| // Copyright 2017, The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package cmp |
| |
| import ( |
| "fmt" |
| "reflect" |
| "strings" |
| "unicode" |
| "unicode/utf8" |
| |
| "github.com/google/go-cmp/cmp/internal/value" |
| ) |
| |
| // Path is a list of PathSteps describing the sequence of operations to get |
| // from some root type to the current position in the value tree. |
| // The first Path element is always an operation-less PathStep that exists |
| // simply to identify the initial type. |
| // |
| // When traversing structs with embedded structs, the embedded struct will |
| // always be accessed as a field before traversing the fields of the |
| // embedded struct themselves. That is, an exported field from the |
| // embedded struct will never be accessed directly from the parent struct. |
| type Path []PathStep |
| |
| // PathStep is a union-type for specific operations to traverse |
| // a value's tree structure. Users of this package never need to implement |
| // these types as values of this type will be returned by this package. |
| // |
| // Implementations of this interface are |
| // StructField, SliceIndex, MapIndex, Indirect, TypeAssertion, and Transform. |
| type PathStep interface { |
| String() string |
| |
| // Type is the resulting type after performing the path step. |
| Type() reflect.Type |
| |
| // Values is the resulting values after performing the path step. |
| // The type of each valid value is guaranteed to be identical to Type. |
| // |
| // In some cases, one or both may be invalid or have restrictions: |
| // • For StructField, both are not interface-able if the current field |
| // is unexported and the struct type is not explicitly permitted by |
| // an Exporter to traverse unexported fields. |
| // • For SliceIndex, one may be invalid if an element is missing from |
| // either the x or y slice. |
| // • For MapIndex, one may be invalid if an entry is missing from |
| // either the x or y map. |
| // |
| // The provided values must not be mutated. |
| Values() (vx, vy reflect.Value) |
| } |
| |
| var ( |
| _ PathStep = StructField{} |
| _ PathStep = SliceIndex{} |
| _ PathStep = MapIndex{} |
| _ PathStep = Indirect{} |
| _ PathStep = TypeAssertion{} |
| _ PathStep = Transform{} |
| ) |
| |
| func (pa *Path) push(s PathStep) { |
| *pa = append(*pa, s) |
| } |
| |
| func (pa *Path) pop() { |
| *pa = (*pa)[:len(*pa)-1] |
| } |
| |
| // Last returns the last PathStep in the Path. |
| // If the path is empty, this returns a non-nil PathStep that reports a nil Type. |
| func (pa Path) Last() PathStep { |
| return pa.Index(-1) |
| } |
| |
| // Index returns the ith step in the Path and supports negative indexing. |
| // A negative index starts counting from the tail of the Path such that -1 |
| // refers to the last step, -2 refers to the second-to-last step, and so on. |
| // If index is invalid, this returns a non-nil PathStep that reports a nil Type. |
| func (pa Path) Index(i int) PathStep { |
| if i < 0 { |
| i = len(pa) + i |
| } |
| if i < 0 || i >= len(pa) { |
| return pathStep{} |
| } |
| return pa[i] |
| } |
| |
| // String returns the simplified path to a node. |
| // The simplified path only contains struct field accesses. |
| // |
| // For example: |
| // MyMap.MySlices.MyField |
| func (pa Path) String() string { |
| var ss []string |
| for _, s := range pa { |
| if _, ok := s.(StructField); ok { |
| ss = append(ss, s.String()) |
| } |
| } |
| return strings.TrimPrefix(strings.Join(ss, ""), ".") |
| } |
| |
| // GoString returns the path to a specific node using Go syntax. |
| // |
| // For example: |
| // (*root.MyMap["key"].(*mypkg.MyStruct).MySlices)[2][3].MyField |
| func (pa Path) GoString() string { |
| var ssPre, ssPost []string |
| var numIndirect int |
| for i, s := range pa { |
| var nextStep PathStep |
| if i+1 < len(pa) { |
| nextStep = pa[i+1] |
| } |
| switch s := s.(type) { |
| case Indirect: |
| numIndirect++ |
| pPre, pPost := "(", ")" |
| switch nextStep.(type) { |
| case Indirect: |
| continue // Next step is indirection, so let them batch up |
| case StructField: |
| numIndirect-- // Automatic indirection on struct fields |
| case nil: |
| pPre, pPost = "", "" // Last step; no need for parenthesis |
| } |
| if numIndirect > 0 { |
| ssPre = append(ssPre, pPre+strings.Repeat("*", numIndirect)) |
| ssPost = append(ssPost, pPost) |
| } |
| numIndirect = 0 |
| continue |
| case Transform: |
| ssPre = append(ssPre, s.trans.name+"(") |
| ssPost = append(ssPost, ")") |
| continue |
| } |
| ssPost = append(ssPost, s.String()) |
| } |
| for i, j := 0, len(ssPre)-1; i < j; i, j = i+1, j-1 { |
| ssPre[i], ssPre[j] = ssPre[j], ssPre[i] |
| } |
| return strings.Join(ssPre, "") + strings.Join(ssPost, "") |
| } |
| |
| type pathStep struct { |
| typ reflect.Type |
| vx, vy reflect.Value |
| } |
| |
| func (ps pathStep) Type() reflect.Type { return ps.typ } |
| func (ps pathStep) Values() (vx, vy reflect.Value) { return ps.vx, ps.vy } |
| func (ps pathStep) String() string { |
| if ps.typ == nil { |
| return "<nil>" |
| } |
| s := ps.typ.String() |
| if s == "" || strings.ContainsAny(s, "{}\n") { |
| return "root" // Type too simple or complex to print |
| } |
| return fmt.Sprintf("{%s}", s) |
| } |
| |
| // StructField represents a struct field access on a field called Name. |
| type StructField struct{ *structField } |
| type structField struct { |
| pathStep |
| name string |
| idx int |
| |
| // These fields are used for forcibly accessing an unexported field. |
| // pvx, pvy, and field are only valid if unexported is true. |
| unexported bool |
| mayForce bool // Forcibly allow visibility |
| paddr bool // Was parent addressable? |
| pvx, pvy reflect.Value // Parent values (always addressible) |
| field reflect.StructField // Field information |
| } |
| |
| func (sf StructField) Type() reflect.Type { return sf.typ } |
| func (sf StructField) Values() (vx, vy reflect.Value) { |
| if !sf.unexported { |
| return sf.vx, sf.vy // CanInterface reports true |
| } |
| |
| // Forcibly obtain read-write access to an unexported struct field. |
| if sf.mayForce { |
| vx = retrieveUnexportedField(sf.pvx, sf.field, sf.paddr) |
| vy = retrieveUnexportedField(sf.pvy, sf.field, sf.paddr) |
| return vx, vy // CanInterface reports true |
| } |
| return sf.vx, sf.vy // CanInterface reports false |
| } |
| func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) } |
| |
| // Name is the field name. |
| func (sf StructField) Name() string { return sf.name } |
| |
| // Index is the index of the field in the parent struct type. |
| // See reflect.Type.Field. |
| func (sf StructField) Index() int { return sf.idx } |
| |
| // SliceIndex is an index operation on a slice or array at some index Key. |
| type SliceIndex struct{ *sliceIndex } |
| type sliceIndex struct { |
| pathStep |
| xkey, ykey int |
| isSlice bool // False for reflect.Array |
| } |
| |
| func (si SliceIndex) Type() reflect.Type { return si.typ } |
| func (si SliceIndex) Values() (vx, vy reflect.Value) { return si.vx, si.vy } |
| func (si SliceIndex) String() string { |
| switch { |
| case si.xkey == si.ykey: |
| return fmt.Sprintf("[%d]", si.xkey) |
| case si.ykey == -1: |
| // [5->?] means "I don't know where X[5] went" |
| return fmt.Sprintf("[%d->?]", si.xkey) |
| case si.xkey == -1: |
| // [?->3] means "I don't know where Y[3] came from" |
| return fmt.Sprintf("[?->%d]", si.ykey) |
| default: |
| // [5->3] means "X[5] moved to Y[3]" |
| return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey) |
| } |
| } |
| |
| // Key is the index key; it may return -1 if in a split state |
| func (si SliceIndex) Key() int { |
| if si.xkey != si.ykey { |
| return -1 |
| } |
| return si.xkey |
| } |
| |
| // SplitKeys are the indexes for indexing into slices in the |
| // x and y values, respectively. These indexes may differ due to the |
| // insertion or removal of an element in one of the slices, causing |
| // all of the indexes to be shifted. If an index is -1, then that |
| // indicates that the element does not exist in the associated slice. |
| // |
| // Key is guaranteed to return -1 if and only if the indexes returned |
| // by SplitKeys are not the same. SplitKeys will never return -1 for |
| // both indexes. |
| func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey } |
| |
| // MapIndex is an index operation on a map at some index Key. |
| type MapIndex struct{ *mapIndex } |
| type mapIndex struct { |
| pathStep |
| key reflect.Value |
| } |
| |
| func (mi MapIndex) Type() reflect.Type { return mi.typ } |
| func (mi MapIndex) Values() (vx, vy reflect.Value) { return mi.vx, mi.vy } |
| func (mi MapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) } |
| |
| // Key is the value of the map key. |
| func (mi MapIndex) Key() reflect.Value { return mi.key } |
| |
| // Indirect represents pointer indirection on the parent type. |
| type Indirect struct{ *indirect } |
| type indirect struct { |
| pathStep |
| } |
| |
| func (in Indirect) Type() reflect.Type { return in.typ } |
| func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy } |
| func (in Indirect) String() string { return "*" } |
| |
| // TypeAssertion represents a type assertion on an interface. |
| type TypeAssertion struct{ *typeAssertion } |
| type typeAssertion struct { |
| pathStep |
| } |
| |
| func (ta TypeAssertion) Type() reflect.Type { return ta.typ } |
| func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy } |
| func (ta TypeAssertion) String() string { return fmt.Sprintf(".(%v)", ta.typ) } |
| |
| // Transform is a transformation from the parent type to the current type. |
| type Transform struct{ *transform } |
| type transform struct { |
| pathStep |
| trans *transformer |
| } |
| |
| func (tf Transform) Type() reflect.Type { return tf.typ } |
| func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy } |
| func (tf Transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) } |
| |
| // Name is the name of the Transformer. |
| func (tf Transform) Name() string { return tf.trans.name } |
| |
| // Func is the function pointer to the transformer function. |
| func (tf Transform) Func() reflect.Value { return tf.trans.fnc } |
| |
| // Option returns the originally constructed Transformer option. |
| // The == operator can be used to detect the exact option used. |
| func (tf Transform) Option() Option { return tf.trans } |
| |
| // pointerPath represents a dual-stack of pointers encountered when |
| // recursively traversing the x and y values. This data structure supports |
| // detection of cycles and determining whether the cycles are equal. |
| // In Go, cycles can occur via pointers, slices, and maps. |
| // |
| // The pointerPath uses a map to represent a stack; where descension into a |
| // pointer pushes the address onto the stack, and ascension from a pointer |
| // pops the address from the stack. Thus, when traversing into a pointer from |
| // reflect.Ptr, reflect.Slice element, or reflect.Map, we can detect cycles |
| // by checking whether the pointer has already been visited. The cycle detection |
| // uses a seperate stack for the x and y values. |
| // |
| // If a cycle is detected we need to determine whether the two pointers |
| // should be considered equal. The definition of equality chosen by Equal |
| // requires two graphs to have the same structure. To determine this, both the |
| // x and y values must have a cycle where the previous pointers were also |
| // encountered together as a pair. |
| // |
| // Semantically, this is equivalent to augmenting Indirect, SliceIndex, and |
| // MapIndex with pointer information for the x and y values. |
| // Suppose px and py are two pointers to compare, we then search the |
| // Path for whether px was ever encountered in the Path history of x, and |
| // similarly so with py. If either side has a cycle, the comparison is only |
| // equal if both px and py have a cycle resulting from the same PathStep. |
| // |
| // Using a map as a stack is more performant as we can perform cycle detection |
| // in O(1) instead of O(N) where N is len(Path). |
| type pointerPath struct { |
| // mx is keyed by x pointers, where the value is the associated y pointer. |
| mx map[value.Pointer]value.Pointer |
| // my is keyed by y pointers, where the value is the associated x pointer. |
| my map[value.Pointer]value.Pointer |
| } |
| |
| func (p *pointerPath) Init() { |
| p.mx = make(map[value.Pointer]value.Pointer) |
| p.my = make(map[value.Pointer]value.Pointer) |
| } |
| |
| // Push indicates intent to descend into pointers vx and vy where |
| // visited reports whether either has been seen before. If visited before, |
| // equal reports whether both pointers were encountered together. |
| // Pop must be called if and only if the pointers were never visited. |
| // |
| // The pointers vx and vy must be a reflect.Ptr, reflect.Slice, or reflect.Map |
| // and be non-nil. |
| func (p pointerPath) Push(vx, vy reflect.Value) (equal, visited bool) { |
| px := value.PointerOf(vx) |
| py := value.PointerOf(vy) |
| _, ok1 := p.mx[px] |
| _, ok2 := p.my[py] |
| if ok1 || ok2 { |
| equal = p.mx[px] == py && p.my[py] == px // Pointers paired together |
| return equal, true |
| } |
| p.mx[px] = py |
| p.my[py] = px |
| return false, false |
| } |
| |
| // Pop ascends from pointers vx and vy. |
| func (p pointerPath) Pop(vx, vy reflect.Value) { |
| delete(p.mx, value.PointerOf(vx)) |
| delete(p.my, value.PointerOf(vy)) |
| } |
| |
| // isExported reports whether the identifier is exported. |
| func isExported(id string) bool { |
| r, _ := utf8.DecodeRuneInString(id) |
| return unicode.IsUpper(r) |
| } |