blob: d68ef66d18a32c018b0544e00c1d9e40e253e125 [file] [log] [blame]
/*
* Copyright (c) 2018 - present. Boling Consulting Solutions (bcsw.net)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* NOTE: This file was generated, manual edits will be overwritten!
*
* Generated by 'goCodeGenerator.py':
* https://github.com/cboling/OMCI-parser/README.md
*/
package generated
import "github.com/deckarep/golang-set"
const ReDownstreamAmplifierClassId ClassID = ClassID(316)
var redownstreamamplifierBME *ManagedEntityDefinition
// ReDownstreamAmplifier (class ID #316)
// This ME organizes data associated with each OA for downstream data supported by the RE. The
// management ONU automatically creates one instance of this ME for each downstream OA as follows.
//
// • When the RE has mid-span PON RE downstream OA ports built into its factory configuration.
//
// • When a cardholder is provisioned to expect a circuit pack of the mid-span PON RE downstream OA
// type.
//
// • When a cardholder provisioned for plug-and-play is equipped with a circuit pack of the midspan
// PON RE downstream OA type. Note that the installation of a plug-and-play card may indicate the
// presence of a mid-span PON RE downstream OA via equipment ID as well as its type attribute, and
// indeed may cause the management ONU to instantiate a port-mapping package to specify the ports
// precisely.
//
// The management ONU automatically deletes instances of this ME when a cardholder is neither
// provisioned to expect a mid-span PON RE downstream OA circuit pack, nor is it equipped with a
// mid-span PON RE downstream OA circuit pack.
//
// Relationships
// An instance of this ME is associated with a downstream OA and with an instance of a circuit
// pack. If the RE includes OEO regeneration in either direction, the RE downstream amplifier is
// also associated with an RE ANI-G. Refer to clause 9.14.1 for further discussion.
//
// Attributes
// Managed Entity Id
// NOTE 1 – This ME ID may be identical to that of an RE ANI-G if it shares the same physical slot-
// port.
//
// Administrative State
// NOTE 2– When an RE supports multiple PONs, or protected access to a single PON, its primary
// ANI-G cannot be completely shut down, due to a loss of the management communications capability.
// Complete blocking of service and removal of power may nevertheless be appropriate for secondary
// RE ANI-Gs. Administrative lock suppresses alarms and notifications for both primary and
// secondary RE ANI-Gs. Administrative lock suppresses alarms and notifications for an RE
// downstream amplifier, be it either primary or secondary.
//
// Operational State
// Operational state: This attribute indicates whether the ME is capable of performing its
// function. Valid values are enabled (0) and disabled (1). (R) (optional) (1 byte)
//
// Arc
// ARC: See clause A.1.4.3. (R, W) (optional) (1 byte)
//
// Arc Interval
// ARC interval: See clause A.1.4.3. (R, W) (optional) (1 byte)
//
// Operational Mode
// (R,W) (mandatory) (1 byte)
//
// Input Optical Signal Level
// Input optical signal level: This attribute reports the current measurement of the input optical
// signal power of the downstream OA. Its value is a 2s complement integer referred to 1 mW (i.e.,
// dBm), with 0.002 dB granularity. (R) (optional) (2 bytes)
//
// Lower Input Optical Threshold
// Lower input optical threshold: This attribute specifies the optical level the RE uses to declare
// the low received optical power alarm. Valid values are –127 dBm (coded as 254) to 0 dBm (coded
// as 0) in 0.5 dB increments. The default value 0xFF selects the RE's internal policy. (R, W)
// (optional) (1 byte)
//
// Upper Input Optical Threshold
// Upper input optical threshold: This attribute specifies the optical level the RE uses to declare
// the high received optical power alarm. Valid values are –127 dBm (coded as 254) to 0 dBm (coded
// as 0) in 0.5 dB increments. The default value 0xFF selects the RE's internal policy. (R, W)
// (optional) (1 byte)
//
// Output Optical Signal Level
// Output optical signal level: This attribute reports the current measurement of the mean optical
// launch power of the downstream OA. Its value is a 2s complement integer referred to 1 mW (i.e.,
// dBm), with 0.002 dB granularity. (R) (optional) (2 bytes)
//
// Lower Output Optical Threshold
// Lower output optical threshold: This attribute specifies the minimum mean optical launch power
// that the RE uses to declare the low transmit optical power alarm. Its value is a 2s complement
// integer referred to 1 mW (i.e., dBm), with 0.5 dB granularity. The default value 0x7F selects
// the RE's internal policy. (R, W) (optional) (1 byte)
//
// Upper Output Optical Threshold
// Upper output optical threshold: This attribute specifies the maximum mean optical launch power
// that the RE uses to declare the high transmit optical power alarm. Its value is a 2s complement
// integer referred to 1 mW (i.e., dBm), with 0.5 dB granularity. The default value 0x7F selects
// the RE's internal policy. (R, W) (optional) (1 byte)
//
// R'S' Splitter Coupling Ratio
// R'S' splitter coupling ratio: This attribute reports the coupling ratio of the splitter at the
// R'/S' interface that connects the embedded management ONU and the amplifiers to the OTL. Valid
// values are 99:1 (coded as 99 decimal) to 1:99 (coded as 1 decimal), where the first value is the
// value encoded and is the percentage of the optical signal connected to the amplifier. The
// default value 0xFF indicates that there is no splitter connected to this upstream/downstream
// amplifier pair. (R) (optional) (1 byte)
//
type ReDownstreamAmplifier struct {
ManagedEntityDefinition
Attributes AttributeValueMap
}
func init() {
redownstreamamplifierBME = &ManagedEntityDefinition{
Name: "ReDownstreamAmplifier",
ClassID: 316,
MessageTypes: mapset.NewSetWith(
Get,
Set,
Test,
),
AllowedAttributeMask: 0XFFF0,
AttributeDefinitions: AttributeDefinitionMap{
0: Uint16Field("ManagedEntityId", 0, mapset.NewSetWith(Read), false, false, false, false, 0),
1: ByteField("AdministrativeState", 0, mapset.NewSetWith(Read, Write), false, false, false, false, 1),
2: ByteField("OperationalState", 0, mapset.NewSetWith(Read), true, false, true, false, 2),
3: ByteField("Arc", 0, mapset.NewSetWith(Read, Write), true, false, true, false, 3),
4: ByteField("ArcInterval", 0, mapset.NewSetWith(Read, Write), false, false, true, false, 4),
5: ByteField("OperationalMode", 0, mapset.NewSetWith(Read, Write), false, false, false, false, 5),
6: Uint16Field("InputOpticalSignalLevel", 0, mapset.NewSetWith(Read), false, false, true, false, 6),
7: ByteField("LowerInputOpticalThreshold", 0, mapset.NewSetWith(Read, Write), false, false, true, false, 7),
8: ByteField("UpperInputOpticalThreshold", 0, mapset.NewSetWith(Read, Write), false, false, true, false, 8),
9: Uint16Field("OutputOpticalSignalLevel", 0, mapset.NewSetWith(Read), false, false, true, false, 9),
10: ByteField("LowerOutputOpticalThreshold", 0, mapset.NewSetWith(Read, Write), false, false, true, false, 10),
11: ByteField("UpperOutputOpticalThreshold", 0, mapset.NewSetWith(Read, Write), false, false, true, false, 11),
12: ByteField("R'S'SplitterCouplingRatio", 0, mapset.NewSetWith(Read), false, false, true, false, 12),
},
}
}
// NewReDownstreamAmplifier (class ID 316 creates the basic
// Managed Entity definition that is used to validate an ME of this type that
// is received from the wire, about to be sent on the wire.
func NewReDownstreamAmplifier(params ...ParamData) (*ManagedEntity, OmciErrors) {
return NewManagedEntity(redownstreamamplifierBME, params...)
}