| /* |
| Copyright 2014 The Kubernetes Authors. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| */ |
| |
| package wait |
| |
| import ( |
| "context" |
| "errors" |
| "math" |
| "math/rand" |
| "sync" |
| "time" |
| |
| "k8s.io/apimachinery/pkg/util/clock" |
| "k8s.io/apimachinery/pkg/util/runtime" |
| ) |
| |
| // For any test of the style: |
| // ... |
| // <- time.After(timeout): |
| // t.Errorf("Timed out") |
| // The value for timeout should effectively be "forever." Obviously we don't want our tests to truly lock up forever, but 30s |
| // is long enough that it is effectively forever for the things that can slow down a run on a heavily contended machine |
| // (GC, seeks, etc), but not so long as to make a developer ctrl-c a test run if they do happen to break that test. |
| var ForeverTestTimeout = time.Second * 30 |
| |
| // NeverStop may be passed to Until to make it never stop. |
| var NeverStop <-chan struct{} = make(chan struct{}) |
| |
| // Group allows to start a group of goroutines and wait for their completion. |
| type Group struct { |
| wg sync.WaitGroup |
| } |
| |
| func (g *Group) Wait() { |
| g.wg.Wait() |
| } |
| |
| // StartWithChannel starts f in a new goroutine in the group. |
| // stopCh is passed to f as an argument. f should stop when stopCh is available. |
| func (g *Group) StartWithChannel(stopCh <-chan struct{}, f func(stopCh <-chan struct{})) { |
| g.Start(func() { |
| f(stopCh) |
| }) |
| } |
| |
| // StartWithContext starts f in a new goroutine in the group. |
| // ctx is passed to f as an argument. f should stop when ctx.Done() is available. |
| func (g *Group) StartWithContext(ctx context.Context, f func(context.Context)) { |
| g.Start(func() { |
| f(ctx) |
| }) |
| } |
| |
| // Start starts f in a new goroutine in the group. |
| func (g *Group) Start(f func()) { |
| g.wg.Add(1) |
| go func() { |
| defer g.wg.Done() |
| f() |
| }() |
| } |
| |
| // Forever calls f every period for ever. |
| // |
| // Forever is syntactic sugar on top of Until. |
| func Forever(f func(), period time.Duration) { |
| Until(f, period, NeverStop) |
| } |
| |
| // Until loops until stop channel is closed, running f every period. |
| // |
| // Until is syntactic sugar on top of JitterUntil with zero jitter factor and |
| // with sliding = true (which means the timer for period starts after the f |
| // completes). |
| func Until(f func(), period time.Duration, stopCh <-chan struct{}) { |
| JitterUntil(f, period, 0.0, true, stopCh) |
| } |
| |
| // UntilWithContext loops until context is done, running f every period. |
| // |
| // UntilWithContext is syntactic sugar on top of JitterUntilWithContext |
| // with zero jitter factor and with sliding = true (which means the timer |
| // for period starts after the f completes). |
| func UntilWithContext(ctx context.Context, f func(context.Context), period time.Duration) { |
| JitterUntilWithContext(ctx, f, period, 0.0, true) |
| } |
| |
| // NonSlidingUntil loops until stop channel is closed, running f every |
| // period. |
| // |
| // NonSlidingUntil is syntactic sugar on top of JitterUntil with zero jitter |
| // factor, with sliding = false (meaning the timer for period starts at the same |
| // time as the function starts). |
| func NonSlidingUntil(f func(), period time.Duration, stopCh <-chan struct{}) { |
| JitterUntil(f, period, 0.0, false, stopCh) |
| } |
| |
| // NonSlidingUntilWithContext loops until context is done, running f every |
| // period. |
| // |
| // NonSlidingUntilWithContext is syntactic sugar on top of JitterUntilWithContext |
| // with zero jitter factor, with sliding = false (meaning the timer for period |
| // starts at the same time as the function starts). |
| func NonSlidingUntilWithContext(ctx context.Context, f func(context.Context), period time.Duration) { |
| JitterUntilWithContext(ctx, f, period, 0.0, false) |
| } |
| |
| // JitterUntil loops until stop channel is closed, running f every period. |
| // |
| // If jitterFactor is positive, the period is jittered before every run of f. |
| // If jitterFactor is not positive, the period is unchanged and not jittered. |
| // |
| // If sliding is true, the period is computed after f runs. If it is false then |
| // period includes the runtime for f. |
| // |
| // Close stopCh to stop. f may not be invoked if stop channel is already |
| // closed. Pass NeverStop to if you don't want it stop. |
| func JitterUntil(f func(), period time.Duration, jitterFactor float64, sliding bool, stopCh <-chan struct{}) { |
| BackoffUntil(f, NewJitteredBackoffManager(period, jitterFactor, &clock.RealClock{}), sliding, stopCh) |
| } |
| |
| // BackoffUntil loops until stop channel is closed, run f every duration given by BackoffManager. |
| // |
| // If sliding is true, the period is computed after f runs. If it is false then |
| // period includes the runtime for f. |
| func BackoffUntil(f func(), backoff BackoffManager, sliding bool, stopCh <-chan struct{}) { |
| var t clock.Timer |
| for { |
| select { |
| case <-stopCh: |
| return |
| default: |
| } |
| |
| if !sliding { |
| t = backoff.Backoff() |
| } |
| |
| func() { |
| defer runtime.HandleCrash() |
| f() |
| }() |
| |
| if sliding { |
| t = backoff.Backoff() |
| } |
| |
| // NOTE: b/c there is no priority selection in golang |
| // it is possible for this to race, meaning we could |
| // trigger t.C and stopCh, and t.C select falls through. |
| // In order to mitigate we re-check stopCh at the beginning |
| // of every loop to prevent extra executions of f(). |
| select { |
| case <-stopCh: |
| return |
| case <-t.C(): |
| } |
| } |
| } |
| |
| // JitterUntilWithContext loops until context is done, running f every period. |
| // |
| // If jitterFactor is positive, the period is jittered before every run of f. |
| // If jitterFactor is not positive, the period is unchanged and not jittered. |
| // |
| // If sliding is true, the period is computed after f runs. If it is false then |
| // period includes the runtime for f. |
| // |
| // Cancel context to stop. f may not be invoked if context is already expired. |
| func JitterUntilWithContext(ctx context.Context, f func(context.Context), period time.Duration, jitterFactor float64, sliding bool) { |
| JitterUntil(func() { f(ctx) }, period, jitterFactor, sliding, ctx.Done()) |
| } |
| |
| // Jitter returns a time.Duration between duration and duration + maxFactor * |
| // duration. |
| // |
| // This allows clients to avoid converging on periodic behavior. If maxFactor |
| // is 0.0, a suggested default value will be chosen. |
| func Jitter(duration time.Duration, maxFactor float64) time.Duration { |
| if maxFactor <= 0.0 { |
| maxFactor = 1.0 |
| } |
| wait := duration + time.Duration(rand.Float64()*maxFactor*float64(duration)) |
| return wait |
| } |
| |
| // ErrWaitTimeout is returned when the condition exited without success. |
| var ErrWaitTimeout = errors.New("timed out waiting for the condition") |
| |
| // ConditionFunc returns true if the condition is satisfied, or an error |
| // if the loop should be aborted. |
| type ConditionFunc func() (done bool, err error) |
| |
| // runConditionWithCrashProtection runs a ConditionFunc with crash protection |
| func runConditionWithCrashProtection(condition ConditionFunc) (bool, error) { |
| defer runtime.HandleCrash() |
| return condition() |
| } |
| |
| // Backoff holds parameters applied to a Backoff function. |
| type Backoff struct { |
| // The initial duration. |
| Duration time.Duration |
| // Duration is multiplied by factor each iteration, if factor is not zero |
| // and the limits imposed by Steps and Cap have not been reached. |
| // Should not be negative. |
| // The jitter does not contribute to the updates to the duration parameter. |
| Factor float64 |
| // The sleep at each iteration is the duration plus an additional |
| // amount chosen uniformly at random from the interval between |
| // zero and `jitter*duration`. |
| Jitter float64 |
| // The remaining number of iterations in which the duration |
| // parameter may change (but progress can be stopped earlier by |
| // hitting the cap). If not positive, the duration is not |
| // changed. Used for exponential backoff in combination with |
| // Factor and Cap. |
| Steps int |
| // A limit on revised values of the duration parameter. If a |
| // multiplication by the factor parameter would make the duration |
| // exceed the cap then the duration is set to the cap and the |
| // steps parameter is set to zero. |
| Cap time.Duration |
| } |
| |
| // Step (1) returns an amount of time to sleep determined by the |
| // original Duration and Jitter and (2) mutates the provided Backoff |
| // to update its Steps and Duration. |
| func (b *Backoff) Step() time.Duration { |
| if b.Steps < 1 { |
| if b.Jitter > 0 { |
| return Jitter(b.Duration, b.Jitter) |
| } |
| return b.Duration |
| } |
| b.Steps-- |
| |
| duration := b.Duration |
| |
| // calculate the next step |
| if b.Factor != 0 { |
| b.Duration = time.Duration(float64(b.Duration) * b.Factor) |
| if b.Cap > 0 && b.Duration > b.Cap { |
| b.Duration = b.Cap |
| b.Steps = 0 |
| } |
| } |
| |
| if b.Jitter > 0 { |
| duration = Jitter(duration, b.Jitter) |
| } |
| return duration |
| } |
| |
| // contextForChannel derives a child context from a parent channel. |
| // |
| // The derived context's Done channel is closed when the returned cancel function |
| // is called or when the parent channel is closed, whichever happens first. |
| // |
| // Note the caller must *always* call the CancelFunc, otherwise resources may be leaked. |
| func contextForChannel(parentCh <-chan struct{}) (context.Context, context.CancelFunc) { |
| ctx, cancel := context.WithCancel(context.Background()) |
| |
| go func() { |
| select { |
| case <-parentCh: |
| cancel() |
| case <-ctx.Done(): |
| } |
| }() |
| return ctx, cancel |
| } |
| |
| // BackoffManager manages backoff with a particular scheme based on its underlying implementation. It provides |
| // an interface to return a timer for backoff, and caller shall backoff until Timer.C() drains. If the second Backoff() |
| // is called before the timer from the first Backoff() call finishes, the first timer will NOT be drained and result in |
| // undetermined behavior. |
| // The BackoffManager is supposed to be called in a single-threaded environment. |
| type BackoffManager interface { |
| Backoff() clock.Timer |
| } |
| |
| type exponentialBackoffManagerImpl struct { |
| backoff *Backoff |
| backoffTimer clock.Timer |
| lastBackoffStart time.Time |
| initialBackoff time.Duration |
| backoffResetDuration time.Duration |
| clock clock.Clock |
| } |
| |
| // NewExponentialBackoffManager returns a manager for managing exponential backoff. Each backoff is jittered and |
| // backoff will not exceed the given max. If the backoff is not called within resetDuration, the backoff is reset. |
| // This backoff manager is used to reduce load during upstream unhealthiness. |
| func NewExponentialBackoffManager(initBackoff, maxBackoff, resetDuration time.Duration, backoffFactor, jitter float64, c clock.Clock) BackoffManager { |
| return &exponentialBackoffManagerImpl{ |
| backoff: &Backoff{ |
| Duration: initBackoff, |
| Factor: backoffFactor, |
| Jitter: jitter, |
| |
| // the current impl of wait.Backoff returns Backoff.Duration once steps are used up, which is not |
| // what we ideally need here, we set it to max int and assume we will never use up the steps |
| Steps: math.MaxInt32, |
| Cap: maxBackoff, |
| }, |
| backoffTimer: nil, |
| initialBackoff: initBackoff, |
| lastBackoffStart: c.Now(), |
| backoffResetDuration: resetDuration, |
| clock: c, |
| } |
| } |
| |
| func (b *exponentialBackoffManagerImpl) getNextBackoff() time.Duration { |
| if b.clock.Now().Sub(b.lastBackoffStart) > b.backoffResetDuration { |
| b.backoff.Steps = math.MaxInt32 |
| b.backoff.Duration = b.initialBackoff |
| } |
| b.lastBackoffStart = b.clock.Now() |
| return b.backoff.Step() |
| } |
| |
| // Backoff implements BackoffManager.Backoff, it returns a timer so caller can block on the timer for exponential backoff. |
| // The returned timer must be drained before calling Backoff() the second time |
| func (b *exponentialBackoffManagerImpl) Backoff() clock.Timer { |
| if b.backoffTimer == nil { |
| b.backoffTimer = b.clock.NewTimer(b.getNextBackoff()) |
| } else { |
| b.backoffTimer.Reset(b.getNextBackoff()) |
| } |
| return b.backoffTimer |
| } |
| |
| type jitteredBackoffManagerImpl struct { |
| clock clock.Clock |
| duration time.Duration |
| jitter float64 |
| backoffTimer clock.Timer |
| } |
| |
| // NewJitteredBackoffManager returns a BackoffManager that backoffs with given duration plus given jitter. If the jitter |
| // is negative, backoff will not be jittered. |
| func NewJitteredBackoffManager(duration time.Duration, jitter float64, c clock.Clock) BackoffManager { |
| return &jitteredBackoffManagerImpl{ |
| clock: c, |
| duration: duration, |
| jitter: jitter, |
| backoffTimer: nil, |
| } |
| } |
| |
| func (j *jitteredBackoffManagerImpl) getNextBackoff() time.Duration { |
| jitteredPeriod := j.duration |
| if j.jitter > 0.0 { |
| jitteredPeriod = Jitter(j.duration, j.jitter) |
| } |
| return jitteredPeriod |
| } |
| |
| // Backoff implements BackoffManager.Backoff, it returns a timer so caller can block on the timer for jittered backoff. |
| // The returned timer must be drained before calling Backoff() the second time |
| func (j *jitteredBackoffManagerImpl) Backoff() clock.Timer { |
| backoff := j.getNextBackoff() |
| if j.backoffTimer == nil { |
| j.backoffTimer = j.clock.NewTimer(backoff) |
| } else { |
| j.backoffTimer.Reset(backoff) |
| } |
| return j.backoffTimer |
| } |
| |
| // ExponentialBackoff repeats a condition check with exponential backoff. |
| // |
| // It repeatedly checks the condition and then sleeps, using `backoff.Step()` |
| // to determine the length of the sleep and adjust Duration and Steps. |
| // Stops and returns as soon as: |
| // 1. the condition check returns true or an error, |
| // 2. `backoff.Steps` checks of the condition have been done, or |
| // 3. a sleep truncated by the cap on duration has been completed. |
| // In case (1) the returned error is what the condition function returned. |
| // In all other cases, ErrWaitTimeout is returned. |
| func ExponentialBackoff(backoff Backoff, condition ConditionFunc) error { |
| for backoff.Steps > 0 { |
| if ok, err := runConditionWithCrashProtection(condition); err != nil || ok { |
| return err |
| } |
| if backoff.Steps == 1 { |
| break |
| } |
| time.Sleep(backoff.Step()) |
| } |
| return ErrWaitTimeout |
| } |
| |
| // Poll tries a condition func until it returns true, an error, or the timeout |
| // is reached. |
| // |
| // Poll always waits the interval before the run of 'condition'. |
| // 'condition' will always be invoked at least once. |
| // |
| // Some intervals may be missed if the condition takes too long or the time |
| // window is too short. |
| // |
| // If you want to Poll something forever, see PollInfinite. |
| func Poll(interval, timeout time.Duration, condition ConditionFunc) error { |
| return pollInternal(poller(interval, timeout), condition) |
| } |
| |
| func pollInternal(wait WaitFunc, condition ConditionFunc) error { |
| done := make(chan struct{}) |
| defer close(done) |
| return WaitFor(wait, condition, done) |
| } |
| |
| // PollImmediate tries a condition func until it returns true, an error, or the timeout |
| // is reached. |
| // |
| // PollImmediate always checks 'condition' before waiting for the interval. 'condition' |
| // will always be invoked at least once. |
| // |
| // Some intervals may be missed if the condition takes too long or the time |
| // window is too short. |
| // |
| // If you want to immediately Poll something forever, see PollImmediateInfinite. |
| func PollImmediate(interval, timeout time.Duration, condition ConditionFunc) error { |
| return pollImmediateInternal(poller(interval, timeout), condition) |
| } |
| |
| func pollImmediateInternal(wait WaitFunc, condition ConditionFunc) error { |
| done, err := runConditionWithCrashProtection(condition) |
| if err != nil { |
| return err |
| } |
| if done { |
| return nil |
| } |
| return pollInternal(wait, condition) |
| } |
| |
| // PollInfinite tries a condition func until it returns true or an error |
| // |
| // PollInfinite always waits the interval before the run of 'condition'. |
| // |
| // Some intervals may be missed if the condition takes too long or the time |
| // window is too short. |
| func PollInfinite(interval time.Duration, condition ConditionFunc) error { |
| done := make(chan struct{}) |
| defer close(done) |
| return PollUntil(interval, condition, done) |
| } |
| |
| // PollImmediateInfinite tries a condition func until it returns true or an error |
| // |
| // PollImmediateInfinite runs the 'condition' before waiting for the interval. |
| // |
| // Some intervals may be missed if the condition takes too long or the time |
| // window is too short. |
| func PollImmediateInfinite(interval time.Duration, condition ConditionFunc) error { |
| done, err := runConditionWithCrashProtection(condition) |
| if err != nil { |
| return err |
| } |
| if done { |
| return nil |
| } |
| return PollInfinite(interval, condition) |
| } |
| |
| // PollUntil tries a condition func until it returns true, an error or stopCh is |
| // closed. |
| // |
| // PollUntil always waits interval before the first run of 'condition'. |
| // 'condition' will always be invoked at least once. |
| func PollUntil(interval time.Duration, condition ConditionFunc, stopCh <-chan struct{}) error { |
| ctx, cancel := contextForChannel(stopCh) |
| defer cancel() |
| return WaitFor(poller(interval, 0), condition, ctx.Done()) |
| } |
| |
| // PollImmediateUntil tries a condition func until it returns true, an error or stopCh is closed. |
| // |
| // PollImmediateUntil runs the 'condition' before waiting for the interval. |
| // 'condition' will always be invoked at least once. |
| func PollImmediateUntil(interval time.Duration, condition ConditionFunc, stopCh <-chan struct{}) error { |
| done, err := condition() |
| if err != nil { |
| return err |
| } |
| if done { |
| return nil |
| } |
| select { |
| case <-stopCh: |
| return ErrWaitTimeout |
| default: |
| return PollUntil(interval, condition, stopCh) |
| } |
| } |
| |
| // WaitFunc creates a channel that receives an item every time a test |
| // should be executed and is closed when the last test should be invoked. |
| type WaitFunc func(done <-chan struct{}) <-chan struct{} |
| |
| // WaitFor continually checks 'fn' as driven by 'wait'. |
| // |
| // WaitFor gets a channel from 'wait()'', and then invokes 'fn' once for every value |
| // placed on the channel and once more when the channel is closed. If the channel is closed |
| // and 'fn' returns false without error, WaitFor returns ErrWaitTimeout. |
| // |
| // If 'fn' returns an error the loop ends and that error is returned. If |
| // 'fn' returns true the loop ends and nil is returned. |
| // |
| // ErrWaitTimeout will be returned if the 'done' channel is closed without fn ever |
| // returning true. |
| // |
| // When the done channel is closed, because the golang `select` statement is |
| // "uniform pseudo-random", the `fn` might still run one or multiple time, |
| // though eventually `WaitFor` will return. |
| func WaitFor(wait WaitFunc, fn ConditionFunc, done <-chan struct{}) error { |
| stopCh := make(chan struct{}) |
| defer close(stopCh) |
| c := wait(stopCh) |
| for { |
| select { |
| case _, open := <-c: |
| ok, err := runConditionWithCrashProtection(fn) |
| if err != nil { |
| return err |
| } |
| if ok { |
| return nil |
| } |
| if !open { |
| return ErrWaitTimeout |
| } |
| case <-done: |
| return ErrWaitTimeout |
| } |
| } |
| } |
| |
| // poller returns a WaitFunc that will send to the channel every interval until |
| // timeout has elapsed and then closes the channel. |
| // |
| // Over very short intervals you may receive no ticks before the channel is |
| // closed. A timeout of 0 is interpreted as an infinity, and in such a case |
| // it would be the caller's responsibility to close the done channel. |
| // Failure to do so would result in a leaked goroutine. |
| // |
| // Output ticks are not buffered. If the channel is not ready to receive an |
| // item, the tick is skipped. |
| func poller(interval, timeout time.Duration) WaitFunc { |
| return WaitFunc(func(done <-chan struct{}) <-chan struct{} { |
| ch := make(chan struct{}) |
| |
| go func() { |
| defer close(ch) |
| |
| tick := time.NewTicker(interval) |
| defer tick.Stop() |
| |
| var after <-chan time.Time |
| if timeout != 0 { |
| // time.After is more convenient, but it |
| // potentially leaves timers around much longer |
| // than necessary if we exit early. |
| timer := time.NewTimer(timeout) |
| after = timer.C |
| defer timer.Stop() |
| } |
| |
| for { |
| select { |
| case <-tick.C: |
| // If the consumer isn't ready for this signal drop it and |
| // check the other channels. |
| select { |
| case ch <- struct{}{}: |
| default: |
| } |
| case <-after: |
| return |
| case <-done: |
| return |
| } |
| } |
| }() |
| |
| return ch |
| }) |
| } |