WIP [VOL-2811] - Incorporate preliminary onu-adapter-go code into opencord repo
- reason "discovery-mibsync-complete" reached (via full MibUpload only, received data won't be stored yet)
- first review comments of patchset #4 considered
(please have a look into our inline-comments in Gerrit to know more about the current state)
- no refactoring done yet
Change-Id: Iac47817f8ce4bd28dd8132f530b0570d57ae99b8
Signed-off-by: Holger Hildebrandt <holger.hildebrandt@adtran.com>
diff --git a/vendor/github.com/jcmturner/gofork/LICENSE b/vendor/github.com/jcmturner/gofork/LICENSE
new file mode 100644
index 0000000..6a66aea
--- /dev/null
+++ b/vendor/github.com/jcmturner/gofork/LICENSE
@@ -0,0 +1,27 @@
+Copyright (c) 2009 The Go Authors. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ * Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the following disclaimer
+in the documentation and/or other materials provided with the
+distribution.
+ * Neither the name of Google Inc. nor the names of its
+contributors may be used to endorse or promote products derived from
+this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/vendor/github.com/jcmturner/gofork/encoding/asn1/README.md b/vendor/github.com/jcmturner/gofork/encoding/asn1/README.md
new file mode 100644
index 0000000..66a2a8c
--- /dev/null
+++ b/vendor/github.com/jcmturner/gofork/encoding/asn1/README.md
@@ -0,0 +1,5 @@
+This is a temporary repository that will be removed when the issues below are fixed in the core golang code.
+
+## Issues
+* [encoding/asn1: cannot marshal into a GeneralString](https://github.com/golang/go/issues/18832)
+* [encoding/asn1: cannot marshal into slice of strings and pass stringtype parameter tags to members](https://github.com/golang/go/issues/18834)
\ No newline at end of file
diff --git a/vendor/github.com/jcmturner/gofork/encoding/asn1/asn1.go b/vendor/github.com/jcmturner/gofork/encoding/asn1/asn1.go
new file mode 100644
index 0000000..f1bb767
--- /dev/null
+++ b/vendor/github.com/jcmturner/gofork/encoding/asn1/asn1.go
@@ -0,0 +1,1003 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package asn1 implements parsing of DER-encoded ASN.1 data structures,
+// as defined in ITU-T Rec X.690.
+//
+// See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
+// http://luca.ntop.org/Teaching/Appunti/asn1.html.
+package asn1
+
+// ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
+// are different encoding formats for those objects. Here, we'll be dealing
+// with DER, the Distinguished Encoding Rules. DER is used in X.509 because
+// it's fast to parse and, unlike BER, has a unique encoding for every object.
+// When calculating hashes over objects, it's important that the resulting
+// bytes be the same at both ends and DER removes this margin of error.
+//
+// ASN.1 is very complex and this package doesn't attempt to implement
+// everything by any means.
+
+import (
+ "errors"
+ "fmt"
+ "math/big"
+ "reflect"
+ "strconv"
+ "time"
+ "unicode/utf8"
+)
+
+// A StructuralError suggests that the ASN.1 data is valid, but the Go type
+// which is receiving it doesn't match.
+type StructuralError struct {
+ Msg string
+}
+
+func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
+
+// A SyntaxError suggests that the ASN.1 data is invalid.
+type SyntaxError struct {
+ Msg string
+}
+
+func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
+
+// We start by dealing with each of the primitive types in turn.
+
+// BOOLEAN
+
+func parseBool(bytes []byte) (ret bool, err error) {
+ if len(bytes) != 1 {
+ err = SyntaxError{"invalid boolean"}
+ return
+ }
+
+ // DER demands that "If the encoding represents the boolean value TRUE,
+ // its single contents octet shall have all eight bits set to one."
+ // Thus only 0 and 255 are valid encoded values.
+ switch bytes[0] {
+ case 0:
+ ret = false
+ case 0xff:
+ ret = true
+ default:
+ err = SyntaxError{"invalid boolean"}
+ }
+
+ return
+}
+
+// INTEGER
+
+// checkInteger returns nil if the given bytes are a valid DER-encoded
+// INTEGER and an error otherwise.
+func checkInteger(bytes []byte) error {
+ if len(bytes) == 0 {
+ return StructuralError{"empty integer"}
+ }
+ if len(bytes) == 1 {
+ return nil
+ }
+ if (bytes[0] == 0 && bytes[1]&0x80 == 0) || (bytes[0] == 0xff && bytes[1]&0x80 == 0x80) {
+ return StructuralError{"integer not minimally-encoded"}
+ }
+ return nil
+}
+
+// parseInt64 treats the given bytes as a big-endian, signed integer and
+// returns the result.
+func parseInt64(bytes []byte) (ret int64, err error) {
+ err = checkInteger(bytes)
+ if err != nil {
+ return
+ }
+ if len(bytes) > 8 {
+ // We'll overflow an int64 in this case.
+ err = StructuralError{"integer too large"}
+ return
+ }
+ for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
+ ret <<= 8
+ ret |= int64(bytes[bytesRead])
+ }
+
+ // Shift up and down in order to sign extend the result.
+ ret <<= 64 - uint8(len(bytes))*8
+ ret >>= 64 - uint8(len(bytes))*8
+ return
+}
+
+// parseInt treats the given bytes as a big-endian, signed integer and returns
+// the result.
+func parseInt32(bytes []byte) (int32, error) {
+ if err := checkInteger(bytes); err != nil {
+ return 0, err
+ }
+ ret64, err := parseInt64(bytes)
+ if err != nil {
+ return 0, err
+ }
+ if ret64 != int64(int32(ret64)) {
+ return 0, StructuralError{"integer too large"}
+ }
+ return int32(ret64), nil
+}
+
+var bigOne = big.NewInt(1)
+
+// parseBigInt treats the given bytes as a big-endian, signed integer and returns
+// the result.
+func parseBigInt(bytes []byte) (*big.Int, error) {
+ if err := checkInteger(bytes); err != nil {
+ return nil, err
+ }
+ ret := new(big.Int)
+ if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
+ // This is a negative number.
+ notBytes := make([]byte, len(bytes))
+ for i := range notBytes {
+ notBytes[i] = ^bytes[i]
+ }
+ ret.SetBytes(notBytes)
+ ret.Add(ret, bigOne)
+ ret.Neg(ret)
+ return ret, nil
+ }
+ ret.SetBytes(bytes)
+ return ret, nil
+}
+
+// BIT STRING
+
+// BitString is the structure to use when you want an ASN.1 BIT STRING type. A
+// bit string is padded up to the nearest byte in memory and the number of
+// valid bits is recorded. Padding bits will be zero.
+type BitString struct {
+ Bytes []byte // bits packed into bytes.
+ BitLength int // length in bits.
+}
+
+// At returns the bit at the given index. If the index is out of range it
+// returns false.
+func (b BitString) At(i int) int {
+ if i < 0 || i >= b.BitLength {
+ return 0
+ }
+ x := i / 8
+ y := 7 - uint(i%8)
+ return int(b.Bytes[x]>>y) & 1
+}
+
+// RightAlign returns a slice where the padding bits are at the beginning. The
+// slice may share memory with the BitString.
+func (b BitString) RightAlign() []byte {
+ shift := uint(8 - (b.BitLength % 8))
+ if shift == 8 || len(b.Bytes) == 0 {
+ return b.Bytes
+ }
+
+ a := make([]byte, len(b.Bytes))
+ a[0] = b.Bytes[0] >> shift
+ for i := 1; i < len(b.Bytes); i++ {
+ a[i] = b.Bytes[i-1] << (8 - shift)
+ a[i] |= b.Bytes[i] >> shift
+ }
+
+ return a
+}
+
+// parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
+func parseBitString(bytes []byte) (ret BitString, err error) {
+ if len(bytes) == 0 {
+ err = SyntaxError{"zero length BIT STRING"}
+ return
+ }
+ paddingBits := int(bytes[0])
+ if paddingBits > 7 ||
+ len(bytes) == 1 && paddingBits > 0 ||
+ bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
+ err = SyntaxError{"invalid padding bits in BIT STRING"}
+ return
+ }
+ ret.BitLength = (len(bytes)-1)*8 - paddingBits
+ ret.Bytes = bytes[1:]
+ return
+}
+
+// OBJECT IDENTIFIER
+
+// An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
+type ObjectIdentifier []int
+
+// Equal reports whether oi and other represent the same identifier.
+func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
+ if len(oi) != len(other) {
+ return false
+ }
+ for i := 0; i < len(oi); i++ {
+ if oi[i] != other[i] {
+ return false
+ }
+ }
+
+ return true
+}
+
+func (oi ObjectIdentifier) String() string {
+ var s string
+
+ for i, v := range oi {
+ if i > 0 {
+ s += "."
+ }
+ s += strconv.Itoa(v)
+ }
+
+ return s
+}
+
+// parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
+// returns it. An object identifier is a sequence of variable length integers
+// that are assigned in a hierarchy.
+func parseObjectIdentifier(bytes []byte) (s []int, err error) {
+ if len(bytes) == 0 {
+ err = SyntaxError{"zero length OBJECT IDENTIFIER"}
+ return
+ }
+
+ // In the worst case, we get two elements from the first byte (which is
+ // encoded differently) and then every varint is a single byte long.
+ s = make([]int, len(bytes)+1)
+
+ // The first varint is 40*value1 + value2:
+ // According to this packing, value1 can take the values 0, 1 and 2 only.
+ // When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
+ // then there are no restrictions on value2.
+ v, offset, err := parseBase128Int(bytes, 0)
+ if err != nil {
+ return
+ }
+ if v < 80 {
+ s[0] = v / 40
+ s[1] = v % 40
+ } else {
+ s[0] = 2
+ s[1] = v - 80
+ }
+
+ i := 2
+ for ; offset < len(bytes); i++ {
+ v, offset, err = parseBase128Int(bytes, offset)
+ if err != nil {
+ return
+ }
+ s[i] = v
+ }
+ s = s[0:i]
+ return
+}
+
+// ENUMERATED
+
+// An Enumerated is represented as a plain int.
+type Enumerated int
+
+// FLAG
+
+// A Flag accepts any data and is set to true if present.
+type Flag bool
+
+// parseBase128Int parses a base-128 encoded int from the given offset in the
+// given byte slice. It returns the value and the new offset.
+func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
+ offset = initOffset
+ for shifted := 0; offset < len(bytes); shifted++ {
+ if shifted == 4 {
+ err = StructuralError{"base 128 integer too large"}
+ return
+ }
+ ret <<= 7
+ b := bytes[offset]
+ ret |= int(b & 0x7f)
+ offset++
+ if b&0x80 == 0 {
+ return
+ }
+ }
+ err = SyntaxError{"truncated base 128 integer"}
+ return
+}
+
+// UTCTime
+
+func parseUTCTime(bytes []byte) (ret time.Time, err error) {
+ s := string(bytes)
+
+ formatStr := "0601021504Z0700"
+ ret, err = time.Parse(formatStr, s)
+ if err != nil {
+ formatStr = "060102150405Z0700"
+ ret, err = time.Parse(formatStr, s)
+ }
+ if err != nil {
+ return
+ }
+
+ if serialized := ret.Format(formatStr); serialized != s {
+ err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
+ return
+ }
+
+ if ret.Year() >= 2050 {
+ // UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
+ ret = ret.AddDate(-100, 0, 0)
+ }
+
+ return
+}
+
+// parseGeneralizedTime parses the GeneralizedTime from the given byte slice
+// and returns the resulting time.
+func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
+ const formatStr = "20060102150405Z0700"
+ s := string(bytes)
+
+ if ret, err = time.Parse(formatStr, s); err != nil {
+ return
+ }
+
+ if serialized := ret.Format(formatStr); serialized != s {
+ err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
+ }
+
+ return
+}
+
+// PrintableString
+
+// parsePrintableString parses a ASN.1 PrintableString from the given byte
+// array and returns it.
+func parsePrintableString(bytes []byte) (ret string, err error) {
+ for _, b := range bytes {
+ if !isPrintable(b) {
+ err = SyntaxError{"PrintableString contains invalid character"}
+ return
+ }
+ }
+ ret = string(bytes)
+ return
+}
+
+// isPrintable reports whether the given b is in the ASN.1 PrintableString set.
+func isPrintable(b byte) bool {
+ return 'a' <= b && b <= 'z' ||
+ 'A' <= b && b <= 'Z' ||
+ '0' <= b && b <= '9' ||
+ '\'' <= b && b <= ')' ||
+ '+' <= b && b <= '/' ||
+ b == ' ' ||
+ b == ':' ||
+ b == '=' ||
+ b == '?' ||
+ // This is technically not allowed in a PrintableString.
+ // However, x509 certificates with wildcard strings don't
+ // always use the correct string type so we permit it.
+ b == '*'
+}
+
+// IA5String
+
+// parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
+// byte slice and returns it.
+func parseIA5String(bytes []byte) (ret string, err error) {
+ for _, b := range bytes {
+ if b >= utf8.RuneSelf {
+ err = SyntaxError{"IA5String contains invalid character"}
+ return
+ }
+ }
+ ret = string(bytes)
+ return
+}
+
+// T61String
+
+// parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
+// byte slice and returns it.
+func parseT61String(bytes []byte) (ret string, err error) {
+ return string(bytes), nil
+}
+
+// UTF8String
+
+// parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
+// array and returns it.
+func parseUTF8String(bytes []byte) (ret string, err error) {
+ if !utf8.Valid(bytes) {
+ return "", errors.New("asn1: invalid UTF-8 string")
+ }
+ return string(bytes), nil
+}
+
+// A RawValue represents an undecoded ASN.1 object.
+type RawValue struct {
+ Class, Tag int
+ IsCompound bool
+ Bytes []byte
+ FullBytes []byte // includes the tag and length
+}
+
+// RawContent is used to signal that the undecoded, DER data needs to be
+// preserved for a struct. To use it, the first field of the struct must have
+// this type. It's an error for any of the other fields to have this type.
+type RawContent []byte
+
+// Tagging
+
+// parseTagAndLength parses an ASN.1 tag and length pair from the given offset
+// into a byte slice. It returns the parsed data and the new offset. SET and
+// SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
+// don't distinguish between ordered and unordered objects in this code.
+func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
+ offset = initOffset
+ // parseTagAndLength should not be called without at least a single
+ // byte to read. Thus this check is for robustness:
+ if offset >= len(bytes) {
+ err = errors.New("asn1: internal error in parseTagAndLength")
+ return
+ }
+ b := bytes[offset]
+ offset++
+ ret.class = int(b >> 6)
+ ret.isCompound = b&0x20 == 0x20
+ ret.tag = int(b & 0x1f)
+
+ // If the bottom five bits are set, then the tag number is actually base 128
+ // encoded afterwards
+ if ret.tag == 0x1f {
+ ret.tag, offset, err = parseBase128Int(bytes, offset)
+ if err != nil {
+ return
+ }
+ // Tags should be encoded in minimal form.
+ if ret.tag < 0x1f {
+ err = SyntaxError{"non-minimal tag"}
+ return
+ }
+ }
+ if offset >= len(bytes) {
+ err = SyntaxError{"truncated tag or length"}
+ return
+ }
+ b = bytes[offset]
+ offset++
+ if b&0x80 == 0 {
+ // The length is encoded in the bottom 7 bits.
+ ret.length = int(b & 0x7f)
+ } else {
+ // Bottom 7 bits give the number of length bytes to follow.
+ numBytes := int(b & 0x7f)
+ if numBytes == 0 {
+ err = SyntaxError{"indefinite length found (not DER)"}
+ return
+ }
+ ret.length = 0
+ for i := 0; i < numBytes; i++ {
+ if offset >= len(bytes) {
+ err = SyntaxError{"truncated tag or length"}
+ return
+ }
+ b = bytes[offset]
+ offset++
+ if ret.length >= 1<<23 {
+ // We can't shift ret.length up without
+ // overflowing.
+ err = StructuralError{"length too large"}
+ return
+ }
+ ret.length <<= 8
+ ret.length |= int(b)
+ if ret.length == 0 {
+ // DER requires that lengths be minimal.
+ err = StructuralError{"superfluous leading zeros in length"}
+ return
+ }
+ }
+ // Short lengths must be encoded in short form.
+ if ret.length < 0x80 {
+ err = StructuralError{"non-minimal length"}
+ return
+ }
+ }
+
+ return
+}
+
+// parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
+// a number of ASN.1 values from the given byte slice and returns them as a
+// slice of Go values of the given type.
+func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
+ expectedTag, compoundType, ok := getUniversalType(elemType)
+ if !ok {
+ err = StructuralError{"unknown Go type for slice"}
+ return
+ }
+
+ // First we iterate over the input and count the number of elements,
+ // checking that the types are correct in each case.
+ numElements := 0
+ for offset := 0; offset < len(bytes); {
+ var t tagAndLength
+ t, offset, err = parseTagAndLength(bytes, offset)
+ if err != nil {
+ return
+ }
+ switch t.tag {
+ case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
+ // We pretend that various other string types are
+ // PRINTABLE STRINGs so that a sequence of them can be
+ // parsed into a []string.
+ t.tag = TagPrintableString
+ case TagGeneralizedTime, TagUTCTime:
+ // Likewise, both time types are treated the same.
+ t.tag = TagUTCTime
+ }
+
+ if t.class != ClassUniversal || t.isCompound != compoundType || t.tag != expectedTag {
+ err = StructuralError{"sequence tag mismatch"}
+ return
+ }
+ if invalidLength(offset, t.length, len(bytes)) {
+ err = SyntaxError{"truncated sequence"}
+ return
+ }
+ offset += t.length
+ numElements++
+ }
+ ret = reflect.MakeSlice(sliceType, numElements, numElements)
+ params := fieldParameters{}
+ offset := 0
+ for i := 0; i < numElements; i++ {
+ offset, err = parseField(ret.Index(i), bytes, offset, params)
+ if err != nil {
+ return
+ }
+ }
+ return
+}
+
+var (
+ bitStringType = reflect.TypeOf(BitString{})
+ objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
+ enumeratedType = reflect.TypeOf(Enumerated(0))
+ flagType = reflect.TypeOf(Flag(false))
+ timeType = reflect.TypeOf(time.Time{})
+ rawValueType = reflect.TypeOf(RawValue{})
+ rawContentsType = reflect.TypeOf(RawContent(nil))
+ bigIntType = reflect.TypeOf(new(big.Int))
+)
+
+// invalidLength returns true iff offset + length > sliceLength, or if the
+// addition would overflow.
+func invalidLength(offset, length, sliceLength int) bool {
+ return offset+length < offset || offset+length > sliceLength
+}
+
+// parseField is the main parsing function. Given a byte slice and an offset
+// into the array, it will try to parse a suitable ASN.1 value out and store it
+// in the given Value.
+func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
+ offset = initOffset
+ fieldType := v.Type()
+
+ // If we have run out of data, it may be that there are optional elements at the end.
+ if offset == len(bytes) {
+ if !setDefaultValue(v, params) {
+ err = SyntaxError{"sequence truncated"}
+ }
+ return
+ }
+
+ // Deal with raw values.
+ if fieldType == rawValueType {
+ var t tagAndLength
+ t, offset, err = parseTagAndLength(bytes, offset)
+ if err != nil {
+ return
+ }
+ if invalidLength(offset, t.length, len(bytes)) {
+ err = SyntaxError{"data truncated"}
+ return
+ }
+ result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
+ offset += t.length
+ v.Set(reflect.ValueOf(result))
+ return
+ }
+
+ // Deal with the ANY type.
+ if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
+ var t tagAndLength
+ t, offset, err = parseTagAndLength(bytes, offset)
+ if err != nil {
+ return
+ }
+ if invalidLength(offset, t.length, len(bytes)) {
+ err = SyntaxError{"data truncated"}
+ return
+ }
+ var result interface{}
+ if !t.isCompound && t.class == ClassUniversal {
+ innerBytes := bytes[offset : offset+t.length]
+ switch t.tag {
+ case TagPrintableString:
+ result, err = parsePrintableString(innerBytes)
+ case TagIA5String:
+ result, err = parseIA5String(innerBytes)
+ // jtasn1 addition of following case
+ case TagGeneralString:
+ result, err = parseIA5String(innerBytes)
+ case TagT61String:
+ result, err = parseT61String(innerBytes)
+ case TagUTF8String:
+ result, err = parseUTF8String(innerBytes)
+ case TagInteger:
+ result, err = parseInt64(innerBytes)
+ case TagBitString:
+ result, err = parseBitString(innerBytes)
+ case TagOID:
+ result, err = parseObjectIdentifier(innerBytes)
+ case TagUTCTime:
+ result, err = parseUTCTime(innerBytes)
+ case TagGeneralizedTime:
+ result, err = parseGeneralizedTime(innerBytes)
+ case TagOctetString:
+ result = innerBytes
+ default:
+ // If we don't know how to handle the type, we just leave Value as nil.
+ }
+ }
+ offset += t.length
+ if err != nil {
+ return
+ }
+ if result != nil {
+ v.Set(reflect.ValueOf(result))
+ }
+ return
+ }
+ universalTag, compoundType, ok1 := getUniversalType(fieldType)
+ if !ok1 {
+ err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
+ return
+ }
+
+ t, offset, err := parseTagAndLength(bytes, offset)
+ if err != nil {
+ return
+ }
+ if params.explicit {
+ expectedClass := ClassContextSpecific
+ if params.application {
+ expectedClass = ClassApplication
+ }
+ if offset == len(bytes) {
+ err = StructuralError{"explicit tag has no child"}
+ return
+ }
+ if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
+ if t.length > 0 {
+ t, offset, err = parseTagAndLength(bytes, offset)
+ if err != nil {
+ return
+ }
+ } else {
+ if fieldType != flagType {
+ err = StructuralError{"zero length explicit tag was not an asn1.Flag"}
+ return
+ }
+ v.SetBool(true)
+ return
+ }
+ } else {
+ // The tags didn't match, it might be an optional element.
+ ok := setDefaultValue(v, params)
+ if ok {
+ offset = initOffset
+ } else {
+ err = StructuralError{"explicitly tagged member didn't match"}
+ }
+ return
+ }
+ }
+
+ // Special case for strings: all the ASN.1 string types map to the Go
+ // type string. getUniversalType returns the tag for PrintableString
+ // when it sees a string, so if we see a different string type on the
+ // wire, we change the universal type to match.
+ if universalTag == TagPrintableString {
+ if t.class == ClassUniversal {
+ switch t.tag {
+ case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
+ universalTag = t.tag
+ }
+ } else if params.stringType != 0 {
+ universalTag = params.stringType
+ }
+ }
+
+ // Special case for time: UTCTime and GeneralizedTime both map to the
+ // Go type time.Time.
+ if universalTag == TagUTCTime && t.tag == TagGeneralizedTime && t.class == ClassUniversal {
+ universalTag = TagGeneralizedTime
+ }
+
+ if params.set {
+ universalTag = TagSet
+ }
+
+ expectedClass := ClassUniversal
+ expectedTag := universalTag
+
+ if !params.explicit && params.tag != nil {
+ expectedClass = ClassContextSpecific
+ expectedTag = *params.tag
+ }
+
+ if !params.explicit && params.application && params.tag != nil {
+ expectedClass = ClassApplication
+ expectedTag = *params.tag
+ }
+
+ // We have unwrapped any explicit tagging at this point.
+ if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
+ // Tags don't match. Again, it could be an optional element.
+ ok := setDefaultValue(v, params)
+ if ok {
+ offset = initOffset
+ } else {
+ err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
+ }
+ return
+ }
+ if invalidLength(offset, t.length, len(bytes)) {
+ err = SyntaxError{"data truncated"}
+ return
+ }
+ innerBytes := bytes[offset : offset+t.length]
+ offset += t.length
+
+ // We deal with the structures defined in this package first.
+ switch fieldType {
+ case objectIdentifierType:
+ newSlice, err1 := parseObjectIdentifier(innerBytes)
+ v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
+ if err1 == nil {
+ reflect.Copy(v, reflect.ValueOf(newSlice))
+ }
+ err = err1
+ return
+ case bitStringType:
+ bs, err1 := parseBitString(innerBytes)
+ if err1 == nil {
+ v.Set(reflect.ValueOf(bs))
+ }
+ err = err1
+ return
+ case timeType:
+ var time time.Time
+ var err1 error
+ if universalTag == TagUTCTime {
+ time, err1 = parseUTCTime(innerBytes)
+ } else {
+ time, err1 = parseGeneralizedTime(innerBytes)
+ }
+ if err1 == nil {
+ v.Set(reflect.ValueOf(time))
+ }
+ err = err1
+ return
+ case enumeratedType:
+ parsedInt, err1 := parseInt32(innerBytes)
+ if err1 == nil {
+ v.SetInt(int64(parsedInt))
+ }
+ err = err1
+ return
+ case flagType:
+ v.SetBool(true)
+ return
+ case bigIntType:
+ parsedInt, err1 := parseBigInt(innerBytes)
+ if err1 == nil {
+ v.Set(reflect.ValueOf(parsedInt))
+ }
+ err = err1
+ return
+ }
+ switch val := v; val.Kind() {
+ case reflect.Bool:
+ parsedBool, err1 := parseBool(innerBytes)
+ if err1 == nil {
+ val.SetBool(parsedBool)
+ }
+ err = err1
+ return
+ case reflect.Int, reflect.Int32, reflect.Int64:
+ if val.Type().Size() == 4 {
+ parsedInt, err1 := parseInt32(innerBytes)
+ if err1 == nil {
+ val.SetInt(int64(parsedInt))
+ }
+ err = err1
+ } else {
+ parsedInt, err1 := parseInt64(innerBytes)
+ if err1 == nil {
+ val.SetInt(parsedInt)
+ }
+ err = err1
+ }
+ return
+ // TODO(dfc) Add support for the remaining integer types
+ case reflect.Struct:
+ structType := fieldType
+
+ if structType.NumField() > 0 &&
+ structType.Field(0).Type == rawContentsType {
+ bytes := bytes[initOffset:offset]
+ val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
+ }
+
+ innerOffset := 0
+ for i := 0; i < structType.NumField(); i++ {
+ field := structType.Field(i)
+ if i == 0 && field.Type == rawContentsType {
+ continue
+ }
+ innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
+ if err != nil {
+ return
+ }
+ }
+ // We allow extra bytes at the end of the SEQUENCE because
+ // adding elements to the end has been used in X.509 as the
+ // version numbers have increased.
+ return
+ case reflect.Slice:
+ sliceType := fieldType
+ if sliceType.Elem().Kind() == reflect.Uint8 {
+ val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
+ reflect.Copy(val, reflect.ValueOf(innerBytes))
+ return
+ }
+ newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
+ if err1 == nil {
+ val.Set(newSlice)
+ }
+ err = err1
+ return
+ case reflect.String:
+ var v string
+ switch universalTag {
+ case TagPrintableString:
+ v, err = parsePrintableString(innerBytes)
+ case TagIA5String:
+ v, err = parseIA5String(innerBytes)
+ case TagT61String:
+ v, err = parseT61String(innerBytes)
+ case TagUTF8String:
+ v, err = parseUTF8String(innerBytes)
+ case TagGeneralString:
+ // GeneralString is specified in ISO-2022/ECMA-35,
+ // A brief review suggests that it includes structures
+ // that allow the encoding to change midstring and
+ // such. We give up and pass it as an 8-bit string.
+ v, err = parseT61String(innerBytes)
+ default:
+ err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
+ }
+ if err == nil {
+ val.SetString(v)
+ }
+ return
+ }
+ err = StructuralError{"unsupported: " + v.Type().String()}
+ return
+}
+
+// canHaveDefaultValue reports whether k is a Kind that we will set a default
+// value for. (A signed integer, essentially.)
+func canHaveDefaultValue(k reflect.Kind) bool {
+ switch k {
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+ return true
+ }
+
+ return false
+}
+
+// setDefaultValue is used to install a default value, from a tag string, into
+// a Value. It is successful if the field was optional, even if a default value
+// wasn't provided or it failed to install it into the Value.
+func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
+ if !params.optional {
+ return
+ }
+ ok = true
+ if params.defaultValue == nil {
+ return
+ }
+ if canHaveDefaultValue(v.Kind()) {
+ v.SetInt(*params.defaultValue)
+ }
+ return
+}
+
+// Unmarshal parses the DER-encoded ASN.1 data structure b
+// and uses the reflect package to fill in an arbitrary value pointed at by val.
+// Because Unmarshal uses the reflect package, the structs
+// being written to must use upper case field names.
+//
+// An ASN.1 INTEGER can be written to an int, int32, int64,
+// or *big.Int (from the math/big package).
+// If the encoded value does not fit in the Go type,
+// Unmarshal returns a parse error.
+//
+// An ASN.1 BIT STRING can be written to a BitString.
+//
+// An ASN.1 OCTET STRING can be written to a []byte.
+//
+// An ASN.1 OBJECT IDENTIFIER can be written to an
+// ObjectIdentifier.
+//
+// An ASN.1 ENUMERATED can be written to an Enumerated.
+//
+// An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
+//
+// An ASN.1 PrintableString or IA5String can be written to a string.
+//
+// Any of the above ASN.1 values can be written to an interface{}.
+// The value stored in the interface has the corresponding Go type.
+// For integers, that type is int64.
+//
+// An ASN.1 SEQUENCE OF x or SET OF x can be written
+// to a slice if an x can be written to the slice's element type.
+//
+// An ASN.1 SEQUENCE or SET can be written to a struct
+// if each of the elements in the sequence can be
+// written to the corresponding element in the struct.
+//
+// The following tags on struct fields have special meaning to Unmarshal:
+//
+// application specifies that a APPLICATION tag is used
+// default:x sets the default value for optional integer fields
+// explicit specifies that an additional, explicit tag wraps the implicit one
+// optional marks the field as ASN.1 OPTIONAL
+// set causes a SET, rather than a SEQUENCE type to be expected
+// tag:x specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
+//
+// If the type of the first field of a structure is RawContent then the raw
+// ASN1 contents of the struct will be stored in it.
+//
+// If the type name of a slice element ends with "SET" then it's treated as if
+// the "set" tag was set on it. This can be used with nested slices where a
+// struct tag cannot be given.
+//
+// Other ASN.1 types are not supported; if it encounters them,
+// Unmarshal returns a parse error.
+func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
+ return UnmarshalWithParams(b, val, "")
+}
+
+// UnmarshalWithParams allows field parameters to be specified for the
+// top-level element. The form of the params is the same as the field tags.
+func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
+ v := reflect.ValueOf(val).Elem()
+ offset, err := parseField(v, b, 0, parseFieldParameters(params))
+ if err != nil {
+ return nil, err
+ }
+ return b[offset:], nil
+}
diff --git a/vendor/github.com/jcmturner/gofork/encoding/asn1/common.go b/vendor/github.com/jcmturner/gofork/encoding/asn1/common.go
new file mode 100644
index 0000000..7a9da49
--- /dev/null
+++ b/vendor/github.com/jcmturner/gofork/encoding/asn1/common.go
@@ -0,0 +1,173 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package asn1
+
+import (
+ "reflect"
+ "strconv"
+ "strings"
+)
+
+// ASN.1 objects have metadata preceding them:
+// the tag: the type of the object
+// a flag denoting if this object is compound or not
+// the class type: the namespace of the tag
+// the length of the object, in bytes
+
+// Here are some standard tags and classes
+
+// ASN.1 tags represent the type of the following object.
+const (
+ TagBoolean = 1
+ TagInteger = 2
+ TagBitString = 3
+ TagOctetString = 4
+ TagOID = 6
+ TagEnum = 10
+ TagUTF8String = 12
+ TagSequence = 16
+ TagSet = 17
+ TagPrintableString = 19
+ TagT61String = 20
+ TagIA5String = 22
+ TagUTCTime = 23
+ TagGeneralizedTime = 24
+ TagGeneralString = 27
+)
+
+// ASN.1 class types represent the namespace of the tag.
+const (
+ ClassUniversal = 0
+ ClassApplication = 1
+ ClassContextSpecific = 2
+ ClassPrivate = 3
+)
+
+type tagAndLength struct {
+ class, tag, length int
+ isCompound bool
+}
+
+// ASN.1 has IMPLICIT and EXPLICIT tags, which can be translated as "instead
+// of" and "in addition to". When not specified, every primitive type has a
+// default tag in the UNIVERSAL class.
+//
+// For example: a BIT STRING is tagged [UNIVERSAL 3] by default (although ASN.1
+// doesn't actually have a UNIVERSAL keyword). However, by saying [IMPLICIT
+// CONTEXT-SPECIFIC 42], that means that the tag is replaced by another.
+//
+// On the other hand, if it said [EXPLICIT CONTEXT-SPECIFIC 10], then an
+// /additional/ tag would wrap the default tag. This explicit tag will have the
+// compound flag set.
+//
+// (This is used in order to remove ambiguity with optional elements.)
+//
+// You can layer EXPLICIT and IMPLICIT tags to an arbitrary depth, however we
+// don't support that here. We support a single layer of EXPLICIT or IMPLICIT
+// tagging with tag strings on the fields of a structure.
+
+// fieldParameters is the parsed representation of tag string from a structure field.
+type fieldParameters struct {
+ optional bool // true iff the field is OPTIONAL
+ explicit bool // true iff an EXPLICIT tag is in use.
+ application bool // true iff an APPLICATION tag is in use.
+ defaultValue *int64 // a default value for INTEGER typed fields (maybe nil).
+ tag *int // the EXPLICIT or IMPLICIT tag (maybe nil).
+ stringType int // the string tag to use when marshaling.
+ timeType int // the time tag to use when marshaling.
+ set bool // true iff this should be encoded as a SET
+ omitEmpty bool // true iff this should be omitted if empty when marshaling.
+
+ // Invariants:
+ // if explicit is set, tag is non-nil.
+}
+
+// Given a tag string with the format specified in the package comment,
+// parseFieldParameters will parse it into a fieldParameters structure,
+// ignoring unknown parts of the string.
+func parseFieldParameters(str string) (ret fieldParameters) {
+ for _, part := range strings.Split(str, ",") {
+ switch {
+ case part == "optional":
+ ret.optional = true
+ case part == "explicit":
+ ret.explicit = true
+ if ret.tag == nil {
+ ret.tag = new(int)
+ }
+ case part == "generalized":
+ ret.timeType = TagGeneralizedTime
+ case part == "utc":
+ ret.timeType = TagUTCTime
+ case part == "ia5":
+ ret.stringType = TagIA5String
+ // jtasn1 case below added
+ case part == "generalstring":
+ ret.stringType = TagGeneralString
+ case part == "printable":
+ ret.stringType = TagPrintableString
+ case part == "utf8":
+ ret.stringType = TagUTF8String
+ case strings.HasPrefix(part, "default:"):
+ i, err := strconv.ParseInt(part[8:], 10, 64)
+ if err == nil {
+ ret.defaultValue = new(int64)
+ *ret.defaultValue = i
+ }
+ case strings.HasPrefix(part, "tag:"):
+ i, err := strconv.Atoi(part[4:])
+ if err == nil {
+ ret.tag = new(int)
+ *ret.tag = i
+ }
+ case part == "set":
+ ret.set = true
+ case part == "application":
+ ret.application = true
+ if ret.tag == nil {
+ ret.tag = new(int)
+ }
+ case part == "omitempty":
+ ret.omitEmpty = true
+ }
+ }
+ return
+}
+
+// Given a reflected Go type, getUniversalType returns the default tag number
+// and expected compound flag.
+func getUniversalType(t reflect.Type) (tagNumber int, isCompound, ok bool) {
+ switch t {
+ case objectIdentifierType:
+ return TagOID, false, true
+ case bitStringType:
+ return TagBitString, false, true
+ case timeType:
+ return TagUTCTime, false, true
+ case enumeratedType:
+ return TagEnum, false, true
+ case bigIntType:
+ return TagInteger, false, true
+ }
+ switch t.Kind() {
+ case reflect.Bool:
+ return TagBoolean, false, true
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+ return TagInteger, false, true
+ case reflect.Struct:
+ return TagSequence, true, true
+ case reflect.Slice:
+ if t.Elem().Kind() == reflect.Uint8 {
+ return TagOctetString, false, true
+ }
+ if strings.HasSuffix(t.Name(), "SET") {
+ return TagSet, true, true
+ }
+ return TagSequence, true, true
+ case reflect.String:
+ return TagPrintableString, false, true
+ }
+ return 0, false, false
+}
diff --git a/vendor/github.com/jcmturner/gofork/encoding/asn1/marshal.go b/vendor/github.com/jcmturner/gofork/encoding/asn1/marshal.go
new file mode 100644
index 0000000..f52eee9
--- /dev/null
+++ b/vendor/github.com/jcmturner/gofork/encoding/asn1/marshal.go
@@ -0,0 +1,659 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package asn1
+
+import (
+ "bytes"
+ "errors"
+ "fmt"
+ "io"
+ "math/big"
+ "reflect"
+ "time"
+ "unicode/utf8"
+)
+
+// A forkableWriter is an in-memory buffer that can be
+// 'forked' to create new forkableWriters that bracket the
+// original. After
+// pre, post := w.fork()
+// the overall sequence of bytes represented is logically w+pre+post.
+type forkableWriter struct {
+ *bytes.Buffer
+ pre, post *forkableWriter
+}
+
+func newForkableWriter() *forkableWriter {
+ return &forkableWriter{new(bytes.Buffer), nil, nil}
+}
+
+func (f *forkableWriter) fork() (pre, post *forkableWriter) {
+ if f.pre != nil || f.post != nil {
+ panic("have already forked")
+ }
+ f.pre = newForkableWriter()
+ f.post = newForkableWriter()
+ return f.pre, f.post
+}
+
+func (f *forkableWriter) Len() (l int) {
+ l += f.Buffer.Len()
+ if f.pre != nil {
+ l += f.pre.Len()
+ }
+ if f.post != nil {
+ l += f.post.Len()
+ }
+ return
+}
+
+func (f *forkableWriter) writeTo(out io.Writer) (n int, err error) {
+ n, err = out.Write(f.Bytes())
+ if err != nil {
+ return
+ }
+
+ var nn int
+
+ if f.pre != nil {
+ nn, err = f.pre.writeTo(out)
+ n += nn
+ if err != nil {
+ return
+ }
+ }
+
+ if f.post != nil {
+ nn, err = f.post.writeTo(out)
+ n += nn
+ }
+ return
+}
+
+func marshalBase128Int(out *forkableWriter, n int64) (err error) {
+ if n == 0 {
+ err = out.WriteByte(0)
+ return
+ }
+
+ l := 0
+ for i := n; i > 0; i >>= 7 {
+ l++
+ }
+
+ for i := l - 1; i >= 0; i-- {
+ o := byte(n >> uint(i*7))
+ o &= 0x7f
+ if i != 0 {
+ o |= 0x80
+ }
+ err = out.WriteByte(o)
+ if err != nil {
+ return
+ }
+ }
+
+ return nil
+}
+
+func marshalInt64(out *forkableWriter, i int64) (err error) {
+ n := int64Length(i)
+
+ for ; n > 0; n-- {
+ err = out.WriteByte(byte(i >> uint((n-1)*8)))
+ if err != nil {
+ return
+ }
+ }
+
+ return nil
+}
+
+func int64Length(i int64) (numBytes int) {
+ numBytes = 1
+
+ for i > 127 {
+ numBytes++
+ i >>= 8
+ }
+
+ for i < -128 {
+ numBytes++
+ i >>= 8
+ }
+
+ return
+}
+
+func marshalBigInt(out *forkableWriter, n *big.Int) (err error) {
+ if n.Sign() < 0 {
+ // A negative number has to be converted to two's-complement
+ // form. So we'll subtract 1 and invert. If the
+ // most-significant-bit isn't set then we'll need to pad the
+ // beginning with 0xff in order to keep the number negative.
+ nMinus1 := new(big.Int).Neg(n)
+ nMinus1.Sub(nMinus1, bigOne)
+ bytes := nMinus1.Bytes()
+ for i := range bytes {
+ bytes[i] ^= 0xff
+ }
+ if len(bytes) == 0 || bytes[0]&0x80 == 0 {
+ err = out.WriteByte(0xff)
+ if err != nil {
+ return
+ }
+ }
+ _, err = out.Write(bytes)
+ } else if n.Sign() == 0 {
+ // Zero is written as a single 0 zero rather than no bytes.
+ err = out.WriteByte(0x00)
+ } else {
+ bytes := n.Bytes()
+ if len(bytes) > 0 && bytes[0]&0x80 != 0 {
+ // We'll have to pad this with 0x00 in order to stop it
+ // looking like a negative number.
+ err = out.WriteByte(0)
+ if err != nil {
+ return
+ }
+ }
+ _, err = out.Write(bytes)
+ }
+ return
+}
+
+func marshalLength(out *forkableWriter, i int) (err error) {
+ n := lengthLength(i)
+
+ for ; n > 0; n-- {
+ err = out.WriteByte(byte(i >> uint((n-1)*8)))
+ if err != nil {
+ return
+ }
+ }
+
+ return nil
+}
+
+func lengthLength(i int) (numBytes int) {
+ numBytes = 1
+ for i > 255 {
+ numBytes++
+ i >>= 8
+ }
+ return
+}
+
+func marshalTagAndLength(out *forkableWriter, t tagAndLength) (err error) {
+ b := uint8(t.class) << 6
+ if t.isCompound {
+ b |= 0x20
+ }
+ if t.tag >= 31 {
+ b |= 0x1f
+ err = out.WriteByte(b)
+ if err != nil {
+ return
+ }
+ err = marshalBase128Int(out, int64(t.tag))
+ if err != nil {
+ return
+ }
+ } else {
+ b |= uint8(t.tag)
+ err = out.WriteByte(b)
+ if err != nil {
+ return
+ }
+ }
+
+ if t.length >= 128 {
+ l := lengthLength(t.length)
+ err = out.WriteByte(0x80 | byte(l))
+ if err != nil {
+ return
+ }
+ err = marshalLength(out, t.length)
+ if err != nil {
+ return
+ }
+ } else {
+ err = out.WriteByte(byte(t.length))
+ if err != nil {
+ return
+ }
+ }
+
+ return nil
+}
+
+func marshalBitString(out *forkableWriter, b BitString) (err error) {
+ paddingBits := byte((8 - b.BitLength%8) % 8)
+ err = out.WriteByte(paddingBits)
+ if err != nil {
+ return
+ }
+ _, err = out.Write(b.Bytes)
+ return
+}
+
+func marshalObjectIdentifier(out *forkableWriter, oid []int) (err error) {
+ if len(oid) < 2 || oid[0] > 2 || (oid[0] < 2 && oid[1] >= 40) {
+ return StructuralError{"invalid object identifier"}
+ }
+
+ err = marshalBase128Int(out, int64(oid[0]*40+oid[1]))
+ if err != nil {
+ return
+ }
+ for i := 2; i < len(oid); i++ {
+ err = marshalBase128Int(out, int64(oid[i]))
+ if err != nil {
+ return
+ }
+ }
+
+ return
+}
+
+func marshalPrintableString(out *forkableWriter, s string) (err error) {
+ b := []byte(s)
+ for _, c := range b {
+ if !isPrintable(c) {
+ return StructuralError{"PrintableString contains invalid character"}
+ }
+ }
+
+ _, err = out.Write(b)
+ return
+}
+
+func marshalIA5String(out *forkableWriter, s string) (err error) {
+ b := []byte(s)
+ for _, c := range b {
+ if c > 127 {
+ return StructuralError{"IA5String contains invalid character"}
+ }
+ }
+
+ _, err = out.Write(b)
+ return
+}
+
+func marshalUTF8String(out *forkableWriter, s string) (err error) {
+ _, err = out.Write([]byte(s))
+ return
+}
+
+func marshalTwoDigits(out *forkableWriter, v int) (err error) {
+ err = out.WriteByte(byte('0' + (v/10)%10))
+ if err != nil {
+ return
+ }
+ return out.WriteByte(byte('0' + v%10))
+}
+
+func marshalFourDigits(out *forkableWriter, v int) (err error) {
+ var bytes [4]byte
+ for i := range bytes {
+ bytes[3-i] = '0' + byte(v%10)
+ v /= 10
+ }
+ _, err = out.Write(bytes[:])
+ return
+}
+
+func outsideUTCRange(t time.Time) bool {
+ year := t.Year()
+ return year < 1950 || year >= 2050
+}
+
+func marshalUTCTime(out *forkableWriter, t time.Time) (err error) {
+ year := t.Year()
+
+ switch {
+ case 1950 <= year && year < 2000:
+ err = marshalTwoDigits(out, year-1900)
+ case 2000 <= year && year < 2050:
+ err = marshalTwoDigits(out, year-2000)
+ default:
+ return StructuralError{"cannot represent time as UTCTime"}
+ }
+ if err != nil {
+ return
+ }
+
+ return marshalTimeCommon(out, t)
+}
+
+func marshalGeneralizedTime(out *forkableWriter, t time.Time) (err error) {
+ year := t.Year()
+ if year < 0 || year > 9999 {
+ return StructuralError{"cannot represent time as GeneralizedTime"}
+ }
+ if err = marshalFourDigits(out, year); err != nil {
+ return
+ }
+
+ return marshalTimeCommon(out, t)
+}
+
+func marshalTimeCommon(out *forkableWriter, t time.Time) (err error) {
+ _, month, day := t.Date()
+
+ err = marshalTwoDigits(out, int(month))
+ if err != nil {
+ return
+ }
+
+ err = marshalTwoDigits(out, day)
+ if err != nil {
+ return
+ }
+
+ hour, min, sec := t.Clock()
+
+ err = marshalTwoDigits(out, hour)
+ if err != nil {
+ return
+ }
+
+ err = marshalTwoDigits(out, min)
+ if err != nil {
+ return
+ }
+
+ err = marshalTwoDigits(out, sec)
+ if err != nil {
+ return
+ }
+
+ _, offset := t.Zone()
+
+ switch {
+ case offset/60 == 0:
+ err = out.WriteByte('Z')
+ return
+ case offset > 0:
+ err = out.WriteByte('+')
+ case offset < 0:
+ err = out.WriteByte('-')
+ }
+
+ if err != nil {
+ return
+ }
+
+ offsetMinutes := offset / 60
+ if offsetMinutes < 0 {
+ offsetMinutes = -offsetMinutes
+ }
+
+ err = marshalTwoDigits(out, offsetMinutes/60)
+ if err != nil {
+ return
+ }
+
+ err = marshalTwoDigits(out, offsetMinutes%60)
+ return
+}
+
+func stripTagAndLength(in []byte) []byte {
+ _, offset, err := parseTagAndLength(in, 0)
+ if err != nil {
+ return in
+ }
+ return in[offset:]
+}
+
+func marshalBody(out *forkableWriter, value reflect.Value, params fieldParameters) (err error) {
+ switch value.Type() {
+ case flagType:
+ return nil
+ case timeType:
+ t := value.Interface().(time.Time)
+ if params.timeType == TagGeneralizedTime || outsideUTCRange(t) {
+ return marshalGeneralizedTime(out, t)
+ } else {
+ return marshalUTCTime(out, t)
+ }
+ case bitStringType:
+ return marshalBitString(out, value.Interface().(BitString))
+ case objectIdentifierType:
+ return marshalObjectIdentifier(out, value.Interface().(ObjectIdentifier))
+ case bigIntType:
+ return marshalBigInt(out, value.Interface().(*big.Int))
+ }
+
+ switch v := value; v.Kind() {
+ case reflect.Bool:
+ if v.Bool() {
+ return out.WriteByte(255)
+ } else {
+ return out.WriteByte(0)
+ }
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+ return marshalInt64(out, v.Int())
+ case reflect.Struct:
+ t := v.Type()
+
+ startingField := 0
+
+ // If the first element of the structure is a non-empty
+ // RawContents, then we don't bother serializing the rest.
+ if t.NumField() > 0 && t.Field(0).Type == rawContentsType {
+ s := v.Field(0)
+ if s.Len() > 0 {
+ bytes := make([]byte, s.Len())
+ for i := 0; i < s.Len(); i++ {
+ bytes[i] = uint8(s.Index(i).Uint())
+ }
+ /* The RawContents will contain the tag and
+ * length fields but we'll also be writing
+ * those ourselves, so we strip them out of
+ * bytes */
+ _, err = out.Write(stripTagAndLength(bytes))
+ return
+ } else {
+ startingField = 1
+ }
+ }
+
+ for i := startingField; i < t.NumField(); i++ {
+ var pre *forkableWriter
+ pre, out = out.fork()
+ err = marshalField(pre, v.Field(i), parseFieldParameters(t.Field(i).Tag.Get("asn1")))
+ if err != nil {
+ return
+ }
+ }
+ return
+ case reflect.Slice:
+ sliceType := v.Type()
+ if sliceType.Elem().Kind() == reflect.Uint8 {
+ bytes := make([]byte, v.Len())
+ for i := 0; i < v.Len(); i++ {
+ bytes[i] = uint8(v.Index(i).Uint())
+ }
+ _, err = out.Write(bytes)
+ return
+ }
+
+ // jtasn1 Pass on the tags to the members but need to unset explicit switch and implicit value
+ //var fp fieldParameters
+ params.explicit = false
+ params.tag = nil
+ for i := 0; i < v.Len(); i++ {
+ var pre *forkableWriter
+ pre, out = out.fork()
+ err = marshalField(pre, v.Index(i), params)
+ if err != nil {
+ return
+ }
+ }
+ return
+ case reflect.String:
+ switch params.stringType {
+ case TagIA5String:
+ return marshalIA5String(out, v.String())
+ case TagPrintableString:
+ return marshalPrintableString(out, v.String())
+ default:
+ return marshalUTF8String(out, v.String())
+ }
+ }
+
+ return StructuralError{"unknown Go type"}
+}
+
+func marshalField(out *forkableWriter, v reflect.Value, params fieldParameters) (err error) {
+ if !v.IsValid() {
+ return fmt.Errorf("asn1: cannot marshal nil value")
+ }
+ // If the field is an interface{} then recurse into it.
+ if v.Kind() == reflect.Interface && v.Type().NumMethod() == 0 {
+ return marshalField(out, v.Elem(), params)
+ }
+
+ if v.Kind() == reflect.Slice && v.Len() == 0 && params.omitEmpty {
+ return
+ }
+
+ if params.optional && params.defaultValue != nil && canHaveDefaultValue(v.Kind()) {
+ defaultValue := reflect.New(v.Type()).Elem()
+ defaultValue.SetInt(*params.defaultValue)
+
+ if reflect.DeepEqual(v.Interface(), defaultValue.Interface()) {
+ return
+ }
+ }
+
+ // If no default value is given then the zero value for the type is
+ // assumed to be the default value. This isn't obviously the correct
+ // behaviour, but it's what Go has traditionally done.
+ if params.optional && params.defaultValue == nil {
+ if reflect.DeepEqual(v.Interface(), reflect.Zero(v.Type()).Interface()) {
+ return
+ }
+ }
+
+ if v.Type() == rawValueType {
+ rv := v.Interface().(RawValue)
+ if len(rv.FullBytes) != 0 {
+ _, err = out.Write(rv.FullBytes)
+ } else {
+ err = marshalTagAndLength(out, tagAndLength{rv.Class, rv.Tag, len(rv.Bytes), rv.IsCompound})
+ if err != nil {
+ return
+ }
+ _, err = out.Write(rv.Bytes)
+ }
+ return
+ }
+
+ tag, isCompound, ok := getUniversalType(v.Type())
+ if !ok {
+ err = StructuralError{fmt.Sprintf("unknown Go type: %v", v.Type())}
+ return
+ }
+ class := ClassUniversal
+
+ if params.timeType != 0 && tag != TagUTCTime {
+ return StructuralError{"explicit time type given to non-time member"}
+ }
+
+ // jtasn1 updated to allow slices of strings
+ if params.stringType != 0 && !(tag == TagPrintableString || (v.Kind() == reflect.Slice && tag == 16 && v.Type().Elem().Kind() == reflect.String)) {
+ return StructuralError{"explicit string type given to non-string member"}
+ }
+
+ switch tag {
+ case TagPrintableString:
+ if params.stringType == 0 {
+ // This is a string without an explicit string type. We'll use
+ // a PrintableString if the character set in the string is
+ // sufficiently limited, otherwise we'll use a UTF8String.
+ for _, r := range v.String() {
+ if r >= utf8.RuneSelf || !isPrintable(byte(r)) {
+ if !utf8.ValidString(v.String()) {
+ return errors.New("asn1: string not valid UTF-8")
+ }
+ tag = TagUTF8String
+ break
+ }
+ }
+ } else {
+ tag = params.stringType
+ }
+ case TagUTCTime:
+ if params.timeType == TagGeneralizedTime || outsideUTCRange(v.Interface().(time.Time)) {
+ tag = TagGeneralizedTime
+ }
+ }
+
+ if params.set {
+ if tag != TagSequence {
+ return StructuralError{"non sequence tagged as set"}
+ }
+ tag = TagSet
+ }
+
+ tags, body := out.fork()
+
+ err = marshalBody(body, v, params)
+ if err != nil {
+ return
+ }
+
+ bodyLen := body.Len()
+
+ var explicitTag *forkableWriter
+ if params.explicit {
+ explicitTag, tags = tags.fork()
+ }
+
+ if !params.explicit && params.tag != nil {
+ // implicit tag.
+ tag = *params.tag
+ class = ClassContextSpecific
+ }
+
+ err = marshalTagAndLength(tags, tagAndLength{class, tag, bodyLen, isCompound})
+ if err != nil {
+ return
+ }
+
+ if params.explicit {
+ err = marshalTagAndLength(explicitTag, tagAndLength{
+ class: ClassContextSpecific,
+ tag: *params.tag,
+ length: bodyLen + tags.Len(),
+ isCompound: true,
+ })
+ }
+
+ return err
+}
+
+// Marshal returns the ASN.1 encoding of val.
+//
+// In addition to the struct tags recognised by Unmarshal, the following can be
+// used:
+//
+// ia5: causes strings to be marshaled as ASN.1, IA5 strings
+// omitempty: causes empty slices to be skipped
+// printable: causes strings to be marshaled as ASN.1, PrintableString strings.
+// utf8: causes strings to be marshaled as ASN.1, UTF8 strings
+func Marshal(val interface{}) ([]byte, error) {
+ var out bytes.Buffer
+ v := reflect.ValueOf(val)
+ f := newForkableWriter()
+ err := marshalField(f, v, fieldParameters{})
+ if err != nil {
+ return nil, err
+ }
+ _, err = f.writeTo(&out)
+ return out.Bytes(), err
+}
diff --git a/vendor/github.com/jcmturner/gofork/x/crypto/pbkdf2/pbkdf2.go b/vendor/github.com/jcmturner/gofork/x/crypto/pbkdf2/pbkdf2.go
new file mode 100644
index 0000000..75d4187
--- /dev/null
+++ b/vendor/github.com/jcmturner/gofork/x/crypto/pbkdf2/pbkdf2.go
@@ -0,0 +1,98 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+/*
+Package pbkdf2 implements the key derivation function PBKDF2 as defined in RFC
+2898 / PKCS #5 v2.0.
+
+A key derivation function is useful when encrypting data based on a password
+or any other not-fully-random data. It uses a pseudorandom function to derive
+a secure encryption key based on the password.
+
+While v2.0 of the standard defines only one pseudorandom function to use,
+HMAC-SHA1, the drafted v2.1 specification allows use of all five FIPS Approved
+Hash Functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 for HMAC. To
+choose, you can pass the `New` functions from the different SHA packages to
+pbkdf2.Key.
+*/
+package pbkdf2
+
+import (
+ "crypto/hmac"
+ "hash"
+)
+
+// Key derives a key from the password, salt and iteration count, returning a
+// []byte of length keylen that can be used as cryptographic key. The key is
+// derived based on the method described as PBKDF2 with the HMAC variant using
+// the supplied hash function.
+//
+// For example, to use a HMAC-SHA-1 based PBKDF2 key derivation function, you
+// can get a derived key for e.g. AES-256 (which needs a 32-byte key) by
+// doing:
+//
+// dk := pbkdf2.Key([]byte("some password"), salt, 4096, 32, sha1.New)
+//
+// Remember to get a good random salt. At least 8 bytes is recommended by the
+// RFC.
+//
+// Using a higher iteration count will increase the cost of an exhaustive
+// search but will also make derivation proportionally slower.
+func Key(password, salt []byte, iter, keyLen int, h func() hash.Hash) []byte {
+ return Key64(password, salt, int64(iter), int64(keyLen), h)
+}
+
+// Key64 derives a key from the password, salt and iteration count, returning a
+// []byte of length keylen that can be used as cryptographic key. Key64 uses
+// int64 for the iteration count and key length to allow larger values.
+// The key is derived based on the method described as PBKDF2 with the HMAC
+// variant using the supplied hash function.
+//
+// For example, to use a HMAC-SHA-1 based PBKDF2 key derivation function, you
+// can get a derived key for e.g. AES-256 (which needs a 32-byte key) by
+// doing:
+//
+// dk := pbkdf2.Key([]byte("some password"), salt, 4096, 32, sha1.New)
+//
+// Remember to get a good random salt. At least 8 bytes is recommended by the
+// RFC.
+//
+// Using a higher iteration count will increase the cost of an exhaustive
+// search but will also make derivation proportionally slower.
+func Key64(password, salt []byte, iter, keyLen int64, h func() hash.Hash) []byte {
+ prf := hmac.New(h, password)
+ hashLen := int64(prf.Size())
+ numBlocks := (keyLen + hashLen - 1) / hashLen
+
+ var buf [4]byte
+ dk := make([]byte, 0, numBlocks*hashLen)
+ U := make([]byte, hashLen)
+ for block := int64(1); block <= numBlocks; block++ {
+ // N.B.: || means concatenation, ^ means XOR
+ // for each block T_i = U_1 ^ U_2 ^ ... ^ U_iter
+ // U_1 = PRF(password, salt || uint(i))
+ prf.Reset()
+ prf.Write(salt)
+ buf[0] = byte(block >> 24)
+ buf[1] = byte(block >> 16)
+ buf[2] = byte(block >> 8)
+ buf[3] = byte(block)
+ prf.Write(buf[:4])
+ dk = prf.Sum(dk)
+ T := dk[int64(len(dk))-hashLen:]
+ copy(U, T)
+
+ // U_n = PRF(password, U_(n-1))
+ for n := int64(2); n <= iter; n++ {
+ prf.Reset()
+ prf.Write(U)
+ U = U[:0]
+ U = prf.Sum(U)
+ for x := range U {
+ T[x] ^= U[x]
+ }
+ }
+ }
+ return dk[:keyLen]
+}