blob: 3d2e42662ca3e4b4e34d2a886e4473060232c45d [file] [log] [blame]
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -07001// Copyright 2017, The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE.md file.
4
5// Package diff implements an algorithm for producing edit-scripts.
6// The edit-script is a sequence of operations needed to transform one list
7// of symbols into another (or vice-versa). The edits allowed are insertions,
8// deletions, and modifications. The summation of all edits is called the
9// Levenshtein distance as this problem is well-known in computer science.
10//
11// This package prioritizes performance over accuracy. That is, the run time
12// is more important than obtaining a minimal Levenshtein distance.
13package diff
14
15// EditType represents a single operation within an edit-script.
16type EditType uint8
17
18const (
19 // Identity indicates that a symbol pair is identical in both list X and Y.
20 Identity EditType = iota
21 // UniqueX indicates that a symbol only exists in X and not Y.
22 UniqueX
23 // UniqueY indicates that a symbol only exists in Y and not X.
24 UniqueY
25 // Modified indicates that a symbol pair is a modification of each other.
26 Modified
27)
28
29// EditScript represents the series of differences between two lists.
30type EditScript []EditType
31
32// String returns a human-readable string representing the edit-script where
33// Identity, UniqueX, UniqueY, and Modified are represented by the
34// '.', 'X', 'Y', and 'M' characters, respectively.
35func (es EditScript) String() string {
36 b := make([]byte, len(es))
37 for i, e := range es {
38 switch e {
39 case Identity:
40 b[i] = '.'
41 case UniqueX:
42 b[i] = 'X'
43 case UniqueY:
44 b[i] = 'Y'
45 case Modified:
46 b[i] = 'M'
47 default:
48 panic("invalid edit-type")
49 }
50 }
51 return string(b)
52}
53
54// stats returns a histogram of the number of each type of edit operation.
55func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) {
56 for _, e := range es {
57 switch e {
58 case Identity:
59 s.NI++
60 case UniqueX:
61 s.NX++
62 case UniqueY:
63 s.NY++
64 case Modified:
65 s.NM++
66 default:
67 panic("invalid edit-type")
68 }
69 }
70 return
71}
72
73// Dist is the Levenshtein distance and is guaranteed to be 0 if and only if
74// lists X and Y are equal.
75func (es EditScript) Dist() int { return len(es) - es.stats().NI }
76
77// LenX is the length of the X list.
78func (es EditScript) LenX() int { return len(es) - es.stats().NY }
79
80// LenY is the length of the Y list.
81func (es EditScript) LenY() int { return len(es) - es.stats().NX }
82
83// EqualFunc reports whether the symbols at indexes ix and iy are equal.
84// When called by Difference, the index is guaranteed to be within nx and ny.
85type EqualFunc func(ix int, iy int) Result
86
87// Result is the result of comparison.
Pragya Arya324337e2020-02-20 14:35:08 +053088// NumSame is the number of sub-elements that are equal.
89// NumDiff is the number of sub-elements that are not equal.
90type Result struct{ NumSame, NumDiff int }
91
92// BoolResult returns a Result that is either Equal or not Equal.
93func BoolResult(b bool) Result {
94 if b {
95 return Result{NumSame: 1} // Equal, Similar
96 } else {
97 return Result{NumDiff: 2} // Not Equal, not Similar
98 }
99}
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700100
101// Equal indicates whether the symbols are equal. Two symbols are equal
Pragya Arya324337e2020-02-20 14:35:08 +0530102// if and only if NumDiff == 0. If Equal, then they are also Similar.
103func (r Result) Equal() bool { return r.NumDiff == 0 }
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700104
105// Similar indicates whether two symbols are similar and may be represented
106// by using the Modified type. As a special case, we consider binary comparisons
107// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
108//
Pragya Arya324337e2020-02-20 14:35:08 +0530109// The exact ratio of NumSame to NumDiff to determine similarity may change.
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700110func (r Result) Similar() bool {
Pragya Arya324337e2020-02-20 14:35:08 +0530111 // Use NumSame+1 to offset NumSame so that binary comparisons are similar.
112 return r.NumSame+1 >= r.NumDiff
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700113}
114
115// Difference reports whether two lists of lengths nx and ny are equal
116// given the definition of equality provided as f.
117//
118// This function returns an edit-script, which is a sequence of operations
119// needed to convert one list into the other. The following invariants for
120// the edit-script are maintained:
121// • eq == (es.Dist()==0)
122// • nx == es.LenX()
123// • ny == es.LenY()
124//
125// This algorithm is not guaranteed to be an optimal solution (i.e., one that
126// produces an edit-script with a minimal Levenshtein distance). This algorithm
127// favors performance over optimality. The exact output is not guaranteed to
128// be stable and may change over time.
129func Difference(nx, ny int, f EqualFunc) (es EditScript) {
130 // This algorithm is based on traversing what is known as an "edit-graph".
131 // See Figure 1 from "An O(ND) Difference Algorithm and Its Variations"
132 // by Eugene W. Myers. Since D can be as large as N itself, this is
133 // effectively O(N^2). Unlike the algorithm from that paper, we are not
134 // interested in the optimal path, but at least some "decent" path.
135 //
136 // For example, let X and Y be lists of symbols:
137 // X = [A B C A B B A]
138 // Y = [C B A B A C]
139 //
140 // The edit-graph can be drawn as the following:
141 // A B C A B B A
142 // ┌─────────────┐
143 // C │_|_|\|_|_|_|_│ 0
144 // B │_|\|_|_|\|\|_│ 1
145 // A │\|_|_|\|_|_|\│ 2
146 // B │_|\|_|_|\|\|_│ 3
147 // A │\|_|_|\|_|_|\│ 4
148 // C │ | |\| | | | │ 5
149 // └─────────────┘ 6
150 // 0 1 2 3 4 5 6 7
151 //
152 // List X is written along the horizontal axis, while list Y is written
153 // along the vertical axis. At any point on this grid, if the symbol in
154 // list X matches the corresponding symbol in list Y, then a '\' is drawn.
155 // The goal of any minimal edit-script algorithm is to find a path from the
156 // top-left corner to the bottom-right corner, while traveling through the
157 // fewest horizontal or vertical edges.
158 // A horizontal edge is equivalent to inserting a symbol from list X.
159 // A vertical edge is equivalent to inserting a symbol from list Y.
160 // A diagonal edge is equivalent to a matching symbol between both X and Y.
161
162 // Invariants:
163 // • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
164 // • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
165 //
166 // In general:
167 // • fwdFrontier.X < revFrontier.X
168 // • fwdFrontier.Y < revFrontier.Y
169 // Unless, it is time for the algorithm to terminate.
170 fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
171 revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
172 fwdFrontier := fwdPath.point // Forward search frontier
173 revFrontier := revPath.point // Reverse search frontier
174
175 // Search budget bounds the cost of searching for better paths.
176 // The longest sequence of non-matching symbols that can be tolerated is
177 // approximately the square-root of the search budget.
178 searchBudget := 4 * (nx + ny) // O(n)
179
180 // The algorithm below is a greedy, meet-in-the-middle algorithm for
181 // computing sub-optimal edit-scripts between two lists.
182 //
183 // The algorithm is approximately as follows:
184 // • Searching for differences switches back-and-forth between
185 // a search that starts at the beginning (the top-left corner), and
186 // a search that starts at the end (the bottom-right corner). The goal of
187 // the search is connect with the search from the opposite corner.
188 // • As we search, we build a path in a greedy manner, where the first
189 // match seen is added to the path (this is sub-optimal, but provides a
190 // decent result in practice). When matches are found, we try the next pair
191 // of symbols in the lists and follow all matches as far as possible.
192 // • When searching for matches, we search along a diagonal going through
193 // through the "frontier" point. If no matches are found, we advance the
194 // frontier towards the opposite corner.
195 // • This algorithm terminates when either the X coordinates or the
196 // Y coordinates of the forward and reverse frontier points ever intersect.
197 //
198 // This algorithm is correct even if searching only in the forward direction
199 // or in the reverse direction. We do both because it is commonly observed
200 // that two lists commonly differ because elements were added to the front
201 // or end of the other list.
202 //
Pragya Arya324337e2020-02-20 14:35:08 +0530203 // Running the tests with the "cmp_debug" build tag prints a visualization
204 // of the algorithm running in real-time. This is educational for
205 // understanding how the algorithm works. See debug_enable.go.
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700206 f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
207 for {
208 // Forward search from the beginning.
209 if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
210 break
211 }
212 for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
213 // Search in a diagonal pattern for a match.
214 z := zigzag(i)
215 p := point{fwdFrontier.X + z, fwdFrontier.Y - z}
216 switch {
217 case p.X >= revPath.X || p.Y < fwdPath.Y:
218 stop1 = true // Hit top-right corner
219 case p.Y >= revPath.Y || p.X < fwdPath.X:
220 stop2 = true // Hit bottom-left corner
221 case f(p.X, p.Y).Equal():
222 // Match found, so connect the path to this point.
223 fwdPath.connect(p, f)
224 fwdPath.append(Identity)
225 // Follow sequence of matches as far as possible.
226 for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
227 if !f(fwdPath.X, fwdPath.Y).Equal() {
228 break
229 }
230 fwdPath.append(Identity)
231 }
232 fwdFrontier = fwdPath.point
233 stop1, stop2 = true, true
234 default:
235 searchBudget-- // Match not found
236 }
237 debug.Update()
238 }
239 // Advance the frontier towards reverse point.
240 if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y {
241 fwdFrontier.X++
242 } else {
243 fwdFrontier.Y++
244 }
245
246 // Reverse search from the end.
247 if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
248 break
249 }
250 for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
251 // Search in a diagonal pattern for a match.
252 z := zigzag(i)
253 p := point{revFrontier.X - z, revFrontier.Y + z}
254 switch {
255 case fwdPath.X >= p.X || revPath.Y < p.Y:
256 stop1 = true // Hit bottom-left corner
257 case fwdPath.Y >= p.Y || revPath.X < p.X:
258 stop2 = true // Hit top-right corner
259 case f(p.X-1, p.Y-1).Equal():
260 // Match found, so connect the path to this point.
261 revPath.connect(p, f)
262 revPath.append(Identity)
263 // Follow sequence of matches as far as possible.
264 for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
265 if !f(revPath.X-1, revPath.Y-1).Equal() {
266 break
267 }
268 revPath.append(Identity)
269 }
270 revFrontier = revPath.point
271 stop1, stop2 = true, true
272 default:
273 searchBudget-- // Match not found
274 }
275 debug.Update()
276 }
277 // Advance the frontier towards forward point.
278 if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y {
279 revFrontier.X--
280 } else {
281 revFrontier.Y--
282 }
283 }
284
285 // Join the forward and reverse paths and then append the reverse path.
286 fwdPath.connect(revPath.point, f)
287 for i := len(revPath.es) - 1; i >= 0; i-- {
288 t := revPath.es[i]
289 revPath.es = revPath.es[:i]
290 fwdPath.append(t)
291 }
292 debug.Finish()
293 return fwdPath.es
294}
295
296type path struct {
297 dir int // +1 if forward, -1 if reverse
298 point // Leading point of the EditScript path
299 es EditScript
300}
301
302// connect appends any necessary Identity, Modified, UniqueX, or UniqueY types
303// to the edit-script to connect p.point to dst.
304func (p *path) connect(dst point, f EqualFunc) {
305 if p.dir > 0 {
306 // Connect in forward direction.
307 for dst.X > p.X && dst.Y > p.Y {
308 switch r := f(p.X, p.Y); {
309 case r.Equal():
310 p.append(Identity)
311 case r.Similar():
312 p.append(Modified)
313 case dst.X-p.X >= dst.Y-p.Y:
314 p.append(UniqueX)
315 default:
316 p.append(UniqueY)
317 }
318 }
319 for dst.X > p.X {
320 p.append(UniqueX)
321 }
322 for dst.Y > p.Y {
323 p.append(UniqueY)
324 }
325 } else {
326 // Connect in reverse direction.
327 for p.X > dst.X && p.Y > dst.Y {
328 switch r := f(p.X-1, p.Y-1); {
329 case r.Equal():
330 p.append(Identity)
331 case r.Similar():
332 p.append(Modified)
333 case p.Y-dst.Y >= p.X-dst.X:
334 p.append(UniqueY)
335 default:
336 p.append(UniqueX)
337 }
338 }
339 for p.X > dst.X {
340 p.append(UniqueX)
341 }
342 for p.Y > dst.Y {
343 p.append(UniqueY)
344 }
345 }
346}
347
348func (p *path) append(t EditType) {
349 p.es = append(p.es, t)
350 switch t {
351 case Identity, Modified:
352 p.add(p.dir, p.dir)
353 case UniqueX:
354 p.add(p.dir, 0)
355 case UniqueY:
356 p.add(0, p.dir)
357 }
358 debug.Update()
359}
360
361type point struct{ X, Y int }
362
363func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
364
365// zigzag maps a consecutive sequence of integers to a zig-zag sequence.
366// [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
367func zigzag(x int) int {
368 if x&1 != 0 {
369 x = ^x
370 }
371 return x >> 1
372}