Matteo Scandolo | a428586 | 2020-12-01 18:10:10 -0800 | [diff] [blame] | 1 | /* |
| 2 | Copyright 2014 The Kubernetes Authors. |
| 3 | |
| 4 | Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | you may not use this file except in compliance with the License. |
| 6 | You may obtain a copy of the License at |
| 7 | |
| 8 | http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | |
| 10 | Unless required by applicable law or agreed to in writing, software |
| 11 | distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | See the License for the specific language governing permissions and |
| 14 | limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | package wait |
| 18 | |
| 19 | import ( |
| 20 | "context" |
| 21 | "errors" |
| 22 | "math" |
| 23 | "math/rand" |
| 24 | "sync" |
| 25 | "time" |
| 26 | |
| 27 | "k8s.io/apimachinery/pkg/util/clock" |
| 28 | "k8s.io/apimachinery/pkg/util/runtime" |
| 29 | ) |
| 30 | |
| 31 | // For any test of the style: |
| 32 | // ... |
| 33 | // <- time.After(timeout): |
| 34 | // t.Errorf("Timed out") |
| 35 | // The value for timeout should effectively be "forever." Obviously we don't want our tests to truly lock up forever, but 30s |
| 36 | // is long enough that it is effectively forever for the things that can slow down a run on a heavily contended machine |
| 37 | // (GC, seeks, etc), but not so long as to make a developer ctrl-c a test run if they do happen to break that test. |
| 38 | var ForeverTestTimeout = time.Second * 30 |
| 39 | |
| 40 | // NeverStop may be passed to Until to make it never stop. |
| 41 | var NeverStop <-chan struct{} = make(chan struct{}) |
| 42 | |
| 43 | // Group allows to start a group of goroutines and wait for their completion. |
| 44 | type Group struct { |
| 45 | wg sync.WaitGroup |
| 46 | } |
| 47 | |
| 48 | func (g *Group) Wait() { |
| 49 | g.wg.Wait() |
| 50 | } |
| 51 | |
| 52 | // StartWithChannel starts f in a new goroutine in the group. |
| 53 | // stopCh is passed to f as an argument. f should stop when stopCh is available. |
| 54 | func (g *Group) StartWithChannel(stopCh <-chan struct{}, f func(stopCh <-chan struct{})) { |
| 55 | g.Start(func() { |
| 56 | f(stopCh) |
| 57 | }) |
| 58 | } |
| 59 | |
| 60 | // StartWithContext starts f in a new goroutine in the group. |
| 61 | // ctx is passed to f as an argument. f should stop when ctx.Done() is available. |
| 62 | func (g *Group) StartWithContext(ctx context.Context, f func(context.Context)) { |
| 63 | g.Start(func() { |
| 64 | f(ctx) |
| 65 | }) |
| 66 | } |
| 67 | |
| 68 | // Start starts f in a new goroutine in the group. |
| 69 | func (g *Group) Start(f func()) { |
| 70 | g.wg.Add(1) |
| 71 | go func() { |
| 72 | defer g.wg.Done() |
| 73 | f() |
| 74 | }() |
| 75 | } |
| 76 | |
| 77 | // Forever calls f every period for ever. |
| 78 | // |
| 79 | // Forever is syntactic sugar on top of Until. |
| 80 | func Forever(f func(), period time.Duration) { |
| 81 | Until(f, period, NeverStop) |
| 82 | } |
| 83 | |
| 84 | // Until loops until stop channel is closed, running f every period. |
| 85 | // |
| 86 | // Until is syntactic sugar on top of JitterUntil with zero jitter factor and |
| 87 | // with sliding = true (which means the timer for period starts after the f |
| 88 | // completes). |
| 89 | func Until(f func(), period time.Duration, stopCh <-chan struct{}) { |
| 90 | JitterUntil(f, period, 0.0, true, stopCh) |
| 91 | } |
| 92 | |
| 93 | // UntilWithContext loops until context is done, running f every period. |
| 94 | // |
| 95 | // UntilWithContext is syntactic sugar on top of JitterUntilWithContext |
| 96 | // with zero jitter factor and with sliding = true (which means the timer |
| 97 | // for period starts after the f completes). |
| 98 | func UntilWithContext(ctx context.Context, f func(context.Context), period time.Duration) { |
| 99 | JitterUntilWithContext(ctx, f, period, 0.0, true) |
| 100 | } |
| 101 | |
| 102 | // NonSlidingUntil loops until stop channel is closed, running f every |
| 103 | // period. |
| 104 | // |
| 105 | // NonSlidingUntil is syntactic sugar on top of JitterUntil with zero jitter |
| 106 | // factor, with sliding = false (meaning the timer for period starts at the same |
| 107 | // time as the function starts). |
| 108 | func NonSlidingUntil(f func(), period time.Duration, stopCh <-chan struct{}) { |
| 109 | JitterUntil(f, period, 0.0, false, stopCh) |
| 110 | } |
| 111 | |
| 112 | // NonSlidingUntilWithContext loops until context is done, running f every |
| 113 | // period. |
| 114 | // |
| 115 | // NonSlidingUntilWithContext is syntactic sugar on top of JitterUntilWithContext |
| 116 | // with zero jitter factor, with sliding = false (meaning the timer for period |
| 117 | // starts at the same time as the function starts). |
| 118 | func NonSlidingUntilWithContext(ctx context.Context, f func(context.Context), period time.Duration) { |
| 119 | JitterUntilWithContext(ctx, f, period, 0.0, false) |
| 120 | } |
| 121 | |
| 122 | // JitterUntil loops until stop channel is closed, running f every period. |
| 123 | // |
| 124 | // If jitterFactor is positive, the period is jittered before every run of f. |
| 125 | // If jitterFactor is not positive, the period is unchanged and not jittered. |
| 126 | // |
| 127 | // If sliding is true, the period is computed after f runs. If it is false then |
| 128 | // period includes the runtime for f. |
| 129 | // |
| 130 | // Close stopCh to stop. f may not be invoked if stop channel is already |
| 131 | // closed. Pass NeverStop to if you don't want it stop. |
| 132 | func JitterUntil(f func(), period time.Duration, jitterFactor float64, sliding bool, stopCh <-chan struct{}) { |
| 133 | BackoffUntil(f, NewJitteredBackoffManager(period, jitterFactor, &clock.RealClock{}), sliding, stopCh) |
| 134 | } |
| 135 | |
| 136 | // BackoffUntil loops until stop channel is closed, run f every duration given by BackoffManager. |
| 137 | // |
| 138 | // If sliding is true, the period is computed after f runs. If it is false then |
| 139 | // period includes the runtime for f. |
| 140 | func BackoffUntil(f func(), backoff BackoffManager, sliding bool, stopCh <-chan struct{}) { |
| 141 | var t clock.Timer |
| 142 | for { |
| 143 | select { |
| 144 | case <-stopCh: |
| 145 | return |
| 146 | default: |
| 147 | } |
| 148 | |
| 149 | if !sliding { |
| 150 | t = backoff.Backoff() |
| 151 | } |
| 152 | |
| 153 | func() { |
| 154 | defer runtime.HandleCrash() |
| 155 | f() |
| 156 | }() |
| 157 | |
| 158 | if sliding { |
| 159 | t = backoff.Backoff() |
| 160 | } |
| 161 | |
| 162 | // NOTE: b/c there is no priority selection in golang |
| 163 | // it is possible for this to race, meaning we could |
| 164 | // trigger t.C and stopCh, and t.C select falls through. |
| 165 | // In order to mitigate we re-check stopCh at the beginning |
| 166 | // of every loop to prevent extra executions of f(). |
| 167 | select { |
| 168 | case <-stopCh: |
| 169 | return |
| 170 | case <-t.C(): |
| 171 | } |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | // JitterUntilWithContext loops until context is done, running f every period. |
| 176 | // |
| 177 | // If jitterFactor is positive, the period is jittered before every run of f. |
| 178 | // If jitterFactor is not positive, the period is unchanged and not jittered. |
| 179 | // |
| 180 | // If sliding is true, the period is computed after f runs. If it is false then |
| 181 | // period includes the runtime for f. |
| 182 | // |
| 183 | // Cancel context to stop. f may not be invoked if context is already expired. |
| 184 | func JitterUntilWithContext(ctx context.Context, f func(context.Context), period time.Duration, jitterFactor float64, sliding bool) { |
| 185 | JitterUntil(func() { f(ctx) }, period, jitterFactor, sliding, ctx.Done()) |
| 186 | } |
| 187 | |
| 188 | // Jitter returns a time.Duration between duration and duration + maxFactor * |
| 189 | // duration. |
| 190 | // |
| 191 | // This allows clients to avoid converging on periodic behavior. If maxFactor |
| 192 | // is 0.0, a suggested default value will be chosen. |
| 193 | func Jitter(duration time.Duration, maxFactor float64) time.Duration { |
| 194 | if maxFactor <= 0.0 { |
| 195 | maxFactor = 1.0 |
| 196 | } |
| 197 | wait := duration + time.Duration(rand.Float64()*maxFactor*float64(duration)) |
| 198 | return wait |
| 199 | } |
| 200 | |
| 201 | // ErrWaitTimeout is returned when the condition exited without success. |
| 202 | var ErrWaitTimeout = errors.New("timed out waiting for the condition") |
| 203 | |
| 204 | // ConditionFunc returns true if the condition is satisfied, or an error |
| 205 | // if the loop should be aborted. |
| 206 | type ConditionFunc func() (done bool, err error) |
| 207 | |
| 208 | // runConditionWithCrashProtection runs a ConditionFunc with crash protection |
| 209 | func runConditionWithCrashProtection(condition ConditionFunc) (bool, error) { |
| 210 | defer runtime.HandleCrash() |
| 211 | return condition() |
| 212 | } |
| 213 | |
| 214 | // Backoff holds parameters applied to a Backoff function. |
| 215 | type Backoff struct { |
| 216 | // The initial duration. |
| 217 | Duration time.Duration |
| 218 | // Duration is multiplied by factor each iteration, if factor is not zero |
| 219 | // and the limits imposed by Steps and Cap have not been reached. |
| 220 | // Should not be negative. |
| 221 | // The jitter does not contribute to the updates to the duration parameter. |
| 222 | Factor float64 |
| 223 | // The sleep at each iteration is the duration plus an additional |
| 224 | // amount chosen uniformly at random from the interval between |
| 225 | // zero and `jitter*duration`. |
| 226 | Jitter float64 |
| 227 | // The remaining number of iterations in which the duration |
| 228 | // parameter may change (but progress can be stopped earlier by |
| 229 | // hitting the cap). If not positive, the duration is not |
| 230 | // changed. Used for exponential backoff in combination with |
| 231 | // Factor and Cap. |
| 232 | Steps int |
| 233 | // A limit on revised values of the duration parameter. If a |
| 234 | // multiplication by the factor parameter would make the duration |
| 235 | // exceed the cap then the duration is set to the cap and the |
| 236 | // steps parameter is set to zero. |
| 237 | Cap time.Duration |
| 238 | } |
| 239 | |
| 240 | // Step (1) returns an amount of time to sleep determined by the |
| 241 | // original Duration and Jitter and (2) mutates the provided Backoff |
| 242 | // to update its Steps and Duration. |
| 243 | func (b *Backoff) Step() time.Duration { |
| 244 | if b.Steps < 1 { |
| 245 | if b.Jitter > 0 { |
| 246 | return Jitter(b.Duration, b.Jitter) |
| 247 | } |
| 248 | return b.Duration |
| 249 | } |
| 250 | b.Steps-- |
| 251 | |
| 252 | duration := b.Duration |
| 253 | |
| 254 | // calculate the next step |
| 255 | if b.Factor != 0 { |
| 256 | b.Duration = time.Duration(float64(b.Duration) * b.Factor) |
| 257 | if b.Cap > 0 && b.Duration > b.Cap { |
| 258 | b.Duration = b.Cap |
| 259 | b.Steps = 0 |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | if b.Jitter > 0 { |
| 264 | duration = Jitter(duration, b.Jitter) |
| 265 | } |
| 266 | return duration |
| 267 | } |
| 268 | |
| 269 | // contextForChannel derives a child context from a parent channel. |
| 270 | // |
| 271 | // The derived context's Done channel is closed when the returned cancel function |
| 272 | // is called or when the parent channel is closed, whichever happens first. |
| 273 | // |
| 274 | // Note the caller must *always* call the CancelFunc, otherwise resources may be leaked. |
| 275 | func contextForChannel(parentCh <-chan struct{}) (context.Context, context.CancelFunc) { |
| 276 | ctx, cancel := context.WithCancel(context.Background()) |
| 277 | |
| 278 | go func() { |
| 279 | select { |
| 280 | case <-parentCh: |
| 281 | cancel() |
| 282 | case <-ctx.Done(): |
| 283 | } |
| 284 | }() |
| 285 | return ctx, cancel |
| 286 | } |
| 287 | |
| 288 | // BackoffManager manages backoff with a particular scheme based on its underlying implementation. It provides |
| 289 | // an interface to return a timer for backoff, and caller shall backoff until Timer.C() drains. If the second Backoff() |
| 290 | // is called before the timer from the first Backoff() call finishes, the first timer will NOT be drained and result in |
| 291 | // undetermined behavior. |
| 292 | // The BackoffManager is supposed to be called in a single-threaded environment. |
| 293 | type BackoffManager interface { |
| 294 | Backoff() clock.Timer |
| 295 | } |
| 296 | |
| 297 | type exponentialBackoffManagerImpl struct { |
| 298 | backoff *Backoff |
| 299 | backoffTimer clock.Timer |
| 300 | lastBackoffStart time.Time |
| 301 | initialBackoff time.Duration |
| 302 | backoffResetDuration time.Duration |
| 303 | clock clock.Clock |
| 304 | } |
| 305 | |
| 306 | // NewExponentialBackoffManager returns a manager for managing exponential backoff. Each backoff is jittered and |
| 307 | // backoff will not exceed the given max. If the backoff is not called within resetDuration, the backoff is reset. |
| 308 | // This backoff manager is used to reduce load during upstream unhealthiness. |
| 309 | func NewExponentialBackoffManager(initBackoff, maxBackoff, resetDuration time.Duration, backoffFactor, jitter float64, c clock.Clock) BackoffManager { |
| 310 | return &exponentialBackoffManagerImpl{ |
| 311 | backoff: &Backoff{ |
| 312 | Duration: initBackoff, |
| 313 | Factor: backoffFactor, |
| 314 | Jitter: jitter, |
| 315 | |
| 316 | // the current impl of wait.Backoff returns Backoff.Duration once steps are used up, which is not |
| 317 | // what we ideally need here, we set it to max int and assume we will never use up the steps |
| 318 | Steps: math.MaxInt32, |
| 319 | Cap: maxBackoff, |
| 320 | }, |
| 321 | backoffTimer: nil, |
| 322 | initialBackoff: initBackoff, |
| 323 | lastBackoffStart: c.Now(), |
| 324 | backoffResetDuration: resetDuration, |
| 325 | clock: c, |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | func (b *exponentialBackoffManagerImpl) getNextBackoff() time.Duration { |
| 330 | if b.clock.Now().Sub(b.lastBackoffStart) > b.backoffResetDuration { |
| 331 | b.backoff.Steps = math.MaxInt32 |
| 332 | b.backoff.Duration = b.initialBackoff |
| 333 | } |
| 334 | b.lastBackoffStart = b.clock.Now() |
| 335 | return b.backoff.Step() |
| 336 | } |
| 337 | |
| 338 | // Backoff implements BackoffManager.Backoff, it returns a timer so caller can block on the timer for exponential backoff. |
| 339 | // The returned timer must be drained before calling Backoff() the second time |
| 340 | func (b *exponentialBackoffManagerImpl) Backoff() clock.Timer { |
| 341 | if b.backoffTimer == nil { |
| 342 | b.backoffTimer = b.clock.NewTimer(b.getNextBackoff()) |
| 343 | } else { |
| 344 | b.backoffTimer.Reset(b.getNextBackoff()) |
| 345 | } |
| 346 | return b.backoffTimer |
| 347 | } |
| 348 | |
| 349 | type jitteredBackoffManagerImpl struct { |
| 350 | clock clock.Clock |
| 351 | duration time.Duration |
| 352 | jitter float64 |
| 353 | backoffTimer clock.Timer |
| 354 | } |
| 355 | |
| 356 | // NewJitteredBackoffManager returns a BackoffManager that backoffs with given duration plus given jitter. If the jitter |
| 357 | // is negative, backoff will not be jittered. |
| 358 | func NewJitteredBackoffManager(duration time.Duration, jitter float64, c clock.Clock) BackoffManager { |
| 359 | return &jitteredBackoffManagerImpl{ |
| 360 | clock: c, |
| 361 | duration: duration, |
| 362 | jitter: jitter, |
| 363 | backoffTimer: nil, |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | func (j *jitteredBackoffManagerImpl) getNextBackoff() time.Duration { |
| 368 | jitteredPeriod := j.duration |
| 369 | if j.jitter > 0.0 { |
| 370 | jitteredPeriod = Jitter(j.duration, j.jitter) |
| 371 | } |
| 372 | return jitteredPeriod |
| 373 | } |
| 374 | |
| 375 | // Backoff implements BackoffManager.Backoff, it returns a timer so caller can block on the timer for jittered backoff. |
| 376 | // The returned timer must be drained before calling Backoff() the second time |
| 377 | func (j *jitteredBackoffManagerImpl) Backoff() clock.Timer { |
| 378 | backoff := j.getNextBackoff() |
| 379 | if j.backoffTimer == nil { |
| 380 | j.backoffTimer = j.clock.NewTimer(backoff) |
| 381 | } else { |
| 382 | j.backoffTimer.Reset(backoff) |
| 383 | } |
| 384 | return j.backoffTimer |
| 385 | } |
| 386 | |
| 387 | // ExponentialBackoff repeats a condition check with exponential backoff. |
| 388 | // |
| 389 | // It repeatedly checks the condition and then sleeps, using `backoff.Step()` |
| 390 | // to determine the length of the sleep and adjust Duration and Steps. |
| 391 | // Stops and returns as soon as: |
| 392 | // 1. the condition check returns true or an error, |
| 393 | // 2. `backoff.Steps` checks of the condition have been done, or |
| 394 | // 3. a sleep truncated by the cap on duration has been completed. |
| 395 | // In case (1) the returned error is what the condition function returned. |
| 396 | // In all other cases, ErrWaitTimeout is returned. |
| 397 | func ExponentialBackoff(backoff Backoff, condition ConditionFunc) error { |
| 398 | for backoff.Steps > 0 { |
| 399 | if ok, err := runConditionWithCrashProtection(condition); err != nil || ok { |
| 400 | return err |
| 401 | } |
| 402 | if backoff.Steps == 1 { |
| 403 | break |
| 404 | } |
| 405 | time.Sleep(backoff.Step()) |
| 406 | } |
| 407 | return ErrWaitTimeout |
| 408 | } |
| 409 | |
| 410 | // Poll tries a condition func until it returns true, an error, or the timeout |
| 411 | // is reached. |
| 412 | // |
| 413 | // Poll always waits the interval before the run of 'condition'. |
| 414 | // 'condition' will always be invoked at least once. |
| 415 | // |
| 416 | // Some intervals may be missed if the condition takes too long or the time |
| 417 | // window is too short. |
| 418 | // |
| 419 | // If you want to Poll something forever, see PollInfinite. |
| 420 | func Poll(interval, timeout time.Duration, condition ConditionFunc) error { |
| 421 | return pollInternal(poller(interval, timeout), condition) |
| 422 | } |
| 423 | |
| 424 | func pollInternal(wait WaitFunc, condition ConditionFunc) error { |
| 425 | done := make(chan struct{}) |
| 426 | defer close(done) |
| 427 | return WaitFor(wait, condition, done) |
| 428 | } |
| 429 | |
| 430 | // PollImmediate tries a condition func until it returns true, an error, or the timeout |
| 431 | // is reached. |
| 432 | // |
| 433 | // PollImmediate always checks 'condition' before waiting for the interval. 'condition' |
| 434 | // will always be invoked at least once. |
| 435 | // |
| 436 | // Some intervals may be missed if the condition takes too long or the time |
| 437 | // window is too short. |
| 438 | // |
| 439 | // If you want to immediately Poll something forever, see PollImmediateInfinite. |
| 440 | func PollImmediate(interval, timeout time.Duration, condition ConditionFunc) error { |
| 441 | return pollImmediateInternal(poller(interval, timeout), condition) |
| 442 | } |
| 443 | |
| 444 | func pollImmediateInternal(wait WaitFunc, condition ConditionFunc) error { |
| 445 | done, err := runConditionWithCrashProtection(condition) |
| 446 | if err != nil { |
| 447 | return err |
| 448 | } |
| 449 | if done { |
| 450 | return nil |
| 451 | } |
| 452 | return pollInternal(wait, condition) |
| 453 | } |
| 454 | |
| 455 | // PollInfinite tries a condition func until it returns true or an error |
| 456 | // |
| 457 | // PollInfinite always waits the interval before the run of 'condition'. |
| 458 | // |
| 459 | // Some intervals may be missed if the condition takes too long or the time |
| 460 | // window is too short. |
| 461 | func PollInfinite(interval time.Duration, condition ConditionFunc) error { |
| 462 | done := make(chan struct{}) |
| 463 | defer close(done) |
| 464 | return PollUntil(interval, condition, done) |
| 465 | } |
| 466 | |
| 467 | // PollImmediateInfinite tries a condition func until it returns true or an error |
| 468 | // |
| 469 | // PollImmediateInfinite runs the 'condition' before waiting for the interval. |
| 470 | // |
| 471 | // Some intervals may be missed if the condition takes too long or the time |
| 472 | // window is too short. |
| 473 | func PollImmediateInfinite(interval time.Duration, condition ConditionFunc) error { |
| 474 | done, err := runConditionWithCrashProtection(condition) |
| 475 | if err != nil { |
| 476 | return err |
| 477 | } |
| 478 | if done { |
| 479 | return nil |
| 480 | } |
| 481 | return PollInfinite(interval, condition) |
| 482 | } |
| 483 | |
| 484 | // PollUntil tries a condition func until it returns true, an error or stopCh is |
| 485 | // closed. |
| 486 | // |
| 487 | // PollUntil always waits interval before the first run of 'condition'. |
| 488 | // 'condition' will always be invoked at least once. |
| 489 | func PollUntil(interval time.Duration, condition ConditionFunc, stopCh <-chan struct{}) error { |
| 490 | ctx, cancel := contextForChannel(stopCh) |
| 491 | defer cancel() |
| 492 | return WaitFor(poller(interval, 0), condition, ctx.Done()) |
| 493 | } |
| 494 | |
| 495 | // PollImmediateUntil tries a condition func until it returns true, an error or stopCh is closed. |
| 496 | // |
| 497 | // PollImmediateUntil runs the 'condition' before waiting for the interval. |
| 498 | // 'condition' will always be invoked at least once. |
| 499 | func PollImmediateUntil(interval time.Duration, condition ConditionFunc, stopCh <-chan struct{}) error { |
| 500 | done, err := condition() |
| 501 | if err != nil { |
| 502 | return err |
| 503 | } |
| 504 | if done { |
| 505 | return nil |
| 506 | } |
| 507 | select { |
| 508 | case <-stopCh: |
| 509 | return ErrWaitTimeout |
| 510 | default: |
| 511 | return PollUntil(interval, condition, stopCh) |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | // WaitFunc creates a channel that receives an item every time a test |
| 516 | // should be executed and is closed when the last test should be invoked. |
| 517 | type WaitFunc func(done <-chan struct{}) <-chan struct{} |
| 518 | |
| 519 | // WaitFor continually checks 'fn' as driven by 'wait'. |
| 520 | // |
| 521 | // WaitFor gets a channel from 'wait()'', and then invokes 'fn' once for every value |
| 522 | // placed on the channel and once more when the channel is closed. If the channel is closed |
| 523 | // and 'fn' returns false without error, WaitFor returns ErrWaitTimeout. |
| 524 | // |
| 525 | // If 'fn' returns an error the loop ends and that error is returned. If |
| 526 | // 'fn' returns true the loop ends and nil is returned. |
| 527 | // |
| 528 | // ErrWaitTimeout will be returned if the 'done' channel is closed without fn ever |
| 529 | // returning true. |
| 530 | // |
| 531 | // When the done channel is closed, because the golang `select` statement is |
| 532 | // "uniform pseudo-random", the `fn` might still run one or multiple time, |
| 533 | // though eventually `WaitFor` will return. |
| 534 | func WaitFor(wait WaitFunc, fn ConditionFunc, done <-chan struct{}) error { |
| 535 | stopCh := make(chan struct{}) |
| 536 | defer close(stopCh) |
| 537 | c := wait(stopCh) |
| 538 | for { |
| 539 | select { |
| 540 | case _, open := <-c: |
| 541 | ok, err := runConditionWithCrashProtection(fn) |
| 542 | if err != nil { |
| 543 | return err |
| 544 | } |
| 545 | if ok { |
| 546 | return nil |
| 547 | } |
| 548 | if !open { |
| 549 | return ErrWaitTimeout |
| 550 | } |
| 551 | case <-done: |
| 552 | return ErrWaitTimeout |
| 553 | } |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | // poller returns a WaitFunc that will send to the channel every interval until |
| 558 | // timeout has elapsed and then closes the channel. |
| 559 | // |
| 560 | // Over very short intervals you may receive no ticks before the channel is |
| 561 | // closed. A timeout of 0 is interpreted as an infinity, and in such a case |
| 562 | // it would be the caller's responsibility to close the done channel. |
| 563 | // Failure to do so would result in a leaked goroutine. |
| 564 | // |
| 565 | // Output ticks are not buffered. If the channel is not ready to receive an |
| 566 | // item, the tick is skipped. |
| 567 | func poller(interval, timeout time.Duration) WaitFunc { |
| 568 | return WaitFunc(func(done <-chan struct{}) <-chan struct{} { |
| 569 | ch := make(chan struct{}) |
| 570 | |
| 571 | go func() { |
| 572 | defer close(ch) |
| 573 | |
| 574 | tick := time.NewTicker(interval) |
| 575 | defer tick.Stop() |
| 576 | |
| 577 | var after <-chan time.Time |
| 578 | if timeout != 0 { |
| 579 | // time.After is more convenient, but it |
| 580 | // potentially leaves timers around much longer |
| 581 | // than necessary if we exit early. |
| 582 | timer := time.NewTimer(timeout) |
| 583 | after = timer.C |
| 584 | defer timer.Stop() |
| 585 | } |
| 586 | |
| 587 | for { |
| 588 | select { |
| 589 | case <-tick.C: |
| 590 | // If the consumer isn't ready for this signal drop it and |
| 591 | // check the other channels. |
| 592 | select { |
| 593 | case ch <- struct{}{}: |
| 594 | default: |
| 595 | } |
| 596 | case <-after: |
| 597 | return |
| 598 | case <-done: |
| 599 | return |
| 600 | } |
| 601 | } |
| 602 | }() |
| 603 | |
| 604 | return ch |
| 605 | }) |
| 606 | } |