VOL-381 add unum container to support ONOS cluster formation under swarm

Change-Id: Ic260edda19bb199ed040f05164ab605f28c919d0
diff --git a/unum/vendor/github.com/docker/libtrust/rsa_key.go b/unum/vendor/github.com/docker/libtrust/rsa_key.go
new file mode 100644
index 0000000..dac4cac
--- /dev/null
+++ b/unum/vendor/github.com/docker/libtrust/rsa_key.go
@@ -0,0 +1,427 @@
+package libtrust
+
+import (
+	"crypto"
+	"crypto/rand"
+	"crypto/rsa"
+	"crypto/x509"
+	"encoding/json"
+	"encoding/pem"
+	"errors"
+	"fmt"
+	"io"
+	"math/big"
+)
+
+/*
+ * RSA DSA PUBLIC KEY
+ */
+
+// rsaPublicKey implements a JWK Public Key using RSA digital signature algorithms.
+type rsaPublicKey struct {
+	*rsa.PublicKey
+	extended map[string]interface{}
+}
+
+func fromRSAPublicKey(cryptoPublicKey *rsa.PublicKey) *rsaPublicKey {
+	return &rsaPublicKey{cryptoPublicKey, map[string]interface{}{}}
+}
+
+// KeyType returns the JWK key type for RSA keys, i.e., "RSA".
+func (k *rsaPublicKey) KeyType() string {
+	return "RSA"
+}
+
+// KeyID returns a distinct identifier which is unique to this Public Key.
+func (k *rsaPublicKey) KeyID() string {
+	return keyIDFromCryptoKey(k)
+}
+
+func (k *rsaPublicKey) String() string {
+	return fmt.Sprintf("RSA Public Key <%s>", k.KeyID())
+}
+
+// Verify verifyies the signature of the data in the io.Reader using this Public Key.
+// The alg parameter should be the name of the JWA digital signature algorithm
+// which was used to produce the signature and should be supported by this
+// public key. Returns a nil error if the signature is valid.
+func (k *rsaPublicKey) Verify(data io.Reader, alg string, signature []byte) error {
+	// Verify the signature of the given date, return non-nil error if valid.
+	sigAlg, err := rsaSignatureAlgorithmByName(alg)
+	if err != nil {
+		return fmt.Errorf("unable to verify Signature: %s", err)
+	}
+
+	hasher := sigAlg.HashID().New()
+	_, err = io.Copy(hasher, data)
+	if err != nil {
+		return fmt.Errorf("error reading data to sign: %s", err)
+	}
+	hash := hasher.Sum(nil)
+
+	err = rsa.VerifyPKCS1v15(k.PublicKey, sigAlg.HashID(), hash, signature)
+	if err != nil {
+		return fmt.Errorf("invalid %s signature: %s", sigAlg.HeaderParam(), err)
+	}
+
+	return nil
+}
+
+// CryptoPublicKey returns the internal object which can be used as a
+// crypto.PublicKey for use with other standard library operations. The type
+// is either *rsa.PublicKey or *ecdsa.PublicKey
+func (k *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
+	return k.PublicKey
+}
+
+func (k *rsaPublicKey) toMap() map[string]interface{} {
+	jwk := make(map[string]interface{})
+	for k, v := range k.extended {
+		jwk[k] = v
+	}
+	jwk["kty"] = k.KeyType()
+	jwk["kid"] = k.KeyID()
+	jwk["n"] = joseBase64UrlEncode(k.N.Bytes())
+	jwk["e"] = joseBase64UrlEncode(serializeRSAPublicExponentParam(k.E))
+
+	return jwk
+}
+
+// MarshalJSON serializes this Public Key using the JWK JSON serialization format for
+// RSA keys.
+func (k *rsaPublicKey) MarshalJSON() (data []byte, err error) {
+	return json.Marshal(k.toMap())
+}
+
+// PEMBlock serializes this Public Key to DER-encoded PKIX format.
+func (k *rsaPublicKey) PEMBlock() (*pem.Block, error) {
+	derBytes, err := x509.MarshalPKIXPublicKey(k.PublicKey)
+	if err != nil {
+		return nil, fmt.Errorf("unable to serialize RSA PublicKey to DER-encoded PKIX format: %s", err)
+	}
+	k.extended["kid"] = k.KeyID() // For display purposes.
+	return createPemBlock("PUBLIC KEY", derBytes, k.extended)
+}
+
+func (k *rsaPublicKey) AddExtendedField(field string, value interface{}) {
+	k.extended[field] = value
+}
+
+func (k *rsaPublicKey) GetExtendedField(field string) interface{} {
+	v, ok := k.extended[field]
+	if !ok {
+		return nil
+	}
+	return v
+}
+
+func rsaPublicKeyFromMap(jwk map[string]interface{}) (*rsaPublicKey, error) {
+	// JWK key type (kty) has already been determined to be "RSA".
+	// Need to extract 'n', 'e', and 'kid' and check for
+	// consistency.
+
+	// Get the modulus parameter N.
+	nB64Url, err := stringFromMap(jwk, "n")
+	if err != nil {
+		return nil, fmt.Errorf("JWK RSA Public Key modulus: %s", err)
+	}
+
+	n, err := parseRSAModulusParam(nB64Url)
+	if err != nil {
+		return nil, fmt.Errorf("JWK RSA Public Key modulus: %s", err)
+	}
+
+	// Get the public exponent E.
+	eB64Url, err := stringFromMap(jwk, "e")
+	if err != nil {
+		return nil, fmt.Errorf("JWK RSA Public Key exponent: %s", err)
+	}
+
+	e, err := parseRSAPublicExponentParam(eB64Url)
+	if err != nil {
+		return nil, fmt.Errorf("JWK RSA Public Key exponent: %s", err)
+	}
+
+	key := &rsaPublicKey{
+		PublicKey: &rsa.PublicKey{N: n, E: e},
+	}
+
+	// Key ID is optional, but if it exists, it should match the key.
+	_, ok := jwk["kid"]
+	if ok {
+		kid, err := stringFromMap(jwk, "kid")
+		if err != nil {
+			return nil, fmt.Errorf("JWK RSA Public Key ID: %s", err)
+		}
+		if kid != key.KeyID() {
+			return nil, fmt.Errorf("JWK RSA Public Key ID does not match: %s", kid)
+		}
+	}
+
+	if _, ok := jwk["d"]; ok {
+		return nil, fmt.Errorf("JWK RSA Public Key cannot contain private exponent")
+	}
+
+	key.extended = jwk
+
+	return key, nil
+}
+
+/*
+ * RSA DSA PRIVATE KEY
+ */
+
+// rsaPrivateKey implements a JWK Private Key using RSA digital signature algorithms.
+type rsaPrivateKey struct {
+	rsaPublicKey
+	*rsa.PrivateKey
+}
+
+func fromRSAPrivateKey(cryptoPrivateKey *rsa.PrivateKey) *rsaPrivateKey {
+	return &rsaPrivateKey{
+		*fromRSAPublicKey(&cryptoPrivateKey.PublicKey),
+		cryptoPrivateKey,
+	}
+}
+
+// PublicKey returns the Public Key data associated with this Private Key.
+func (k *rsaPrivateKey) PublicKey() PublicKey {
+	return &k.rsaPublicKey
+}
+
+func (k *rsaPrivateKey) String() string {
+	return fmt.Sprintf("RSA Private Key <%s>", k.KeyID())
+}
+
+// Sign signs the data read from the io.Reader using a signature algorithm supported
+// by the RSA private key. If the specified hashing algorithm is supported by
+// this key, that hash function is used to generate the signature otherwise the
+// the default hashing algorithm for this key is used. Returns the signature
+// and the name of the JWK signature algorithm used, e.g., "RS256", "RS384",
+// "RS512".
+func (k *rsaPrivateKey) Sign(data io.Reader, hashID crypto.Hash) (signature []byte, alg string, err error) {
+	// Generate a signature of the data using the internal alg.
+	sigAlg := rsaPKCS1v15SignatureAlgorithmForHashID(hashID)
+	hasher := sigAlg.HashID().New()
+
+	_, err = io.Copy(hasher, data)
+	if err != nil {
+		return nil, "", fmt.Errorf("error reading data to sign: %s", err)
+	}
+	hash := hasher.Sum(nil)
+
+	signature, err = rsa.SignPKCS1v15(rand.Reader, k.PrivateKey, sigAlg.HashID(), hash)
+	if err != nil {
+		return nil, "", fmt.Errorf("error producing signature: %s", err)
+	}
+
+	alg = sigAlg.HeaderParam()
+
+	return
+}
+
+// CryptoPrivateKey returns the internal object which can be used as a
+// crypto.PublicKey for use with other standard library operations. The type
+// is either *rsa.PublicKey or *ecdsa.PublicKey
+func (k *rsaPrivateKey) CryptoPrivateKey() crypto.PrivateKey {
+	return k.PrivateKey
+}
+
+func (k *rsaPrivateKey) toMap() map[string]interface{} {
+	k.Precompute() // Make sure the precomputed values are stored.
+	jwk := k.rsaPublicKey.toMap()
+
+	jwk["d"] = joseBase64UrlEncode(k.D.Bytes())
+	jwk["p"] = joseBase64UrlEncode(k.Primes[0].Bytes())
+	jwk["q"] = joseBase64UrlEncode(k.Primes[1].Bytes())
+	jwk["dp"] = joseBase64UrlEncode(k.Precomputed.Dp.Bytes())
+	jwk["dq"] = joseBase64UrlEncode(k.Precomputed.Dq.Bytes())
+	jwk["qi"] = joseBase64UrlEncode(k.Precomputed.Qinv.Bytes())
+
+	otherPrimes := k.Primes[2:]
+
+	if len(otherPrimes) > 0 {
+		otherPrimesInfo := make([]interface{}, len(otherPrimes))
+		for i, r := range otherPrimes {
+			otherPrimeInfo := make(map[string]string, 3)
+			otherPrimeInfo["r"] = joseBase64UrlEncode(r.Bytes())
+			crtVal := k.Precomputed.CRTValues[i]
+			otherPrimeInfo["d"] = joseBase64UrlEncode(crtVal.Exp.Bytes())
+			otherPrimeInfo["t"] = joseBase64UrlEncode(crtVal.Coeff.Bytes())
+			otherPrimesInfo[i] = otherPrimeInfo
+		}
+		jwk["oth"] = otherPrimesInfo
+	}
+
+	return jwk
+}
+
+// MarshalJSON serializes this Private Key using the JWK JSON serialization format for
+// RSA keys.
+func (k *rsaPrivateKey) MarshalJSON() (data []byte, err error) {
+	return json.Marshal(k.toMap())
+}
+
+// PEMBlock serializes this Private Key to DER-encoded PKIX format.
+func (k *rsaPrivateKey) PEMBlock() (*pem.Block, error) {
+	derBytes := x509.MarshalPKCS1PrivateKey(k.PrivateKey)
+	k.extended["keyID"] = k.KeyID() // For display purposes.
+	return createPemBlock("RSA PRIVATE KEY", derBytes, k.extended)
+}
+
+func rsaPrivateKeyFromMap(jwk map[string]interface{}) (*rsaPrivateKey, error) {
+	// The JWA spec for RSA Private Keys (draft rfc section 5.3.2) states that
+	// only the private key exponent 'd' is REQUIRED, the others are just for
+	// signature/decryption optimizations and SHOULD be included when the JWK
+	// is produced. We MAY choose to accept a JWK which only includes 'd', but
+	// we're going to go ahead and not choose to accept it without the extra
+	// fields. Only the 'oth' field will be optional (for multi-prime keys).
+	privateExponent, err := parseRSAPrivateKeyParamFromMap(jwk, "d")
+	if err != nil {
+		return nil, fmt.Errorf("JWK RSA Private Key exponent: %s", err)
+	}
+	firstPrimeFactor, err := parseRSAPrivateKeyParamFromMap(jwk, "p")
+	if err != nil {
+		return nil, fmt.Errorf("JWK RSA Private Key prime factor: %s", err)
+	}
+	secondPrimeFactor, err := parseRSAPrivateKeyParamFromMap(jwk, "q")
+	if err != nil {
+		return nil, fmt.Errorf("JWK RSA Private Key prime factor: %s", err)
+	}
+	firstFactorCRT, err := parseRSAPrivateKeyParamFromMap(jwk, "dp")
+	if err != nil {
+		return nil, fmt.Errorf("JWK RSA Private Key CRT exponent: %s", err)
+	}
+	secondFactorCRT, err := parseRSAPrivateKeyParamFromMap(jwk, "dq")
+	if err != nil {
+		return nil, fmt.Errorf("JWK RSA Private Key CRT exponent: %s", err)
+	}
+	crtCoeff, err := parseRSAPrivateKeyParamFromMap(jwk, "qi")
+	if err != nil {
+		return nil, fmt.Errorf("JWK RSA Private Key CRT coefficient: %s", err)
+	}
+
+	var oth interface{}
+	if _, ok := jwk["oth"]; ok {
+		oth = jwk["oth"]
+		delete(jwk, "oth")
+	}
+
+	// JWK key type (kty) has already been determined to be "RSA".
+	// Need to extract the public key information, then extract the private
+	// key values.
+	publicKey, err := rsaPublicKeyFromMap(jwk)
+	if err != nil {
+		return nil, err
+	}
+
+	privateKey := &rsa.PrivateKey{
+		PublicKey: *publicKey.PublicKey,
+		D:         privateExponent,
+		Primes:    []*big.Int{firstPrimeFactor, secondPrimeFactor},
+		Precomputed: rsa.PrecomputedValues{
+			Dp:   firstFactorCRT,
+			Dq:   secondFactorCRT,
+			Qinv: crtCoeff,
+		},
+	}
+
+	if oth != nil {
+		// Should be an array of more JSON objects.
+		otherPrimesInfo, ok := oth.([]interface{})
+		if !ok {
+			return nil, errors.New("JWK RSA Private Key: Invalid other primes info: must be an array")
+		}
+		numOtherPrimeFactors := len(otherPrimesInfo)
+		if numOtherPrimeFactors == 0 {
+			return nil, errors.New("JWK RSA Privake Key: Invalid other primes info: must be absent or non-empty")
+		}
+		otherPrimeFactors := make([]*big.Int, numOtherPrimeFactors)
+		productOfPrimes := new(big.Int).Mul(firstPrimeFactor, secondPrimeFactor)
+		crtValues := make([]rsa.CRTValue, numOtherPrimeFactors)
+
+		for i, val := range otherPrimesInfo {
+			otherPrimeinfo, ok := val.(map[string]interface{})
+			if !ok {
+				return nil, errors.New("JWK RSA Private Key: Invalid other prime info: must be a JSON object")
+			}
+
+			otherPrimeFactor, err := parseRSAPrivateKeyParamFromMap(otherPrimeinfo, "r")
+			if err != nil {
+				return nil, fmt.Errorf("JWK RSA Private Key prime factor: %s", err)
+			}
+			otherFactorCRT, err := parseRSAPrivateKeyParamFromMap(otherPrimeinfo, "d")
+			if err != nil {
+				return nil, fmt.Errorf("JWK RSA Private Key CRT exponent: %s", err)
+			}
+			otherCrtCoeff, err := parseRSAPrivateKeyParamFromMap(otherPrimeinfo, "t")
+			if err != nil {
+				return nil, fmt.Errorf("JWK RSA Private Key CRT coefficient: %s", err)
+			}
+
+			crtValue := crtValues[i]
+			crtValue.Exp = otherFactorCRT
+			crtValue.Coeff = otherCrtCoeff
+			crtValue.R = productOfPrimes
+			otherPrimeFactors[i] = otherPrimeFactor
+			productOfPrimes = new(big.Int).Mul(productOfPrimes, otherPrimeFactor)
+		}
+
+		privateKey.Primes = append(privateKey.Primes, otherPrimeFactors...)
+		privateKey.Precomputed.CRTValues = crtValues
+	}
+
+	key := &rsaPrivateKey{
+		rsaPublicKey: *publicKey,
+		PrivateKey:   privateKey,
+	}
+
+	return key, nil
+}
+
+/*
+ *	Key Generation Functions.
+ */
+
+func generateRSAPrivateKey(bits int) (k *rsaPrivateKey, err error) {
+	k = new(rsaPrivateKey)
+	k.PrivateKey, err = rsa.GenerateKey(rand.Reader, bits)
+	if err != nil {
+		return nil, err
+	}
+
+	k.rsaPublicKey.PublicKey = &k.PrivateKey.PublicKey
+	k.extended = make(map[string]interface{})
+
+	return
+}
+
+// GenerateRSA2048PrivateKey generates a key pair using 2048-bit RSA.
+func GenerateRSA2048PrivateKey() (PrivateKey, error) {
+	k, err := generateRSAPrivateKey(2048)
+	if err != nil {
+		return nil, fmt.Errorf("error generating RSA 2048-bit key: %s", err)
+	}
+
+	return k, nil
+}
+
+// GenerateRSA3072PrivateKey generates a key pair using 3072-bit RSA.
+func GenerateRSA3072PrivateKey() (PrivateKey, error) {
+	k, err := generateRSAPrivateKey(3072)
+	if err != nil {
+		return nil, fmt.Errorf("error generating RSA 3072-bit key: %s", err)
+	}
+
+	return k, nil
+}
+
+// GenerateRSA4096PrivateKey generates a key pair using 4096-bit RSA.
+func GenerateRSA4096PrivateKey() (PrivateKey, error) {
+	k, err := generateRSAPrivateKey(4096)
+	if err != nil {
+		return nil, fmt.Errorf("error generating RSA 4096-bit key: %s", err)
+	}
+
+	return k, nil
+}