VOL-1558 Implementation of openolt adapter with dep for dependency management
Also updated the build system to take this into account.

Currently dep ensure fails due to missing libraries in voltha-go, but the vendor folder has been updated otherwise.
This can be worked around in development using the LOCAL_VOLTHAGO variable described in the readme
This does not build currrently, but that is due to missing code in voltha-go master.

This pattern is consistent with how voltha-go does things, but does not leave you dependent on it to build.

See the readme for how to use dep.

The resourcemanager file is no longer hidden.

Change-Id: I25b8472dbc517b193970597c9f43ddff18c2d89f
diff --git a/vendor/github.com/golang/snappy/encode_amd64.s b/vendor/github.com/golang/snappy/encode_amd64.s
new file mode 100644
index 0000000..adfd979
--- /dev/null
+++ b/vendor/github.com/golang/snappy/encode_amd64.s
@@ -0,0 +1,730 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build !appengine
+// +build gc
+// +build !noasm
+
+#include "textflag.h"
+
+// The XXX lines assemble on Go 1.4, 1.5 and 1.7, but not 1.6, due to a
+// Go toolchain regression. See https://github.com/golang/go/issues/15426 and
+// https://github.com/golang/snappy/issues/29
+//
+// As a workaround, the package was built with a known good assembler, and
+// those instructions were disassembled by "objdump -d" to yield the
+//	4e 0f b7 7c 5c 78       movzwq 0x78(%rsp,%r11,2),%r15
+// style comments, in AT&T asm syntax. Note that rsp here is a physical
+// register, not Go/asm's SP pseudo-register (see https://golang.org/doc/asm).
+// The instructions were then encoded as "BYTE $0x.." sequences, which assemble
+// fine on Go 1.6.
+
+// The asm code generally follows the pure Go code in encode_other.go, except
+// where marked with a "!!!".
+
+// ----------------------------------------------------------------------------
+
+// func emitLiteral(dst, lit []byte) int
+//
+// All local variables fit into registers. The register allocation:
+//	- AX	len(lit)
+//	- BX	n
+//	- DX	return value
+//	- DI	&dst[i]
+//	- R10	&lit[0]
+//
+// The 24 bytes of stack space is to call runtime·memmove.
+//
+// The unusual register allocation of local variables, such as R10 for the
+// source pointer, matches the allocation used at the call site in encodeBlock,
+// which makes it easier to manually inline this function.
+TEXT ·emitLiteral(SB), NOSPLIT, $24-56
+	MOVQ dst_base+0(FP), DI
+	MOVQ lit_base+24(FP), R10
+	MOVQ lit_len+32(FP), AX
+	MOVQ AX, DX
+	MOVL AX, BX
+	SUBL $1, BX
+
+	CMPL BX, $60
+	JLT  oneByte
+	CMPL BX, $256
+	JLT  twoBytes
+
+threeBytes:
+	MOVB $0xf4, 0(DI)
+	MOVW BX, 1(DI)
+	ADDQ $3, DI
+	ADDQ $3, DX
+	JMP  memmove
+
+twoBytes:
+	MOVB $0xf0, 0(DI)
+	MOVB BX, 1(DI)
+	ADDQ $2, DI
+	ADDQ $2, DX
+	JMP  memmove
+
+oneByte:
+	SHLB $2, BX
+	MOVB BX, 0(DI)
+	ADDQ $1, DI
+	ADDQ $1, DX
+
+memmove:
+	MOVQ DX, ret+48(FP)
+
+	// copy(dst[i:], lit)
+	//
+	// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
+	// DI, R10 and AX as arguments.
+	MOVQ DI, 0(SP)
+	MOVQ R10, 8(SP)
+	MOVQ AX, 16(SP)
+	CALL runtime·memmove(SB)
+	RET
+
+// ----------------------------------------------------------------------------
+
+// func emitCopy(dst []byte, offset, length int) int
+//
+// All local variables fit into registers. The register allocation:
+//	- AX	length
+//	- SI	&dst[0]
+//	- DI	&dst[i]
+//	- R11	offset
+//
+// The unusual register allocation of local variables, such as R11 for the
+// offset, matches the allocation used at the call site in encodeBlock, which
+// makes it easier to manually inline this function.
+TEXT ·emitCopy(SB), NOSPLIT, $0-48
+	MOVQ dst_base+0(FP), DI
+	MOVQ DI, SI
+	MOVQ offset+24(FP), R11
+	MOVQ length+32(FP), AX
+
+loop0:
+	// for length >= 68 { etc }
+	CMPL AX, $68
+	JLT  step1
+
+	// Emit a length 64 copy, encoded as 3 bytes.
+	MOVB $0xfe, 0(DI)
+	MOVW R11, 1(DI)
+	ADDQ $3, DI
+	SUBL $64, AX
+	JMP  loop0
+
+step1:
+	// if length > 64 { etc }
+	CMPL AX, $64
+	JLE  step2
+
+	// Emit a length 60 copy, encoded as 3 bytes.
+	MOVB $0xee, 0(DI)
+	MOVW R11, 1(DI)
+	ADDQ $3, DI
+	SUBL $60, AX
+
+step2:
+	// if length >= 12 || offset >= 2048 { goto step3 }
+	CMPL AX, $12
+	JGE  step3
+	CMPL R11, $2048
+	JGE  step3
+
+	// Emit the remaining copy, encoded as 2 bytes.
+	MOVB R11, 1(DI)
+	SHRL $8, R11
+	SHLB $5, R11
+	SUBB $4, AX
+	SHLB $2, AX
+	ORB  AX, R11
+	ORB  $1, R11
+	MOVB R11, 0(DI)
+	ADDQ $2, DI
+
+	// Return the number of bytes written.
+	SUBQ SI, DI
+	MOVQ DI, ret+40(FP)
+	RET
+
+step3:
+	// Emit the remaining copy, encoded as 3 bytes.
+	SUBL $1, AX
+	SHLB $2, AX
+	ORB  $2, AX
+	MOVB AX, 0(DI)
+	MOVW R11, 1(DI)
+	ADDQ $3, DI
+
+	// Return the number of bytes written.
+	SUBQ SI, DI
+	MOVQ DI, ret+40(FP)
+	RET
+
+// ----------------------------------------------------------------------------
+
+// func extendMatch(src []byte, i, j int) int
+//
+// All local variables fit into registers. The register allocation:
+//	- DX	&src[0]
+//	- SI	&src[j]
+//	- R13	&src[len(src) - 8]
+//	- R14	&src[len(src)]
+//	- R15	&src[i]
+//
+// The unusual register allocation of local variables, such as R15 for a source
+// pointer, matches the allocation used at the call site in encodeBlock, which
+// makes it easier to manually inline this function.
+TEXT ·extendMatch(SB), NOSPLIT, $0-48
+	MOVQ src_base+0(FP), DX
+	MOVQ src_len+8(FP), R14
+	MOVQ i+24(FP), R15
+	MOVQ j+32(FP), SI
+	ADDQ DX, R14
+	ADDQ DX, R15
+	ADDQ DX, SI
+	MOVQ R14, R13
+	SUBQ $8, R13
+
+cmp8:
+	// As long as we are 8 or more bytes before the end of src, we can load and
+	// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
+	CMPQ SI, R13
+	JA   cmp1
+	MOVQ (R15), AX
+	MOVQ (SI), BX
+	CMPQ AX, BX
+	JNE  bsf
+	ADDQ $8, R15
+	ADDQ $8, SI
+	JMP  cmp8
+
+bsf:
+	// If those 8 bytes were not equal, XOR the two 8 byte values, and return
+	// the index of the first byte that differs. The BSF instruction finds the
+	// least significant 1 bit, the amd64 architecture is little-endian, and
+	// the shift by 3 converts a bit index to a byte index.
+	XORQ AX, BX
+	BSFQ BX, BX
+	SHRQ $3, BX
+	ADDQ BX, SI
+
+	// Convert from &src[ret] to ret.
+	SUBQ DX, SI
+	MOVQ SI, ret+40(FP)
+	RET
+
+cmp1:
+	// In src's tail, compare 1 byte at a time.
+	CMPQ SI, R14
+	JAE  extendMatchEnd
+	MOVB (R15), AX
+	MOVB (SI), BX
+	CMPB AX, BX
+	JNE  extendMatchEnd
+	ADDQ $1, R15
+	ADDQ $1, SI
+	JMP  cmp1
+
+extendMatchEnd:
+	// Convert from &src[ret] to ret.
+	SUBQ DX, SI
+	MOVQ SI, ret+40(FP)
+	RET
+
+// ----------------------------------------------------------------------------
+
+// func encodeBlock(dst, src []byte) (d int)
+//
+// All local variables fit into registers, other than "var table". The register
+// allocation:
+//	- AX	.	.
+//	- BX	.	.
+//	- CX	56	shift (note that amd64 shifts by non-immediates must use CX).
+//	- DX	64	&src[0], tableSize
+//	- SI	72	&src[s]
+//	- DI	80	&dst[d]
+//	- R9	88	sLimit
+//	- R10	.	&src[nextEmit]
+//	- R11	96	prevHash, currHash, nextHash, offset
+//	- R12	104	&src[base], skip
+//	- R13	.	&src[nextS], &src[len(src) - 8]
+//	- R14	.	len(src), bytesBetweenHashLookups, &src[len(src)], x
+//	- R15	112	candidate
+//
+// The second column (56, 64, etc) is the stack offset to spill the registers
+// when calling other functions. We could pack this slightly tighter, but it's
+// simpler to have a dedicated spill map independent of the function called.
+//
+// "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An
+// extra 56 bytes, to call other functions, and an extra 64 bytes, to spill
+// local variables (registers) during calls gives 32768 + 56 + 64 = 32888.
+TEXT ·encodeBlock(SB), 0, $32888-56
+	MOVQ dst_base+0(FP), DI
+	MOVQ src_base+24(FP), SI
+	MOVQ src_len+32(FP), R14
+
+	// shift, tableSize := uint32(32-8), 1<<8
+	MOVQ $24, CX
+	MOVQ $256, DX
+
+calcShift:
+	// for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
+	//	shift--
+	// }
+	CMPQ DX, $16384
+	JGE  varTable
+	CMPQ DX, R14
+	JGE  varTable
+	SUBQ $1, CX
+	SHLQ $1, DX
+	JMP  calcShift
+
+varTable:
+	// var table [maxTableSize]uint16
+	//
+	// In the asm code, unlike the Go code, we can zero-initialize only the
+	// first tableSize elements. Each uint16 element is 2 bytes and each MOVOU
+	// writes 16 bytes, so we can do only tableSize/8 writes instead of the
+	// 2048 writes that would zero-initialize all of table's 32768 bytes.
+	SHRQ $3, DX
+	LEAQ table-32768(SP), BX
+	PXOR X0, X0
+
+memclr:
+	MOVOU X0, 0(BX)
+	ADDQ  $16, BX
+	SUBQ  $1, DX
+	JNZ   memclr
+
+	// !!! DX = &src[0]
+	MOVQ SI, DX
+
+	// sLimit := len(src) - inputMargin
+	MOVQ R14, R9
+	SUBQ $15, R9
+
+	// !!! Pre-emptively spill CX, DX and R9 to the stack. Their values don't
+	// change for the rest of the function.
+	MOVQ CX, 56(SP)
+	MOVQ DX, 64(SP)
+	MOVQ R9, 88(SP)
+
+	// nextEmit := 0
+	MOVQ DX, R10
+
+	// s := 1
+	ADDQ $1, SI
+
+	// nextHash := hash(load32(src, s), shift)
+	MOVL  0(SI), R11
+	IMULL $0x1e35a7bd, R11
+	SHRL  CX, R11
+
+outer:
+	// for { etc }
+
+	// skip := 32
+	MOVQ $32, R12
+
+	// nextS := s
+	MOVQ SI, R13
+
+	// candidate := 0
+	MOVQ $0, R15
+
+inner0:
+	// for { etc }
+
+	// s := nextS
+	MOVQ R13, SI
+
+	// bytesBetweenHashLookups := skip >> 5
+	MOVQ R12, R14
+	SHRQ $5, R14
+
+	// nextS = s + bytesBetweenHashLookups
+	ADDQ R14, R13
+
+	// skip += bytesBetweenHashLookups
+	ADDQ R14, R12
+
+	// if nextS > sLimit { goto emitRemainder }
+	MOVQ R13, AX
+	SUBQ DX, AX
+	CMPQ AX, R9
+	JA   emitRemainder
+
+	// candidate = int(table[nextHash])
+	// XXX: MOVWQZX table-32768(SP)(R11*2), R15
+	// XXX: 4e 0f b7 7c 5c 78       movzwq 0x78(%rsp,%r11,2),%r15
+	BYTE $0x4e
+	BYTE $0x0f
+	BYTE $0xb7
+	BYTE $0x7c
+	BYTE $0x5c
+	BYTE $0x78
+
+	// table[nextHash] = uint16(s)
+	MOVQ SI, AX
+	SUBQ DX, AX
+
+	// XXX: MOVW AX, table-32768(SP)(R11*2)
+	// XXX: 66 42 89 44 5c 78       mov    %ax,0x78(%rsp,%r11,2)
+	BYTE $0x66
+	BYTE $0x42
+	BYTE $0x89
+	BYTE $0x44
+	BYTE $0x5c
+	BYTE $0x78
+
+	// nextHash = hash(load32(src, nextS), shift)
+	MOVL  0(R13), R11
+	IMULL $0x1e35a7bd, R11
+	SHRL  CX, R11
+
+	// if load32(src, s) != load32(src, candidate) { continue } break
+	MOVL 0(SI), AX
+	MOVL (DX)(R15*1), BX
+	CMPL AX, BX
+	JNE  inner0
+
+fourByteMatch:
+	// As per the encode_other.go code:
+	//
+	// A 4-byte match has been found. We'll later see etc.
+
+	// !!! Jump to a fast path for short (<= 16 byte) literals. See the comment
+	// on inputMargin in encode.go.
+	MOVQ SI, AX
+	SUBQ R10, AX
+	CMPQ AX, $16
+	JLE  emitLiteralFastPath
+
+	// ----------------------------------------
+	// Begin inline of the emitLiteral call.
+	//
+	// d += emitLiteral(dst[d:], src[nextEmit:s])
+
+	MOVL AX, BX
+	SUBL $1, BX
+
+	CMPL BX, $60
+	JLT  inlineEmitLiteralOneByte
+	CMPL BX, $256
+	JLT  inlineEmitLiteralTwoBytes
+
+inlineEmitLiteralThreeBytes:
+	MOVB $0xf4, 0(DI)
+	MOVW BX, 1(DI)
+	ADDQ $3, DI
+	JMP  inlineEmitLiteralMemmove
+
+inlineEmitLiteralTwoBytes:
+	MOVB $0xf0, 0(DI)
+	MOVB BX, 1(DI)
+	ADDQ $2, DI
+	JMP  inlineEmitLiteralMemmove
+
+inlineEmitLiteralOneByte:
+	SHLB $2, BX
+	MOVB BX, 0(DI)
+	ADDQ $1, DI
+
+inlineEmitLiteralMemmove:
+	// Spill local variables (registers) onto the stack; call; unspill.
+	//
+	// copy(dst[i:], lit)
+	//
+	// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
+	// DI, R10 and AX as arguments.
+	MOVQ DI, 0(SP)
+	MOVQ R10, 8(SP)
+	MOVQ AX, 16(SP)
+	ADDQ AX, DI              // Finish the "d +=" part of "d += emitLiteral(etc)".
+	MOVQ SI, 72(SP)
+	MOVQ DI, 80(SP)
+	MOVQ R15, 112(SP)
+	CALL runtime·memmove(SB)
+	MOVQ 56(SP), CX
+	MOVQ 64(SP), DX
+	MOVQ 72(SP), SI
+	MOVQ 80(SP), DI
+	MOVQ 88(SP), R9
+	MOVQ 112(SP), R15
+	JMP  inner1
+
+inlineEmitLiteralEnd:
+	// End inline of the emitLiteral call.
+	// ----------------------------------------
+
+emitLiteralFastPath:
+	// !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2".
+	MOVB AX, BX
+	SUBB $1, BX
+	SHLB $2, BX
+	MOVB BX, (DI)
+	ADDQ $1, DI
+
+	// !!! Implement the copy from lit to dst as a 16-byte load and store.
+	// (Encode's documentation says that dst and src must not overlap.)
+	//
+	// This always copies 16 bytes, instead of only len(lit) bytes, but that's
+	// OK. Subsequent iterations will fix up the overrun.
+	//
+	// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
+	// 16-byte loads and stores. This technique probably wouldn't be as
+	// effective on architectures that are fussier about alignment.
+	MOVOU 0(R10), X0
+	MOVOU X0, 0(DI)
+	ADDQ  AX, DI
+
+inner1:
+	// for { etc }
+
+	// base := s
+	MOVQ SI, R12
+
+	// !!! offset := base - candidate
+	MOVQ R12, R11
+	SUBQ R15, R11
+	SUBQ DX, R11
+
+	// ----------------------------------------
+	// Begin inline of the extendMatch call.
+	//
+	// s = extendMatch(src, candidate+4, s+4)
+
+	// !!! R14 = &src[len(src)]
+	MOVQ src_len+32(FP), R14
+	ADDQ DX, R14
+
+	// !!! R13 = &src[len(src) - 8]
+	MOVQ R14, R13
+	SUBQ $8, R13
+
+	// !!! R15 = &src[candidate + 4]
+	ADDQ $4, R15
+	ADDQ DX, R15
+
+	// !!! s += 4
+	ADDQ $4, SI
+
+inlineExtendMatchCmp8:
+	// As long as we are 8 or more bytes before the end of src, we can load and
+	// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
+	CMPQ SI, R13
+	JA   inlineExtendMatchCmp1
+	MOVQ (R15), AX
+	MOVQ (SI), BX
+	CMPQ AX, BX
+	JNE  inlineExtendMatchBSF
+	ADDQ $8, R15
+	ADDQ $8, SI
+	JMP  inlineExtendMatchCmp8
+
+inlineExtendMatchBSF:
+	// If those 8 bytes were not equal, XOR the two 8 byte values, and return
+	// the index of the first byte that differs. The BSF instruction finds the
+	// least significant 1 bit, the amd64 architecture is little-endian, and
+	// the shift by 3 converts a bit index to a byte index.
+	XORQ AX, BX
+	BSFQ BX, BX
+	SHRQ $3, BX
+	ADDQ BX, SI
+	JMP  inlineExtendMatchEnd
+
+inlineExtendMatchCmp1:
+	// In src's tail, compare 1 byte at a time.
+	CMPQ SI, R14
+	JAE  inlineExtendMatchEnd
+	MOVB (R15), AX
+	MOVB (SI), BX
+	CMPB AX, BX
+	JNE  inlineExtendMatchEnd
+	ADDQ $1, R15
+	ADDQ $1, SI
+	JMP  inlineExtendMatchCmp1
+
+inlineExtendMatchEnd:
+	// End inline of the extendMatch call.
+	// ----------------------------------------
+
+	// ----------------------------------------
+	// Begin inline of the emitCopy call.
+	//
+	// d += emitCopy(dst[d:], base-candidate, s-base)
+
+	// !!! length := s - base
+	MOVQ SI, AX
+	SUBQ R12, AX
+
+inlineEmitCopyLoop0:
+	// for length >= 68 { etc }
+	CMPL AX, $68
+	JLT  inlineEmitCopyStep1
+
+	// Emit a length 64 copy, encoded as 3 bytes.
+	MOVB $0xfe, 0(DI)
+	MOVW R11, 1(DI)
+	ADDQ $3, DI
+	SUBL $64, AX
+	JMP  inlineEmitCopyLoop0
+
+inlineEmitCopyStep1:
+	// if length > 64 { etc }
+	CMPL AX, $64
+	JLE  inlineEmitCopyStep2
+
+	// Emit a length 60 copy, encoded as 3 bytes.
+	MOVB $0xee, 0(DI)
+	MOVW R11, 1(DI)
+	ADDQ $3, DI
+	SUBL $60, AX
+
+inlineEmitCopyStep2:
+	// if length >= 12 || offset >= 2048 { goto inlineEmitCopyStep3 }
+	CMPL AX, $12
+	JGE  inlineEmitCopyStep3
+	CMPL R11, $2048
+	JGE  inlineEmitCopyStep3
+
+	// Emit the remaining copy, encoded as 2 bytes.
+	MOVB R11, 1(DI)
+	SHRL $8, R11
+	SHLB $5, R11
+	SUBB $4, AX
+	SHLB $2, AX
+	ORB  AX, R11
+	ORB  $1, R11
+	MOVB R11, 0(DI)
+	ADDQ $2, DI
+	JMP  inlineEmitCopyEnd
+
+inlineEmitCopyStep3:
+	// Emit the remaining copy, encoded as 3 bytes.
+	SUBL $1, AX
+	SHLB $2, AX
+	ORB  $2, AX
+	MOVB AX, 0(DI)
+	MOVW R11, 1(DI)
+	ADDQ $3, DI
+
+inlineEmitCopyEnd:
+	// End inline of the emitCopy call.
+	// ----------------------------------------
+
+	// nextEmit = s
+	MOVQ SI, R10
+
+	// if s >= sLimit { goto emitRemainder }
+	MOVQ SI, AX
+	SUBQ DX, AX
+	CMPQ AX, R9
+	JAE  emitRemainder
+
+	// As per the encode_other.go code:
+	//
+	// We could immediately etc.
+
+	// x := load64(src, s-1)
+	MOVQ -1(SI), R14
+
+	// prevHash := hash(uint32(x>>0), shift)
+	MOVL  R14, R11
+	IMULL $0x1e35a7bd, R11
+	SHRL  CX, R11
+
+	// table[prevHash] = uint16(s-1)
+	MOVQ SI, AX
+	SUBQ DX, AX
+	SUBQ $1, AX
+
+	// XXX: MOVW AX, table-32768(SP)(R11*2)
+	// XXX: 66 42 89 44 5c 78       mov    %ax,0x78(%rsp,%r11,2)
+	BYTE $0x66
+	BYTE $0x42
+	BYTE $0x89
+	BYTE $0x44
+	BYTE $0x5c
+	BYTE $0x78
+
+	// currHash := hash(uint32(x>>8), shift)
+	SHRQ  $8, R14
+	MOVL  R14, R11
+	IMULL $0x1e35a7bd, R11
+	SHRL  CX, R11
+
+	// candidate = int(table[currHash])
+	// XXX: MOVWQZX table-32768(SP)(R11*2), R15
+	// XXX: 4e 0f b7 7c 5c 78       movzwq 0x78(%rsp,%r11,2),%r15
+	BYTE $0x4e
+	BYTE $0x0f
+	BYTE $0xb7
+	BYTE $0x7c
+	BYTE $0x5c
+	BYTE $0x78
+
+	// table[currHash] = uint16(s)
+	ADDQ $1, AX
+
+	// XXX: MOVW AX, table-32768(SP)(R11*2)
+	// XXX: 66 42 89 44 5c 78       mov    %ax,0x78(%rsp,%r11,2)
+	BYTE $0x66
+	BYTE $0x42
+	BYTE $0x89
+	BYTE $0x44
+	BYTE $0x5c
+	BYTE $0x78
+
+	// if uint32(x>>8) == load32(src, candidate) { continue }
+	MOVL (DX)(R15*1), BX
+	CMPL R14, BX
+	JEQ  inner1
+
+	// nextHash = hash(uint32(x>>16), shift)
+	SHRQ  $8, R14
+	MOVL  R14, R11
+	IMULL $0x1e35a7bd, R11
+	SHRL  CX, R11
+
+	// s++
+	ADDQ $1, SI
+
+	// break out of the inner1 for loop, i.e. continue the outer loop.
+	JMP outer
+
+emitRemainder:
+	// if nextEmit < len(src) { etc }
+	MOVQ src_len+32(FP), AX
+	ADDQ DX, AX
+	CMPQ R10, AX
+	JEQ  encodeBlockEnd
+
+	// d += emitLiteral(dst[d:], src[nextEmit:])
+	//
+	// Push args.
+	MOVQ DI, 0(SP)
+	MOVQ $0, 8(SP)   // Unnecessary, as the callee ignores it, but conservative.
+	MOVQ $0, 16(SP)  // Unnecessary, as the callee ignores it, but conservative.
+	MOVQ R10, 24(SP)
+	SUBQ R10, AX
+	MOVQ AX, 32(SP)
+	MOVQ AX, 40(SP)  // Unnecessary, as the callee ignores it, but conservative.
+
+	// Spill local variables (registers) onto the stack; call; unspill.
+	MOVQ DI, 80(SP)
+	CALL ·emitLiteral(SB)
+	MOVQ 80(SP), DI
+
+	// Finish the "d +=" part of "d += emitLiteral(etc)".
+	ADDQ 48(SP), DI
+
+encodeBlockEnd:
+	MOVQ dst_base+0(FP), AX
+	SUBQ AX, DI
+	MOVQ DI, d+48(FP)
+	RET