blob: bdd81389a97d9e80e7cc3aaf1e3a3cfa5df452f7 [file] [log] [blame]
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001package assert
2
3import (
4 "bufio"
5 "bytes"
6 "encoding/json"
7 "errors"
8 "fmt"
9 "math"
10 "os"
11 "reflect"
12 "regexp"
13 "runtime"
Matteo Scandolof9d43412021-01-12 11:11:34 -080014 "runtime/debug"
Matteo Scandolo75ed5b92020-09-03 09:03:16 -070015 "strings"
16 "time"
17 "unicode"
18 "unicode/utf8"
19
20 "github.com/davecgh/go-spew/spew"
21 "github.com/pmezard/go-difflib/difflib"
22 yaml "gopkg.in/yaml.v2"
23)
24
Matteo Scandolof9d43412021-01-12 11:11:34 -080025//go:generate sh -c "cd ../_codegen && go build && cd - && ../_codegen/_codegen -output-package=assert -template=assertion_format.go.tmpl"
Matteo Scandolo75ed5b92020-09-03 09:03:16 -070026
27// TestingT is an interface wrapper around *testing.T
28type TestingT interface {
29 Errorf(format string, args ...interface{})
30}
31
32// ComparisonAssertionFunc is a common function prototype when comparing two values. Can be useful
33// for table driven tests.
34type ComparisonAssertionFunc func(TestingT, interface{}, interface{}, ...interface{}) bool
35
36// ValueAssertionFunc is a common function prototype when validating a single value. Can be useful
37// for table driven tests.
38type ValueAssertionFunc func(TestingT, interface{}, ...interface{}) bool
39
40// BoolAssertionFunc is a common function prototype when validating a bool value. Can be useful
41// for table driven tests.
42type BoolAssertionFunc func(TestingT, bool, ...interface{}) bool
43
44// ErrorAssertionFunc is a common function prototype when validating an error value. Can be useful
45// for table driven tests.
46type ErrorAssertionFunc func(TestingT, error, ...interface{}) bool
47
48// Comparison a custom function that returns true on success and false on failure
49type Comparison func() (success bool)
50
51/*
52 Helper functions
53*/
54
55// ObjectsAreEqual determines if two objects are considered equal.
56//
57// This function does no assertion of any kind.
58func ObjectsAreEqual(expected, actual interface{}) bool {
59 if expected == nil || actual == nil {
60 return expected == actual
61 }
62
63 exp, ok := expected.([]byte)
64 if !ok {
65 return reflect.DeepEqual(expected, actual)
66 }
67
68 act, ok := actual.([]byte)
69 if !ok {
70 return false
71 }
72 if exp == nil || act == nil {
73 return exp == nil && act == nil
74 }
75 return bytes.Equal(exp, act)
76}
77
78// ObjectsAreEqualValues gets whether two objects are equal, or if their
79// values are equal.
80func ObjectsAreEqualValues(expected, actual interface{}) bool {
81 if ObjectsAreEqual(expected, actual) {
82 return true
83 }
84
85 actualType := reflect.TypeOf(actual)
86 if actualType == nil {
87 return false
88 }
89 expectedValue := reflect.ValueOf(expected)
90 if expectedValue.IsValid() && expectedValue.Type().ConvertibleTo(actualType) {
91 // Attempt comparison after type conversion
92 return reflect.DeepEqual(expectedValue.Convert(actualType).Interface(), actual)
93 }
94
95 return false
96}
97
98/* CallerInfo is necessary because the assert functions use the testing object
99internally, causing it to print the file:line of the assert method, rather than where
100the problem actually occurred in calling code.*/
101
102// CallerInfo returns an array of strings containing the file and line number
103// of each stack frame leading from the current test to the assert call that
104// failed.
105func CallerInfo() []string {
106
107 pc := uintptr(0)
108 file := ""
109 line := 0
110 ok := false
111 name := ""
112
113 callers := []string{}
114 for i := 0; ; i++ {
115 pc, file, line, ok = runtime.Caller(i)
116 if !ok {
117 // The breaks below failed to terminate the loop, and we ran off the
118 // end of the call stack.
119 break
120 }
121
122 // This is a huge edge case, but it will panic if this is the case, see #180
123 if file == "<autogenerated>" {
124 break
125 }
126
127 f := runtime.FuncForPC(pc)
128 if f == nil {
129 break
130 }
131 name = f.Name()
132
133 // testing.tRunner is the standard library function that calls
134 // tests. Subtests are called directly by tRunner, without going through
135 // the Test/Benchmark/Example function that contains the t.Run calls, so
136 // with subtests we should break when we hit tRunner, without adding it
137 // to the list of callers.
138 if name == "testing.tRunner" {
139 break
140 }
141
142 parts := strings.Split(file, "/")
143 file = parts[len(parts)-1]
144 if len(parts) > 1 {
145 dir := parts[len(parts)-2]
146 if (dir != "assert" && dir != "mock" && dir != "require") || file == "mock_test.go" {
147 callers = append(callers, fmt.Sprintf("%s:%d", file, line))
148 }
149 }
150
151 // Drop the package
152 segments := strings.Split(name, ".")
153 name = segments[len(segments)-1]
154 if isTest(name, "Test") ||
155 isTest(name, "Benchmark") ||
156 isTest(name, "Example") {
157 break
158 }
159 }
160
161 return callers
162}
163
164// Stolen from the `go test` tool.
165// isTest tells whether name looks like a test (or benchmark, according to prefix).
166// It is a Test (say) if there is a character after Test that is not a lower-case letter.
167// We don't want TesticularCancer.
168func isTest(name, prefix string) bool {
169 if !strings.HasPrefix(name, prefix) {
170 return false
171 }
172 if len(name) == len(prefix) { // "Test" is ok
173 return true
174 }
175 rune, _ := utf8.DecodeRuneInString(name[len(prefix):])
176 return !unicode.IsLower(rune)
177}
178
179func messageFromMsgAndArgs(msgAndArgs ...interface{}) string {
180 if len(msgAndArgs) == 0 || msgAndArgs == nil {
181 return ""
182 }
183 if len(msgAndArgs) == 1 {
184 msg := msgAndArgs[0]
185 if msgAsStr, ok := msg.(string); ok {
186 return msgAsStr
187 }
188 return fmt.Sprintf("%+v", msg)
189 }
190 if len(msgAndArgs) > 1 {
191 return fmt.Sprintf(msgAndArgs[0].(string), msgAndArgs[1:]...)
192 }
193 return ""
194}
195
196// Aligns the provided message so that all lines after the first line start at the same location as the first line.
197// Assumes that the first line starts at the correct location (after carriage return, tab, label, spacer and tab).
198// The longestLabelLen parameter specifies the length of the longest label in the output (required becaues this is the
199// basis on which the alignment occurs).
200func indentMessageLines(message string, longestLabelLen int) string {
201 outBuf := new(bytes.Buffer)
202
203 for i, scanner := 0, bufio.NewScanner(strings.NewReader(message)); scanner.Scan(); i++ {
204 // no need to align first line because it starts at the correct location (after the label)
205 if i != 0 {
206 // append alignLen+1 spaces to align with "{{longestLabel}}:" before adding tab
207 outBuf.WriteString("\n\t" + strings.Repeat(" ", longestLabelLen+1) + "\t")
208 }
209 outBuf.WriteString(scanner.Text())
210 }
211
212 return outBuf.String()
213}
214
215type failNower interface {
216 FailNow()
217}
218
219// FailNow fails test
220func FailNow(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
221 if h, ok := t.(tHelper); ok {
222 h.Helper()
223 }
224 Fail(t, failureMessage, msgAndArgs...)
225
226 // We cannot extend TestingT with FailNow() and
227 // maintain backwards compatibility, so we fallback
228 // to panicking when FailNow is not available in
229 // TestingT.
230 // See issue #263
231
232 if t, ok := t.(failNower); ok {
233 t.FailNow()
234 } else {
235 panic("test failed and t is missing `FailNow()`")
236 }
237 return false
238}
239
240// Fail reports a failure through
241func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
242 if h, ok := t.(tHelper); ok {
243 h.Helper()
244 }
245 content := []labeledContent{
246 {"Error Trace", strings.Join(CallerInfo(), "\n\t\t\t")},
247 {"Error", failureMessage},
248 }
249
250 // Add test name if the Go version supports it
251 if n, ok := t.(interface {
252 Name() string
253 }); ok {
254 content = append(content, labeledContent{"Test", n.Name()})
255 }
256
257 message := messageFromMsgAndArgs(msgAndArgs...)
258 if len(message) > 0 {
259 content = append(content, labeledContent{"Messages", message})
260 }
261
262 t.Errorf("\n%s", ""+labeledOutput(content...))
263
264 return false
265}
266
267type labeledContent struct {
268 label string
269 content string
270}
271
272// labeledOutput returns a string consisting of the provided labeledContent. Each labeled output is appended in the following manner:
273//
274// \t{{label}}:{{align_spaces}}\t{{content}}\n
275//
276// The initial carriage return is required to undo/erase any padding added by testing.T.Errorf. The "\t{{label}}:" is for the label.
277// If a label is shorter than the longest label provided, padding spaces are added to make all the labels match in length. Once this
278// alignment is achieved, "\t{{content}}\n" is added for the output.
279//
280// If the content of the labeledOutput contains line breaks, the subsequent lines are aligned so that they start at the same location as the first line.
281func labeledOutput(content ...labeledContent) string {
282 longestLabel := 0
283 for _, v := range content {
284 if len(v.label) > longestLabel {
285 longestLabel = len(v.label)
286 }
287 }
288 var output string
289 for _, v := range content {
290 output += "\t" + v.label + ":" + strings.Repeat(" ", longestLabel-len(v.label)) + "\t" + indentMessageLines(v.content, longestLabel) + "\n"
291 }
292 return output
293}
294
295// Implements asserts that an object is implemented by the specified interface.
296//
297// assert.Implements(t, (*MyInterface)(nil), new(MyObject))
298func Implements(t TestingT, interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
299 if h, ok := t.(tHelper); ok {
300 h.Helper()
301 }
302 interfaceType := reflect.TypeOf(interfaceObject).Elem()
303
304 if object == nil {
305 return Fail(t, fmt.Sprintf("Cannot check if nil implements %v", interfaceType), msgAndArgs...)
306 }
307 if !reflect.TypeOf(object).Implements(interfaceType) {
308 return Fail(t, fmt.Sprintf("%T must implement %v", object, interfaceType), msgAndArgs...)
309 }
310
311 return true
312}
313
314// IsType asserts that the specified objects are of the same type.
315func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
316 if h, ok := t.(tHelper); ok {
317 h.Helper()
318 }
319
320 if !ObjectsAreEqual(reflect.TypeOf(object), reflect.TypeOf(expectedType)) {
321 return Fail(t, fmt.Sprintf("Object expected to be of type %v, but was %v", reflect.TypeOf(expectedType), reflect.TypeOf(object)), msgAndArgs...)
322 }
323
324 return true
325}
326
327// Equal asserts that two objects are equal.
328//
329// assert.Equal(t, 123, 123)
330//
331// Pointer variable equality is determined based on the equality of the
332// referenced values (as opposed to the memory addresses). Function equality
333// cannot be determined and will always fail.
334func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
335 if h, ok := t.(tHelper); ok {
336 h.Helper()
337 }
338 if err := validateEqualArgs(expected, actual); err != nil {
339 return Fail(t, fmt.Sprintf("Invalid operation: %#v == %#v (%s)",
340 expected, actual, err), msgAndArgs...)
341 }
342
343 if !ObjectsAreEqual(expected, actual) {
344 diff := diff(expected, actual)
345 expected, actual = formatUnequalValues(expected, actual)
346 return Fail(t, fmt.Sprintf("Not equal: \n"+
347 "expected: %s\n"+
348 "actual : %s%s", expected, actual, diff), msgAndArgs...)
349 }
350
351 return true
352
353}
354
Matteo Scandolof9d43412021-01-12 11:11:34 -0800355// validateEqualArgs checks whether provided arguments can be safely used in the
356// Equal/NotEqual functions.
357func validateEqualArgs(expected, actual interface{}) error {
358 if expected == nil && actual == nil {
359 return nil
360 }
361
362 if isFunction(expected) || isFunction(actual) {
363 return errors.New("cannot take func type as argument")
364 }
365 return nil
366}
367
Matteo Scandolo75ed5b92020-09-03 09:03:16 -0700368// Same asserts that two pointers reference the same object.
369//
370// assert.Same(t, ptr1, ptr2)
371//
372// Both arguments must be pointer variables. Pointer variable sameness is
373// determined based on the equality of both type and value.
374func Same(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
375 if h, ok := t.(tHelper); ok {
376 h.Helper()
377 }
378
Matteo Scandolof9d43412021-01-12 11:11:34 -0800379 if !samePointers(expected, actual) {
Matteo Scandolo75ed5b92020-09-03 09:03:16 -0700380 return Fail(t, fmt.Sprintf("Not same: \n"+
381 "expected: %p %#v\n"+
382 "actual : %p %#v", expected, expected, actual, actual), msgAndArgs...)
383 }
384
385 return true
386}
387
Matteo Scandolof9d43412021-01-12 11:11:34 -0800388// NotSame asserts that two pointers do not reference the same object.
389//
390// assert.NotSame(t, ptr1, ptr2)
391//
392// Both arguments must be pointer variables. Pointer variable sameness is
393// determined based on the equality of both type and value.
394func NotSame(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
395 if h, ok := t.(tHelper); ok {
396 h.Helper()
397 }
398
399 if samePointers(expected, actual) {
400 return Fail(t, fmt.Sprintf(
401 "Expected and actual point to the same object: %p %#v",
402 expected, expected), msgAndArgs...)
403 }
404 return true
405}
406
407// samePointers compares two generic interface objects and returns whether
408// they point to the same object
409func samePointers(first, second interface{}) bool {
410 firstPtr, secondPtr := reflect.ValueOf(first), reflect.ValueOf(second)
411 if firstPtr.Kind() != reflect.Ptr || secondPtr.Kind() != reflect.Ptr {
412 return false
413 }
414
415 firstType, secondType := reflect.TypeOf(first), reflect.TypeOf(second)
416 if firstType != secondType {
417 return false
418 }
419
420 // compare pointer addresses
421 return first == second
422}
423
Matteo Scandolo75ed5b92020-09-03 09:03:16 -0700424// formatUnequalValues takes two values of arbitrary types and returns string
425// representations appropriate to be presented to the user.
426//
427// If the values are not of like type, the returned strings will be prefixed
428// with the type name, and the value will be enclosed in parenthesis similar
429// to a type conversion in the Go grammar.
430func formatUnequalValues(expected, actual interface{}) (e string, a string) {
431 if reflect.TypeOf(expected) != reflect.TypeOf(actual) {
432 return fmt.Sprintf("%T(%#v)", expected, expected),
433 fmt.Sprintf("%T(%#v)", actual, actual)
434 }
Matteo Scandolof9d43412021-01-12 11:11:34 -0800435 switch expected.(type) {
436 case time.Duration:
437 return fmt.Sprintf("%v", expected), fmt.Sprintf("%v", actual)
438 }
439 return fmt.Sprintf("%#v", expected), fmt.Sprintf("%#v", actual)
Matteo Scandolo75ed5b92020-09-03 09:03:16 -0700440}
441
442// EqualValues asserts that two objects are equal or convertable to the same types
443// and equal.
444//
445// assert.EqualValues(t, uint32(123), int32(123))
446func EqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
447 if h, ok := t.(tHelper); ok {
448 h.Helper()
449 }
450
451 if !ObjectsAreEqualValues(expected, actual) {
452 diff := diff(expected, actual)
453 expected, actual = formatUnequalValues(expected, actual)
454 return Fail(t, fmt.Sprintf("Not equal: \n"+
455 "expected: %s\n"+
456 "actual : %s%s", expected, actual, diff), msgAndArgs...)
457 }
458
459 return true
460
461}
462
463// Exactly asserts that two objects are equal in value and type.
464//
465// assert.Exactly(t, int32(123), int64(123))
466func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
467 if h, ok := t.(tHelper); ok {
468 h.Helper()
469 }
470
471 aType := reflect.TypeOf(expected)
472 bType := reflect.TypeOf(actual)
473
474 if aType != bType {
475 return Fail(t, fmt.Sprintf("Types expected to match exactly\n\t%v != %v", aType, bType), msgAndArgs...)
476 }
477
478 return Equal(t, expected, actual, msgAndArgs...)
479
480}
481
482// NotNil asserts that the specified object is not nil.
483//
484// assert.NotNil(t, err)
485func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
486 if h, ok := t.(tHelper); ok {
487 h.Helper()
488 }
489 if !isNil(object) {
490 return true
491 }
492 return Fail(t, "Expected value not to be nil.", msgAndArgs...)
493}
494
495// containsKind checks if a specified kind in the slice of kinds.
496func containsKind(kinds []reflect.Kind, kind reflect.Kind) bool {
497 for i := 0; i < len(kinds); i++ {
498 if kind == kinds[i] {
499 return true
500 }
501 }
502
503 return false
504}
505
506// isNil checks if a specified object is nil or not, without Failing.
507func isNil(object interface{}) bool {
508 if object == nil {
509 return true
510 }
511
512 value := reflect.ValueOf(object)
513 kind := value.Kind()
514 isNilableKind := containsKind(
515 []reflect.Kind{
516 reflect.Chan, reflect.Func,
517 reflect.Interface, reflect.Map,
518 reflect.Ptr, reflect.Slice},
519 kind)
520
521 if isNilableKind && value.IsNil() {
522 return true
523 }
524
525 return false
526}
527
528// Nil asserts that the specified object is nil.
529//
530// assert.Nil(t, err)
531func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
532 if h, ok := t.(tHelper); ok {
533 h.Helper()
534 }
535 if isNil(object) {
536 return true
537 }
538 return Fail(t, fmt.Sprintf("Expected nil, but got: %#v", object), msgAndArgs...)
539}
540
541// isEmpty gets whether the specified object is considered empty or not.
542func isEmpty(object interface{}) bool {
543
544 // get nil case out of the way
545 if object == nil {
546 return true
547 }
548
549 objValue := reflect.ValueOf(object)
550
551 switch objValue.Kind() {
552 // collection types are empty when they have no element
553 case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice:
554 return objValue.Len() == 0
555 // pointers are empty if nil or if the value they point to is empty
556 case reflect.Ptr:
557 if objValue.IsNil() {
558 return true
559 }
560 deref := objValue.Elem().Interface()
561 return isEmpty(deref)
562 // for all other types, compare against the zero value
563 default:
564 zero := reflect.Zero(objValue.Type())
565 return reflect.DeepEqual(object, zero.Interface())
566 }
567}
568
569// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either
570// a slice or a channel with len == 0.
571//
572// assert.Empty(t, obj)
573func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
574 if h, ok := t.(tHelper); ok {
575 h.Helper()
576 }
577
578 pass := isEmpty(object)
579 if !pass {
580 Fail(t, fmt.Sprintf("Should be empty, but was %v", object), msgAndArgs...)
581 }
582
583 return pass
584
585}
586
587// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
588// a slice or a channel with len == 0.
589//
590// if assert.NotEmpty(t, obj) {
591// assert.Equal(t, "two", obj[1])
592// }
593func NotEmpty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
594 if h, ok := t.(tHelper); ok {
595 h.Helper()
596 }
597
598 pass := !isEmpty(object)
599 if !pass {
600 Fail(t, fmt.Sprintf("Should NOT be empty, but was %v", object), msgAndArgs...)
601 }
602
603 return pass
604
605}
606
607// getLen try to get length of object.
608// return (false, 0) if impossible.
609func getLen(x interface{}) (ok bool, length int) {
610 v := reflect.ValueOf(x)
611 defer func() {
612 if e := recover(); e != nil {
613 ok = false
614 }
615 }()
616 return true, v.Len()
617}
618
619// Len asserts that the specified object has specific length.
620// Len also fails if the object has a type that len() not accept.
621//
622// assert.Len(t, mySlice, 3)
623func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{}) bool {
624 if h, ok := t.(tHelper); ok {
625 h.Helper()
626 }
627 ok, l := getLen(object)
628 if !ok {
629 return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", object), msgAndArgs...)
630 }
631
632 if l != length {
633 return Fail(t, fmt.Sprintf("\"%s\" should have %d item(s), but has %d", object, length, l), msgAndArgs...)
634 }
635 return true
636}
637
638// True asserts that the specified value is true.
639//
640// assert.True(t, myBool)
641func True(t TestingT, value bool, msgAndArgs ...interface{}) bool {
642 if h, ok := t.(tHelper); ok {
643 h.Helper()
644 }
645 if h, ok := t.(interface {
646 Helper()
647 }); ok {
648 h.Helper()
649 }
650
651 if value != true {
652 return Fail(t, "Should be true", msgAndArgs...)
653 }
654
655 return true
656
657}
658
659// False asserts that the specified value is false.
660//
661// assert.False(t, myBool)
662func False(t TestingT, value bool, msgAndArgs ...interface{}) bool {
663 if h, ok := t.(tHelper); ok {
664 h.Helper()
665 }
666
667 if value != false {
668 return Fail(t, "Should be false", msgAndArgs...)
669 }
670
671 return true
672
673}
674
675// NotEqual asserts that the specified values are NOT equal.
676//
677// assert.NotEqual(t, obj1, obj2)
678//
679// Pointer variable equality is determined based on the equality of the
680// referenced values (as opposed to the memory addresses).
681func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
682 if h, ok := t.(tHelper); ok {
683 h.Helper()
684 }
685 if err := validateEqualArgs(expected, actual); err != nil {
686 return Fail(t, fmt.Sprintf("Invalid operation: %#v != %#v (%s)",
687 expected, actual, err), msgAndArgs...)
688 }
689
690 if ObjectsAreEqual(expected, actual) {
691 return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...)
692 }
693
694 return true
695
696}
697
698// containsElement try loop over the list check if the list includes the element.
699// return (false, false) if impossible.
700// return (true, false) if element was not found.
701// return (true, true) if element was found.
702func includeElement(list interface{}, element interface{}) (ok, found bool) {
703
704 listValue := reflect.ValueOf(list)
705 listKind := reflect.TypeOf(list).Kind()
706 defer func() {
707 if e := recover(); e != nil {
708 ok = false
709 found = false
710 }
711 }()
712
713 if listKind == reflect.String {
714 elementValue := reflect.ValueOf(element)
715 return true, strings.Contains(listValue.String(), elementValue.String())
716 }
717
718 if listKind == reflect.Map {
719 mapKeys := listValue.MapKeys()
720 for i := 0; i < len(mapKeys); i++ {
721 if ObjectsAreEqual(mapKeys[i].Interface(), element) {
722 return true, true
723 }
724 }
725 return true, false
726 }
727
728 for i := 0; i < listValue.Len(); i++ {
729 if ObjectsAreEqual(listValue.Index(i).Interface(), element) {
730 return true, true
731 }
732 }
733 return true, false
734
735}
736
737// Contains asserts that the specified string, list(array, slice...) or map contains the
738// specified substring or element.
739//
740// assert.Contains(t, "Hello World", "World")
741// assert.Contains(t, ["Hello", "World"], "World")
742// assert.Contains(t, {"Hello": "World"}, "Hello")
743func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
744 if h, ok := t.(tHelper); ok {
745 h.Helper()
746 }
747
748 ok, found := includeElement(s, contains)
749 if !ok {
750 return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
751 }
752 if !found {
753 return Fail(t, fmt.Sprintf("\"%s\" does not contain \"%s\"", s, contains), msgAndArgs...)
754 }
755
756 return true
757
758}
759
760// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
761// specified substring or element.
762//
763// assert.NotContains(t, "Hello World", "Earth")
764// assert.NotContains(t, ["Hello", "World"], "Earth")
765// assert.NotContains(t, {"Hello": "World"}, "Earth")
766func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
767 if h, ok := t.(tHelper); ok {
768 h.Helper()
769 }
770
771 ok, found := includeElement(s, contains)
772 if !ok {
773 return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
774 }
775 if found {
776 return Fail(t, fmt.Sprintf("\"%s\" should not contain \"%s\"", s, contains), msgAndArgs...)
777 }
778
779 return true
780
781}
782
783// Subset asserts that the specified list(array, slice...) contains all
784// elements given in the specified subset(array, slice...).
785//
786// assert.Subset(t, [1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]")
787func Subset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
788 if h, ok := t.(tHelper); ok {
789 h.Helper()
790 }
791 if subset == nil {
792 return true // we consider nil to be equal to the nil set
793 }
794
795 subsetValue := reflect.ValueOf(subset)
796 defer func() {
797 if e := recover(); e != nil {
798 ok = false
799 }
800 }()
801
802 listKind := reflect.TypeOf(list).Kind()
803 subsetKind := reflect.TypeOf(subset).Kind()
804
805 if listKind != reflect.Array && listKind != reflect.Slice {
806 return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...)
807 }
808
809 if subsetKind != reflect.Array && subsetKind != reflect.Slice {
810 return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...)
811 }
812
813 for i := 0; i < subsetValue.Len(); i++ {
814 element := subsetValue.Index(i).Interface()
815 ok, found := includeElement(list, element)
816 if !ok {
817 return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", list), msgAndArgs...)
818 }
819 if !found {
820 return Fail(t, fmt.Sprintf("\"%s\" does not contain \"%s\"", list, element), msgAndArgs...)
821 }
822 }
823
824 return true
825}
826
827// NotSubset asserts that the specified list(array, slice...) contains not all
828// elements given in the specified subset(array, slice...).
829//
830// assert.NotSubset(t, [1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]")
831func NotSubset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
832 if h, ok := t.(tHelper); ok {
833 h.Helper()
834 }
835 if subset == nil {
836 return Fail(t, fmt.Sprintf("nil is the empty set which is a subset of every set"), msgAndArgs...)
837 }
838
839 subsetValue := reflect.ValueOf(subset)
840 defer func() {
841 if e := recover(); e != nil {
842 ok = false
843 }
844 }()
845
846 listKind := reflect.TypeOf(list).Kind()
847 subsetKind := reflect.TypeOf(subset).Kind()
848
849 if listKind != reflect.Array && listKind != reflect.Slice {
850 return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...)
851 }
852
853 if subsetKind != reflect.Array && subsetKind != reflect.Slice {
854 return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...)
855 }
856
857 for i := 0; i < subsetValue.Len(); i++ {
858 element := subsetValue.Index(i).Interface()
859 ok, found := includeElement(list, element)
860 if !ok {
861 return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", list), msgAndArgs...)
862 }
863 if !found {
864 return true
865 }
866 }
867
868 return Fail(t, fmt.Sprintf("%q is a subset of %q", subset, list), msgAndArgs...)
869}
870
871// ElementsMatch asserts that the specified listA(array, slice...) is equal to specified
872// listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
873// the number of appearances of each of them in both lists should match.
874//
875// assert.ElementsMatch(t, [1, 3, 2, 3], [1, 3, 3, 2])
876func ElementsMatch(t TestingT, listA, listB interface{}, msgAndArgs ...interface{}) (ok bool) {
877 if h, ok := t.(tHelper); ok {
878 h.Helper()
879 }
880 if isEmpty(listA) && isEmpty(listB) {
881 return true
882 }
883
884 aKind := reflect.TypeOf(listA).Kind()
885 bKind := reflect.TypeOf(listB).Kind()
886
887 if aKind != reflect.Array && aKind != reflect.Slice {
888 return Fail(t, fmt.Sprintf("%q has an unsupported type %s", listA, aKind), msgAndArgs...)
889 }
890
891 if bKind != reflect.Array && bKind != reflect.Slice {
892 return Fail(t, fmt.Sprintf("%q has an unsupported type %s", listB, bKind), msgAndArgs...)
893 }
894
895 aValue := reflect.ValueOf(listA)
896 bValue := reflect.ValueOf(listB)
897
898 aLen := aValue.Len()
899 bLen := bValue.Len()
900
901 if aLen != bLen {
902 return Fail(t, fmt.Sprintf("lengths don't match: %d != %d", aLen, bLen), msgAndArgs...)
903 }
904
905 // Mark indexes in bValue that we already used
906 visited := make([]bool, bLen)
907 for i := 0; i < aLen; i++ {
908 element := aValue.Index(i).Interface()
909 found := false
910 for j := 0; j < bLen; j++ {
911 if visited[j] {
912 continue
913 }
914 if ObjectsAreEqual(bValue.Index(j).Interface(), element) {
915 visited[j] = true
916 found = true
917 break
918 }
919 }
920 if !found {
921 return Fail(t, fmt.Sprintf("element %s appears more times in %s than in %s", element, aValue, bValue), msgAndArgs...)
922 }
923 }
924
925 return true
926}
927
928// Condition uses a Comparison to assert a complex condition.
929func Condition(t TestingT, comp Comparison, msgAndArgs ...interface{}) bool {
930 if h, ok := t.(tHelper); ok {
931 h.Helper()
932 }
933 result := comp()
934 if !result {
935 Fail(t, "Condition failed!", msgAndArgs...)
936 }
937 return result
938}
939
940// PanicTestFunc defines a func that should be passed to the assert.Panics and assert.NotPanics
941// methods, and represents a simple func that takes no arguments, and returns nothing.
942type PanicTestFunc func()
943
944// didPanic returns true if the function passed to it panics. Otherwise, it returns false.
Matteo Scandolof9d43412021-01-12 11:11:34 -0800945func didPanic(f PanicTestFunc) (bool, interface{}, string) {
Matteo Scandolo75ed5b92020-09-03 09:03:16 -0700946
947 didPanic := false
948 var message interface{}
Matteo Scandolof9d43412021-01-12 11:11:34 -0800949 var stack string
Matteo Scandolo75ed5b92020-09-03 09:03:16 -0700950 func() {
951
952 defer func() {
953 if message = recover(); message != nil {
954 didPanic = true
Matteo Scandolof9d43412021-01-12 11:11:34 -0800955 stack = string(debug.Stack())
Matteo Scandolo75ed5b92020-09-03 09:03:16 -0700956 }
957 }()
958
959 // call the target function
960 f()
961
962 }()
963
Matteo Scandolof9d43412021-01-12 11:11:34 -0800964 return didPanic, message, stack
Matteo Scandolo75ed5b92020-09-03 09:03:16 -0700965
966}
967
968// Panics asserts that the code inside the specified PanicTestFunc panics.
969//
970// assert.Panics(t, func(){ GoCrazy() })
971func Panics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
972 if h, ok := t.(tHelper); ok {
973 h.Helper()
974 }
975
Matteo Scandolof9d43412021-01-12 11:11:34 -0800976 if funcDidPanic, panicValue, _ := didPanic(f); !funcDidPanic {
Matteo Scandolo75ed5b92020-09-03 09:03:16 -0700977 return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
978 }
979
980 return true
981}
982
983// PanicsWithValue asserts that the code inside the specified PanicTestFunc panics, and that
984// the recovered panic value equals the expected panic value.
985//
986// assert.PanicsWithValue(t, "crazy error", func(){ GoCrazy() })
987func PanicsWithValue(t TestingT, expected interface{}, f PanicTestFunc, msgAndArgs ...interface{}) bool {
988 if h, ok := t.(tHelper); ok {
989 h.Helper()
990 }
991
Matteo Scandolof9d43412021-01-12 11:11:34 -0800992 funcDidPanic, panicValue, panickedStack := didPanic(f)
Matteo Scandolo75ed5b92020-09-03 09:03:16 -0700993 if !funcDidPanic {
994 return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
995 }
996 if panicValue != expected {
Matteo Scandolof9d43412021-01-12 11:11:34 -0800997 return Fail(t, fmt.Sprintf("func %#v should panic with value:\t%#v\n\tPanic value:\t%#v\n\tPanic stack:\t%s", f, expected, panicValue, panickedStack), msgAndArgs...)
998 }
999
1000 return true
1001}
1002
1003// PanicsWithError asserts that the code inside the specified PanicTestFunc
1004// panics, and that the recovered panic value is an error that satisfies the
1005// EqualError comparison.
1006//
1007// assert.PanicsWithError(t, "crazy error", func(){ GoCrazy() })
1008func PanicsWithError(t TestingT, errString string, f PanicTestFunc, msgAndArgs ...interface{}) bool {
1009 if h, ok := t.(tHelper); ok {
1010 h.Helper()
1011 }
1012
1013 funcDidPanic, panicValue, panickedStack := didPanic(f)
1014 if !funcDidPanic {
1015 return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
1016 }
1017 panicErr, ok := panicValue.(error)
1018 if !ok || panicErr.Error() != errString {
1019 return Fail(t, fmt.Sprintf("func %#v should panic with error message:\t%#v\n\tPanic value:\t%#v\n\tPanic stack:\t%s", f, errString, panicValue, panickedStack), msgAndArgs...)
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001020 }
1021
1022 return true
1023}
1024
1025// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
1026//
1027// assert.NotPanics(t, func(){ RemainCalm() })
1028func NotPanics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
1029 if h, ok := t.(tHelper); ok {
1030 h.Helper()
1031 }
1032
Matteo Scandolof9d43412021-01-12 11:11:34 -08001033 if funcDidPanic, panicValue, panickedStack := didPanic(f); funcDidPanic {
1034 return Fail(t, fmt.Sprintf("func %#v should not panic\n\tPanic value:\t%v\n\tPanic stack:\t%s", f, panicValue, panickedStack), msgAndArgs...)
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001035 }
1036
1037 return true
1038}
1039
1040// WithinDuration asserts that the two times are within duration delta of each other.
1041//
1042// assert.WithinDuration(t, time.Now(), time.Now(), 10*time.Second)
1043func WithinDuration(t TestingT, expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
1044 if h, ok := t.(tHelper); ok {
1045 h.Helper()
1046 }
1047
1048 dt := expected.Sub(actual)
1049 if dt < -delta || dt > delta {
1050 return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
1051 }
1052
1053 return true
1054}
1055
1056func toFloat(x interface{}) (float64, bool) {
1057 var xf float64
1058 xok := true
1059
1060 switch xn := x.(type) {
1061 case uint8:
1062 xf = float64(xn)
1063 case uint16:
1064 xf = float64(xn)
1065 case uint32:
1066 xf = float64(xn)
1067 case uint64:
1068 xf = float64(xn)
1069 case int:
1070 xf = float64(xn)
1071 case int8:
1072 xf = float64(xn)
1073 case int16:
1074 xf = float64(xn)
1075 case int32:
1076 xf = float64(xn)
1077 case int64:
1078 xf = float64(xn)
1079 case float32:
1080 xf = float64(xn)
1081 case float64:
1082 xf = float64(xn)
1083 case time.Duration:
1084 xf = float64(xn)
1085 default:
1086 xok = false
1087 }
1088
1089 return xf, xok
1090}
1091
1092// InDelta asserts that the two numerals are within delta of each other.
1093//
Matteo Scandolof9d43412021-01-12 11:11:34 -08001094// assert.InDelta(t, math.Pi, 22/7.0, 0.01)
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001095func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
1096 if h, ok := t.(tHelper); ok {
1097 h.Helper()
1098 }
1099
1100 af, aok := toFloat(expected)
1101 bf, bok := toFloat(actual)
1102
1103 if !aok || !bok {
1104 return Fail(t, fmt.Sprintf("Parameters must be numerical"), msgAndArgs...)
1105 }
1106
1107 if math.IsNaN(af) {
1108 return Fail(t, fmt.Sprintf("Expected must not be NaN"), msgAndArgs...)
1109 }
1110
1111 if math.IsNaN(bf) {
1112 return Fail(t, fmt.Sprintf("Expected %v with delta %v, but was NaN", expected, delta), msgAndArgs...)
1113 }
1114
1115 dt := af - bf
1116 if dt < -delta || dt > delta {
1117 return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
1118 }
1119
1120 return true
1121}
1122
1123// InDeltaSlice is the same as InDelta, except it compares two slices.
1124func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
1125 if h, ok := t.(tHelper); ok {
1126 h.Helper()
1127 }
1128 if expected == nil || actual == nil ||
1129 reflect.TypeOf(actual).Kind() != reflect.Slice ||
1130 reflect.TypeOf(expected).Kind() != reflect.Slice {
1131 return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
1132 }
1133
1134 actualSlice := reflect.ValueOf(actual)
1135 expectedSlice := reflect.ValueOf(expected)
1136
1137 for i := 0; i < actualSlice.Len(); i++ {
1138 result := InDelta(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta, msgAndArgs...)
1139 if !result {
1140 return result
1141 }
1142 }
1143
1144 return true
1145}
1146
1147// InDeltaMapValues is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
1148func InDeltaMapValues(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
1149 if h, ok := t.(tHelper); ok {
1150 h.Helper()
1151 }
1152 if expected == nil || actual == nil ||
1153 reflect.TypeOf(actual).Kind() != reflect.Map ||
1154 reflect.TypeOf(expected).Kind() != reflect.Map {
1155 return Fail(t, "Arguments must be maps", msgAndArgs...)
1156 }
1157
1158 expectedMap := reflect.ValueOf(expected)
1159 actualMap := reflect.ValueOf(actual)
1160
1161 if expectedMap.Len() != actualMap.Len() {
1162 return Fail(t, "Arguments must have the same number of keys", msgAndArgs...)
1163 }
1164
1165 for _, k := range expectedMap.MapKeys() {
1166 ev := expectedMap.MapIndex(k)
1167 av := actualMap.MapIndex(k)
1168
1169 if !ev.IsValid() {
1170 return Fail(t, fmt.Sprintf("missing key %q in expected map", k), msgAndArgs...)
1171 }
1172
1173 if !av.IsValid() {
1174 return Fail(t, fmt.Sprintf("missing key %q in actual map", k), msgAndArgs...)
1175 }
1176
1177 if !InDelta(
1178 t,
1179 ev.Interface(),
1180 av.Interface(),
1181 delta,
1182 msgAndArgs...,
1183 ) {
1184 return false
1185 }
1186 }
1187
1188 return true
1189}
1190
1191func calcRelativeError(expected, actual interface{}) (float64, error) {
1192 af, aok := toFloat(expected)
1193 if !aok {
1194 return 0, fmt.Errorf("expected value %q cannot be converted to float", expected)
1195 }
1196 if af == 0 {
1197 return 0, fmt.Errorf("expected value must have a value other than zero to calculate the relative error")
1198 }
1199 bf, bok := toFloat(actual)
1200 if !bok {
1201 return 0, fmt.Errorf("actual value %q cannot be converted to float", actual)
1202 }
1203
1204 return math.Abs(af-bf) / math.Abs(af), nil
1205}
1206
1207// InEpsilon asserts that expected and actual have a relative error less than epsilon
1208func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
1209 if h, ok := t.(tHelper); ok {
1210 h.Helper()
1211 }
1212 actualEpsilon, err := calcRelativeError(expected, actual)
1213 if err != nil {
1214 return Fail(t, err.Error(), msgAndArgs...)
1215 }
1216 if actualEpsilon > epsilon {
1217 return Fail(t, fmt.Sprintf("Relative error is too high: %#v (expected)\n"+
1218 " < %#v (actual)", epsilon, actualEpsilon), msgAndArgs...)
1219 }
1220
1221 return true
1222}
1223
1224// InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices.
1225func InEpsilonSlice(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
1226 if h, ok := t.(tHelper); ok {
1227 h.Helper()
1228 }
1229 if expected == nil || actual == nil ||
1230 reflect.TypeOf(actual).Kind() != reflect.Slice ||
1231 reflect.TypeOf(expected).Kind() != reflect.Slice {
1232 return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
1233 }
1234
1235 actualSlice := reflect.ValueOf(actual)
1236 expectedSlice := reflect.ValueOf(expected)
1237
1238 for i := 0; i < actualSlice.Len(); i++ {
1239 result := InEpsilon(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), epsilon)
1240 if !result {
1241 return result
1242 }
1243 }
1244
1245 return true
1246}
1247
1248/*
1249 Errors
1250*/
1251
1252// NoError asserts that a function returned no error (i.e. `nil`).
1253//
1254// actualObj, err := SomeFunction()
1255// if assert.NoError(t, err) {
1256// assert.Equal(t, expectedObj, actualObj)
1257// }
1258func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool {
1259 if h, ok := t.(tHelper); ok {
1260 h.Helper()
1261 }
1262 if err != nil {
1263 return Fail(t, fmt.Sprintf("Received unexpected error:\n%+v", err), msgAndArgs...)
1264 }
1265
1266 return true
1267}
1268
1269// Error asserts that a function returned an error (i.e. not `nil`).
1270//
1271// actualObj, err := SomeFunction()
1272// if assert.Error(t, err) {
1273// assert.Equal(t, expectedError, err)
1274// }
1275func Error(t TestingT, err error, msgAndArgs ...interface{}) bool {
1276 if h, ok := t.(tHelper); ok {
1277 h.Helper()
1278 }
1279
1280 if err == nil {
1281 return Fail(t, "An error is expected but got nil.", msgAndArgs...)
1282 }
1283
1284 return true
1285}
1286
1287// EqualError asserts that a function returned an error (i.e. not `nil`)
1288// and that it is equal to the provided error.
1289//
1290// actualObj, err := SomeFunction()
1291// assert.EqualError(t, err, expectedErrorString)
1292func EqualError(t TestingT, theError error, errString string, msgAndArgs ...interface{}) bool {
1293 if h, ok := t.(tHelper); ok {
1294 h.Helper()
1295 }
1296 if !Error(t, theError, msgAndArgs...) {
1297 return false
1298 }
1299 expected := errString
1300 actual := theError.Error()
1301 // don't need to use deep equals here, we know they are both strings
1302 if expected != actual {
1303 return Fail(t, fmt.Sprintf("Error message not equal:\n"+
1304 "expected: %q\n"+
1305 "actual : %q", expected, actual), msgAndArgs...)
1306 }
1307 return true
1308}
1309
1310// matchRegexp return true if a specified regexp matches a string.
1311func matchRegexp(rx interface{}, str interface{}) bool {
1312
1313 var r *regexp.Regexp
1314 if rr, ok := rx.(*regexp.Regexp); ok {
1315 r = rr
1316 } else {
1317 r = regexp.MustCompile(fmt.Sprint(rx))
1318 }
1319
1320 return (r.FindStringIndex(fmt.Sprint(str)) != nil)
1321
1322}
1323
1324// Regexp asserts that a specified regexp matches a string.
1325//
1326// assert.Regexp(t, regexp.MustCompile("start"), "it's starting")
1327// assert.Regexp(t, "start...$", "it's not starting")
1328func Regexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
1329 if h, ok := t.(tHelper); ok {
1330 h.Helper()
1331 }
1332
1333 match := matchRegexp(rx, str)
1334
1335 if !match {
1336 Fail(t, fmt.Sprintf("Expect \"%v\" to match \"%v\"", str, rx), msgAndArgs...)
1337 }
1338
1339 return match
1340}
1341
1342// NotRegexp asserts that a specified regexp does not match a string.
1343//
1344// assert.NotRegexp(t, regexp.MustCompile("starts"), "it's starting")
1345// assert.NotRegexp(t, "^start", "it's not starting")
1346func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
1347 if h, ok := t.(tHelper); ok {
1348 h.Helper()
1349 }
1350 match := matchRegexp(rx, str)
1351
1352 if match {
1353 Fail(t, fmt.Sprintf("Expect \"%v\" to NOT match \"%v\"", str, rx), msgAndArgs...)
1354 }
1355
1356 return !match
1357
1358}
1359
1360// Zero asserts that i is the zero value for its type.
1361func Zero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
1362 if h, ok := t.(tHelper); ok {
1363 h.Helper()
1364 }
1365 if i != nil && !reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
1366 return Fail(t, fmt.Sprintf("Should be zero, but was %v", i), msgAndArgs...)
1367 }
1368 return true
1369}
1370
1371// NotZero asserts that i is not the zero value for its type.
1372func NotZero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
1373 if h, ok := t.(tHelper); ok {
1374 h.Helper()
1375 }
1376 if i == nil || reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
1377 return Fail(t, fmt.Sprintf("Should not be zero, but was %v", i), msgAndArgs...)
1378 }
1379 return true
1380}
1381
Matteo Scandolof9d43412021-01-12 11:11:34 -08001382// FileExists checks whether a file exists in the given path. It also fails if
1383// the path points to a directory or there is an error when trying to check the file.
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001384func FileExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1385 if h, ok := t.(tHelper); ok {
1386 h.Helper()
1387 }
1388 info, err := os.Lstat(path)
1389 if err != nil {
1390 if os.IsNotExist(err) {
1391 return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
1392 }
1393 return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
1394 }
1395 if info.IsDir() {
1396 return Fail(t, fmt.Sprintf("%q is a directory", path), msgAndArgs...)
1397 }
1398 return true
1399}
1400
Matteo Scandolof9d43412021-01-12 11:11:34 -08001401// NoFileExists checks whether a file does not exist in a given path. It fails
1402// if the path points to an existing _file_ only.
1403func NoFileExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1404 if h, ok := t.(tHelper); ok {
1405 h.Helper()
1406 }
1407 info, err := os.Lstat(path)
1408 if err != nil {
1409 return true
1410 }
1411 if info.IsDir() {
1412 return true
1413 }
1414 return Fail(t, fmt.Sprintf("file %q exists", path), msgAndArgs...)
1415}
1416
1417// DirExists checks whether a directory exists in the given path. It also fails
1418// if the path is a file rather a directory or there is an error checking whether it exists.
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001419func DirExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1420 if h, ok := t.(tHelper); ok {
1421 h.Helper()
1422 }
1423 info, err := os.Lstat(path)
1424 if err != nil {
1425 if os.IsNotExist(err) {
1426 return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
1427 }
1428 return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
1429 }
1430 if !info.IsDir() {
1431 return Fail(t, fmt.Sprintf("%q is a file", path), msgAndArgs...)
1432 }
1433 return true
1434}
1435
Matteo Scandolof9d43412021-01-12 11:11:34 -08001436// NoDirExists checks whether a directory does not exist in the given path.
1437// It fails if the path points to an existing _directory_ only.
1438func NoDirExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1439 if h, ok := t.(tHelper); ok {
1440 h.Helper()
1441 }
1442 info, err := os.Lstat(path)
1443 if err != nil {
1444 if os.IsNotExist(err) {
1445 return true
1446 }
1447 return true
1448 }
1449 if !info.IsDir() {
1450 return true
1451 }
1452 return Fail(t, fmt.Sprintf("directory %q exists", path), msgAndArgs...)
1453}
1454
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001455// JSONEq asserts that two JSON strings are equivalent.
1456//
1457// assert.JSONEq(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
1458func JSONEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
1459 if h, ok := t.(tHelper); ok {
1460 h.Helper()
1461 }
1462 var expectedJSONAsInterface, actualJSONAsInterface interface{}
1463
1464 if err := json.Unmarshal([]byte(expected), &expectedJSONAsInterface); err != nil {
1465 return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid json.\nJSON parsing error: '%s'", expected, err.Error()), msgAndArgs...)
1466 }
1467
1468 if err := json.Unmarshal([]byte(actual), &actualJSONAsInterface); err != nil {
1469 return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid json.\nJSON parsing error: '%s'", actual, err.Error()), msgAndArgs...)
1470 }
1471
1472 return Equal(t, expectedJSONAsInterface, actualJSONAsInterface, msgAndArgs...)
1473}
1474
1475// YAMLEq asserts that two YAML strings are equivalent.
1476func YAMLEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
1477 if h, ok := t.(tHelper); ok {
1478 h.Helper()
1479 }
1480 var expectedYAMLAsInterface, actualYAMLAsInterface interface{}
1481
1482 if err := yaml.Unmarshal([]byte(expected), &expectedYAMLAsInterface); err != nil {
1483 return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid yaml.\nYAML parsing error: '%s'", expected, err.Error()), msgAndArgs...)
1484 }
1485
1486 if err := yaml.Unmarshal([]byte(actual), &actualYAMLAsInterface); err != nil {
1487 return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid yaml.\nYAML error: '%s'", actual, err.Error()), msgAndArgs...)
1488 }
1489
1490 return Equal(t, expectedYAMLAsInterface, actualYAMLAsInterface, msgAndArgs...)
1491}
1492
1493func typeAndKind(v interface{}) (reflect.Type, reflect.Kind) {
1494 t := reflect.TypeOf(v)
1495 k := t.Kind()
1496
1497 if k == reflect.Ptr {
1498 t = t.Elem()
1499 k = t.Kind()
1500 }
1501 return t, k
1502}
1503
1504// diff returns a diff of both values as long as both are of the same type and
1505// are a struct, map, slice, array or string. Otherwise it returns an empty string.
1506func diff(expected interface{}, actual interface{}) string {
1507 if expected == nil || actual == nil {
1508 return ""
1509 }
1510
1511 et, ek := typeAndKind(expected)
1512 at, _ := typeAndKind(actual)
1513
1514 if et != at {
1515 return ""
1516 }
1517
1518 if ek != reflect.Struct && ek != reflect.Map && ek != reflect.Slice && ek != reflect.Array && ek != reflect.String {
1519 return ""
1520 }
1521
1522 var e, a string
1523 if et != reflect.TypeOf("") {
1524 e = spewConfig.Sdump(expected)
1525 a = spewConfig.Sdump(actual)
1526 } else {
1527 e = reflect.ValueOf(expected).String()
1528 a = reflect.ValueOf(actual).String()
1529 }
1530
1531 diff, _ := difflib.GetUnifiedDiffString(difflib.UnifiedDiff{
1532 A: difflib.SplitLines(e),
1533 B: difflib.SplitLines(a),
1534 FromFile: "Expected",
1535 FromDate: "",
1536 ToFile: "Actual",
1537 ToDate: "",
1538 Context: 1,
1539 })
1540
1541 return "\n\nDiff:\n" + diff
1542}
1543
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001544func isFunction(arg interface{}) bool {
1545 if arg == nil {
1546 return false
1547 }
1548 return reflect.TypeOf(arg).Kind() == reflect.Func
1549}
1550
1551var spewConfig = spew.ConfigState{
1552 Indent: " ",
1553 DisablePointerAddresses: true,
1554 DisableCapacities: true,
1555 SortKeys: true,
1556}
1557
1558type tHelper interface {
1559 Helper()
1560}
1561
1562// Eventually asserts that given condition will be met in waitFor time,
1563// periodically checking target function each tick.
1564//
1565// assert.Eventually(t, func() bool { return true; }, time.Second, 10*time.Millisecond)
1566func Eventually(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool {
1567 if h, ok := t.(tHelper); ok {
1568 h.Helper()
1569 }
1570
Matteo Scandolof9d43412021-01-12 11:11:34 -08001571 ch := make(chan bool, 1)
1572
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001573 timer := time.NewTimer(waitFor)
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001574 defer timer.Stop()
Matteo Scandolof9d43412021-01-12 11:11:34 -08001575
1576 ticker := time.NewTicker(tick)
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001577 defer ticker.Stop()
Matteo Scandolof9d43412021-01-12 11:11:34 -08001578
1579 for tick := ticker.C; ; {
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001580 select {
1581 case <-timer.C:
1582 return Fail(t, "Condition never satisfied", msgAndArgs...)
Matteo Scandolof9d43412021-01-12 11:11:34 -08001583 case <-tick:
1584 tick = nil
1585 go func() { ch <- condition() }()
1586 case v := <-ch:
1587 if v {
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001588 return true
1589 }
Matteo Scandolof9d43412021-01-12 11:11:34 -08001590 tick = ticker.C
1591 }
1592 }
1593}
1594
1595// Never asserts that the given condition doesn't satisfy in waitFor time,
1596// periodically checking the target function each tick.
1597//
1598// assert.Never(t, func() bool { return false; }, time.Second, 10*time.Millisecond)
1599func Never(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool {
1600 if h, ok := t.(tHelper); ok {
1601 h.Helper()
1602 }
1603
1604 ch := make(chan bool, 1)
1605
1606 timer := time.NewTimer(waitFor)
1607 defer timer.Stop()
1608
1609 ticker := time.NewTicker(tick)
1610 defer ticker.Stop()
1611
1612 for tick := ticker.C; ; {
1613 select {
1614 case <-timer.C:
1615 return true
1616 case <-tick:
1617 tick = nil
1618 go func() { ch <- condition() }()
1619 case v := <-ch:
1620 if v {
1621 return Fail(t, "Condition satisfied", msgAndArgs...)
1622 }
1623 tick = ticker.C
Matteo Scandolo75ed5b92020-09-03 09:03:16 -07001624 }
1625 }
1626}