VOL-1868 move simulated onu from voltha-go to voltha-simonu-adapter
Sourced from voltha-go commit 251a11c0ffe60512318a644cd6ce0dc4e12f4018
Change-Id: Iab179bc2f3dd772ed7f488d1c03d1a84ba75e874
diff --git a/vendor/github.com/davecgh/go-spew/spew/doc.go b/vendor/github.com/davecgh/go-spew/spew/doc.go
new file mode 100644
index 0000000..aacaac6
--- /dev/null
+++ b/vendor/github.com/davecgh/go-spew/spew/doc.go
@@ -0,0 +1,211 @@
+/*
+ * Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/*
+Package spew implements a deep pretty printer for Go data structures to aid in
+debugging.
+
+A quick overview of the additional features spew provides over the built-in
+printing facilities for Go data types are as follows:
+
+ * Pointers are dereferenced and followed
+ * Circular data structures are detected and handled properly
+ * Custom Stringer/error interfaces are optionally invoked, including
+ on unexported types
+ * Custom types which only implement the Stringer/error interfaces via
+ a pointer receiver are optionally invoked when passing non-pointer
+ variables
+ * Byte arrays and slices are dumped like the hexdump -C command which
+ includes offsets, byte values in hex, and ASCII output (only when using
+ Dump style)
+
+There are two different approaches spew allows for dumping Go data structures:
+
+ * Dump style which prints with newlines, customizable indentation,
+ and additional debug information such as types and all pointer addresses
+ used to indirect to the final value
+ * A custom Formatter interface that integrates cleanly with the standard fmt
+ package and replaces %v, %+v, %#v, and %#+v to provide inline printing
+ similar to the default %v while providing the additional functionality
+ outlined above and passing unsupported format verbs such as %x and %q
+ along to fmt
+
+Quick Start
+
+This section demonstrates how to quickly get started with spew. See the
+sections below for further details on formatting and configuration options.
+
+To dump a variable with full newlines, indentation, type, and pointer
+information use Dump, Fdump, or Sdump:
+ spew.Dump(myVar1, myVar2, ...)
+ spew.Fdump(someWriter, myVar1, myVar2, ...)
+ str := spew.Sdump(myVar1, myVar2, ...)
+
+Alternatively, if you would prefer to use format strings with a compacted inline
+printing style, use the convenience wrappers Printf, Fprintf, etc with
+%v (most compact), %+v (adds pointer addresses), %#v (adds types), or
+%#+v (adds types and pointer addresses):
+ spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
+ spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
+ spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
+ spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
+
+Configuration Options
+
+Configuration of spew is handled by fields in the ConfigState type. For
+convenience, all of the top-level functions use a global state available
+via the spew.Config global.
+
+It is also possible to create a ConfigState instance that provides methods
+equivalent to the top-level functions. This allows concurrent configuration
+options. See the ConfigState documentation for more details.
+
+The following configuration options are available:
+ * Indent
+ String to use for each indentation level for Dump functions.
+ It is a single space by default. A popular alternative is "\t".
+
+ * MaxDepth
+ Maximum number of levels to descend into nested data structures.
+ There is no limit by default.
+
+ * DisableMethods
+ Disables invocation of error and Stringer interface methods.
+ Method invocation is enabled by default.
+
+ * DisablePointerMethods
+ Disables invocation of error and Stringer interface methods on types
+ which only accept pointer receivers from non-pointer variables.
+ Pointer method invocation is enabled by default.
+
+ * DisablePointerAddresses
+ DisablePointerAddresses specifies whether to disable the printing of
+ pointer addresses. This is useful when diffing data structures in tests.
+
+ * DisableCapacities
+ DisableCapacities specifies whether to disable the printing of
+ capacities for arrays, slices, maps and channels. This is useful when
+ diffing data structures in tests.
+
+ * ContinueOnMethod
+ Enables recursion into types after invoking error and Stringer interface
+ methods. Recursion after method invocation is disabled by default.
+
+ * SortKeys
+ Specifies map keys should be sorted before being printed. Use
+ this to have a more deterministic, diffable output. Note that
+ only native types (bool, int, uint, floats, uintptr and string)
+ and types which implement error or Stringer interfaces are
+ supported with other types sorted according to the
+ reflect.Value.String() output which guarantees display
+ stability. Natural map order is used by default.
+
+ * SpewKeys
+ Specifies that, as a last resort attempt, map keys should be
+ spewed to strings and sorted by those strings. This is only
+ considered if SortKeys is true.
+
+Dump Usage
+
+Simply call spew.Dump with a list of variables you want to dump:
+
+ spew.Dump(myVar1, myVar2, ...)
+
+You may also call spew.Fdump if you would prefer to output to an arbitrary
+io.Writer. For example, to dump to standard error:
+
+ spew.Fdump(os.Stderr, myVar1, myVar2, ...)
+
+A third option is to call spew.Sdump to get the formatted output as a string:
+
+ str := spew.Sdump(myVar1, myVar2, ...)
+
+Sample Dump Output
+
+See the Dump example for details on the setup of the types and variables being
+shown here.
+
+ (main.Foo) {
+ unexportedField: (*main.Bar)(0xf84002e210)({
+ flag: (main.Flag) flagTwo,
+ data: (uintptr) <nil>
+ }),
+ ExportedField: (map[interface {}]interface {}) (len=1) {
+ (string) (len=3) "one": (bool) true
+ }
+ }
+
+Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C
+command as shown.
+ ([]uint8) (len=32 cap=32) {
+ 00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
+ 00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
+ 00000020 31 32 |12|
+ }
+
+Custom Formatter
+
+Spew provides a custom formatter that implements the fmt.Formatter interface
+so that it integrates cleanly with standard fmt package printing functions. The
+formatter is useful for inline printing of smaller data types similar to the
+standard %v format specifier.
+
+The custom formatter only responds to the %v (most compact), %+v (adds pointer
+addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
+combinations. Any other verbs such as %x and %q will be sent to the the
+standard fmt package for formatting. In addition, the custom formatter ignores
+the width and precision arguments (however they will still work on the format
+specifiers not handled by the custom formatter).
+
+Custom Formatter Usage
+
+The simplest way to make use of the spew custom formatter is to call one of the
+convenience functions such as spew.Printf, spew.Println, or spew.Printf. The
+functions have syntax you are most likely already familiar with:
+
+ spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
+ spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
+ spew.Println(myVar, myVar2)
+ spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
+ spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
+
+See the Index for the full list convenience functions.
+
+Sample Formatter Output
+
+Double pointer to a uint8:
+ %v: <**>5
+ %+v: <**>(0xf8400420d0->0xf8400420c8)5
+ %#v: (**uint8)5
+ %#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5
+
+Pointer to circular struct with a uint8 field and a pointer to itself:
+ %v: <*>{1 <*><shown>}
+ %+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>}
+ %#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>}
+ %#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>}
+
+See the Printf example for details on the setup of variables being shown
+here.
+
+Errors
+
+Since it is possible for custom Stringer/error interfaces to panic, spew
+detects them and handles them internally by printing the panic information
+inline with the output. Since spew is intended to provide deep pretty printing
+capabilities on structures, it intentionally does not return any errors.
+*/
+package spew