| // Package rfc3961 provides encryption and checksum methods as specified in RFC 3961 |
| package rfc3961 |
| |
| import ( |
| "crypto/cipher" |
| "crypto/des" |
| "crypto/hmac" |
| "crypto/rand" |
| "errors" |
| "fmt" |
| |
| "gopkg.in/jcmturner/gokrb5.v7/crypto/common" |
| "gopkg.in/jcmturner/gokrb5.v7/crypto/etype" |
| ) |
| |
| // DES3EncryptData encrypts the data provided using DES3 and methods specific to the etype provided. |
| func DES3EncryptData(key, data []byte, e etype.EType) ([]byte, []byte, error) { |
| if len(key) != e.GetKeyByteSize() { |
| return nil, nil, fmt.Errorf("incorrect keysize: expected: %v actual: %v", e.GetKeyByteSize(), len(key)) |
| } |
| data, _ = common.ZeroPad(data, e.GetMessageBlockByteSize()) |
| |
| block, err := des.NewTripleDESCipher(key) |
| if err != nil { |
| return nil, nil, fmt.Errorf("error creating cipher: %v", err) |
| } |
| |
| //RFC 3961: initial cipher state All bits zero |
| ivz := make([]byte, des.BlockSize) |
| |
| ct := make([]byte, len(data)) |
| mode := cipher.NewCBCEncrypter(block, ivz) |
| mode.CryptBlocks(ct, data) |
| return ct[len(ct)-e.GetMessageBlockByteSize():], ct, nil |
| } |
| |
| // DES3EncryptMessage encrypts the message provided using DES3 and methods specific to the etype provided. |
| // The encrypted data is concatenated with its integrity hash to create an encrypted message. |
| func DES3EncryptMessage(key, message []byte, usage uint32, e etype.EType) ([]byte, []byte, error) { |
| //confounder |
| c := make([]byte, e.GetConfounderByteSize()) |
| _, err := rand.Read(c) |
| if err != nil { |
| return []byte{}, []byte{}, fmt.Errorf("could not generate random confounder: %v", err) |
| } |
| plainBytes := append(c, message...) |
| plainBytes, _ = common.ZeroPad(plainBytes, e.GetMessageBlockByteSize()) |
| |
| // Derive key for encryption from usage |
| var k []byte |
| if usage != 0 { |
| k, err = e.DeriveKey(key, common.GetUsageKe(usage)) |
| if err != nil { |
| return []byte{}, []byte{}, fmt.Errorf("error deriving key for encryption: %v", err) |
| } |
| } |
| |
| iv, b, err := e.EncryptData(k, plainBytes) |
| if err != nil { |
| return iv, b, fmt.Errorf("error encrypting data: %v", err) |
| } |
| |
| // Generate and append integrity hash |
| ih, err := common.GetIntegrityHash(plainBytes, key, usage, e) |
| if err != nil { |
| return iv, b, fmt.Errorf("error encrypting data: %v", err) |
| } |
| b = append(b, ih...) |
| return iv, b, nil |
| } |
| |
| // DES3DecryptData decrypts the data provided using DES3 and methods specific to the etype provided. |
| func DES3DecryptData(key, data []byte, e etype.EType) ([]byte, error) { |
| if len(key) != e.GetKeyByteSize() { |
| return []byte{}, fmt.Errorf("incorrect keysize: expected: %v actual: %v", e.GetKeyByteSize(), len(key)) |
| } |
| |
| if len(data) < des.BlockSize || len(data)%des.BlockSize != 0 { |
| return []byte{}, errors.New("ciphertext is not a multiple of the block size") |
| } |
| block, err := des.NewTripleDESCipher(key) |
| if err != nil { |
| return []byte{}, fmt.Errorf("error creating cipher: %v", err) |
| } |
| pt := make([]byte, len(data)) |
| ivz := make([]byte, des.BlockSize) |
| mode := cipher.NewCBCDecrypter(block, ivz) |
| mode.CryptBlocks(pt, data) |
| return pt, nil |
| } |
| |
| // DES3DecryptMessage decrypts the message provided using DES3 and methods specific to the etype provided. |
| // The integrity of the message is also verified. |
| func DES3DecryptMessage(key, ciphertext []byte, usage uint32, e etype.EType) ([]byte, error) { |
| //Derive the key |
| k, err := e.DeriveKey(key, common.GetUsageKe(usage)) |
| if err != nil { |
| return nil, fmt.Errorf("error deriving key: %v", err) |
| } |
| // Strip off the checksum from the end |
| b, err := e.DecryptData(k, ciphertext[:len(ciphertext)-e.GetHMACBitLength()/8]) |
| if err != nil { |
| return nil, fmt.Errorf("error decrypting: %v", err) |
| } |
| //Verify checksum |
| if !e.VerifyIntegrity(key, ciphertext, b, usage) { |
| return nil, errors.New("error decrypting: integrity verification failed") |
| } |
| //Remove the confounder bytes |
| return b[e.GetConfounderByteSize():], nil |
| } |
| |
| // VerifyIntegrity verifies the integrity of cipertext bytes ct. |
| func VerifyIntegrity(key, ct, pt []byte, usage uint32, etype etype.EType) bool { |
| //The ciphertext output is the concatenation of the output of the basic |
| //encryption function E and a (possibly truncated) HMAC using the |
| //specified hash function H, both applied to the plaintext with a |
| //random confounder prefix and sufficient padding to bring it to a |
| //multiple of the message block size. When the HMAC is computed, the |
| //key is used in the protocol key form. |
| h := make([]byte, etype.GetHMACBitLength()/8) |
| copy(h, ct[len(ct)-etype.GetHMACBitLength()/8:]) |
| expectedMAC, _ := common.GetIntegrityHash(pt, key, usage, etype) |
| return hmac.Equal(h, expectedMAC) |
| } |