Matteo Scandolo | a6a3aee | 2019-11-26 13:30:14 -0700 | [diff] [blame] | 1 | package codec |
| 2 | |
| 3 | import "github.com/golang/protobuf/proto" |
| 4 | |
| 5 | // EncodeVarint writes a varint-encoded integer to the Buffer. |
| 6 | // This is the format for the |
| 7 | // int32, int64, uint32, uint64, bool, and enum |
| 8 | // protocol buffer types. |
| 9 | func (cb *Buffer) EncodeVarint(x uint64) error { |
| 10 | for x >= 1<<7 { |
| 11 | cb.buf = append(cb.buf, uint8(x&0x7f|0x80)) |
| 12 | x >>= 7 |
| 13 | } |
| 14 | cb.buf = append(cb.buf, uint8(x)) |
| 15 | return nil |
| 16 | } |
| 17 | |
| 18 | // EncodeTagAndWireType encodes the given field tag and wire type to the |
| 19 | // buffer. This combines the two values and then writes them as a varint. |
| 20 | func (cb *Buffer) EncodeTagAndWireType(tag int32, wireType int8) error { |
| 21 | v := uint64((int64(tag) << 3) | int64(wireType)) |
| 22 | return cb.EncodeVarint(v) |
| 23 | } |
| 24 | |
| 25 | // EncodeFixed64 writes a 64-bit integer to the Buffer. |
| 26 | // This is the format for the |
| 27 | // fixed64, sfixed64, and double protocol buffer types. |
| 28 | func (cb *Buffer) EncodeFixed64(x uint64) error { |
| 29 | cb.buf = append(cb.buf, |
| 30 | uint8(x), |
| 31 | uint8(x>>8), |
| 32 | uint8(x>>16), |
| 33 | uint8(x>>24), |
| 34 | uint8(x>>32), |
| 35 | uint8(x>>40), |
| 36 | uint8(x>>48), |
| 37 | uint8(x>>56)) |
| 38 | return nil |
| 39 | } |
| 40 | |
| 41 | // EncodeFixed32 writes a 32-bit integer to the Buffer. |
| 42 | // This is the format for the |
| 43 | // fixed32, sfixed32, and float protocol buffer types. |
| 44 | func (cb *Buffer) EncodeFixed32(x uint64) error { |
| 45 | cb.buf = append(cb.buf, |
| 46 | uint8(x), |
| 47 | uint8(x>>8), |
| 48 | uint8(x>>16), |
| 49 | uint8(x>>24)) |
| 50 | return nil |
| 51 | } |
| 52 | |
| 53 | // EncodeZigZag64 does zig-zag encoding to convert the given |
| 54 | // signed 64-bit integer into a form that can be expressed |
| 55 | // efficiently as a varint, even for negative values. |
| 56 | func EncodeZigZag64(v int64) uint64 { |
| 57 | return (uint64(v) << 1) ^ uint64(v>>63) |
| 58 | } |
| 59 | |
| 60 | // EncodeZigZag32 does zig-zag encoding to convert the given |
| 61 | // signed 32-bit integer into a form that can be expressed |
| 62 | // efficiently as a varint, even for negative values. |
| 63 | func EncodeZigZag32(v int32) uint64 { |
| 64 | return uint64((uint32(v) << 1) ^ uint32((v >> 31))) |
| 65 | } |
| 66 | |
| 67 | // EncodeRawBytes writes a count-delimited byte buffer to the Buffer. |
| 68 | // This is the format used for the bytes protocol buffer |
| 69 | // type and for embedded messages. |
| 70 | func (cb *Buffer) EncodeRawBytes(b []byte) error { |
| 71 | if err := cb.EncodeVarint(uint64(len(b))); err != nil { |
| 72 | return err |
| 73 | } |
| 74 | cb.buf = append(cb.buf, b...) |
| 75 | return nil |
| 76 | } |
| 77 | |
| 78 | // EncodeMessage writes the given message to the buffer. |
| 79 | func (cb *Buffer) EncodeMessage(pm proto.Message) error { |
| 80 | bytes, err := marshalMessage(cb.buf, pm, cb.deterministic) |
| 81 | if err != nil { |
| 82 | return err |
| 83 | } |
| 84 | cb.buf = bytes |
| 85 | return nil |
| 86 | } |
| 87 | |
| 88 | // EncodeDelimitedMessage writes the given message to the buffer with a |
| 89 | // varint-encoded length prefix (the delimiter). |
| 90 | func (cb *Buffer) EncodeDelimitedMessage(pm proto.Message) error { |
| 91 | bytes, err := marshalMessage(cb.tmp, pm, cb.deterministic) |
| 92 | if err != nil { |
| 93 | return err |
| 94 | } |
| 95 | // save truncated buffer if it was grown (so we can re-use it and |
| 96 | // curtail future allocations) |
| 97 | if cap(bytes) > cap(cb.tmp) { |
| 98 | cb.tmp = bytes[:0] |
| 99 | } |
| 100 | return cb.EncodeRawBytes(bytes) |
| 101 | } |
| 102 | |
| 103 | func marshalMessage(b []byte, pm proto.Message, deterministic bool) ([]byte, error) { |
| 104 | // we try to use the most efficient way to marshal to existing slice |
| 105 | nm, ok := pm.(interface { |
| 106 | // this interface is implemented by generated messages |
| 107 | XXX_Size() int |
| 108 | XXX_Marshal(b []byte, deterministic bool) ([]byte, error) |
| 109 | }) |
| 110 | if ok { |
| 111 | sz := nm.XXX_Size() |
| 112 | if cap(b) < len(b)+sz { |
| 113 | // re-allocate to fit |
| 114 | bytes := make([]byte, len(b), len(b)+sz) |
| 115 | copy(bytes, b) |
| 116 | b = bytes |
| 117 | } |
| 118 | return nm.XXX_Marshal(b, deterministic) |
| 119 | } |
| 120 | |
| 121 | if deterministic { |
| 122 | // see if the message has custom deterministic methods, preferring an |
| 123 | // "append" method over one that must always re-allocate |
| 124 | madm, ok := pm.(interface { |
| 125 | MarshalAppendDeterministic(b []byte) ([]byte, error) |
| 126 | }) |
| 127 | if ok { |
| 128 | return madm.MarshalAppendDeterministic(b) |
| 129 | } |
| 130 | |
| 131 | mdm, ok := pm.(interface { |
| 132 | MarshalDeterministic() ([]byte, error) |
| 133 | }) |
| 134 | if ok { |
| 135 | bytes, err := mdm.MarshalDeterministic() |
| 136 | if err != nil { |
| 137 | return nil, err |
| 138 | } |
| 139 | if len(b) == 0 { |
| 140 | return bytes, nil |
| 141 | } |
| 142 | return append(b, bytes...), nil |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | mam, ok := pm.(interface { |
| 147 | // see if we can append the message, vs. having to re-allocate |
| 148 | MarshalAppend(b []byte) ([]byte, error) |
| 149 | }) |
| 150 | if ok { |
| 151 | return mam.MarshalAppend(b) |
| 152 | } |
| 153 | |
| 154 | // lowest common denominator |
| 155 | bytes, err := proto.Marshal(pm) |
| 156 | if err != nil { |
| 157 | return nil, err |
| 158 | } |
| 159 | if len(b) == 0 { |
| 160 | return bytes, nil |
| 161 | } |
| 162 | return append(b, bytes...), nil |
| 163 | } |