+ DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
+ mtctx->doneJobID, lastJobNb, mtctx->jobReady)
+ for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
+ unsigned const wJobID = jobNb & mtctx->jobIDMask;
+ ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
+ ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
+ { size_t const cResult = jobPtr->cSize;
+ size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
+ size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
+ assert(flushed <= produced);
+ fps.ingested += jobPtr->src.size;
+ fps.consumed += jobPtr->consumed;
+ fps.produced += produced;
+ fps.flushed += flushed;
+ fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
+ }
+ ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
+ }
+ }
+ return fps;
+}
+
+
+size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
+{
+ size_t toFlush;
+ unsigned const jobID = mtctx->doneJobID;
+ assert(jobID <= mtctx->nextJobID);
+ if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */
+
+ /* look into oldest non-fully-flushed job */
+ { unsigned const wJobID = jobID & mtctx->jobIDMask;
+ ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
+ ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
+ { size_t const cResult = jobPtr->cSize;
+ size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
+ size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
+ assert(flushed <= produced);
+ assert(jobPtr->consumed <= jobPtr->src.size);
+ toFlush = produced - flushed;
+ /* if toFlush==0, nothing is available to flush.
+ * However, jobID is expected to still be active:
+ * if jobID was already completed and fully flushed,
+ * ZSTDMT_flushProduced() should have already moved onto next job.
+ * Therefore, some input has not yet been consumed. */
+ if (toFlush==0) {
+ assert(jobPtr->consumed < jobPtr->src.size);
+ }
+ }
+ ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
+ }
+
+ return toFlush;
+}
+
+
+/* ------------------------------------------ */
+/* ===== Multi-threaded compression ===== */
+/* ------------------------------------------ */
+
+static unsigned ZSTDMT_computeTargetJobLog(ZSTD_CCtx_params const params)
+{
+ unsigned jobLog;
+ if (params.ldmParams.enableLdm) {
+ /* In Long Range Mode, the windowLog is typically oversized.
+ * In which case, it's preferable to determine the jobSize
+ * based on chainLog instead. */
+ jobLog = MAX(21, params.cParams.chainLog + 4);
+ } else {
+ jobLog = MAX(20, params.cParams.windowLog + 2);
+ }
+ return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
+}
+
+static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
+{
+ switch(strat)
+ {
+ case ZSTD_btultra2:
+ return 9;
+ case ZSTD_btultra:
+ case ZSTD_btopt:
+ return 8;
+ case ZSTD_btlazy2:
+ case ZSTD_lazy2:
+ return 7;
+ case ZSTD_lazy:
+ case ZSTD_greedy:
+ case ZSTD_dfast:
+ case ZSTD_fast:
+ default:;
+ }
+ return 6;
+}
+
+static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
+{
+ assert(0 <= ovlog && ovlog <= 9);
+ if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
+ return ovlog;
+}
+
+static size_t ZSTDMT_computeOverlapSize(ZSTD_CCtx_params const params)
+{
+ int const overlapRLog = 9 - ZSTDMT_overlapLog(params.overlapLog, params.cParams.strategy);
+ int ovLog = (overlapRLog >= 8) ? 0 : (params.cParams.windowLog - overlapRLog);
+ assert(0 <= overlapRLog && overlapRLog <= 8);
+ if (params.ldmParams.enableLdm) {
+ /* In Long Range Mode, the windowLog is typically oversized.
+ * In which case, it's preferable to determine the jobSize
+ * based on chainLog instead.
+ * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
+ ovLog = MIN(params.cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
+ - overlapRLog;
+ }
+ assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
+ DEBUGLOG(4, "overlapLog : %i", params.overlapLog);
+ DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
+ return (ovLog==0) ? 0 : (size_t)1 << ovLog;
+}
+
+static unsigned
+ZSTDMT_computeNbJobs(ZSTD_CCtx_params params, size_t srcSize, unsigned nbWorkers)
+{
+ assert(nbWorkers>0);
+ { size_t const jobSizeTarget = (size_t)1 << ZSTDMT_computeTargetJobLog(params);
+ size_t const jobMaxSize = jobSizeTarget << 2;
+ size_t const passSizeMax = jobMaxSize * nbWorkers;
+ unsigned const multiplier = (unsigned)(srcSize / passSizeMax) + 1;
+ unsigned const nbJobsLarge = multiplier * nbWorkers;
+ unsigned const nbJobsMax = (unsigned)(srcSize / jobSizeTarget) + 1;
+ unsigned const nbJobsSmall = MIN(nbJobsMax, nbWorkers);
+ return (multiplier>1) ? nbJobsLarge : nbJobsSmall;
+} }
+
+/* ZSTDMT_compress_advanced_internal() :
+ * This is a blocking function : it will only give back control to caller after finishing its compression job.
+ */
+static size_t ZSTDMT_compress_advanced_internal(
+ ZSTDMT_CCtx* mtctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params)
+{
+ ZSTD_CCtx_params const jobParams = ZSTDMT_initJobCCtxParams(params);
+ size_t const overlapSize = ZSTDMT_computeOverlapSize(params);
+ unsigned const nbJobs = ZSTDMT_computeNbJobs(params, srcSize, params.nbWorkers);
+ size_t const proposedJobSize = (srcSize + (nbJobs-1)) / nbJobs;
+ size_t const avgJobSize = (((proposedJobSize-1) & 0x1FFFF) < 0x7FFF) ? proposedJobSize + 0xFFFF : proposedJobSize; /* avoid too small last block */
+ const char* const srcStart = (const char*)src;
+ size_t remainingSrcSize = srcSize;
+ unsigned const compressWithinDst = (dstCapacity >= ZSTD_compressBound(srcSize)) ? nbJobs : (unsigned)(dstCapacity / ZSTD_compressBound(avgJobSize)); /* presumes avgJobSize >= 256 KB, which should be the case */
+ size_t frameStartPos = 0, dstBufferPos = 0;
+ assert(jobParams.nbWorkers == 0);
+ assert(mtctx->cctxPool->totalCCtx == params.nbWorkers);
+
+ params.jobSize = (U32)avgJobSize;
+ DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: nbJobs=%2u (rawSize=%u bytes; fixedSize=%u) ",
+ nbJobs, (U32)proposedJobSize, (U32)avgJobSize);
+
+ if ((nbJobs==1) | (params.nbWorkers<=1)) { /* fallback to single-thread mode : this is a blocking invocation anyway */
+ ZSTD_CCtx* const cctx = mtctx->cctxPool->cctx[0];
+ DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: fallback to single-thread mode");
+ if (cdict) return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, jobParams.fParams);
+ return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, NULL, 0, jobParams);
+ }
+
+ assert(avgJobSize >= 256 KB); /* condition for ZSTD_compressBound(A) + ZSTD_compressBound(B) <= ZSTD_compressBound(A+B), required to compress directly into Dst (no additional buffer) */
+ ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(avgJobSize) );
+ if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, avgJobSize))
+ return ERROR(memory_allocation);
+
+ FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbJobs) ); /* only expands if necessary */
+
+ { unsigned u;
+ for (u=0; u<nbJobs; u++) {
+ size_t const jobSize = MIN(remainingSrcSize, avgJobSize);
+ size_t const dstBufferCapacity = ZSTD_compressBound(jobSize);
+ buffer_t const dstAsBuffer = { (char*)dst + dstBufferPos, dstBufferCapacity };
+ buffer_t const dstBuffer = u < compressWithinDst ? dstAsBuffer : g_nullBuffer;
+ size_t dictSize = u ? overlapSize : 0;
+
+ mtctx->jobs[u].prefix.start = srcStart + frameStartPos - dictSize;
+ mtctx->jobs[u].prefix.size = dictSize;
+ mtctx->jobs[u].src.start = srcStart + frameStartPos;
+ mtctx->jobs[u].src.size = jobSize; assert(jobSize > 0); /* avoid job.src.size == 0 */
+ mtctx->jobs[u].consumed = 0;
+ mtctx->jobs[u].cSize = 0;
+ mtctx->jobs[u].cdict = (u==0) ? cdict : NULL;
+ mtctx->jobs[u].fullFrameSize = srcSize;
+ mtctx->jobs[u].params = jobParams;
+ /* do not calculate checksum within sections, but write it in header for first section */
+ mtctx->jobs[u].dstBuff = dstBuffer;
+ mtctx->jobs[u].cctxPool = mtctx->cctxPool;
+ mtctx->jobs[u].bufPool = mtctx->bufPool;
+ mtctx->jobs[u].seqPool = mtctx->seqPool;
+ mtctx->jobs[u].serial = &mtctx->serial;
+ mtctx->jobs[u].jobID = u;
+ mtctx->jobs[u].firstJob = (u==0);
+ mtctx->jobs[u].lastJob = (u==nbJobs-1);
+
+ DEBUGLOG(5, "ZSTDMT_compress_advanced_internal: posting job %u (%u bytes)", u, (U32)jobSize);
+ DEBUG_PRINTHEX(6, mtctx->jobs[u].prefix.start, 12);
+ POOL_add(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[u]);
+
+ frameStartPos += jobSize;
+ dstBufferPos += dstBufferCapacity;
+ remainingSrcSize -= jobSize;
+ } }
+
+ /* collect result */
+ { size_t error = 0, dstPos = 0;
+ unsigned jobID;
+ for (jobID=0; jobID<nbJobs; jobID++) {
+ DEBUGLOG(5, "waiting for job %u ", jobID);
+ ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
+ while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
+ DEBUGLOG(5, "waiting for jobCompleted signal from job %u", jobID);
+ ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
+ }
+ ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
+ DEBUGLOG(5, "ready to write job %u ", jobID);
+
+ { size_t const cSize = mtctx->jobs[jobID].cSize;
+ if (ZSTD_isError(cSize)) error = cSize;
+ if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall);
+ if (jobID) { /* note : job 0 is written directly at dst, which is correct position */
+ if (!error)
+ memmove((char*)dst + dstPos, mtctx->jobs[jobID].dstBuff.start, cSize); /* may overlap when job compressed within dst */
+ if (jobID >= compressWithinDst) { /* job compressed into its own buffer, which must be released */
+ DEBUGLOG(5, "releasing buffer %u>=%u", jobID, compressWithinDst);
+ ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
+ } }
+ mtctx->jobs[jobID].dstBuff = g_nullBuffer;
+ mtctx->jobs[jobID].cSize = 0;
+ dstPos += cSize ;
+ }
+ } /* for (jobID=0; jobID<nbJobs; jobID++) */
+
+ DEBUGLOG(4, "checksumFlag : %u ", params.fParams.checksumFlag);
+ if (params.fParams.checksumFlag) {
+ U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
+ if (dstPos + 4 > dstCapacity) {
+ error = ERROR(dstSize_tooSmall);
+ } else {
+ DEBUGLOG(4, "writing checksum : %08X \n", checksum);
+ MEM_writeLE32((char*)dst + dstPos, checksum);
+ dstPos += 4;
+ } }
+
+ if (!error) DEBUGLOG(4, "compressed size : %u ", (U32)dstPos);
+ return error ? error : dstPos;
+ }
+}
+
+size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_CDict* cdict,
+ ZSTD_parameters params,
+ int overlapLog)
+{
+ ZSTD_CCtx_params cctxParams = mtctx->params;
+ cctxParams.cParams = params.cParams;
+ cctxParams.fParams = params.fParams;
+ assert(ZSTD_OVERLAPLOG_MIN <= overlapLog && overlapLog <= ZSTD_OVERLAPLOG_MAX);
+ cctxParams.overlapLog = overlapLog;
+ return ZSTDMT_compress_advanced_internal(mtctx,
+ dst, dstCapacity,
+ src, srcSize,
+ cdict, cctxParams);
+}
+
+
+size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ int compressionLevel)
+{
+ ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0);
+ int const overlapLog = ZSTDMT_overlapLog_default(params.cParams.strategy);
+ params.fParams.contentSizeFlag = 1;
+ return ZSTDMT_compress_advanced(mtctx, dst, dstCapacity, src, srcSize, NULL, params, overlapLog);
+}
+
+
+/* ====================================== */
+/* ======= Streaming API ======= */
+/* ====================================== */
+
+size_t ZSTDMT_initCStream_internal(
+ ZSTDMT_CCtx* mtctx,
+ const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
+ const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
+ unsigned long long pledgedSrcSize)
+{
+ DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
+ (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
+
+ /* params supposed partially fully validated at this point */
+ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
+ assert(!((dict) && (cdict))); /* either dict or cdict, not both */
+
+ /* init */
+ if (params.nbWorkers != mtctx->params.nbWorkers)
+ FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) );
+
+ if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
+ if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
+
+ mtctx->singleBlockingThread = (pledgedSrcSize <= ZSTDMT_JOBSIZE_MIN); /* do not trigger multi-threading when srcSize is too small */
+ if (mtctx->singleBlockingThread) {
+ ZSTD_CCtx_params const singleThreadParams = ZSTDMT_initJobCCtxParams(params);
+ DEBUGLOG(5, "ZSTDMT_initCStream_internal: switch to single blocking thread mode");
+ assert(singleThreadParams.nbWorkers == 0);
+ return ZSTD_initCStream_internal(mtctx->cctxPool->cctx[0],
+ dict, dictSize, cdict,
+ singleThreadParams, pledgedSrcSize);
+ }
+
+ DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers);
+
+ if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */
+ ZSTDMT_waitForAllJobsCompleted(mtctx);
+ ZSTDMT_releaseAllJobResources(mtctx);
+ mtctx->allJobsCompleted = 1;
+ }
+
+ mtctx->params = params;
+ mtctx->frameContentSize = pledgedSrcSize;
+ if (dict) {
+ ZSTD_freeCDict(mtctx->cdictLocal);
+ mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
+ ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
+ params.cParams, mtctx->cMem);
+ mtctx->cdict = mtctx->cdictLocal;
+ if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
+ } else {
+ ZSTD_freeCDict(mtctx->cdictLocal);
+ mtctx->cdictLocal = NULL;
+ mtctx->cdict = cdict;
+ }
+
+ mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(params);
+ DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
+ mtctx->targetSectionSize = params.jobSize;
+ if (mtctx->targetSectionSize == 0) {
+ mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(params);
+ }
+ assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
+
+ if (params.rsyncable) {
+ /* Aim for the targetsectionSize as the average job size. */
+ U32 const jobSizeMB = (U32)(mtctx->targetSectionSize >> 20);
+ U32 const rsyncBits = ZSTD_highbit32(jobSizeMB) + 20;
+ assert(jobSizeMB >= 1);
+ DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
+ mtctx->rsync.hash = 0;
+ mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
+ mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
+ }
+ if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */
+ DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
+ DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
+ ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
+ {
+ /* If ldm is enabled we need windowSize space. */
+ size_t const windowSize = mtctx->params.ldmParams.enableLdm ? (1U << mtctx->params.cParams.windowLog) : 0;
+ /* Two buffers of slack, plus extra space for the overlap
+ * This is the minimum slack that LDM works with. One extra because
+ * flush might waste up to targetSectionSize-1 bytes. Another extra
+ * for the overlap (if > 0), then one to fill which doesn't overlap
+ * with the LDM window.
+ */
+ size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
+ size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
+ /* Compute the total size, and always have enough slack */
+ size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
+ size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
+ size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
+ if (mtctx->roundBuff.capacity < capacity) {
+ if (mtctx->roundBuff.buffer)
+ ZSTD_free(mtctx->roundBuff.buffer, mtctx->cMem);
+ mtctx->roundBuff.buffer = (BYTE*)ZSTD_malloc(capacity, mtctx->cMem);
+ if (mtctx->roundBuff.buffer == NULL) {
+ mtctx->roundBuff.capacity = 0;
+ return ERROR(memory_allocation);
+ }
+ mtctx->roundBuff.capacity = capacity;
+ }
+ }
+ DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
+ mtctx->roundBuff.pos = 0;
+ mtctx->inBuff.buffer = g_nullBuffer;
+ mtctx->inBuff.filled = 0;
+ mtctx->inBuff.prefix = kNullRange;
+ mtctx->doneJobID = 0;
+ mtctx->nextJobID = 0;
+ mtctx->frameEnded = 0;
+ mtctx->allJobsCompleted = 0;
+ mtctx->consumed = 0;
+ mtctx->produced = 0;
+ if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize))
+ return ERROR(memory_allocation);
+ return 0;
+}
+
+size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx,
+ const void* dict, size_t dictSize,
+ ZSTD_parameters params,
+ unsigned long long pledgedSrcSize)
+{
+ ZSTD_CCtx_params cctxParams = mtctx->params; /* retrieve sticky params */
+ DEBUGLOG(4, "ZSTDMT_initCStream_advanced (pledgedSrcSize=%u)", (U32)pledgedSrcSize);
+ cctxParams.cParams = params.cParams;
+ cctxParams.fParams = params.fParams;
+ return ZSTDMT_initCStream_internal(mtctx, dict, dictSize, ZSTD_dct_auto, NULL,
+ cctxParams, pledgedSrcSize);
+}
+
+size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx,
+ const ZSTD_CDict* cdict,
+ ZSTD_frameParameters fParams,
+ unsigned long long pledgedSrcSize)
+{
+ ZSTD_CCtx_params cctxParams = mtctx->params;
+ if (cdict==NULL) return ERROR(dictionary_wrong); /* method incompatible with NULL cdict */
+ cctxParams.cParams = ZSTD_getCParamsFromCDict(cdict);
+ cctxParams.fParams = fParams;
+ return ZSTDMT_initCStream_internal(mtctx, NULL, 0 /*dictSize*/, ZSTD_dct_auto, cdict,
+ cctxParams, pledgedSrcSize);
+}
+
+
+/* ZSTDMT_resetCStream() :
+ * pledgedSrcSize can be zero == unknown (for the time being)
+ * prefer using ZSTD_CONTENTSIZE_UNKNOWN,
+ * as `0` might mean "empty" in the future */
+size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize)
+{
+ if (!pledgedSrcSize) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN;
+ return ZSTDMT_initCStream_internal(mtctx, NULL, 0, ZSTD_dct_auto, 0, mtctx->params,
+ pledgedSrcSize);
+}
+
+size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel) {
+ ZSTD_parameters const params = ZSTD_getParams(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, 0);
+ ZSTD_CCtx_params cctxParams = mtctx->params; /* retrieve sticky params */
+ DEBUGLOG(4, "ZSTDMT_initCStream (cLevel=%i)", compressionLevel);
+ cctxParams.cParams = params.cParams;
+ cctxParams.fParams = params.fParams;
+ return ZSTDMT_initCStream_internal(mtctx, NULL, 0, ZSTD_dct_auto, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN);
+}
+
+
+/* ZSTDMT_writeLastEmptyBlock()
+ * Write a single empty block with an end-of-frame to finish a frame.
+ * Job must be created from streaming variant.
+ * This function is always successful if expected conditions are fulfilled.
+ */
+static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
+{
+ assert(job->lastJob == 1);
+ assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */
+ assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */
+ assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
+ job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
+ if (job->dstBuff.start == NULL) {
+ job->cSize = ERROR(memory_allocation);
+ return;
+ }
+ assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */
+ job->src = kNullRange;
+ job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
+ assert(!ZSTD_isError(job->cSize));
+ assert(job->consumed == 0);
+}
+
+static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
+{
+ unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
+ int const endFrame = (endOp == ZSTD_e_end);
+
+ if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
+ DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
+ assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
+ return 0;
+ }
+
+ if (!mtctx->jobReady) {
+ BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
+ DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
+ mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
+ mtctx->jobs[jobID].src.start = src;
+ mtctx->jobs[jobID].src.size = srcSize;
+ assert(mtctx->inBuff.filled >= srcSize);
+ mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
+ mtctx->jobs[jobID].consumed = 0;
+ mtctx->jobs[jobID].cSize = 0;
+ mtctx->jobs[jobID].params = mtctx->params;
+ mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
+ mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
+ mtctx->jobs[jobID].dstBuff = g_nullBuffer;
+ mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
+ mtctx->jobs[jobID].bufPool = mtctx->bufPool;
+ mtctx->jobs[jobID].seqPool = mtctx->seqPool;
+ mtctx->jobs[jobID].serial = &mtctx->serial;
+ mtctx->jobs[jobID].jobID = mtctx->nextJobID;
+ mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
+ mtctx->jobs[jobID].lastJob = endFrame;
+ mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
+ mtctx->jobs[jobID].dstFlushed = 0;
+
+ /* Update the round buffer pos and clear the input buffer to be reset */
+ mtctx->roundBuff.pos += srcSize;
+ mtctx->inBuff.buffer = g_nullBuffer;
+ mtctx->inBuff.filled = 0;
+ /* Set the prefix */
+ if (!endFrame) {
+ size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
+ mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
+ mtctx->inBuff.prefix.size = newPrefixSize;
+ } else { /* endFrame==1 => no need for another input buffer */
+ mtctx->inBuff.prefix = kNullRange;
+ mtctx->frameEnded = endFrame;
+ if (mtctx->nextJobID == 0) {
+ /* single job exception : checksum is already calculated directly within worker thread */
+ mtctx->params.fParams.checksumFlag = 0;
+ } }
+
+ if ( (srcSize == 0)
+ && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
+ DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
+ assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */
+ ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
+ mtctx->nextJobID++;
+ return 0;
+ }
+ }
+
+ DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))",
+ mtctx->nextJobID,
+ (U32)mtctx->jobs[jobID].src.size,
+ mtctx->jobs[jobID].lastJob,
+ mtctx->nextJobID,
+ jobID);
+ if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
+ mtctx->nextJobID++;
+ mtctx->jobReady = 0;
+ } else {
+ DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
+ mtctx->jobReady = 1;
+ }
+ return 0;
+}
+
+
+/*! ZSTDMT_flushProduced() :
+ * flush whatever data has been produced but not yet flushed in current job.
+ * move to next job if current one is fully flushed.
+ * `output` : `pos` will be updated with amount of data flushed .
+ * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
+ * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
+static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
+{
+ unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
+ DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
+ blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
+ assert(output->size >= output->pos);
+
+ ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
+ if ( blockToFlush
+ && (mtctx->doneJobID < mtctx->nextJobID) ) {
+ assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
+ while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */
+ if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
+ DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
+ mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
+ break;
+ }
+ DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
+ mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
+ ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */
+ } }
+
+ /* try to flush something */
+ { size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */
+ size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */
+ size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */
+ ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
+ if (ZSTD_isError(cSize)) {
+ DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
+ mtctx->doneJobID, ZSTD_getErrorName(cSize));
+ ZSTDMT_waitForAllJobsCompleted(mtctx);
+ ZSTDMT_releaseAllJobResources(mtctx);
+ return cSize;
+ }
+ /* add frame checksum if necessary (can only happen once) */
+ assert(srcConsumed <= srcSize);
+ if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */
+ && mtctx->jobs[wJobID].frameChecksumNeeded ) {
+ U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
+ DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
+ MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
+ cSize += 4;
+ mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */
+ mtctx->jobs[wJobID].frameChecksumNeeded = 0;
+ }
+
+ if (cSize > 0) { /* compression is ongoing or completed */
+ size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
+ DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
+ (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
+ assert(mtctx->doneJobID < mtctx->nextJobID);
+ assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
+ assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
+ memcpy((char*)output->dst + output->pos,
+ (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
+ toFlush);
+ output->pos += toFlush;
+ mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */
+
+ if ( (srcConsumed == srcSize) /* job is completed */
+ && (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */
+ DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
+ mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
+ ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
+ DEBUGLOG(5, "dstBuffer released");
+ mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
+ mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */
+ mtctx->consumed += srcSize;
+ mtctx->produced += cSize;
+ mtctx->doneJobID++;
+ } }
+
+ /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
+ if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
+ if (srcSize > srcConsumed) return 1; /* current job not completely compressed */
+ }
+ if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */
+ if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */
+ if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */
+ mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */
+ if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
+ return 0; /* internal buffers fully flushed */
+}
+
+/**
+ * Returns the range of data used by the earliest job that is not yet complete.
+ * If the data of the first job is broken up into two segments, we cover both
+ * sections.
+ */
+static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
+{
+ unsigned const firstJobID = mtctx->doneJobID;
+ unsigned const lastJobID = mtctx->nextJobID;
+ unsigned jobID;
+
+ for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
+ unsigned const wJobID = jobID & mtctx->jobIDMask;
+ size_t consumed;
+
+ ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
+ consumed = mtctx->jobs[wJobID].consumed;
+ ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
+
+ if (consumed < mtctx->jobs[wJobID].src.size) {
+ range_t range = mtctx->jobs[wJobID].prefix;
+ if (range.size == 0) {
+ /* Empty prefix */
+ range = mtctx->jobs[wJobID].src;
+ }
+ /* Job source in multiple segments not supported yet */
+ assert(range.start <= mtctx->jobs[wJobID].src.start);
+ return range;
+ }
+ }
+ return kNullRange;
+}
+
+/**
+ * Returns non-zero iff buffer and range overlap.
+ */
+static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range)
+{
+ BYTE const* const bufferStart = (BYTE const*)buffer.start;
+ BYTE const* const bufferEnd = bufferStart + buffer.capacity;
+ BYTE const* const rangeStart = (BYTE const*)range.start;
+ BYTE const* const rangeEnd = rangeStart + range.size;
+
+ if (rangeStart == NULL || bufferStart == NULL)
+ return 0;
+ /* Empty ranges cannot overlap */
+ if (bufferStart == bufferEnd || rangeStart == rangeEnd)
+ return 0;
+
+ return bufferStart < rangeEnd && rangeStart < bufferEnd;
+}
+
+static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
+{
+ range_t extDict;
+ range_t prefix;
+
+ DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
+ extDict.start = window.dictBase + window.lowLimit;
+ extDict.size = window.dictLimit - window.lowLimit;
+
+ prefix.start = window.base + window.dictLimit;
+ prefix.size = window.nextSrc - (window.base + window.dictLimit);
+ DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
+ (size_t)extDict.start,
+ (size_t)extDict.start + extDict.size);
+ DEBUGLOG(5, "prefix [0x%zx, 0x%zx)",
+ (size_t)prefix.start,
+ (size_t)prefix.start + prefix.size);
+
+ return ZSTDMT_isOverlapped(buffer, extDict)
+ || ZSTDMT_isOverlapped(buffer, prefix);
+}
+
+static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer)
+{
+ if (mtctx->params.ldmParams.enableLdm) {
+ ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
+ DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
+ DEBUGLOG(5, "source [0x%zx, 0x%zx)",
+ (size_t)buffer.start,
+ (size_t)buffer.start + buffer.capacity);
+ ZSTD_PTHREAD_MUTEX_LOCK(mutex);
+ while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
+ DEBUGLOG(5, "Waiting for LDM to finish...");
+ ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
+ }
+ DEBUGLOG(6, "Done waiting for LDM to finish");
+ ZSTD_pthread_mutex_unlock(mutex);
+ }
+}
+
+/**
+ * Attempts to set the inBuff to the next section to fill.
+ * If any part of the new section is still in use we give up.
+ * Returns non-zero if the buffer is filled.
+ */
+static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
+{
+ range_t const inUse = ZSTDMT_getInputDataInUse(mtctx);
+ size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
+ size_t const target = mtctx->targetSectionSize;
+ buffer_t buffer;
+
+ DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
+ assert(mtctx->inBuff.buffer.start == NULL);
+ assert(mtctx->roundBuff.capacity >= target);
+
+ if (spaceLeft < target) {
+ /* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
+ * Simply copy the prefix to the beginning in that case.
+ */
+ BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
+ size_t const prefixSize = mtctx->inBuff.prefix.size;
+
+ buffer.start = start;
+ buffer.capacity = prefixSize;
+ if (ZSTDMT_isOverlapped(buffer, inUse)) {
+ DEBUGLOG(5, "Waiting for buffer...");
+ return 0;
+ }
+ ZSTDMT_waitForLdmComplete(mtctx, buffer);
+ memmove(start, mtctx->inBuff.prefix.start, prefixSize);
+ mtctx->inBuff.prefix.start = start;
+ mtctx->roundBuff.pos = prefixSize;
+ }
+ buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
+ buffer.capacity = target;
+
+ if (ZSTDMT_isOverlapped(buffer, inUse)) {
+ DEBUGLOG(5, "Waiting for buffer...");
+ return 0;
+ }
+ assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
+
+ ZSTDMT_waitForLdmComplete(mtctx, buffer);
+
+ DEBUGLOG(5, "Using prefix range [%zx, %zx)",
+ (size_t)mtctx->inBuff.prefix.start,
+ (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
+ DEBUGLOG(5, "Using source range [%zx, %zx)",
+ (size_t)buffer.start,
+ (size_t)buffer.start + buffer.capacity);
+
+
+ mtctx->inBuff.buffer = buffer;
+ mtctx->inBuff.filled = 0;
+ assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
+ return 1;
+}
+
+typedef struct {
+ size_t toLoad; /* The number of bytes to load from the input. */
+ int flush; /* Boolean declaring if we must flush because we found a synchronization point. */
+} syncPoint_t;
+
+/**
+ * Searches through the input for a synchronization point. If one is found, we
+ * will instruct the caller to flush, and return the number of bytes to load.
+ * Otherwise, we will load as many bytes as possible and instruct the caller
+ * to continue as normal.
+ */
+static syncPoint_t
+findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
+{
+ BYTE const* const istart = (BYTE const*)input.src + input.pos;
+ U64 const primePower = mtctx->rsync.primePower;
+ U64 const hitMask = mtctx->rsync.hitMask;
+
+ syncPoint_t syncPoint;
+ U64 hash;
+ BYTE const* prev;
+ size_t pos;
+
+ syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
+ syncPoint.flush = 0;
+ if (!mtctx->params.rsyncable)
+ /* Rsync is disabled. */
+ return syncPoint;
+ if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
+ /* Not enough to compute the hash.
+ * We will miss any synchronization points in this RSYNC_LENGTH byte
+ * window. However, since it depends only in the internal buffers, if the
+ * state is already synchronized, we will remain synchronized.
+ * Additionally, the probability that we miss a synchronization point is
+ * low: RSYNC_LENGTH / targetSectionSize.
+ */
+ return syncPoint;
+ /* Initialize the loop variables. */
+ if (mtctx->inBuff.filled >= RSYNC_LENGTH) {
+ /* We have enough bytes buffered to initialize the hash.
+ * Start scanning at the beginning of the input.
+ */
+ pos = 0;
+ prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
+ hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
+ } else {
+ /* We don't have enough bytes buffered to initialize the hash, but
+ * we know we have at least RSYNC_LENGTH bytes total.
+ * Start scanning after the first RSYNC_LENGTH bytes less the bytes
+ * already buffered.
+ */
+ pos = RSYNC_LENGTH - mtctx->inBuff.filled;
+ prev = (BYTE const*)mtctx->inBuff.buffer.start - pos;
+ hash = ZSTD_rollingHash_compute(mtctx->inBuff.buffer.start, mtctx->inBuff.filled);
+ hash = ZSTD_rollingHash_append(hash, istart, pos);
+ }
+ /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
+ * through the input. If we hit a synchronization point, then cut the
+ * job off, and tell the compressor to flush the job. Otherwise, load
+ * all the bytes and continue as normal.
+ * If we go too long without a synchronization point (targetSectionSize)
+ * then a block will be emitted anyways, but this is okay, since if we
+ * are already synchronized we will remain synchronized.
+ */
+ for (; pos < syncPoint.toLoad; ++pos) {
+ BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
+ /* if (pos >= RSYNC_LENGTH) assert(ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); */
+ hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
+ if ((hash & hitMask) == hitMask) {
+ syncPoint.toLoad = pos + 1;
+ syncPoint.flush = 1;
+ break;
+ }
+ }
+ return syncPoint;
+}
+
+size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
+{
+ size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
+ if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
+ return hintInSize;
+}
+
+/** ZSTDMT_compressStream_generic() :
+ * internal use only - exposed to be invoked from zstd_compress.c
+ * assumption : output and input are valid (pos <= size)
+ * @return : minimum amount of data remaining to flush, 0 if none */
+size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
+ ZSTD_outBuffer* output,
+ ZSTD_inBuffer* input,
+ ZSTD_EndDirective endOp)
+{
+ unsigned forwardInputProgress = 0;
+ DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
+ (U32)endOp, (U32)(input->size - input->pos));
+ assert(output->pos <= output->size);
+ assert(input->pos <= input->size);
+
+ if (mtctx->singleBlockingThread) { /* delegate to single-thread (synchronous) */
+ return ZSTD_compressStream2(mtctx->cctxPool->cctx[0], output, input, endOp);
+ }
+
+ if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
+ /* current frame being ended. Only flush/end are allowed */
+ return ERROR(stage_wrong);
+ }
+
+ /* single-pass shortcut (note : synchronous-mode) */
+ if ( (!mtctx->params.rsyncable) /* rsyncable mode is disabled */
+ && (mtctx->nextJobID == 0) /* just started */
+ && (mtctx->inBuff.filled == 0) /* nothing buffered */
+ && (!mtctx->jobReady) /* no job already created */
+ && (endOp == ZSTD_e_end) /* end order */
+ && (output->size - output->pos >= ZSTD_compressBound(input->size - input->pos)) ) { /* enough space in dst */
+ size_t const cSize = ZSTDMT_compress_advanced_internal(mtctx,
+ (char*)output->dst + output->pos, output->size - output->pos,
+ (const char*)input->src + input->pos, input->size - input->pos,
+ mtctx->cdict, mtctx->params);
+ if (ZSTD_isError(cSize)) return cSize;
+ input->pos = input->size;
+ output->pos += cSize;
+ mtctx->allJobsCompleted = 1;
+ mtctx->frameEnded = 1;
+ return 0;
+ }
+
+ /* fill input buffer */
+ if ( (!mtctx->jobReady)
+ && (input->size > input->pos) ) { /* support NULL input */
+ if (mtctx->inBuff.buffer.start == NULL) {
+ assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
+ if (!ZSTDMT_tryGetInputRange(mtctx)) {
+ /* It is only possible for this operation to fail if there are
+ * still compression jobs ongoing.
+ */
+ DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
+ assert(mtctx->doneJobID != mtctx->nextJobID);
+ } else
+ DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
+ }
+ if (mtctx->inBuff.buffer.start != NULL) {
+ syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input);
+ if (syncPoint.flush && endOp == ZSTD_e_continue) {
+ endOp = ZSTD_e_flush;
+ }
+ assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
+ DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
+ (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
+ memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
+ input->pos += syncPoint.toLoad;
+ mtctx->inBuff.filled += syncPoint.toLoad;
+ forwardInputProgress = syncPoint.toLoad>0;
+ }
+ if ((input->pos < input->size) && (endOp == ZSTD_e_end))
+ endOp = ZSTD_e_flush; /* can't end now : not all input consumed */
+ }
+
+ if ( (mtctx->jobReady)
+ || (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */
+ || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */
+ || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */
+ size_t const jobSize = mtctx->inBuff.filled;
+ assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
+ FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) );
+ }
+
+ /* check for potential compressed data ready to be flushed */
+ { size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
+ if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */
+ DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
+ return remainingToFlush;
+ }
+}
+
+
+size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
+{
+ FORWARD_IF_ERROR( ZSTDMT_compressStream_generic(mtctx, output, input, ZSTD_e_continue) );
+
+ /* recommended next input size : fill current input buffer */
+ return mtctx->targetSectionSize - mtctx->inBuff.filled; /* note : could be zero when input buffer is fully filled and no more availability to create new job */
+}
+
+
+static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_EndDirective endFrame)
+{
+ size_t const srcSize = mtctx->inBuff.filled;
+ DEBUGLOG(5, "ZSTDMT_flushStream_internal");
+
+ if ( mtctx->jobReady /* one job ready for a worker to pick up */
+ || (srcSize > 0) /* still some data within input buffer */
+ || ((endFrame==ZSTD_e_end) && !mtctx->frameEnded)) { /* need a last 0-size block to end frame */
+ DEBUGLOG(5, "ZSTDMT_flushStream_internal : create a new job (%u bytes, end:%u)",
+ (U32)srcSize, (U32)endFrame);
+ FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, srcSize, endFrame) );
+ }
+
+ /* check if there is any data available to flush */
+ return ZSTDMT_flushProduced(mtctx, output, 1 /* blockToFlush */, endFrame);
+}
+
+
+size_t ZSTDMT_flushStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output)
+{
+ DEBUGLOG(5, "ZSTDMT_flushStream");
+ if (mtctx->singleBlockingThread)
+ return ZSTD_flushStream(mtctx->cctxPool->cctx[0], output);
+ return ZSTDMT_flushStream_internal(mtctx, output, ZSTD_e_flush);
+}
+
+size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output)
+{
+ DEBUGLOG(4, "ZSTDMT_endStream");
+ if (mtctx->singleBlockingThread)
+ return ZSTD_endStream(mtctx->cctxPool->cctx[0], output);
+ return ZSTDMT_flushStream_internal(mtctx, output, ZSTD_e_end);
+}
diff --git a/vendor/github.com/DataDog/zstd/zstdmt_compress.h b/vendor/github.com/DataDog/zstd/zstdmt_compress.h
new file mode 100644
index 0000000..12a5260
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/zstdmt_compress.h
@@ -0,0 +1,192 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+ #ifndef ZSTDMT_COMPRESS_H
+ #define ZSTDMT_COMPRESS_H
+
+ #if defined (__cplusplus)
+ extern "C" {
+ #endif
+
+
+/* Note : This is an internal API.
+ * These APIs used to be exposed with ZSTDLIB_API,
+ * because it used to be the only way to invoke MT compression.
+ * Now, it's recommended to use ZSTD_compress2 and ZSTD_compressStream2()
+ * instead.
+ *
+ * If you depend on these APIs and can't switch, then define
+ * ZSTD_LEGACY_MULTITHREADED_API when making the dynamic library.
+ * However, we may completely remove these functions in a future
+ * release, so please switch soon.
+ *
+ * This API requires ZSTD_MULTITHREAD to be defined during compilation,
+ * otherwise ZSTDMT_createCCtx*() will fail.
+ */
+
+#ifdef ZSTD_LEGACY_MULTITHREADED_API
+# define ZSTDMT_API ZSTDLIB_API
+#else
+# define ZSTDMT_API
+#endif
+
+/* === Dependencies === */
+#include <stddef.h> /* size_t */
+#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters */
+#include "zstd.h" /* ZSTD_inBuffer, ZSTD_outBuffer, ZSTDLIB_API */
+
+
+/* === Constants === */
+#ifndef ZSTDMT_NBWORKERS_MAX
+# define ZSTDMT_NBWORKERS_MAX 200
+#endif
+#ifndef ZSTDMT_JOBSIZE_MIN
+# define ZSTDMT_JOBSIZE_MIN (1 MB)
+#endif
+#define ZSTDMT_JOBLOG_MAX (MEM_32bits() ? 29 : 30)
+#define ZSTDMT_JOBSIZE_MAX (MEM_32bits() ? (512 MB) : (1024 MB))
+
+
+/* === Memory management === */
+typedef struct ZSTDMT_CCtx_s ZSTDMT_CCtx;
+/* Requires ZSTD_MULTITHREAD to be defined during compilation, otherwise it will return NULL. */
+ZSTDMT_API ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers);
+/* Requires ZSTD_MULTITHREAD to be defined during compilation, otherwise it will return NULL. */
+ZSTDMT_API ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers,
+ ZSTD_customMem cMem);
+ZSTDMT_API size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx);
+
+ZSTDMT_API size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx);
+
+
+/* === Simple one-pass compression function === */
+
+ZSTDMT_API size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ int compressionLevel);
+
+
+
+/* === Streaming functions === */
+
+ZSTDMT_API size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel);
+ZSTDMT_API size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize); /**< if srcSize is not known at reset time, use ZSTD_CONTENTSIZE_UNKNOWN. Note: for compatibility with older programs, 0 means the same as ZSTD_CONTENTSIZE_UNKNOWN, but it will change in the future to mean "empty" */
+
+ZSTDMT_API size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx);
+ZSTDMT_API size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
+
+ZSTDMT_API size_t ZSTDMT_flushStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output); /**< @return : 0 == all flushed; >0 : still some data to be flushed; or an error code (ZSTD_isError()) */
+ZSTDMT_API size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output); /**< @return : 0 == all flushed; >0 : still some data to be flushed; or an error code (ZSTD_isError()) */
+
+
+/* === Advanced functions and parameters === */
+
+ZSTDMT_API size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_CDict* cdict,
+ ZSTD_parameters params,
+ int overlapLog);
+
+ZSTDMT_API size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx,
+ const void* dict, size_t dictSize, /* dict can be released after init, a local copy is preserved within zcs */
+ ZSTD_parameters params,
+ unsigned long long pledgedSrcSize); /* pledgedSrcSize is optional and can be zero == unknown */
+
+ZSTDMT_API size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx,
+ const ZSTD_CDict* cdict,
+ ZSTD_frameParameters fparams,
+ unsigned long long pledgedSrcSize); /* note : zero means empty */
+
+/* ZSTDMT_parameter :
+ * List of parameters that can be set using ZSTDMT_setMTCtxParameter() */
+typedef enum {
+ ZSTDMT_p_jobSize, /* Each job is compressed in parallel. By default, this value is dynamically determined depending on compression parameters. Can be set explicitly here. */
+ ZSTDMT_p_overlapLog, /* Each job may reload a part of previous job to enhance compression ratio; 0 == no overlap, 6(default) == use 1/8th of window, >=9 == use full window. This is a "sticky" parameter : its value will be re-used on next compression job */
+ ZSTDMT_p_rsyncable /* Enables rsyncable mode. */
+} ZSTDMT_parameter;
+
+/* ZSTDMT_setMTCtxParameter() :
+ * allow setting individual parameters, one at a time, among a list of enums defined in ZSTDMT_parameter.
+ * The function must be called typically after ZSTD_createCCtx() but __before ZSTDMT_init*() !__
+ * Parameters not explicitly reset by ZSTDMT_init*() remain the same in consecutive compression sessions.
+ * @return : 0, or an error code (which can be tested using ZSTD_isError()) */
+ZSTDMT_API size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int value);
+
+/* ZSTDMT_getMTCtxParameter() :
+ * Query the ZSTDMT_CCtx for a parameter value.
+ * @return : 0, or an error code (which can be tested using ZSTD_isError()) */
+ZSTDMT_API size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int* value);
+
+
+/*! ZSTDMT_compressStream_generic() :
+ * Combines ZSTDMT_compressStream() with optional ZSTDMT_flushStream() or ZSTDMT_endStream()
+ * depending on flush directive.
+ * @return : minimum amount of data still to be flushed
+ * 0 if fully flushed
+ * or an error code
+ * note : needs to be init using any ZSTD_initCStream*() variant */
+ZSTDMT_API size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
+ ZSTD_outBuffer* output,
+ ZSTD_inBuffer* input,
+ ZSTD_EndDirective endOp);
+
+
+/* ========================================================
+ * === Private interface, for use by ZSTD_compress.c ===
+ * === Not exposed in libzstd. Never invoke directly ===
+ * ======================================================== */
+
+ /*! ZSTDMT_toFlushNow()
+ * Tell how many bytes are ready to be flushed immediately.
+ * Probe the oldest active job (not yet entirely flushed) and check its output buffer.
+ * If return 0, it means there is no active job,
+ * or, it means oldest job is still active, but everything produced has been flushed so far,
+ * therefore flushing is limited by speed of oldest job. */
+size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx);
+
+/*! ZSTDMT_CCtxParam_setMTCtxParameter()
+ * like ZSTDMT_setMTCtxParameter(), but into a ZSTD_CCtx_Params */
+size_t ZSTDMT_CCtxParam_setMTCtxParameter(ZSTD_CCtx_params* params, ZSTDMT_parameter parameter, int value);
+
+/*! ZSTDMT_CCtxParam_setNbWorkers()
+ * Set nbWorkers, and clamp it.
+ * Also reset jobSize and overlapLog */
+size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers);
+
+/*! ZSTDMT_updateCParams_whileCompressing() :
+ * Updates only a selected set of compression parameters, to remain compatible with current frame.
+ * New parameters will be applied to next compression job. */
+void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams);
+
+/*! ZSTDMT_getFrameProgression():
+ * tells how much data has been consumed (input) and produced (output) for current frame.
+ * able to count progression inside worker threads.
+ */
+ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx);
+
+
+/*! ZSTDMT_initCStream_internal() :
+ * Private use only. Init streaming operation.
+ * expects params to be valid.
+ * must receive dict, or cdict, or none, but not both.
+ * @return : 0, or an error code */
+size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* zcs,
+ const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
+ const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTDMT_COMPRESS_H */