| // Copyright 2013 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| package yaml |
| |
| import ( |
| "bytes" |
| "encoding" |
| "encoding/json" |
| "reflect" |
| "sort" |
| "strings" |
| "sync" |
| "unicode" |
| "unicode/utf8" |
| ) |
| |
| // indirect walks down v allocating pointers as needed, |
| // until it gets to a non-pointer. |
| // if it encounters an Unmarshaler, indirect stops and returns that. |
| // if decodingNull is true, indirect stops at the last pointer so it can be set to nil. |
| func indirect(v reflect.Value, decodingNull bool) (json.Unmarshaler, encoding.TextUnmarshaler, reflect.Value) { |
| // If v is a named type and is addressable, |
| // start with its address, so that if the type has pointer methods, |
| // we find them. |
| if v.Kind() != reflect.Ptr && v.Type().Name() != "" && v.CanAddr() { |
| v = v.Addr() |
| } |
| for { |
| // Load value from interface, but only if the result will be |
| // usefully addressable. |
| if v.Kind() == reflect.Interface && !v.IsNil() { |
| e := v.Elem() |
| if e.Kind() == reflect.Ptr && !e.IsNil() && (!decodingNull || e.Elem().Kind() == reflect.Ptr) { |
| v = e |
| continue |
| } |
| } |
| |
| if v.Kind() != reflect.Ptr { |
| break |
| } |
| |
| if v.Elem().Kind() != reflect.Ptr && decodingNull && v.CanSet() { |
| break |
| } |
| if v.IsNil() { |
| if v.CanSet() { |
| v.Set(reflect.New(v.Type().Elem())) |
| } else { |
| v = reflect.New(v.Type().Elem()) |
| } |
| } |
| if v.Type().NumMethod() > 0 { |
| if u, ok := v.Interface().(json.Unmarshaler); ok { |
| return u, nil, reflect.Value{} |
| } |
| if u, ok := v.Interface().(encoding.TextUnmarshaler); ok { |
| return nil, u, reflect.Value{} |
| } |
| } |
| v = v.Elem() |
| } |
| return nil, nil, v |
| } |
| |
| // A field represents a single field found in a struct. |
| type field struct { |
| name string |
| nameBytes []byte // []byte(name) |
| equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent |
| |
| tag bool |
| index []int |
| typ reflect.Type |
| omitEmpty bool |
| quoted bool |
| } |
| |
| func fillField(f field) field { |
| f.nameBytes = []byte(f.name) |
| f.equalFold = foldFunc(f.nameBytes) |
| return f |
| } |
| |
| // byName sorts field by name, breaking ties with depth, |
| // then breaking ties with "name came from json tag", then |
| // breaking ties with index sequence. |
| type byName []field |
| |
| func (x byName) Len() int { return len(x) } |
| |
| func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] } |
| |
| func (x byName) Less(i, j int) bool { |
| if x[i].name != x[j].name { |
| return x[i].name < x[j].name |
| } |
| if len(x[i].index) != len(x[j].index) { |
| return len(x[i].index) < len(x[j].index) |
| } |
| if x[i].tag != x[j].tag { |
| return x[i].tag |
| } |
| return byIndex(x).Less(i, j) |
| } |
| |
| // byIndex sorts field by index sequence. |
| type byIndex []field |
| |
| func (x byIndex) Len() int { return len(x) } |
| |
| func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] } |
| |
| func (x byIndex) Less(i, j int) bool { |
| for k, xik := range x[i].index { |
| if k >= len(x[j].index) { |
| return false |
| } |
| if xik != x[j].index[k] { |
| return xik < x[j].index[k] |
| } |
| } |
| return len(x[i].index) < len(x[j].index) |
| } |
| |
| // typeFields returns a list of fields that JSON should recognize for the given type. |
| // The algorithm is breadth-first search over the set of structs to include - the top struct |
| // and then any reachable anonymous structs. |
| func typeFields(t reflect.Type) []field { |
| // Anonymous fields to explore at the current level and the next. |
| current := []field{} |
| next := []field{{typ: t}} |
| |
| // Count of queued names for current level and the next. |
| count := map[reflect.Type]int{} |
| nextCount := map[reflect.Type]int{} |
| |
| // Types already visited at an earlier level. |
| visited := map[reflect.Type]bool{} |
| |
| // Fields found. |
| var fields []field |
| |
| for len(next) > 0 { |
| current, next = next, current[:0] |
| count, nextCount = nextCount, map[reflect.Type]int{} |
| |
| for _, f := range current { |
| if visited[f.typ] { |
| continue |
| } |
| visited[f.typ] = true |
| |
| // Scan f.typ for fields to include. |
| for i := 0; i < f.typ.NumField(); i++ { |
| sf := f.typ.Field(i) |
| if sf.PkgPath != "" { // unexported |
| continue |
| } |
| tag := sf.Tag.Get("json") |
| if tag == "-" { |
| continue |
| } |
| name, opts := parseTag(tag) |
| if !isValidTag(name) { |
| name = "" |
| } |
| index := make([]int, len(f.index)+1) |
| copy(index, f.index) |
| index[len(f.index)] = i |
| |
| ft := sf.Type |
| if ft.Name() == "" && ft.Kind() == reflect.Ptr { |
| // Follow pointer. |
| ft = ft.Elem() |
| } |
| |
| // Record found field and index sequence. |
| if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct { |
| tagged := name != "" |
| if name == "" { |
| name = sf.Name |
| } |
| fields = append(fields, fillField(field{ |
| name: name, |
| tag: tagged, |
| index: index, |
| typ: ft, |
| omitEmpty: opts.Contains("omitempty"), |
| quoted: opts.Contains("string"), |
| })) |
| if count[f.typ] > 1 { |
| // If there were multiple instances, add a second, |
| // so that the annihilation code will see a duplicate. |
| // It only cares about the distinction between 1 or 2, |
| // so don't bother generating any more copies. |
| fields = append(fields, fields[len(fields)-1]) |
| } |
| continue |
| } |
| |
| // Record new anonymous struct to explore in next round. |
| nextCount[ft]++ |
| if nextCount[ft] == 1 { |
| next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft})) |
| } |
| } |
| } |
| } |
| |
| sort.Sort(byName(fields)) |
| |
| // Delete all fields that are hidden by the Go rules for embedded fields, |
| // except that fields with JSON tags are promoted. |
| |
| // The fields are sorted in primary order of name, secondary order |
| // of field index length. Loop over names; for each name, delete |
| // hidden fields by choosing the one dominant field that survives. |
| out := fields[:0] |
| for advance, i := 0, 0; i < len(fields); i += advance { |
| // One iteration per name. |
| // Find the sequence of fields with the name of this first field. |
| fi := fields[i] |
| name := fi.name |
| for advance = 1; i+advance < len(fields); advance++ { |
| fj := fields[i+advance] |
| if fj.name != name { |
| break |
| } |
| } |
| if advance == 1 { // Only one field with this name |
| out = append(out, fi) |
| continue |
| } |
| dominant, ok := dominantField(fields[i : i+advance]) |
| if ok { |
| out = append(out, dominant) |
| } |
| } |
| |
| fields = out |
| sort.Sort(byIndex(fields)) |
| |
| return fields |
| } |
| |
| // dominantField looks through the fields, all of which are known to |
| // have the same name, to find the single field that dominates the |
| // others using Go's embedding rules, modified by the presence of |
| // JSON tags. If there are multiple top-level fields, the boolean |
| // will be false: This condition is an error in Go and we skip all |
| // the fields. |
| func dominantField(fields []field) (field, bool) { |
| // The fields are sorted in increasing index-length order. The winner |
| // must therefore be one with the shortest index length. Drop all |
| // longer entries, which is easy: just truncate the slice. |
| length := len(fields[0].index) |
| tagged := -1 // Index of first tagged field. |
| for i, f := range fields { |
| if len(f.index) > length { |
| fields = fields[:i] |
| break |
| } |
| if f.tag { |
| if tagged >= 0 { |
| // Multiple tagged fields at the same level: conflict. |
| // Return no field. |
| return field{}, false |
| } |
| tagged = i |
| } |
| } |
| if tagged >= 0 { |
| return fields[tagged], true |
| } |
| // All remaining fields have the same length. If there's more than one, |
| // we have a conflict (two fields named "X" at the same level) and we |
| // return no field. |
| if len(fields) > 1 { |
| return field{}, false |
| } |
| return fields[0], true |
| } |
| |
| var fieldCache struct { |
| sync.RWMutex |
| m map[reflect.Type][]field |
| } |
| |
| // cachedTypeFields is like typeFields but uses a cache to avoid repeated work. |
| func cachedTypeFields(t reflect.Type) []field { |
| fieldCache.RLock() |
| f := fieldCache.m[t] |
| fieldCache.RUnlock() |
| if f != nil { |
| return f |
| } |
| |
| // Compute fields without lock. |
| // Might duplicate effort but won't hold other computations back. |
| f = typeFields(t) |
| if f == nil { |
| f = []field{} |
| } |
| |
| fieldCache.Lock() |
| if fieldCache.m == nil { |
| fieldCache.m = map[reflect.Type][]field{} |
| } |
| fieldCache.m[t] = f |
| fieldCache.Unlock() |
| return f |
| } |
| |
| func isValidTag(s string) bool { |
| if s == "" { |
| return false |
| } |
| for _, c := range s { |
| switch { |
| case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c): |
| // Backslash and quote chars are reserved, but |
| // otherwise any punctuation chars are allowed |
| // in a tag name. |
| default: |
| if !unicode.IsLetter(c) && !unicode.IsDigit(c) { |
| return false |
| } |
| } |
| } |
| return true |
| } |
| |
| const ( |
| caseMask = ^byte(0x20) // Mask to ignore case in ASCII. |
| kelvin = '\u212a' |
| smallLongEss = '\u017f' |
| ) |
| |
| // foldFunc returns one of four different case folding equivalence |
| // functions, from most general (and slow) to fastest: |
| // |
| // 1) bytes.EqualFold, if the key s contains any non-ASCII UTF-8 |
| // 2) equalFoldRight, if s contains special folding ASCII ('k', 'K', 's', 'S') |
| // 3) asciiEqualFold, no special, but includes non-letters (including _) |
| // 4) simpleLetterEqualFold, no specials, no non-letters. |
| // |
| // The letters S and K are special because they map to 3 runes, not just 2: |
| // * S maps to s and to U+017F 'ſ' Latin small letter long s |
| // * k maps to K and to U+212A 'K' Kelvin sign |
| // See http://play.golang.org/p/tTxjOc0OGo |
| // |
| // The returned function is specialized for matching against s and |
| // should only be given s. It's not curried for performance reasons. |
| func foldFunc(s []byte) func(s, t []byte) bool { |
| nonLetter := false |
| special := false // special letter |
| for _, b := range s { |
| if b >= utf8.RuneSelf { |
| return bytes.EqualFold |
| } |
| upper := b & caseMask |
| if upper < 'A' || upper > 'Z' { |
| nonLetter = true |
| } else if upper == 'K' || upper == 'S' { |
| // See above for why these letters are special. |
| special = true |
| } |
| } |
| if special { |
| return equalFoldRight |
| } |
| if nonLetter { |
| return asciiEqualFold |
| } |
| return simpleLetterEqualFold |
| } |
| |
| // equalFoldRight is a specialization of bytes.EqualFold when s is |
| // known to be all ASCII (including punctuation), but contains an 's', |
| // 'S', 'k', or 'K', requiring a Unicode fold on the bytes in t. |
| // See comments on foldFunc. |
| func equalFoldRight(s, t []byte) bool { |
| for _, sb := range s { |
| if len(t) == 0 { |
| return false |
| } |
| tb := t[0] |
| if tb < utf8.RuneSelf { |
| if sb != tb { |
| sbUpper := sb & caseMask |
| if 'A' <= sbUpper && sbUpper <= 'Z' { |
| if sbUpper != tb&caseMask { |
| return false |
| } |
| } else { |
| return false |
| } |
| } |
| t = t[1:] |
| continue |
| } |
| // sb is ASCII and t is not. t must be either kelvin |
| // sign or long s; sb must be s, S, k, or K. |
| tr, size := utf8.DecodeRune(t) |
| switch sb { |
| case 's', 'S': |
| if tr != smallLongEss { |
| return false |
| } |
| case 'k', 'K': |
| if tr != kelvin { |
| return false |
| } |
| default: |
| return false |
| } |
| t = t[size:] |
| |
| } |
| if len(t) > 0 { |
| return false |
| } |
| return true |
| } |
| |
| // asciiEqualFold is a specialization of bytes.EqualFold for use when |
| // s is all ASCII (but may contain non-letters) and contains no |
| // special-folding letters. |
| // See comments on foldFunc. |
| func asciiEqualFold(s, t []byte) bool { |
| if len(s) != len(t) { |
| return false |
| } |
| for i, sb := range s { |
| tb := t[i] |
| if sb == tb { |
| continue |
| } |
| if ('a' <= sb && sb <= 'z') || ('A' <= sb && sb <= 'Z') { |
| if sb&caseMask != tb&caseMask { |
| return false |
| } |
| } else { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // simpleLetterEqualFold is a specialization of bytes.EqualFold for |
| // use when s is all ASCII letters (no underscores, etc) and also |
| // doesn't contain 'k', 'K', 's', or 'S'. |
| // See comments on foldFunc. |
| func simpleLetterEqualFold(s, t []byte) bool { |
| if len(s) != len(t) { |
| return false |
| } |
| for i, b := range s { |
| if b&caseMask != t[i]&caseMask { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // tagOptions is the string following a comma in a struct field's "json" |
| // tag, or the empty string. It does not include the leading comma. |
| type tagOptions string |
| |
| // parseTag splits a struct field's json tag into its name and |
| // comma-separated options. |
| func parseTag(tag string) (string, tagOptions) { |
| if idx := strings.Index(tag, ","); idx != -1 { |
| return tag[:idx], tagOptions(tag[idx+1:]) |
| } |
| return tag, tagOptions("") |
| } |
| |
| // Contains reports whether a comma-separated list of options |
| // contains a particular substr flag. substr must be surrounded by a |
| // string boundary or commas. |
| func (o tagOptions) Contains(optionName string) bool { |
| if len(o) == 0 { |
| return false |
| } |
| s := string(o) |
| for s != "" { |
| var next string |
| i := strings.Index(s, ",") |
| if i >= 0 { |
| s, next = s[:i], s[i+1:] |
| } |
| if s == optionName { |
| return true |
| } |
| s = next |
| } |
| return false |
| } |