blob: 045a10e8c28da2817771bf2d197a3b90a0517f00 [file] [log] [blame]
anjana_sreekumar@infosys.com991c2062020-01-08 11:42:57 +05301/*------------------------------------------------------------------
2* SNOW_3G.c
3*-------------------------------------------------------------------*/
4
5/*
6 * The code has been referred from
7 * 1. https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
8 * 2. https://www.gsma.com/aboutus/wp-content/uploads/2014/12/uea2uia2d1v21.pdf
9*/
10
11
12#include "snow_3g.h"
13
14/* LFSR */
15
16u32 LFSR_S0 = 0x00;
17u32 LFSR_S1 = 0x00;
18u32 LFSR_S2 = 0x00;
19u32 LFSR_S3 = 0x00;
20u32 LFSR_S4 = 0x00;
21u32 LFSR_S5 = 0x00;
22u32 LFSR_S6 = 0x00;
23u32 LFSR_S7 = 0x00;
24u32 LFSR_S8 = 0x00;
25u32 LFSR_S9 = 0x00;
26u32 LFSR_S10 = 0x00;
27u32 LFSR_S11 = 0x00;
28u32 LFSR_S12 = 0x00;
29u32 LFSR_S13 = 0x00;
30u32 LFSR_S14 = 0x00;
31u32 LFSR_S15 = 0x00;
32
33/* FSM */
34
35u32 FSM_R1 = 0x00;
36u32 FSM_R2 = 0x00;
37u32 FSM_R3 = 0x00;
38
39
40/* Rijndael S-box SR */
41
42u8 SR[256] = {
430x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
440xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
450xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
460x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
470x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
480x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
490xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
500x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
510xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
520x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
530xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
540xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
550xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
560x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
570xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
580x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16
59};
60
61/* S-box SQ */
62
63u8 SQ[256] = {
640x25,0x24,0x73,0x67,0xD7,0xAE,0x5C,0x30,0xA4,0xEE,0x6E,0xCB,0x7D,0xB5,0x82,0xDB,
650xE4,0x8E,0x48,0x49,0x4F,0x5D,0x6A,0x78,0x70,0x88,0xE8,0x5F,0x5E,0x84,0x65,0xE2,
660xD8,0xE9,0xCC,0xED,0x40,0x2F,0x11,0x28,0x57,0xD2,0xAC,0xE3,0x4A,0x15,0x1B,0xB9,
670xB2,0x80,0x85,0xA6,0x2E,0x02,0x47,0x29,0x07,0x4B,0x0E,0xC1,0x51,0xAA,0x89,0xD4,
680xCA,0x01,0x46,0xB3,0xEF,0xDD,0x44,0x7B,0xC2,0x7F,0xBE,0xC3,0x9F,0x20,0x4C,0x64,
690x83,0xA2,0x68,0x42,0x13,0xB4,0x41,0xCD,0xBA,0xC6,0xBB,0x6D,0x4D,0x71,0x21,0xF4,
700x8D,0xB0,0xE5,0x93,0xFE,0x8F,0xE6,0xCF,0x43,0x45,0x31,0x22,0x37,0x36,0x96,0xFA,
710xBC,0x0F,0x08,0x52,0x1D,0x55,0x1A,0xC5,0x4E,0x23,0x69,0x7A,0x92,0xFF,0x5B,0x5A,
720xEB,0x9A,0x1C,0xA9,0xD1,0x7E,0x0D,0xFC,0x50,0x8A,0xB6,0x62,0xF5,0x0A,0xF8,0xDC,
730x03,0x3C,0x0C,0x39,0xF1,0xB8,0xF3,0x3D,0xF2,0xD5,0x97,0x66,0x81,0x32,0xA0,0x00,
740x06,0xCE,0xF6,0xEA,0xB7,0x17,0xF7,0x8C,0x79,0xD6,0xA7,0xBF,0x8B,0x3F,0x1F,0x53,
750x63,0x75,0x35,0x2C,0x60,0xFD,0x27,0xD3,0x94,0xA5,0x7C,0xA1,0x05,0x58,0x2D,0xBD,
760xD9,0xC7,0xAF,0x6B,0x54,0x0B,0xE0,0x38,0x04,0xC8,0x9D,0xE7,0x14,0xB1,0x87,0x9C,
770xDF,0x6F,0xF9,0xDA,0x2A,0xC4,0x59,0x16,0x74,0x91,0xAB,0x26,0x61,0x76,0x34,0x2B,
780xAD,0x99,0xFB,0x72,0xEC,0x33,0x12,0xDE,0x98,0x3B,0xC0,0x9B,0x3E,0x18,0x10,0x3A,
790x56,0xE1,0x77,0xC9,0x1E,0x9E,0x95,0xA3,0x90,0x19,0xA8,0x6C,0x09,0xD0,0xF0,0x86
80};
81
82
83/* MULx.
84 * Input V: an 8-bit input.
85 * Input c: an 8-bit input.
86 * Output : an 8-bit output.
87 * See section 3.1.1 of
88 * https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
89 * for details.
90 */
91
92
93u8 MULx(u8 V, u8 c)
94{
95 if ( V & 0x80 )
96 return ( (V << 1) ^ c);
97 else
98 return ( V << 1);
99}
100
101/* MULxPOW.
102 * Input V: an 8-bit input.
103 * Input i: a positive integer.
104 * Input c: an 8-bit input.
105 * Output : an 8-bit output.
106 * See section 3.1.2
107 * https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
108 * for details.
109 */
110
111
112u8 MULxPOW(u8 V, u8 i, u8 c)
113{
114 /*GSLab-Intel modification to avoid recurssion*/
115 while(i > 0) {
116 V = ( V & 0x80 ) ? ( (V << 1) ^ c): ( V << 1);
117 --i;
118 }
119 return V;
120
121}
122/* The function MUL alpha.
123 * Input c: 8-bit input.
124 * Output : 32-bit output.
125 * See section 3.4.2
126 * https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
127 * for details.
128 */
129
130u32 MULalpha(u8 c)
131{
132 return ( ( ((u32)MULxPOW(c, 23, 0xa9)) << 24 ) |
133 ( ((u32)MULxPOW(c, 245, 0xa9)) << 16 ) |
134 ( ((u32)MULxPOW(c, 48, 0xa9)) << 8 ) |
135 ((u32)MULxPOW(c, 239, 0xa9)) ) ;
136}
137
138/* The function DIV alpha.
139 * Input c: 8-bit input.
140 * Output : 32-bit output.
141 * See section 3.4.3
142 * https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
143 * for details.
144 */
145
146u32 DIValpha(u8 c)
147{
148 return ( ( ((u32)MULxPOW(c, 16, 0xa9)) << 24 ) |
149 ( ((u32)MULxPOW(c, 39, 0xa9)) << 16 ) |
150 ( ((u32)MULxPOW(c, 6, 0xa9)) << 8 ) |
151 ( ((u32)MULxPOW(c, 64, 0xa9)) ) ) ;
152}
153
154/* The 32x32-bit S-Box S1
155 * Input: a 32-bit input.
156 * Output: a 32-bit output of S1 box.
157 * See section 3.3.1
158 * https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
159 * for details.
160 */
161
162u32 S1(u32 w)
163{
164 u8 r0=0, r1=0, r2=0, r3=0;
165 u8 srw0 = SR[ (u8)((w >> 24) & 0xff) ];
166 u8 srw1 = SR[ (u8)((w >> 16) & 0xff) ];
167 u8 srw2 = SR[ (u8)((w >> 8) & 0xff) ];
168 u8 srw3 = SR[ (u8)((w) & 0xff) ];
169
170 r0 = ( ( MULx( srw0 , 0x1b) ) ^
171 ( srw1 ) ^
172 ( srw2 ) ^
173 ( (MULx( srw3, 0x1b)) ^ srw3 )
174 );
175
176 r1 = ( ( ( MULx( srw0 , 0x1b) ) ^ srw0 ) ^
177 ( MULx(srw1, 0x1b) ) ^
178 ( srw2 ) ^
179 ( srw3 )
180 );
181
182 r2 = ( ( srw0 ) ^
183 ( ( MULx( srw1 , 0x1b) ) ^ srw1 ) ^
184 ( MULx(srw2, 0x1b) ) ^
185 ( srw3 )
186 );
187
188 r3 = ( ( srw0 ) ^
189 ( srw1 ) ^
190 ( ( MULx( srw2 , 0x1b) ) ^ srw2 ) ^
191 ( MULx( srw3, 0x1b) )
192 );
193
194 return ( ( ((u32)r0) << 24 ) | ( ((u32)r1) << 16 ) | ( ((u32)r2) << 8 ) |
195 ( ((u32)r3) ) );
196
197}
198
199/* The 32x32-bit S-Box S2
200 * Input: a 32-bit input.
201 * Output: a 32-bit output of S2 box.
202 * See section 3.3.2
203 * https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
204 * for details.
205 */
206
207u32 S2(u32 w)
208{
209 u8 r0=0, r1=0, r2=0, r3=0;
210 u8 sqw0 = SQ[ (u8)((w >> 24) & 0xff) ];
211 u8 sqw1 = SQ[ (u8)((w >> 16) & 0xff) ];
212 u8 sqw2 = SQ[ (u8)((w >> 8) & 0xff) ];
213 u8 sqw3 = SQ[ (u8)((w) & 0xff) ];
214
215
216 r0 = ( ( MULx( sqw0 , 0x69) ) ^
217 ( sqw1 ) ^
218 ( sqw2 ) ^
219 ( (MULx( sqw3, 0x69)) ^ sqw3 )
220 );
221
222
223 r1 = ( ( ( MULx( sqw0 , 0x69) ) ^ sqw0 ) ^
224 ( MULx(sqw1, 0x69) ) ^
225 ( sqw2 ) ^
226 ( sqw3 )
227 );
228
229 r2 = ( ( sqw0 ) ^
230 ( ( MULx( sqw1 , 0x69) ) ^ sqw1 ) ^
231 ( MULx(sqw2, 0x69) ) ^
232 ( sqw3 )
233 );
234
235 r3 = ( ( sqw0 ) ^
236 ( sqw1 ) ^
237 ( ( MULx( sqw2 , 0x69) ) ^ sqw2 ) ^
238 ( MULx( sqw3, 0x69) )
239 );
240
241
242 return ( ( ((u32)r0) << 24 ) | ( ((u32)r1) << 16 ) | ( ((u32)r2) << 8 ) |
243 ( ((u32)r3) ) );
244
245}
246
247/* Clocking LFSR in initialization mode.
248 * LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
249 * Input F: a 32-bit word comes from output of FSM.
250 * See section 3.4.4
251 * https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
252 * for details.
253 */
254
255void ClockLFSRInitializationMode(u32 F)
256{
257 u32 v = ( ( (LFSR_S0 << 8) & 0xffffff00 ) ^
258 ( MULalpha( (u8)((LFSR_S0>>24) & 0xff) ) ) ^
259 ( LFSR_S2 ) ^
260 ( (LFSR_S11 >> 8) & 0x00ffffff ) ^
261 ( DIValpha( (u8)( ( LFSR_S11) & 0xff ) ) ) ^
262 ( F )
263 );
264
265 LFSR_S0 = LFSR_S1;
266 LFSR_S1 = LFSR_S2;
267 LFSR_S2 = LFSR_S3;
268 LFSR_S3 = LFSR_S4;
269 LFSR_S4 = LFSR_S5;
270 LFSR_S5 = LFSR_S6;
271 LFSR_S6 = LFSR_S7;
272 LFSR_S7 = LFSR_S8;
273 LFSR_S8 = LFSR_S9;
274 LFSR_S9 = LFSR_S10;
275 LFSR_S10 = LFSR_S11;
276 LFSR_S11 = LFSR_S12;
277 LFSR_S12 = LFSR_S13;
278 LFSR_S13 = LFSR_S14;
279 LFSR_S14 = LFSR_S15;
280 LFSR_S15 = v;
281}
282
283/* Clocking LFSR in keystream mode.
284 * LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
285 * See section 3.4.5
286 * https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
287 * for details.
288 */
289
290void ClockLFSRKeyStreamMode()
291{
292 u32 v = ( ( (LFSR_S0 << 8) & 0xffffff00 ) ^
293 ( MULalpha( (u8)((LFSR_S0>>24) & 0xff) ) ) ^
294 ( LFSR_S2 ) ^
295 ( (LFSR_S11 >> 8) & 0x00ffffff ) ^
296 ( DIValpha( (u8)( ( LFSR_S11) & 0xff ) ) )
297 );
298
299
300 LFSR_S0 = LFSR_S1;
301 LFSR_S1 = LFSR_S2;
302 LFSR_S2 = LFSR_S3;
303 LFSR_S3 = LFSR_S4;
304 LFSR_S4 = LFSR_S5;
305 LFSR_S5 = LFSR_S6;
306 LFSR_S6 = LFSR_S7;
307 LFSR_S7 = LFSR_S8;
308 LFSR_S8 = LFSR_S9;
309 LFSR_S9 = LFSR_S10;
310 LFSR_S10 = LFSR_S11;
311 LFSR_S11 = LFSR_S12;
312 LFSR_S12 = LFSR_S13;
313 LFSR_S13 = LFSR_S14;
314 LFSR_S14 = LFSR_S15;
315 LFSR_S15 = v;
316}
317
318/* Clocking FSM.
319 * Produces a 32-bit word F.
320 * Updates FSM registers R1, R2, R3.
321 * See Section 3.4.6 of
322 * https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
323 * for details.
324 */
325
326u32 ClockFSM()
327{
328 u32 F = ( ( LFSR_S15 + FSM_R1 ) & 0xffffffff ) ^ FSM_R2 ;
329 u32 r = ( FSM_R2 + ( FSM_R3 ^ LFSR_S5 ) ) & 0xffffffff ;
330 FSM_R3 = S2(FSM_R2);
331 FSM_R2 = S1(FSM_R1);
332 FSM_R1 = r;
333 return F;
334}
335
336/* Initialization.
337 * Input k[4]: Four 32-bit words making up 128-bit key.
338 * Input IV[4]: Four 32-bit words making 128-bit initialization variable.
339 * Output: All the LFSRs and FSM are initialized for key generation.
340 * See Section 4.1 of
341 * https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
342 * for details.
343 */
344
345void Initialize(u32 k[4], u32 IV[4])
346{
347 u8 i=0;
348 u32 F = 0x0;
349 LFSR_S15 = k[3] ^ IV[0];
350 LFSR_S14 = k[2];
351 LFSR_S13 = k[1];
352 LFSR_S12 = k[0] ^ IV[1];
353 LFSR_S11 = k[3] ^ 0xffffffff;
354 LFSR_S10 = k[2] ^ 0xffffffff ^ IV[2];
355 LFSR_S9 = k[1] ^ 0xffffffff ^ IV[3];
356 LFSR_S8 = k[0] ^ 0xffffffff;
357 LFSR_S7 = k[3];
358 LFSR_S6 = k[2];
359 LFSR_S5 = k[1];
360 LFSR_S4 = k[0];
361 LFSR_S3 = k[3] ^ 0xffffffff;
362 LFSR_S2 = k[2] ^ 0xffffffff;
363 LFSR_S1 = k[1] ^ 0xffffffff;
364 LFSR_S0 = k[0] ^ 0xffffffff;
365 FSM_R1 = 0x0;
366 FSM_R2 = 0x0;
367 FSM_R3 = 0x0;
368
369 for(i=0;i<32;i++)
370 {
371 F = ClockFSM();
372 ClockLFSRInitializationMode(F);
373 }
374}
375
376
377/* Generation of Keystream.
378 * input n: number of 32-bit words of keystream.
379 * input z: space for the generated keystream, assumes
380 * memory is allocated already.
381 * output: generated keystream which is filled in z
382 * See section 4.2 of
383 * https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
384 * for details.
385 */
386
387void GenerateKeystream(u32 n, u32 *ks)
388{
389 u32 t = 0;
390 u32 F = 0x0;
391 ClockFSM(); /* Clock FSM once. Discard the output. */
392 ClockLFSRKeyStreamMode(); /* Clock LFSR in keystream mode once. */
393
394 for ( t=0; t<n; t++)
395 {
396 F = ClockFSM();/* STEP 1 */
397 ks[t] = F ^ LFSR_S0; /* STEP 2 */
398
399 /* Note that ks[t] corresponds to z_{t+1} in section 4.2 of
400 * https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
401 */
402
403 ClockLFSRKeyStreamMode(); /* STEP 3 */
404 }
405}
406/*------------------------------------------------------------------*/