VOL-1868 move simulated onu from voltha-go to voltha-simonu-adapter

Sourced from voltha-go commit 251a11c0ffe60512318a644cd6ce0dc4e12f4018

Change-Id: Iab179bc2f3dd772ed7f488d1c03d1a84ba75e874
diff --git a/vendor/github.com/DataDog/zstd/xxhash.c b/vendor/github.com/DataDog/zstd/xxhash.c
new file mode 100644
index 0000000..9d9c0e9
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/xxhash.c
@@ -0,0 +1,875 @@
+/*
+*  xxHash - Fast Hash algorithm
+*  Copyright (C) 2012-2016, Yann Collet
+*
+*  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+*
+*  Redistribution and use in source and binary forms, with or without
+*  modification, are permitted provided that the following conditions are
+*  met:
+*
+*  * Redistributions of source code must retain the above copyright
+*  notice, this list of conditions and the following disclaimer.
+*  * Redistributions in binary form must reproduce the above
+*  copyright notice, this list of conditions and the following disclaimer
+*  in the documentation and/or other materials provided with the
+*  distribution.
+*
+*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+*  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+*  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+*  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+*  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+*  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+*  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+*  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*
+*  You can contact the author at :
+*  - xxHash homepage: http://www.xxhash.com
+*  - xxHash source repository : https://github.com/Cyan4973/xxHash
+*/
+
+
+/* *************************************
+*  Tuning parameters
+***************************************/
+/*!XXH_FORCE_MEMORY_ACCESS :
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
+ *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
+ *            It can generate buggy code on targets which do not support unaligned memory accesses.
+ *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
+ * See http://stackoverflow.com/a/32095106/646947 for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
+#  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
+#    define XXH_FORCE_MEMORY_ACCESS 2
+#  elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
+  (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+#    define XXH_FORCE_MEMORY_ACCESS 1
+#  endif
+#endif
+
+/*!XXH_ACCEPT_NULL_INPUT_POINTER :
+ * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
+ * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
+ * By default, this option is disabled. To enable it, uncomment below define :
+ */
+/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
+
+/*!XXH_FORCE_NATIVE_FORMAT :
+ * By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
+ * Results are therefore identical for little-endian and big-endian CPU.
+ * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
+ * Should endian-independance be of no importance for your application, you may set the #define below to 1,
+ * to improve speed for Big-endian CPU.
+ * This option has no impact on Little_Endian CPU.
+ */
+#ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
+#  define XXH_FORCE_NATIVE_FORMAT 0
+#endif
+
+/*!XXH_FORCE_ALIGN_CHECK :
+ * This is a minor performance trick, only useful with lots of very small keys.
+ * It means : check for aligned/unaligned input.
+ * The check costs one initial branch per hash; set to 0 when the input data
+ * is guaranteed to be aligned.
+ */
+#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
+#  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
+#    define XXH_FORCE_ALIGN_CHECK 0
+#  else
+#    define XXH_FORCE_ALIGN_CHECK 1
+#  endif
+#endif
+
+
+/* *************************************
+*  Includes & Memory related functions
+***************************************/
+/* Modify the local functions below should you wish to use some other memory routines */
+/* for malloc(), free() */
+#include <stdlib.h>
+static void* XXH_malloc(size_t s) { return malloc(s); }
+static void  XXH_free  (void* p)  { free(p); }
+/* for memcpy() */
+#include <string.h>
+static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
+
+#ifndef XXH_STATIC_LINKING_ONLY
+#  define XXH_STATIC_LINKING_ONLY
+#endif
+#include "xxhash.h"
+
+
+/* *************************************
+*  Compiler Specific Options
+***************************************/
+#if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
+#  define INLINE_KEYWORD inline
+#else
+#  define INLINE_KEYWORD
+#endif
+
+#if defined(__GNUC__)
+#  define FORCE_INLINE_ATTR __attribute__((always_inline))
+#elif defined(_MSC_VER)
+#  define FORCE_INLINE_ATTR __forceinline
+#else
+#  define FORCE_INLINE_ATTR
+#endif
+
+#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
+
+
+#ifdef _MSC_VER
+#  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
+#endif
+
+
+/* *************************************
+*  Basic Types
+***************************************/
+#ifndef MEM_MODULE
+# define MEM_MODULE
+# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+#   include <stdint.h>
+    typedef uint8_t  BYTE;
+    typedef uint16_t U16;
+    typedef uint32_t U32;
+    typedef  int32_t S32;
+    typedef uint64_t U64;
+#  else
+    typedef unsigned char      BYTE;
+    typedef unsigned short     U16;
+    typedef unsigned int       U32;
+    typedef   signed int       S32;
+    typedef unsigned long long U64;   /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
+#  endif
+#endif
+
+
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
+
+/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
+static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
+static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
+
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
+
+static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
+
+#else
+
+/* portable and safe solution. Generally efficient.
+ * see : http://stackoverflow.com/a/32095106/646947
+ */
+
+static U32 XXH_read32(const void* memPtr)
+{
+    U32 val;
+    memcpy(&val, memPtr, sizeof(val));
+    return val;
+}
+
+static U64 XXH_read64(const void* memPtr)
+{
+    U64 val;
+    memcpy(&val, memPtr, sizeof(val));
+    return val;
+}
+
+#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
+
+
+/* ****************************************
+*  Compiler-specific Functions and Macros
+******************************************/
+#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+
+/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
+#if defined(_MSC_VER)
+#  define XXH_rotl32(x,r) _rotl(x,r)
+#  define XXH_rotl64(x,r) _rotl64(x,r)
+#else
+#  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
+#  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
+#endif
+
+#if defined(_MSC_VER)     /* Visual Studio */
+#  define XXH_swap32 _byteswap_ulong
+#  define XXH_swap64 _byteswap_uint64
+#elif GCC_VERSION >= 403
+#  define XXH_swap32 __builtin_bswap32
+#  define XXH_swap64 __builtin_bswap64
+#else
+static U32 XXH_swap32 (U32 x)
+{
+    return  ((x << 24) & 0xff000000 ) |
+            ((x <<  8) & 0x00ff0000 ) |
+            ((x >>  8) & 0x0000ff00 ) |
+            ((x >> 24) & 0x000000ff );
+}
+static U64 XXH_swap64 (U64 x)
+{
+    return  ((x << 56) & 0xff00000000000000ULL) |
+            ((x << 40) & 0x00ff000000000000ULL) |
+            ((x << 24) & 0x0000ff0000000000ULL) |
+            ((x << 8)  & 0x000000ff00000000ULL) |
+            ((x >> 8)  & 0x00000000ff000000ULL) |
+            ((x >> 24) & 0x0000000000ff0000ULL) |
+            ((x >> 40) & 0x000000000000ff00ULL) |
+            ((x >> 56) & 0x00000000000000ffULL);
+}
+#endif
+
+
+/* *************************************
+*  Architecture Macros
+***************************************/
+typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
+
+/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
+#ifndef XXH_CPU_LITTLE_ENDIAN
+    static const int g_one = 1;
+#   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
+#endif
+
+
+/* ***************************
+*  Memory reads
+*****************************/
+typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
+
+FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
+{
+    if (align==XXH_unaligned)
+        return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
+    else
+        return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
+}
+
+FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
+{
+    return XXH_readLE32_align(ptr, endian, XXH_unaligned);
+}
+
+static U32 XXH_readBE32(const void* ptr)
+{
+    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
+}
+
+FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
+{
+    if (align==XXH_unaligned)
+        return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
+    else
+        return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
+}
+
+FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
+{
+    return XXH_readLE64_align(ptr, endian, XXH_unaligned);
+}
+
+static U64 XXH_readBE64(const void* ptr)
+{
+    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
+}
+
+
+/* *************************************
+*  Macros
+***************************************/
+#define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
+
+
+/* *************************************
+*  Constants
+***************************************/
+static const U32 PRIME32_1 = 2654435761U;
+static const U32 PRIME32_2 = 2246822519U;
+static const U32 PRIME32_3 = 3266489917U;
+static const U32 PRIME32_4 =  668265263U;
+static const U32 PRIME32_5 =  374761393U;
+
+static const U64 PRIME64_1 = 11400714785074694791ULL;
+static const U64 PRIME64_2 = 14029467366897019727ULL;
+static const U64 PRIME64_3 =  1609587929392839161ULL;
+static const U64 PRIME64_4 =  9650029242287828579ULL;
+static const U64 PRIME64_5 =  2870177450012600261ULL;
+
+XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
+
+
+/* **************************
+*  Utils
+****************************/
+XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
+{
+    memcpy(dstState, srcState, sizeof(*dstState));
+}
+
+XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
+{
+    memcpy(dstState, srcState, sizeof(*dstState));
+}
+
+
+/* ***************************
+*  Simple Hash Functions
+*****************************/
+
+static U32 XXH32_round(U32 seed, U32 input)
+{
+    seed += input * PRIME32_2;
+    seed  = XXH_rotl32(seed, 13);
+    seed *= PRIME32_1;
+    return seed;
+}
+
+FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
+{
+    const BYTE* p = (const BYTE*)input;
+    const BYTE* bEnd = p + len;
+    U32 h32;
+#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+    if (p==NULL) {
+        len=0;
+        bEnd=p=(const BYTE*)(size_t)16;
+    }
+#endif
+
+    if (len>=16) {
+        const BYTE* const limit = bEnd - 16;
+        U32 v1 = seed + PRIME32_1 + PRIME32_2;
+        U32 v2 = seed + PRIME32_2;
+        U32 v3 = seed + 0;
+        U32 v4 = seed - PRIME32_1;
+
+        do {
+            v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
+            v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
+            v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
+            v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
+        } while (p<=limit);
+
+        h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
+    } else {
+        h32  = seed + PRIME32_5;
+    }
+
+    h32 += (U32) len;
+
+    while (p+4<=bEnd) {
+        h32 += XXH_get32bits(p) * PRIME32_3;
+        h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
+        p+=4;
+    }
+
+    while (p<bEnd) {
+        h32 += (*p) * PRIME32_5;
+        h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
+        p++;
+    }
+
+    h32 ^= h32 >> 15;
+    h32 *= PRIME32_2;
+    h32 ^= h32 >> 13;
+    h32 *= PRIME32_3;
+    h32 ^= h32 >> 16;
+
+    return h32;
+}
+
+
+XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
+{
+#if 0
+    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
+    XXH32_CREATESTATE_STATIC(state);
+    XXH32_reset(state, seed);
+    XXH32_update(state, input, len);
+    return XXH32_digest(state);
+#else
+    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+    if (XXH_FORCE_ALIGN_CHECK) {
+        if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
+            if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+                return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
+            else
+                return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
+    }   }
+
+    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+        return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
+    else
+        return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
+#endif
+}
+
+
+static U64 XXH64_round(U64 acc, U64 input)
+{
+    acc += input * PRIME64_2;
+    acc  = XXH_rotl64(acc, 31);
+    acc *= PRIME64_1;
+    return acc;
+}
+
+static U64 XXH64_mergeRound(U64 acc, U64 val)
+{
+    val  = XXH64_round(0, val);
+    acc ^= val;
+    acc  = acc * PRIME64_1 + PRIME64_4;
+    return acc;
+}
+
+FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
+{
+    const BYTE* p = (const BYTE*)input;
+    const BYTE* const bEnd = p + len;
+    U64 h64;
+#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+    if (p==NULL) {
+        len=0;
+        bEnd=p=(const BYTE*)(size_t)32;
+    }
+#endif
+
+    if (len>=32) {
+        const BYTE* const limit = bEnd - 32;
+        U64 v1 = seed + PRIME64_1 + PRIME64_2;
+        U64 v2 = seed + PRIME64_2;
+        U64 v3 = seed + 0;
+        U64 v4 = seed - PRIME64_1;
+
+        do {
+            v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
+            v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
+            v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
+            v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
+        } while (p<=limit);
+
+        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+        h64 = XXH64_mergeRound(h64, v1);
+        h64 = XXH64_mergeRound(h64, v2);
+        h64 = XXH64_mergeRound(h64, v3);
+        h64 = XXH64_mergeRound(h64, v4);
+
+    } else {
+        h64  = seed + PRIME64_5;
+    }
+
+    h64 += (U64) len;
+
+    while (p+8<=bEnd) {
+        U64 const k1 = XXH64_round(0, XXH_get64bits(p));
+        h64 ^= k1;
+        h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
+        p+=8;
+    }
+
+    if (p+4<=bEnd) {
+        h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
+        h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
+        p+=4;
+    }
+
+    while (p<bEnd) {
+        h64 ^= (*p) * PRIME64_5;
+        h64 = XXH_rotl64(h64, 11) * PRIME64_1;
+        p++;
+    }
+
+    h64 ^= h64 >> 33;
+    h64 *= PRIME64_2;
+    h64 ^= h64 >> 29;
+    h64 *= PRIME64_3;
+    h64 ^= h64 >> 32;
+
+    return h64;
+}
+
+
+XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
+{
+#if 0
+    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
+    XXH64_CREATESTATE_STATIC(state);
+    XXH64_reset(state, seed);
+    XXH64_update(state, input, len);
+    return XXH64_digest(state);
+#else
+    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+    if (XXH_FORCE_ALIGN_CHECK) {
+        if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
+            if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+                return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
+            else
+                return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
+    }   }
+
+    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+        return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
+    else
+        return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
+#endif
+}
+
+
+/* **************************************************
+*  Advanced Hash Functions
+****************************************************/
+
+XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
+{
+    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
+}
+XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
+{
+    XXH_free(statePtr);
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
+{
+    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
+}
+XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
+{
+    XXH_free(statePtr);
+    return XXH_OK;
+}
+
+
+/*** Hash feed ***/
+
+XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
+{
+    XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
+    memset(&state, 0, sizeof(state)-4);   /* do not write into reserved, for future removal */
+    state.v1 = seed + PRIME32_1 + PRIME32_2;
+    state.v2 = seed + PRIME32_2;
+    state.v3 = seed + 0;
+    state.v4 = seed - PRIME32_1;
+    memcpy(statePtr, &state, sizeof(state));
+    return XXH_OK;
+}
+
+
+XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
+{
+    XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
+    memset(&state, 0, sizeof(state)-8);   /* do not write into reserved, for future removal */
+    state.v1 = seed + PRIME64_1 + PRIME64_2;
+    state.v2 = seed + PRIME64_2;
+    state.v3 = seed + 0;
+    state.v4 = seed - PRIME64_1;
+    memcpy(statePtr, &state, sizeof(state));
+    return XXH_OK;
+}
+
+
+FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
+{
+    const BYTE* p = (const BYTE*)input;
+    const BYTE* const bEnd = p + len;
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+    if (input==NULL) return XXH_ERROR;
+#endif
+
+    state->total_len_32 += (unsigned)len;
+    state->large_len |= (len>=16) | (state->total_len_32>=16);
+
+    if (state->memsize + len < 16)  {   /* fill in tmp buffer */
+        XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
+        state->memsize += (unsigned)len;
+        return XXH_OK;
+    }
+
+    if (state->memsize) {   /* some data left from previous update */
+        XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
+        {   const U32* p32 = state->mem32;
+            state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
+            state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
+            state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
+            state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
+        }
+        p += 16-state->memsize;
+        state->memsize = 0;
+    }
+
+    if (p <= bEnd-16) {
+        const BYTE* const limit = bEnd - 16;
+        U32 v1 = state->v1;
+        U32 v2 = state->v2;
+        U32 v3 = state->v3;
+        U32 v4 = state->v4;
+
+        do {
+            v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
+            v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
+            v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
+            v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
+        } while (p<=limit);
+
+        state->v1 = v1;
+        state->v2 = v2;
+        state->v3 = v3;
+        state->v4 = v4;
+    }
+
+    if (p < bEnd) {
+        XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
+        state->memsize = (unsigned)(bEnd-p);
+    }
+
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
+{
+    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+        return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
+    else
+        return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
+}
+
+
+
+FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
+{
+    const BYTE * p = (const BYTE*)state->mem32;
+    const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
+    U32 h32;
+
+    if (state->large_len) {
+        h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
+    } else {
+        h32 = state->v3 /* == seed */ + PRIME32_5;
+    }
+
+    h32 += state->total_len_32;
+
+    while (p+4<=bEnd) {
+        h32 += XXH_readLE32(p, endian) * PRIME32_3;
+        h32  = XXH_rotl32(h32, 17) * PRIME32_4;
+        p+=4;
+    }
+
+    while (p<bEnd) {
+        h32 += (*p) * PRIME32_5;
+        h32  = XXH_rotl32(h32, 11) * PRIME32_1;
+        p++;
+    }
+
+    h32 ^= h32 >> 15;
+    h32 *= PRIME32_2;
+    h32 ^= h32 >> 13;
+    h32 *= PRIME32_3;
+    h32 ^= h32 >> 16;
+
+    return h32;
+}
+
+
+XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
+{
+    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+        return XXH32_digest_endian(state_in, XXH_littleEndian);
+    else
+        return XXH32_digest_endian(state_in, XXH_bigEndian);
+}
+
+
+
+/* **** XXH64 **** */
+
+FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
+{
+    const BYTE* p = (const BYTE*)input;
+    const BYTE* const bEnd = p + len;
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+    if (input==NULL) return XXH_ERROR;
+#endif
+
+    state->total_len += len;
+
+    if (state->memsize + len < 32) {  /* fill in tmp buffer */
+        XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
+        state->memsize += (U32)len;
+        return XXH_OK;
+    }
+
+    if (state->memsize) {   /* tmp buffer is full */
+        XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
+        state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
+        state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
+        state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
+        state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
+        p += 32-state->memsize;
+        state->memsize = 0;
+    }
+
+    if (p+32 <= bEnd) {
+        const BYTE* const limit = bEnd - 32;
+        U64 v1 = state->v1;
+        U64 v2 = state->v2;
+        U64 v3 = state->v3;
+        U64 v4 = state->v4;
+
+        do {
+            v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
+            v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
+            v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
+            v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
+        } while (p<=limit);
+
+        state->v1 = v1;
+        state->v2 = v2;
+        state->v3 = v3;
+        state->v4 = v4;
+    }
+
+    if (p < bEnd) {
+        XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
+        state->memsize = (unsigned)(bEnd-p);
+    }
+
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
+{
+    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+        return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
+    else
+        return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
+}
+
+
+
+FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
+{
+    const BYTE * p = (const BYTE*)state->mem64;
+    const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
+    U64 h64;
+
+    if (state->total_len >= 32) {
+        U64 const v1 = state->v1;
+        U64 const v2 = state->v2;
+        U64 const v3 = state->v3;
+        U64 const v4 = state->v4;
+
+        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+        h64 = XXH64_mergeRound(h64, v1);
+        h64 = XXH64_mergeRound(h64, v2);
+        h64 = XXH64_mergeRound(h64, v3);
+        h64 = XXH64_mergeRound(h64, v4);
+    } else {
+        h64  = state->v3 + PRIME64_5;
+    }
+
+    h64 += (U64) state->total_len;
+
+    while (p+8<=bEnd) {
+        U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
+        h64 ^= k1;
+        h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
+        p+=8;
+    }
+
+    if (p+4<=bEnd) {
+        h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
+        h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
+        p+=4;
+    }
+
+    while (p<bEnd) {
+        h64 ^= (*p) * PRIME64_5;
+        h64  = XXH_rotl64(h64, 11) * PRIME64_1;
+        p++;
+    }
+
+    h64 ^= h64 >> 33;
+    h64 *= PRIME64_2;
+    h64 ^= h64 >> 29;
+    h64 *= PRIME64_3;
+    h64 ^= h64 >> 32;
+
+    return h64;
+}
+
+
+XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
+{
+    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+        return XXH64_digest_endian(state_in, XXH_littleEndian);
+    else
+        return XXH64_digest_endian(state_in, XXH_bigEndian);
+}
+
+
+/* **************************
+*  Canonical representation
+****************************/
+
+/*! Default XXH result types are basic unsigned 32 and 64 bits.
+*   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
+*   These functions allow transformation of hash result into and from its canonical format.
+*   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
+*/
+
+XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
+{
+    XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
+    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
+    memcpy(dst, &hash, sizeof(*dst));
+}
+
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
+{
+    XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
+    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
+    memcpy(dst, &hash, sizeof(*dst));
+}
+
+XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
+{
+    return XXH_readBE32(src);
+}
+
+XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
+{
+    return XXH_readBE64(src);
+}