| // Copyright 2017, The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package cmp determines equality of values. |
| // |
| // This package is intended to be a more powerful and safer alternative to |
| // reflect.DeepEqual for comparing whether two values are semantically equal. |
| // It is intended to only be used in tests, as performance is not a goal and |
| // it may panic if it cannot compare the values. Its propensity towards |
| // panicking means that its unsuitable for production environments where a |
| // spurious panic may be fatal. |
| // |
| // The primary features of cmp are: |
| // |
| // • When the default behavior of equality does not suit the needs of the test, |
| // custom equality functions can override the equality operation. |
| // For example, an equality function may report floats as equal so long as they |
| // are within some tolerance of each other. |
| // |
| // • Types that have an Equal method may use that method to determine equality. |
| // This allows package authors to determine the equality operation for the types |
| // that they define. |
| // |
| // • If no custom equality functions are used and no Equal method is defined, |
| // equality is determined by recursively comparing the primitive kinds on both |
| // values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported |
| // fields are not compared by default; they result in panics unless suppressed |
| // by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly |
| // compared using the Exporter option. |
| package cmp |
| |
| import ( |
| "fmt" |
| "reflect" |
| "strings" |
| |
| "github.com/google/go-cmp/cmp/internal/diff" |
| "github.com/google/go-cmp/cmp/internal/flags" |
| "github.com/google/go-cmp/cmp/internal/function" |
| "github.com/google/go-cmp/cmp/internal/value" |
| ) |
| |
| // Equal reports whether x and y are equal by recursively applying the |
| // following rules in the given order to x and y and all of their sub-values: |
| // |
| // • Let S be the set of all Ignore, Transformer, and Comparer options that |
| // remain after applying all path filters, value filters, and type filters. |
| // If at least one Ignore exists in S, then the comparison is ignored. |
| // If the number of Transformer and Comparer options in S is greater than one, |
| // then Equal panics because it is ambiguous which option to use. |
| // If S contains a single Transformer, then use that to transform the current |
| // values and recursively call Equal on the output values. |
| // If S contains a single Comparer, then use that to compare the current values. |
| // Otherwise, evaluation proceeds to the next rule. |
| // |
| // • If the values have an Equal method of the form "(T) Equal(T) bool" or |
| // "(T) Equal(I) bool" where T is assignable to I, then use the result of |
| // x.Equal(y) even if x or y is nil. Otherwise, no such method exists and |
| // evaluation proceeds to the next rule. |
| // |
| // • Lastly, try to compare x and y based on their basic kinds. |
| // Simple kinds like booleans, integers, floats, complex numbers, strings, and |
| // channels are compared using the equivalent of the == operator in Go. |
| // Functions are only equal if they are both nil, otherwise they are unequal. |
| // |
| // Structs are equal if recursively calling Equal on all fields report equal. |
| // If a struct contains unexported fields, Equal panics unless an Ignore option |
| // (e.g., cmpopts.IgnoreUnexported) ignores that field or the Exporter option |
| // explicitly permits comparing the unexported field. |
| // |
| // Slices are equal if they are both nil or both non-nil, where recursively |
| // calling Equal on all non-ignored slice or array elements report equal. |
| // Empty non-nil slices and nil slices are not equal; to equate empty slices, |
| // consider using cmpopts.EquateEmpty. |
| // |
| // Maps are equal if they are both nil or both non-nil, where recursively |
| // calling Equal on all non-ignored map entries report equal. |
| // Map keys are equal according to the == operator. |
| // To use custom comparisons for map keys, consider using cmpopts.SortMaps. |
| // Empty non-nil maps and nil maps are not equal; to equate empty maps, |
| // consider using cmpopts.EquateEmpty. |
| // |
| // Pointers and interfaces are equal if they are both nil or both non-nil, |
| // where they have the same underlying concrete type and recursively |
| // calling Equal on the underlying values reports equal. |
| // |
| // Before recursing into a pointer, slice element, or map, the current path |
| // is checked to detect whether the address has already been visited. |
| // If there is a cycle, then the pointed at values are considered equal |
| // only if both addresses were previously visited in the same path step. |
| func Equal(x, y interface{}, opts ...Option) bool { |
| s := newState(opts) |
| s.compareAny(rootStep(x, y)) |
| return s.result.Equal() |
| } |
| |
| // Diff returns a human-readable report of the differences between two values: |
| // y - x. It returns an empty string if and only if Equal returns true for the |
| // same input values and options. |
| // |
| // The output is displayed as a literal in pseudo-Go syntax. |
| // At the start of each line, a "-" prefix indicates an element removed from x, |
| // a "+" prefix to indicates an element added from y, and the lack of a prefix |
| // indicates an element common to both x and y. If possible, the output |
| // uses fmt.Stringer.String or error.Error methods to produce more humanly |
| // readable outputs. In such cases, the string is prefixed with either an |
| // 's' or 'e' character, respectively, to indicate that the method was called. |
| // |
| // Do not depend on this output being stable. If you need the ability to |
| // programmatically interpret the difference, consider using a custom Reporter. |
| func Diff(x, y interface{}, opts ...Option) string { |
| s := newState(opts) |
| |
| // Optimization: If there are no other reporters, we can optimize for the |
| // common case where the result is equal (and thus no reported difference). |
| // This avoids the expensive construction of a difference tree. |
| if len(s.reporters) == 0 { |
| s.compareAny(rootStep(x, y)) |
| if s.result.Equal() { |
| return "" |
| } |
| s.result = diff.Result{} // Reset results |
| } |
| |
| r := new(defaultReporter) |
| s.reporters = append(s.reporters, reporter{r}) |
| s.compareAny(rootStep(x, y)) |
| d := r.String() |
| if (d == "") != s.result.Equal() { |
| panic("inconsistent difference and equality results") |
| } |
| return d |
| } |
| |
| // rootStep constructs the first path step. If x and y have differing types, |
| // then they are stored within an empty interface type. |
| func rootStep(x, y interface{}) PathStep { |
| vx := reflect.ValueOf(x) |
| vy := reflect.ValueOf(y) |
| |
| // If the inputs are different types, auto-wrap them in an empty interface |
| // so that they have the same parent type. |
| var t reflect.Type |
| if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() { |
| t = reflect.TypeOf((*interface{})(nil)).Elem() |
| if vx.IsValid() { |
| vvx := reflect.New(t).Elem() |
| vvx.Set(vx) |
| vx = vvx |
| } |
| if vy.IsValid() { |
| vvy := reflect.New(t).Elem() |
| vvy.Set(vy) |
| vy = vvy |
| } |
| } else { |
| t = vx.Type() |
| } |
| |
| return &pathStep{t, vx, vy} |
| } |
| |
| type state struct { |
| // These fields represent the "comparison state". |
| // Calling statelessCompare must not result in observable changes to these. |
| result diff.Result // The current result of comparison |
| curPath Path // The current path in the value tree |
| curPtrs pointerPath // The current set of visited pointers |
| reporters []reporter // Optional reporters |
| |
| // recChecker checks for infinite cycles applying the same set of |
| // transformers upon the output of itself. |
| recChecker recChecker |
| |
| // dynChecker triggers pseudo-random checks for option correctness. |
| // It is safe for statelessCompare to mutate this value. |
| dynChecker dynChecker |
| |
| // These fields, once set by processOption, will not change. |
| exporters []exporter // List of exporters for structs with unexported fields |
| opts Options // List of all fundamental and filter options |
| } |
| |
| func newState(opts []Option) *state { |
| // Always ensure a validator option exists to validate the inputs. |
| s := &state{opts: Options{validator{}}} |
| s.curPtrs.Init() |
| s.processOption(Options(opts)) |
| return s |
| } |
| |
| func (s *state) processOption(opt Option) { |
| switch opt := opt.(type) { |
| case nil: |
| case Options: |
| for _, o := range opt { |
| s.processOption(o) |
| } |
| case coreOption: |
| type filtered interface { |
| isFiltered() bool |
| } |
| if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() { |
| panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt)) |
| } |
| s.opts = append(s.opts, opt) |
| case exporter: |
| s.exporters = append(s.exporters, opt) |
| case reporter: |
| s.reporters = append(s.reporters, opt) |
| default: |
| panic(fmt.Sprintf("unknown option %T", opt)) |
| } |
| } |
| |
| // statelessCompare compares two values and returns the result. |
| // This function is stateless in that it does not alter the current result, |
| // or output to any registered reporters. |
| func (s *state) statelessCompare(step PathStep) diff.Result { |
| // We do not save and restore curPath and curPtrs because all of the |
| // compareX methods should properly push and pop from them. |
| // It is an implementation bug if the contents of the paths differ from |
| // when calling this function to when returning from it. |
| |
| oldResult, oldReporters := s.result, s.reporters |
| s.result = diff.Result{} // Reset result |
| s.reporters = nil // Remove reporters to avoid spurious printouts |
| s.compareAny(step) |
| res := s.result |
| s.result, s.reporters = oldResult, oldReporters |
| return res |
| } |
| |
| func (s *state) compareAny(step PathStep) { |
| // Update the path stack. |
| s.curPath.push(step) |
| defer s.curPath.pop() |
| for _, r := range s.reporters { |
| r.PushStep(step) |
| defer r.PopStep() |
| } |
| s.recChecker.Check(s.curPath) |
| |
| // Cycle-detection for slice elements (see NOTE in compareSlice). |
| t := step.Type() |
| vx, vy := step.Values() |
| if si, ok := step.(SliceIndex); ok && si.isSlice && vx.IsValid() && vy.IsValid() { |
| px, py := vx.Addr(), vy.Addr() |
| if eq, visited := s.curPtrs.Push(px, py); visited { |
| s.report(eq, reportByCycle) |
| return |
| } |
| defer s.curPtrs.Pop(px, py) |
| } |
| |
| // Rule 1: Check whether an option applies on this node in the value tree. |
| if s.tryOptions(t, vx, vy) { |
| return |
| } |
| |
| // Rule 2: Check whether the type has a valid Equal method. |
| if s.tryMethod(t, vx, vy) { |
| return |
| } |
| |
| // Rule 3: Compare based on the underlying kind. |
| switch t.Kind() { |
| case reflect.Bool: |
| s.report(vx.Bool() == vy.Bool(), 0) |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| s.report(vx.Int() == vy.Int(), 0) |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| s.report(vx.Uint() == vy.Uint(), 0) |
| case reflect.Float32, reflect.Float64: |
| s.report(vx.Float() == vy.Float(), 0) |
| case reflect.Complex64, reflect.Complex128: |
| s.report(vx.Complex() == vy.Complex(), 0) |
| case reflect.String: |
| s.report(vx.String() == vy.String(), 0) |
| case reflect.Chan, reflect.UnsafePointer: |
| s.report(vx.Pointer() == vy.Pointer(), 0) |
| case reflect.Func: |
| s.report(vx.IsNil() && vy.IsNil(), 0) |
| case reflect.Struct: |
| s.compareStruct(t, vx, vy) |
| case reflect.Slice, reflect.Array: |
| s.compareSlice(t, vx, vy) |
| case reflect.Map: |
| s.compareMap(t, vx, vy) |
| case reflect.Ptr: |
| s.comparePtr(t, vx, vy) |
| case reflect.Interface: |
| s.compareInterface(t, vx, vy) |
| default: |
| panic(fmt.Sprintf("%v kind not handled", t.Kind())) |
| } |
| } |
| |
| func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool { |
| // Evaluate all filters and apply the remaining options. |
| if opt := s.opts.filter(s, t, vx, vy); opt != nil { |
| opt.apply(s, vx, vy) |
| return true |
| } |
| return false |
| } |
| |
| func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool { |
| // Check if this type even has an Equal method. |
| m, ok := t.MethodByName("Equal") |
| if !ok || !function.IsType(m.Type, function.EqualAssignable) { |
| return false |
| } |
| |
| eq := s.callTTBFunc(m.Func, vx, vy) |
| s.report(eq, reportByMethod) |
| return true |
| } |
| |
| func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value { |
| v = sanitizeValue(v, f.Type().In(0)) |
| if !s.dynChecker.Next() { |
| return f.Call([]reflect.Value{v})[0] |
| } |
| |
| // Run the function twice and ensure that we get the same results back. |
| // We run in goroutines so that the race detector (if enabled) can detect |
| // unsafe mutations to the input. |
| c := make(chan reflect.Value) |
| go detectRaces(c, f, v) |
| got := <-c |
| want := f.Call([]reflect.Value{v})[0] |
| if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() { |
| // To avoid false-positives with non-reflexive equality operations, |
| // we sanity check whether a value is equal to itself. |
| if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() { |
| return want |
| } |
| panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f))) |
| } |
| return want |
| } |
| |
| func (s *state) callTTBFunc(f, x, y reflect.Value) bool { |
| x = sanitizeValue(x, f.Type().In(0)) |
| y = sanitizeValue(y, f.Type().In(1)) |
| if !s.dynChecker.Next() { |
| return f.Call([]reflect.Value{x, y})[0].Bool() |
| } |
| |
| // Swapping the input arguments is sufficient to check that |
| // f is symmetric and deterministic. |
| // We run in goroutines so that the race detector (if enabled) can detect |
| // unsafe mutations to the input. |
| c := make(chan reflect.Value) |
| go detectRaces(c, f, y, x) |
| got := <-c |
| want := f.Call([]reflect.Value{x, y})[0].Bool() |
| if !got.IsValid() || got.Bool() != want { |
| panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f))) |
| } |
| return want |
| } |
| |
| func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) { |
| var ret reflect.Value |
| defer func() { |
| recover() // Ignore panics, let the other call to f panic instead |
| c <- ret |
| }() |
| ret = f.Call(vs)[0] |
| } |
| |
| // sanitizeValue converts nil interfaces of type T to those of type R, |
| // assuming that T is assignable to R. |
| // Otherwise, it returns the input value as is. |
| func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value { |
| // TODO(≥go1.10): Workaround for reflect bug (https://golang.org/issue/22143). |
| if !flags.AtLeastGo110 { |
| if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t { |
| return reflect.New(t).Elem() |
| } |
| } |
| return v |
| } |
| |
| func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) { |
| var addr bool |
| var vax, vay reflect.Value // Addressable versions of vx and vy |
| |
| var mayForce, mayForceInit bool |
| step := StructField{&structField{}} |
| for i := 0; i < t.NumField(); i++ { |
| step.typ = t.Field(i).Type |
| step.vx = vx.Field(i) |
| step.vy = vy.Field(i) |
| step.name = t.Field(i).Name |
| step.idx = i |
| step.unexported = !isExported(step.name) |
| if step.unexported { |
| if step.name == "_" { |
| continue |
| } |
| // Defer checking of unexported fields until later to give an |
| // Ignore a chance to ignore the field. |
| if !vax.IsValid() || !vay.IsValid() { |
| // For retrieveUnexportedField to work, the parent struct must |
| // be addressable. Create a new copy of the values if |
| // necessary to make them addressable. |
| addr = vx.CanAddr() || vy.CanAddr() |
| vax = makeAddressable(vx) |
| vay = makeAddressable(vy) |
| } |
| if !mayForceInit { |
| for _, xf := range s.exporters { |
| mayForce = mayForce || xf(t) |
| } |
| mayForceInit = true |
| } |
| step.mayForce = mayForce |
| step.paddr = addr |
| step.pvx = vax |
| step.pvy = vay |
| step.field = t.Field(i) |
| } |
| s.compareAny(step) |
| } |
| } |
| |
| func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) { |
| isSlice := t.Kind() == reflect.Slice |
| if isSlice && (vx.IsNil() || vy.IsNil()) { |
| s.report(vx.IsNil() && vy.IsNil(), 0) |
| return |
| } |
| |
| // NOTE: It is incorrect to call curPtrs.Push on the slice header pointer |
| // since slices represents a list of pointers, rather than a single pointer. |
| // The pointer checking logic must be handled on a per-element basis |
| // in compareAny. |
| // |
| // A slice header (see reflect.SliceHeader) in Go is a tuple of a starting |
| // pointer P, a length N, and a capacity C. Supposing each slice element has |
| // a memory size of M, then the slice is equivalent to the list of pointers: |
| // [P+i*M for i in range(N)] |
| // |
| // For example, v[:0] and v[:1] are slices with the same starting pointer, |
| // but they are clearly different values. Using the slice pointer alone |
| // violates the assumption that equal pointers implies equal values. |
| |
| step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}, isSlice: isSlice}} |
| withIndexes := func(ix, iy int) SliceIndex { |
| if ix >= 0 { |
| step.vx, step.xkey = vx.Index(ix), ix |
| } else { |
| step.vx, step.xkey = reflect.Value{}, -1 |
| } |
| if iy >= 0 { |
| step.vy, step.ykey = vy.Index(iy), iy |
| } else { |
| step.vy, step.ykey = reflect.Value{}, -1 |
| } |
| return step |
| } |
| |
| // Ignore options are able to ignore missing elements in a slice. |
| // However, detecting these reliably requires an optimal differencing |
| // algorithm, for which diff.Difference is not. |
| // |
| // Instead, we first iterate through both slices to detect which elements |
| // would be ignored if standing alone. The index of non-discarded elements |
| // are stored in a separate slice, which diffing is then performed on. |
| var indexesX, indexesY []int |
| var ignoredX, ignoredY []bool |
| for ix := 0; ix < vx.Len(); ix++ { |
| ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0 |
| if !ignored { |
| indexesX = append(indexesX, ix) |
| } |
| ignoredX = append(ignoredX, ignored) |
| } |
| for iy := 0; iy < vy.Len(); iy++ { |
| ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0 |
| if !ignored { |
| indexesY = append(indexesY, iy) |
| } |
| ignoredY = append(ignoredY, ignored) |
| } |
| |
| // Compute an edit-script for slices vx and vy (excluding ignored elements). |
| edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result { |
| return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy])) |
| }) |
| |
| // Replay the ignore-scripts and the edit-script. |
| var ix, iy int |
| for ix < vx.Len() || iy < vy.Len() { |
| var e diff.EditType |
| switch { |
| case ix < len(ignoredX) && ignoredX[ix]: |
| e = diff.UniqueX |
| case iy < len(ignoredY) && ignoredY[iy]: |
| e = diff.UniqueY |
| default: |
| e, edits = edits[0], edits[1:] |
| } |
| switch e { |
| case diff.UniqueX: |
| s.compareAny(withIndexes(ix, -1)) |
| ix++ |
| case diff.UniqueY: |
| s.compareAny(withIndexes(-1, iy)) |
| iy++ |
| default: |
| s.compareAny(withIndexes(ix, iy)) |
| ix++ |
| iy++ |
| } |
| } |
| } |
| |
| func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) { |
| if vx.IsNil() || vy.IsNil() { |
| s.report(vx.IsNil() && vy.IsNil(), 0) |
| return |
| } |
| |
| // Cycle-detection for maps. |
| if eq, visited := s.curPtrs.Push(vx, vy); visited { |
| s.report(eq, reportByCycle) |
| return |
| } |
| defer s.curPtrs.Pop(vx, vy) |
| |
| // We combine and sort the two map keys so that we can perform the |
| // comparisons in a deterministic order. |
| step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}} |
| for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) { |
| step.vx = vx.MapIndex(k) |
| step.vy = vy.MapIndex(k) |
| step.key = k |
| if !step.vx.IsValid() && !step.vy.IsValid() { |
| // It is possible for both vx and vy to be invalid if the |
| // key contained a NaN value in it. |
| // |
| // Even with the ability to retrieve NaN keys in Go 1.12, |
| // there still isn't a sensible way to compare the values since |
| // a NaN key may map to multiple unordered values. |
| // The most reasonable way to compare NaNs would be to compare the |
| // set of values. However, this is impossible to do efficiently |
| // since set equality is provably an O(n^2) operation given only |
| // an Equal function. If we had a Less function or Hash function, |
| // this could be done in O(n*log(n)) or O(n), respectively. |
| // |
| // Rather than adding complex logic to deal with NaNs, make it |
| // the user's responsibility to compare such obscure maps. |
| const help = "consider providing a Comparer to compare the map" |
| panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help)) |
| } |
| s.compareAny(step) |
| } |
| } |
| |
| func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) { |
| if vx.IsNil() || vy.IsNil() { |
| s.report(vx.IsNil() && vy.IsNil(), 0) |
| return |
| } |
| |
| // Cycle-detection for pointers. |
| if eq, visited := s.curPtrs.Push(vx, vy); visited { |
| s.report(eq, reportByCycle) |
| return |
| } |
| defer s.curPtrs.Pop(vx, vy) |
| |
| vx, vy = vx.Elem(), vy.Elem() |
| s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}}) |
| } |
| |
| func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) { |
| if vx.IsNil() || vy.IsNil() { |
| s.report(vx.IsNil() && vy.IsNil(), 0) |
| return |
| } |
| vx, vy = vx.Elem(), vy.Elem() |
| if vx.Type() != vy.Type() { |
| s.report(false, 0) |
| return |
| } |
| s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}}) |
| } |
| |
| func (s *state) report(eq bool, rf resultFlags) { |
| if rf&reportByIgnore == 0 { |
| if eq { |
| s.result.NumSame++ |
| rf |= reportEqual |
| } else { |
| s.result.NumDiff++ |
| rf |= reportUnequal |
| } |
| } |
| for _, r := range s.reporters { |
| r.Report(Result{flags: rf}) |
| } |
| } |
| |
| // recChecker tracks the state needed to periodically perform checks that |
| // user provided transformers are not stuck in an infinitely recursive cycle. |
| type recChecker struct{ next int } |
| |
| // Check scans the Path for any recursive transformers and panics when any |
| // recursive transformers are detected. Note that the presence of a |
| // recursive Transformer does not necessarily imply an infinite cycle. |
| // As such, this check only activates after some minimal number of path steps. |
| func (rc *recChecker) Check(p Path) { |
| const minLen = 1 << 16 |
| if rc.next == 0 { |
| rc.next = minLen |
| } |
| if len(p) < rc.next { |
| return |
| } |
| rc.next <<= 1 |
| |
| // Check whether the same transformer has appeared at least twice. |
| var ss []string |
| m := map[Option]int{} |
| for _, ps := range p { |
| if t, ok := ps.(Transform); ok { |
| t := t.Option() |
| if m[t] == 1 { // Transformer was used exactly once before |
| tf := t.(*transformer).fnc.Type() |
| ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0))) |
| } |
| m[t]++ |
| } |
| } |
| if len(ss) > 0 { |
| const warning = "recursive set of Transformers detected" |
| const help = "consider using cmpopts.AcyclicTransformer" |
| set := strings.Join(ss, "\n\t") |
| panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help)) |
| } |
| } |
| |
| // dynChecker tracks the state needed to periodically perform checks that |
| // user provided functions are symmetric and deterministic. |
| // The zero value is safe for immediate use. |
| type dynChecker struct{ curr, next int } |
| |
| // Next increments the state and reports whether a check should be performed. |
| // |
| // Checks occur every Nth function call, where N is a triangular number: |
| // 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ... |
| // See https://en.wikipedia.org/wiki/Triangular_number |
| // |
| // This sequence ensures that the cost of checks drops significantly as |
| // the number of functions calls grows larger. |
| func (dc *dynChecker) Next() bool { |
| ok := dc.curr == dc.next |
| if ok { |
| dc.curr = 0 |
| dc.next++ |
| } |
| dc.curr++ |
| return ok |
| } |
| |
| // makeAddressable returns a value that is always addressable. |
| // It returns the input verbatim if it is already addressable, |
| // otherwise it creates a new value and returns an addressable copy. |
| func makeAddressable(v reflect.Value) reflect.Value { |
| if v.CanAddr() { |
| return v |
| } |
| vc := reflect.New(v.Type()).Elem() |
| vc.Set(v) |
| return vc |
| } |