Matteo Scandolo | a6a3aee | 2019-11-26 13:30:14 -0700 | [diff] [blame] | 1 | // Copyright 2012 Google, Inc. All rights reserved. |
| 2 | // Copyright 2009-2011 Andreas Krennmair. All rights reserved. |
| 3 | // |
| 4 | // Use of this source code is governed by a BSD-style license |
| 5 | // that can be found in the LICENSE file in the root of the source |
| 6 | // tree. |
| 7 | |
| 8 | package pcap |
| 9 | |
| 10 | import ( |
| 11 | "errors" |
| 12 | "fmt" |
| 13 | "io" |
| 14 | "net" |
| 15 | "os" |
| 16 | "reflect" |
| 17 | "runtime" |
| 18 | "strconv" |
| 19 | "sync" |
| 20 | "sync/atomic" |
| 21 | "syscall" |
| 22 | "time" |
| 23 | "unsafe" |
| 24 | |
| 25 | "github.com/google/gopacket" |
| 26 | "github.com/google/gopacket/layers" |
| 27 | ) |
| 28 | |
| 29 | // ErrNotActive is returned if handle is not activated |
| 30 | const ErrNotActive = pcapErrorNotActivated |
| 31 | |
| 32 | // MaxBpfInstructions is the maximum number of BPF instructions supported (BPF_MAXINSNS), |
| 33 | // taken from Linux kernel: include/uapi/linux/bpf_common.h |
| 34 | // |
| 35 | // https://github.com/torvalds/linux/blob/master/include/uapi/linux/bpf_common.h |
| 36 | const MaxBpfInstructions = 4096 |
| 37 | |
| 38 | // 8 bytes per instruction, max 4096 instructions |
| 39 | const bpfInstructionBufferSize = 8 * MaxBpfInstructions |
| 40 | |
| 41 | // Handle provides a connection to a pcap handle, allowing users to read packets |
| 42 | // off the wire (Next), inject packets onto the wire (Inject), and |
| 43 | // perform a number of other functions to affect and understand packet output. |
| 44 | // |
| 45 | // Handles are already pcap_activate'd |
| 46 | type Handle struct { |
| 47 | // stop is set to a non-zero value by Handle.Close to signal to |
| 48 | // getNextBufPtrLocked to stop trying to read packets |
| 49 | // This must be the first entry to ensure alignment for sync.atomic |
| 50 | stop uint64 |
| 51 | // cptr is the handle for the actual pcap C object. |
| 52 | cptr pcapTPtr |
| 53 | timeout time.Duration |
| 54 | device string |
| 55 | deviceIndex int |
| 56 | mu sync.Mutex |
| 57 | closeMu sync.Mutex |
| 58 | nanoSecsFactor int64 |
| 59 | |
| 60 | // Since pointers to these objects are passed into a C function, if |
| 61 | // they're declared locally then the Go compiler thinks they may have |
| 62 | // escaped into C-land, so it allocates them on the heap. This causes a |
| 63 | // huge memory hit, so to handle that we store them here instead. |
| 64 | pkthdr *pcapPkthdr |
| 65 | bufptr *uint8 |
| 66 | } |
| 67 | |
| 68 | // Stats contains statistics on how many packets were handled by a pcap handle, |
| 69 | // and what was done with those packets. |
| 70 | type Stats struct { |
| 71 | PacketsReceived int |
| 72 | PacketsDropped int |
| 73 | PacketsIfDropped int |
| 74 | } |
| 75 | |
| 76 | // Interface describes a single network interface on a machine. |
| 77 | type Interface struct { |
| 78 | Name string |
| 79 | Description string |
| 80 | Flags uint32 |
| 81 | Addresses []InterfaceAddress |
| 82 | } |
| 83 | |
| 84 | // Datalink describes the datalink |
| 85 | type Datalink struct { |
| 86 | Name string |
| 87 | Description string |
| 88 | } |
| 89 | |
| 90 | // InterfaceAddress describes an address associated with an Interface. |
| 91 | // Currently, it's IPv4/6 specific. |
| 92 | type InterfaceAddress struct { |
| 93 | IP net.IP |
| 94 | Netmask net.IPMask // Netmask may be nil if we were unable to retrieve it. |
| 95 | Broadaddr net.IP // Broadcast address for this IP may be nil |
| 96 | P2P net.IP // P2P destination address for this IP may be nil |
| 97 | } |
| 98 | |
| 99 | // BPF is a compiled filter program, useful for offline packet matching. |
| 100 | type BPF struct { |
| 101 | orig string |
| 102 | bpf pcapBpfProgram // takes a finalizer, not overriden by outsiders |
| 103 | hdr pcapPkthdr // allocate on the heap to enable optimizations |
| 104 | } |
| 105 | |
| 106 | // BPFInstruction is a byte encoded structure holding a BPF instruction |
| 107 | type BPFInstruction struct { |
| 108 | Code uint16 |
| 109 | Jt uint8 |
| 110 | Jf uint8 |
| 111 | K uint32 |
| 112 | } |
| 113 | |
| 114 | // BlockForever causes it to block forever waiting for packets, when passed |
| 115 | // into SetTimeout or OpenLive, while still returning incoming packets to userland relatively |
| 116 | // quickly. |
| 117 | const BlockForever = -time.Millisecond * 10 |
| 118 | |
| 119 | func timeoutMillis(timeout time.Duration) int { |
| 120 | // Flip sign if necessary. See package docs on timeout for reasoning behind this. |
| 121 | if timeout < 0 { |
| 122 | timeout *= -1 |
| 123 | } |
| 124 | // Round up |
| 125 | if timeout != 0 && timeout < time.Millisecond { |
| 126 | timeout = time.Millisecond |
| 127 | } |
| 128 | return int(timeout / time.Millisecond) |
| 129 | } |
| 130 | |
| 131 | // OpenLive opens a device and returns a *Handle. |
| 132 | // It takes as arguments the name of the device ("eth0"), the maximum size to |
| 133 | // read for each packet (snaplen), whether to put the interface in promiscuous |
| 134 | // mode, and a timeout. Warning: this function supports only microsecond timestamps. |
| 135 | // For nanosecond resolution use an InactiveHandle. |
| 136 | // |
| 137 | // See the package documentation for important details regarding 'timeout'. |
| 138 | func OpenLive(device string, snaplen int32, promisc bool, timeout time.Duration) (handle *Handle, _ error) { |
| 139 | var pro int |
| 140 | if promisc { |
| 141 | pro = 1 |
| 142 | } |
| 143 | |
| 144 | p, err := pcapOpenLive(device, int(snaplen), pro, timeoutMillis(timeout)) |
| 145 | if err != nil { |
| 146 | return nil, err |
| 147 | } |
| 148 | p.timeout = timeout |
| 149 | p.device = device |
| 150 | |
| 151 | ifc, err := net.InterfaceByName(device) |
| 152 | if err != nil { |
| 153 | // The device wasn't found in the OS, but could be "any" |
| 154 | // Set index to 0 |
| 155 | p.deviceIndex = 0 |
| 156 | } else { |
| 157 | p.deviceIndex = ifc.Index |
| 158 | } |
| 159 | |
| 160 | p.nanoSecsFactor = 1000 |
| 161 | |
| 162 | // Only set the PCAP handle into non-blocking mode if we have a timeout |
| 163 | // greater than zero. If the user wants to block forever, we'll let libpcap |
| 164 | // handle that. |
| 165 | if p.timeout > 0 { |
| 166 | if err := p.setNonBlocking(); err != nil { |
| 167 | p.pcapClose() |
| 168 | return nil, err |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | return p, nil |
| 173 | } |
| 174 | |
| 175 | // OpenOffline opens a file and returns its contents as a *Handle. Depending on libpcap support and |
| 176 | // on the timestamp resolution used in the file, nanosecond or microsecond resolution is used |
| 177 | // internally. All returned timestamps are scaled to nanosecond resolution. Resolution() can be used |
| 178 | // to query the actual resolution used. |
| 179 | func OpenOffline(file string) (handle *Handle, err error) { |
| 180 | handle, err = openOffline(file) |
| 181 | if err != nil { |
| 182 | return |
| 183 | } |
| 184 | if pcapGetTstampPrecision(handle.cptr) == pcapTstampPrecisionNano { |
| 185 | handle.nanoSecsFactor = 1 |
| 186 | } else { |
| 187 | handle.nanoSecsFactor = 1000 |
| 188 | } |
| 189 | return |
| 190 | } |
| 191 | |
| 192 | // OpenOfflineFile returns contents of input file as a *Handle. Depending on libpcap support and |
| 193 | // on the timestamp resolution used in the file, nanosecond or microsecond resolution is used |
| 194 | // internally. All returned timestamps are scaled to nanosecond resolution. Resolution() can be used |
| 195 | // to query the actual resolution used. |
| 196 | func OpenOfflineFile(file *os.File) (handle *Handle, err error) { |
| 197 | handle, err = openOfflineFile(file) |
| 198 | if err != nil { |
| 199 | return |
| 200 | } |
| 201 | if pcapGetTstampPrecision(handle.cptr) == pcapTstampPrecisionNano { |
| 202 | handle.nanoSecsFactor = 1 |
| 203 | } else { |
| 204 | handle.nanoSecsFactor = 1000 |
| 205 | } |
| 206 | return |
| 207 | } |
| 208 | |
| 209 | // NextError is the return code from a call to Next. |
| 210 | type NextError int32 |
| 211 | |
| 212 | // NextError implements the error interface. |
| 213 | func (n NextError) Error() string { |
| 214 | switch n { |
| 215 | case NextErrorOk: |
| 216 | return "OK" |
| 217 | case NextErrorTimeoutExpired: |
| 218 | return "Timeout Expired" |
| 219 | case NextErrorReadError: |
| 220 | return "Read Error" |
| 221 | case NextErrorNoMorePackets: |
| 222 | return "No More Packets In File" |
| 223 | case NextErrorNotActivated: |
| 224 | return "Not Activated" |
| 225 | } |
| 226 | return strconv.Itoa(int(n)) |
| 227 | } |
| 228 | |
| 229 | // NextError values. |
| 230 | const ( |
| 231 | NextErrorOk NextError = 1 |
| 232 | NextErrorTimeoutExpired NextError = 0 |
| 233 | NextErrorReadError NextError = -1 |
| 234 | // NextErrorNoMorePackets is returned when reading from a file (OpenOffline) and |
| 235 | // EOF is reached. When this happens, Next() returns io.EOF instead of this. |
| 236 | NextErrorNoMorePackets NextError = -2 |
| 237 | NextErrorNotActivated NextError = -3 |
| 238 | ) |
| 239 | |
| 240 | // ReadPacketData returns the next packet read from the pcap handle, along with an error |
| 241 | // code associated with that packet. If the packet is read successfully, the |
| 242 | // returned error is nil. |
| 243 | func (p *Handle) ReadPacketData() (data []byte, ci gopacket.CaptureInfo, err error) { |
| 244 | p.mu.Lock() |
| 245 | err = p.getNextBufPtrLocked(&ci) |
| 246 | if err == nil { |
| 247 | data = make([]byte, ci.CaptureLength) |
| 248 | copy(data, (*(*[1 << 30]byte)(unsafe.Pointer(p.bufptr)))[:]) |
| 249 | } |
| 250 | p.mu.Unlock() |
| 251 | if err == NextErrorTimeoutExpired { |
| 252 | runtime.Gosched() |
| 253 | } |
| 254 | return |
| 255 | } |
| 256 | |
| 257 | type activateError int |
| 258 | |
| 259 | const ( |
| 260 | aeNoError = activateError(0) |
| 261 | aeActivated = activateError(pcapErrorActivated) |
| 262 | aePromisc = activateError(pcapWarningPromisc) |
| 263 | aeNoSuchDevice = activateError(pcapErrorNoSuchDevice) |
| 264 | aeDenied = activateError(pcapErrorDenied) |
| 265 | aeNotUp = activateError(pcapErrorNotUp) |
| 266 | aeWarning = activateError(pcapWarning) |
| 267 | ) |
| 268 | |
| 269 | func (a activateError) Error() string { |
| 270 | switch a { |
| 271 | case aeNoError: |
| 272 | return "No Error" |
| 273 | case aeActivated: |
| 274 | return "Already Activated" |
| 275 | case aePromisc: |
| 276 | return "Cannot set as promisc" |
| 277 | case aeNoSuchDevice: |
| 278 | return "No Such Device" |
| 279 | case aeDenied: |
| 280 | return "Permission Denied" |
| 281 | case aeNotUp: |
| 282 | return "Interface Not Up" |
| 283 | case aeWarning: |
| 284 | return fmt.Sprintf("Warning: %v", activateErrMsg.Error()) |
| 285 | default: |
| 286 | return fmt.Sprintf("unknown activated error: %d", a) |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | // getNextBufPtrLocked is shared code for ReadPacketData and |
| 291 | // ZeroCopyReadPacketData. |
| 292 | func (p *Handle) getNextBufPtrLocked(ci *gopacket.CaptureInfo) error { |
| 293 | if !p.isOpen() { |
| 294 | return io.EOF |
| 295 | } |
| 296 | |
| 297 | // set after we have call waitForPacket for the first time |
| 298 | var waited bool |
| 299 | |
| 300 | for atomic.LoadUint64(&p.stop) == 0 { |
| 301 | // try to read a packet if one is immediately available |
| 302 | result := p.pcapNextPacketEx() |
| 303 | |
| 304 | switch result { |
| 305 | case NextErrorOk: |
| 306 | sec := p.pkthdr.getSec() |
| 307 | // convert micros to nanos |
| 308 | nanos := int64(p.pkthdr.getUsec()) * p.nanoSecsFactor |
| 309 | |
| 310 | ci.Timestamp = time.Unix(sec, nanos) |
| 311 | ci.CaptureLength = p.pkthdr.getCaplen() |
| 312 | ci.Length = p.pkthdr.getLen() |
| 313 | ci.InterfaceIndex = p.deviceIndex |
| 314 | |
| 315 | return nil |
| 316 | case NextErrorNoMorePackets: |
| 317 | // no more packets, return EOF rather than libpcap-specific error |
| 318 | return io.EOF |
| 319 | case NextErrorTimeoutExpired: |
| 320 | // we've already waited for a packet and we're supposed to time out |
| 321 | // |
| 322 | // we should never actually hit this if we were passed BlockForever |
| 323 | // since we should block on C.pcap_next_ex until there's a packet |
| 324 | // to read. |
| 325 | if waited && p.timeout > 0 { |
| 326 | return result |
| 327 | } |
| 328 | |
| 329 | // wait for packet before trying again |
| 330 | p.waitForPacket() |
| 331 | waited = true |
| 332 | default: |
| 333 | return result |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | // stop must be set |
| 338 | return io.EOF |
| 339 | } |
| 340 | |
| 341 | // ZeroCopyReadPacketData reads the next packet off the wire, and returns its data. |
| 342 | // The slice returned by ZeroCopyReadPacketData points to bytes owned by the |
| 343 | // the Handle. Each call to ZeroCopyReadPacketData invalidates any data previously |
| 344 | // returned by ZeroCopyReadPacketData. Care must be taken not to keep pointers |
| 345 | // to old bytes when using ZeroCopyReadPacketData... if you need to keep data past |
| 346 | // the next time you call ZeroCopyReadPacketData, use ReadPacketData, which copies |
| 347 | // the bytes into a new buffer for you. |
| 348 | // data1, _, _ := handle.ZeroCopyReadPacketData() |
| 349 | // // do everything you want with data1 here, copying bytes out of it if you'd like to keep them around. |
| 350 | // data2, _, _ := handle.ZeroCopyReadPacketData() // invalidates bytes in data1 |
| 351 | func (p *Handle) ZeroCopyReadPacketData() (data []byte, ci gopacket.CaptureInfo, err error) { |
| 352 | p.mu.Lock() |
| 353 | err = p.getNextBufPtrLocked(&ci) |
| 354 | if err == nil { |
| 355 | slice := (*reflect.SliceHeader)(unsafe.Pointer(&data)) |
| 356 | slice.Data = uintptr(unsafe.Pointer(p.bufptr)) |
| 357 | slice.Len = ci.CaptureLength |
| 358 | slice.Cap = ci.CaptureLength |
| 359 | } |
| 360 | p.mu.Unlock() |
| 361 | if err == NextErrorTimeoutExpired { |
| 362 | runtime.Gosched() |
| 363 | } |
| 364 | return |
| 365 | } |
| 366 | |
| 367 | // Close closes the underlying pcap handle. |
| 368 | func (p *Handle) Close() { |
| 369 | p.closeMu.Lock() |
| 370 | defer p.closeMu.Unlock() |
| 371 | |
| 372 | if !p.isOpen() { |
| 373 | return |
| 374 | } |
| 375 | |
| 376 | atomic.StoreUint64(&p.stop, 1) |
| 377 | |
| 378 | // wait for packet reader to stop |
| 379 | p.mu.Lock() |
| 380 | defer p.mu.Unlock() |
| 381 | |
| 382 | p.pcapClose() |
| 383 | } |
| 384 | |
| 385 | // Error returns the current error associated with a pcap handle (pcap_geterr). |
| 386 | func (p *Handle) Error() error { |
| 387 | return p.pcapGeterr() |
| 388 | } |
| 389 | |
| 390 | // Stats returns statistics on the underlying pcap handle. |
| 391 | func (p *Handle) Stats() (stat *Stats, err error) { |
| 392 | return p.pcapStats() |
| 393 | } |
| 394 | |
| 395 | // ListDataLinks obtains a list of all possible data link types supported for an interface. |
| 396 | func (p *Handle) ListDataLinks() (datalinks []Datalink, err error) { |
| 397 | return p.pcapListDatalinks() |
| 398 | } |
| 399 | |
| 400 | // compileBPFFilter always returns an allocated C.struct_bpf_program |
| 401 | // It is the callers responsibility to free the memory again, e.g. |
| 402 | // |
| 403 | // C.pcap_freecode(&bpf) |
| 404 | // |
| 405 | func (p *Handle) compileBPFFilter(expr string) (pcapBpfProgram, error) { |
| 406 | var maskp = uint32(pcapNetmaskUnknown) |
| 407 | |
| 408 | // Only do the lookup on network interfaces. |
| 409 | // No device indicates we're handling a pcap file. |
| 410 | if len(p.device) > 0 { |
| 411 | var err error |
| 412 | _, maskp, err = pcapLookupnet(p.device) |
| 413 | if err != nil { |
| 414 | // We can't lookup the network, but that could be because the interface |
| 415 | // doesn't have an IPv4. |
| 416 | maskp = uint32(pcapNetmaskUnknown) |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | return p.pcapCompile(expr, maskp) |
| 421 | } |
| 422 | |
| 423 | // CompileBPFFilter compiles and returns a BPF filter with given a link type and capture length. |
| 424 | func CompileBPFFilter(linkType layers.LinkType, captureLength int, expr string) ([]BPFInstruction, error) { |
| 425 | h, err := pcapOpenDead(linkType, captureLength) |
| 426 | if err != nil { |
| 427 | return nil, err |
| 428 | } |
| 429 | defer h.Close() |
| 430 | return h.CompileBPFFilter(expr) |
| 431 | } |
| 432 | |
| 433 | // CompileBPFFilter compiles and returns a BPF filter for the pcap handle. |
| 434 | func (p *Handle) CompileBPFFilter(expr string) ([]BPFInstruction, error) { |
| 435 | bpf, err := p.compileBPFFilter(expr) |
| 436 | defer bpf.free() |
| 437 | if err != nil { |
| 438 | return nil, err |
| 439 | } |
| 440 | |
| 441 | return bpf.toBPFInstruction(), nil |
| 442 | } |
| 443 | |
| 444 | // SetBPFFilter compiles and sets a BPF filter for the pcap handle. |
| 445 | func (p *Handle) SetBPFFilter(expr string) (err error) { |
| 446 | bpf, err := p.compileBPFFilter(expr) |
| 447 | defer bpf.free() |
| 448 | if err != nil { |
| 449 | return err |
| 450 | } |
| 451 | |
| 452 | return p.pcapSetfilter(bpf) |
| 453 | } |
| 454 | |
| 455 | // SetBPFInstructionFilter may be used to apply a filter in BPF asm byte code format. |
| 456 | // |
| 457 | // Simplest way to generate BPF asm byte code is with tcpdump: |
| 458 | // tcpdump -dd 'udp' |
| 459 | // |
| 460 | // The output may be used directly to add a filter, e.g.: |
| 461 | // bpfInstructions := []pcap.BpfInstruction{ |
| 462 | // {0x28, 0, 0, 0x0000000c}, |
| 463 | // {0x15, 0, 9, 0x00000800}, |
| 464 | // {0x30, 0, 0, 0x00000017}, |
| 465 | // {0x15, 0, 7, 0x00000006}, |
| 466 | // {0x28, 0, 0, 0x00000014}, |
| 467 | // {0x45, 5, 0, 0x00001fff}, |
| 468 | // {0xb1, 0, 0, 0x0000000e}, |
| 469 | // {0x50, 0, 0, 0x0000001b}, |
| 470 | // {0x54, 0, 0, 0x00000012}, |
| 471 | // {0x15, 0, 1, 0x00000012}, |
| 472 | // {0x6, 0, 0, 0x0000ffff}, |
| 473 | // {0x6, 0, 0, 0x00000000}, |
| 474 | // } |
| 475 | // |
| 476 | // An other posibility is to write the bpf code in bpf asm. |
| 477 | // Documentation: https://www.kernel.org/doc/Documentation/networking/filter.txt |
| 478 | // |
| 479 | // To compile the code use bpf_asm from |
| 480 | // https://github.com/torvalds/linux/tree/master/tools/net |
| 481 | // |
| 482 | // The following command may be used to convert bpf_asm output to c/go struct, usable for SetBPFFilterByte: |
| 483 | // bpf_asm -c tcp.bpf |
| 484 | func (p *Handle) SetBPFInstructionFilter(bpfInstructions []BPFInstruction) (err error) { |
| 485 | bpf, err := bpfInstructionFilter(bpfInstructions) |
| 486 | if err != nil { |
| 487 | return err |
| 488 | } |
| 489 | defer bpf.free() |
| 490 | |
| 491 | return p.pcapSetfilter(bpf) |
| 492 | } |
| 493 | |
| 494 | func bpfInstructionFilter(bpfInstructions []BPFInstruction) (bpf pcapBpfProgram, err error) { |
| 495 | if len(bpfInstructions) < 1 { |
| 496 | return bpf, errors.New("bpfInstructions must not be empty") |
| 497 | } |
| 498 | |
| 499 | if len(bpfInstructions) > MaxBpfInstructions { |
| 500 | return bpf, fmt.Errorf("bpfInstructions must not be larger than %d", MaxBpfInstructions) |
| 501 | } |
| 502 | |
| 503 | return pcapBpfProgramFromInstructions(bpfInstructions), nil |
| 504 | } |
| 505 | |
| 506 | // NewBPF compiles the given string into a new filter program. |
| 507 | // |
| 508 | // BPF filters need to be created from activated handles, because they need to |
| 509 | // know the underlying link type to correctly compile their offsets. |
| 510 | func (p *Handle) NewBPF(expr string) (*BPF, error) { |
| 511 | bpf := &BPF{orig: expr} |
| 512 | |
| 513 | var err error |
| 514 | bpf.bpf, err = p.pcapCompile(expr, pcapNetmaskUnknown) |
| 515 | if err != nil { |
| 516 | return nil, err |
| 517 | } |
| 518 | |
| 519 | runtime.SetFinalizer(bpf, destroyBPF) |
| 520 | return bpf, nil |
| 521 | } |
| 522 | |
| 523 | // NewBPF allows to create a BPF without requiring an existing handle. |
| 524 | // This allows to match packets obtained from a-non GoPacket capture source |
| 525 | // to be matched. |
| 526 | // |
| 527 | // buf := make([]byte, MaxFrameSize) |
| 528 | // bpfi, _ := pcap.NewBPF(layers.LinkTypeEthernet, MaxFrameSize, "icmp") |
| 529 | // n, _ := someIO.Read(buf) |
| 530 | // ci := gopacket.CaptureInfo{CaptureLength: n, Length: n} |
| 531 | // if bpfi.Matches(ci, buf) { |
| 532 | // doSomething() |
| 533 | // } |
| 534 | func NewBPF(linkType layers.LinkType, captureLength int, expr string) (*BPF, error) { |
| 535 | h, err := pcapOpenDead(linkType, captureLength) |
| 536 | if err != nil { |
| 537 | return nil, err |
| 538 | } |
| 539 | defer h.Close() |
| 540 | return h.NewBPF(expr) |
| 541 | } |
| 542 | |
| 543 | // NewBPFInstructionFilter sets the given BPFInstructions as new filter program. |
| 544 | // |
| 545 | // More details see func SetBPFInstructionFilter |
| 546 | // |
| 547 | // BPF filters need to be created from activated handles, because they need to |
| 548 | // know the underlying link type to correctly compile their offsets. |
| 549 | func (p *Handle) NewBPFInstructionFilter(bpfInstructions []BPFInstruction) (*BPF, error) { |
| 550 | var err error |
| 551 | bpf := &BPF{orig: "BPF Instruction Filter"} |
| 552 | |
| 553 | bpf.bpf, err = bpfInstructionFilter(bpfInstructions) |
| 554 | if err != nil { |
| 555 | return nil, err |
| 556 | } |
| 557 | |
| 558 | runtime.SetFinalizer(bpf, destroyBPF) |
| 559 | return bpf, nil |
| 560 | } |
| 561 | func destroyBPF(bpf *BPF) { |
| 562 | bpf.bpf.free() |
| 563 | } |
| 564 | |
| 565 | // String returns the original string this BPF filter was compiled from. |
| 566 | func (b *BPF) String() string { |
| 567 | return b.orig |
| 568 | } |
| 569 | |
| 570 | // Matches returns true if the given packet data matches this filter. |
| 571 | func (b *BPF) Matches(ci gopacket.CaptureInfo, data []byte) bool { |
| 572 | return b.pcapOfflineFilter(ci, data) |
| 573 | } |
| 574 | |
| 575 | // Version returns pcap_lib_version. |
| 576 | func Version() string { |
| 577 | return pcapLibVersion() |
| 578 | } |
| 579 | |
| 580 | // LinkType returns pcap_datalink, as a layers.LinkType. |
| 581 | func (p *Handle) LinkType() layers.LinkType { |
| 582 | return p.pcapDatalink() |
| 583 | } |
| 584 | |
| 585 | // SetLinkType calls pcap_set_datalink on the pcap handle. |
| 586 | func (p *Handle) SetLinkType(dlt layers.LinkType) error { |
| 587 | return p.pcapSetDatalink(dlt) |
| 588 | } |
| 589 | |
| 590 | // DatalinkValToName returns pcap_datalink_val_to_name as string |
| 591 | func DatalinkValToName(dlt int) string { |
| 592 | return pcapDatalinkValToName(dlt) |
| 593 | } |
| 594 | |
| 595 | // DatalinkValToDescription returns pcap_datalink_val_to_description as string |
| 596 | func DatalinkValToDescription(dlt int) string { |
| 597 | return pcapDatalinkValToDescription(dlt) |
| 598 | } |
| 599 | |
| 600 | // DatalinkNameToVal returns pcap_datalink_name_to_val as int |
| 601 | func DatalinkNameToVal(name string) int { |
| 602 | return pcapDatalinkNameToVal(name) |
| 603 | } |
| 604 | |
| 605 | // FindAllDevs attempts to enumerate all interfaces on the current machine. |
| 606 | func FindAllDevs() (ifs []Interface, err error) { |
| 607 | alldevsp, err := pcapFindAllDevs() |
| 608 | if err != nil { |
| 609 | return nil, err |
| 610 | } |
| 611 | defer alldevsp.free() |
| 612 | |
| 613 | for alldevsp.next() { |
| 614 | var iface Interface |
| 615 | iface.Name = alldevsp.name() |
| 616 | iface.Description = alldevsp.description() |
| 617 | iface.Addresses = findalladdresses(alldevsp.addresses()) |
| 618 | iface.Flags = alldevsp.flags() |
| 619 | ifs = append(ifs, iface) |
| 620 | } |
| 621 | return |
| 622 | } |
| 623 | |
| 624 | func findalladdresses(addresses pcapAddresses) (retval []InterfaceAddress) { |
| 625 | // TODO - make it support more than IPv4 and IPv6? |
| 626 | retval = make([]InterfaceAddress, 0, 1) |
| 627 | for addresses.next() { |
| 628 | // Strangely, it appears that in some cases, we get a pcap address back from |
| 629 | // pcap_findalldevs with a nil .addr. It appears that we can skip over |
| 630 | // these. |
| 631 | if addresses.addr() == nil { |
| 632 | continue |
| 633 | } |
| 634 | var a InterfaceAddress |
| 635 | var err error |
| 636 | if a.IP, err = sockaddrToIP(addresses.addr()); err != nil { |
| 637 | continue |
| 638 | } |
| 639 | // To be safe, we'll also check for netmask. |
| 640 | if addresses.netmask() == nil { |
| 641 | continue |
| 642 | } |
| 643 | if a.Netmask, err = sockaddrToIP(addresses.netmask()); err != nil { |
| 644 | // If we got an IP address but we can't get a netmask, just return the IP |
| 645 | // address. |
| 646 | a.Netmask = nil |
| 647 | } |
| 648 | if a.Broadaddr, err = sockaddrToIP(addresses.broadaddr()); err != nil { |
| 649 | a.Broadaddr = nil |
| 650 | } |
| 651 | if a.P2P, err = sockaddrToIP(addresses.dstaddr()); err != nil { |
| 652 | a.P2P = nil |
| 653 | } |
| 654 | retval = append(retval, a) |
| 655 | } |
| 656 | return |
| 657 | } |
| 658 | |
| 659 | func sockaddrToIP(rsa *syscall.RawSockaddr) (IP []byte, err error) { |
| 660 | if rsa == nil { |
| 661 | err = errors.New("Value not set") |
| 662 | return |
| 663 | } |
| 664 | switch rsa.Family { |
| 665 | case syscall.AF_INET: |
| 666 | pp := (*syscall.RawSockaddrInet4)(unsafe.Pointer(rsa)) |
| 667 | IP = make([]byte, 4) |
| 668 | for i := 0; i < len(IP); i++ { |
| 669 | IP[i] = pp.Addr[i] |
| 670 | } |
| 671 | return |
| 672 | case syscall.AF_INET6: |
| 673 | pp := (*syscall.RawSockaddrInet6)(unsafe.Pointer(rsa)) |
| 674 | IP = make([]byte, 16) |
| 675 | for i := 0; i < len(IP); i++ { |
| 676 | IP[i] = pp.Addr[i] |
| 677 | } |
| 678 | return |
| 679 | } |
| 680 | err = errors.New("Unsupported address type") |
| 681 | return |
| 682 | } |
| 683 | |
| 684 | // WritePacketData calls pcap_sendpacket, injecting the given data into the pcap handle. |
| 685 | func (p *Handle) WritePacketData(data []byte) (err error) { |
| 686 | return p.pcapSendpacket(data) |
| 687 | } |
| 688 | |
| 689 | // Direction is used by Handle.SetDirection. |
| 690 | type Direction uint8 |
| 691 | |
| 692 | // Direction values for Handle.SetDirection. |
| 693 | const ( |
| 694 | DirectionIn = Direction(pcapDIN) |
| 695 | DirectionOut = Direction(pcapDOUT) |
| 696 | DirectionInOut = Direction(pcapDINOUT) |
| 697 | ) |
| 698 | |
| 699 | // SetDirection sets the direction for which packets will be captured. |
| 700 | func (p *Handle) SetDirection(direction Direction) error { |
| 701 | if direction != DirectionIn && direction != DirectionOut && direction != DirectionInOut { |
| 702 | return fmt.Errorf("Invalid direction: %v", direction) |
| 703 | } |
| 704 | return p.pcapSetdirection(direction) |
| 705 | } |
| 706 | |
| 707 | // SnapLen returns the snapshot length |
| 708 | func (p *Handle) SnapLen() int { |
| 709 | return p.pcapSnapshot() |
| 710 | } |
| 711 | |
| 712 | // Resolution returns the timestamp resolution of acquired timestamps before scaling to NanosecondTimestampResolution. |
| 713 | func (p *Handle) Resolution() gopacket.TimestampResolution { |
| 714 | if p.nanoSecsFactor == 1 { |
| 715 | return gopacket.TimestampResolutionMicrosecond |
| 716 | } |
| 717 | return gopacket.TimestampResolutionNanosecond |
| 718 | } |
| 719 | |
| 720 | // TimestampSource tells PCAP which type of timestamp to use for packets. |
| 721 | type TimestampSource int |
| 722 | |
| 723 | // String returns the timestamp type as a human-readable string. |
| 724 | func (t TimestampSource) String() string { |
| 725 | return t.pcapTstampTypeValToName() |
| 726 | } |
| 727 | |
| 728 | // TimestampSourceFromString translates a string into a timestamp type, case |
| 729 | // insensitive. |
| 730 | func TimestampSourceFromString(s string) (TimestampSource, error) { |
| 731 | return pcapTstampTypeNameToVal(s) |
| 732 | } |
| 733 | |
| 734 | // InactiveHandle allows you to call pre-pcap_activate functions on your pcap |
| 735 | // handle to set it up just the way you'd like. |
| 736 | type InactiveHandle struct { |
| 737 | // cptr is the handle for the actual pcap C object. |
| 738 | cptr pcapTPtr |
| 739 | device string |
| 740 | deviceIndex int |
| 741 | timeout time.Duration |
| 742 | } |
| 743 | |
| 744 | // holds the err messoge in case activation returned a Warning |
| 745 | var activateErrMsg error |
| 746 | |
| 747 | // Error returns the current error associated with a pcap handle (pcap_geterr). |
| 748 | func (p *InactiveHandle) Error() error { |
| 749 | return p.pcapGeterr() |
| 750 | } |
| 751 | |
| 752 | // Activate activates the handle. The current InactiveHandle becomes invalid |
| 753 | // and all future function calls on it will fail. |
| 754 | func (p *InactiveHandle) Activate() (*Handle, error) { |
| 755 | // ignore error with set_tstamp_precision, since the actual precision is queried later anyway |
| 756 | pcapSetTstampPrecision(p.cptr, pcapTstampPrecisionNano) |
| 757 | handle, err := p.pcapActivate() |
| 758 | if err != aeNoError { |
| 759 | if err == aeWarning { |
| 760 | activateErrMsg = p.Error() |
| 761 | } |
| 762 | return nil, err |
| 763 | } |
| 764 | handle.timeout = p.timeout |
| 765 | if p.timeout > 0 { |
| 766 | if err := handle.setNonBlocking(); err != nil { |
| 767 | handle.pcapClose() |
| 768 | return nil, err |
| 769 | } |
| 770 | } |
| 771 | handle.device = p.device |
| 772 | handle.deviceIndex = p.deviceIndex |
| 773 | if pcapGetTstampPrecision(handle.cptr) == pcapTstampPrecisionNano { |
| 774 | handle.nanoSecsFactor = 1 |
| 775 | } else { |
| 776 | handle.nanoSecsFactor = 1000 |
| 777 | } |
| 778 | return handle, nil |
| 779 | } |
| 780 | |
| 781 | // CleanUp cleans up any stuff left over from a successful or failed building |
| 782 | // of a handle. |
| 783 | func (p *InactiveHandle) CleanUp() { |
| 784 | p.pcapClose() |
| 785 | } |
| 786 | |
| 787 | // NewInactiveHandle creates a new InactiveHandle, which wraps an un-activated PCAP handle. |
| 788 | // Callers of NewInactiveHandle should immediately defer 'CleanUp', as in: |
| 789 | // inactive := NewInactiveHandle("eth0") |
| 790 | // defer inactive.CleanUp() |
| 791 | func NewInactiveHandle(device string) (*InactiveHandle, error) { |
| 792 | // Try to get the interface index, but iy could be something like "any" |
| 793 | // in which case use 0, which doesn't exist in nature |
| 794 | deviceIndex := 0 |
| 795 | ifc, err := net.InterfaceByName(device) |
| 796 | if err == nil { |
| 797 | deviceIndex = ifc.Index |
| 798 | } |
| 799 | |
| 800 | // This copies a bunch of the pcap_open_live implementation from pcap.c: |
| 801 | handle, err := pcapCreate(device) |
| 802 | if err != nil { |
| 803 | return nil, err |
| 804 | } |
| 805 | handle.device = device |
| 806 | handle.deviceIndex = deviceIndex |
| 807 | return handle, nil |
| 808 | } |
| 809 | |
| 810 | // SetSnapLen sets the snap length (max bytes per packet to capture). |
| 811 | func (p *InactiveHandle) SetSnapLen(snaplen int) error { |
| 812 | return p.pcapSetSnaplen(snaplen) |
| 813 | } |
| 814 | |
| 815 | // SetPromisc sets the handle to either be promiscuous (capture packets |
| 816 | // unrelated to this host) or not. |
| 817 | func (p *InactiveHandle) SetPromisc(promisc bool) error { |
| 818 | return p.pcapSetPromisc(promisc) |
| 819 | } |
| 820 | |
| 821 | // SetTimeout sets the read timeout for the handle. |
| 822 | // |
| 823 | // See the package documentation for important details regarding 'timeout'. |
| 824 | func (p *InactiveHandle) SetTimeout(timeout time.Duration) error { |
| 825 | err := p.pcapSetTimeout(timeout) |
| 826 | if err != nil { |
| 827 | return err |
| 828 | } |
| 829 | p.timeout = timeout |
| 830 | return nil |
| 831 | } |
| 832 | |
| 833 | // SupportedTimestamps returns a list of supported timstamp types for this |
| 834 | // handle. |
| 835 | func (p *InactiveHandle) SupportedTimestamps() (out []TimestampSource) { |
| 836 | return p.pcapListTstampTypes() |
| 837 | } |
| 838 | |
| 839 | // SetTimestampSource sets the type of timestamp generator PCAP uses when |
| 840 | // attaching timestamps to packets. |
| 841 | func (p *InactiveHandle) SetTimestampSource(t TimestampSource) error { |
| 842 | return p.pcapSetTstampType(t) |
| 843 | } |
| 844 | |
| 845 | // CannotSetRFMon is returned by SetRFMon if the handle does not allow |
| 846 | // setting RFMon because pcap_can_set_rfmon returns 0. |
| 847 | var CannotSetRFMon = errors.New("Cannot set rfmon for this handle") |
| 848 | |
| 849 | // SetRFMon turns on radio monitoring mode, similar to promiscuous mode but for |
| 850 | // wireless networks. If this mode is enabled, the interface will not need to |
| 851 | // associate with an access point before it can receive traffic. |
| 852 | func (p *InactiveHandle) SetRFMon(monitor bool) error { |
| 853 | return p.pcapSetRfmon(monitor) |
| 854 | } |
| 855 | |
| 856 | // SetBufferSize sets the buffer size (in bytes) of the handle. |
| 857 | func (p *InactiveHandle) SetBufferSize(bufferSize int) error { |
| 858 | return p.pcapSetBufferSize(bufferSize) |
| 859 | } |
| 860 | |
| 861 | // SetImmediateMode sets (or unsets) the immediate mode of the |
| 862 | // handle. In immediate mode, packets are delivered to the application |
| 863 | // as soon as they arrive. In other words, this overrides SetTimeout. |
| 864 | func (p *InactiveHandle) SetImmediateMode(mode bool) error { |
| 865 | return p.pcapSetImmediateMode(mode) |
| 866 | } |