Matteo Scandolo | a6a3aee | 2019-11-26 13:30:14 -0700 | [diff] [blame^] | 1 | /*Package difflib is a partial port of Python difflib module. |
| 2 | |
| 3 | Original source: https://github.com/pmezard/go-difflib |
| 4 | |
| 5 | This file is trimmed to only the parts used by this repository. |
| 6 | */ |
| 7 | package difflib // import "gotest.tools/internal/difflib" |
| 8 | |
| 9 | func min(a, b int) int { |
| 10 | if a < b { |
| 11 | return a |
| 12 | } |
| 13 | return b |
| 14 | } |
| 15 | |
| 16 | func max(a, b int) int { |
| 17 | if a > b { |
| 18 | return a |
| 19 | } |
| 20 | return b |
| 21 | } |
| 22 | |
| 23 | // Match stores line numbers of size of match |
| 24 | type Match struct { |
| 25 | A int |
| 26 | B int |
| 27 | Size int |
| 28 | } |
| 29 | |
| 30 | // OpCode identifies the type of diff |
| 31 | type OpCode struct { |
| 32 | Tag byte |
| 33 | I1 int |
| 34 | I2 int |
| 35 | J1 int |
| 36 | J2 int |
| 37 | } |
| 38 | |
| 39 | // SequenceMatcher compares sequence of strings. The basic |
| 40 | // algorithm predates, and is a little fancier than, an algorithm |
| 41 | // published in the late 1980's by Ratcliff and Obershelp under the |
| 42 | // hyperbolic name "gestalt pattern matching". The basic idea is to find |
| 43 | // the longest contiguous matching subsequence that contains no "junk" |
| 44 | // elements (R-O doesn't address junk). The same idea is then applied |
| 45 | // recursively to the pieces of the sequences to the left and to the right |
| 46 | // of the matching subsequence. This does not yield minimal edit |
| 47 | // sequences, but does tend to yield matches that "look right" to people. |
| 48 | // |
| 49 | // SequenceMatcher tries to compute a "human-friendly diff" between two |
| 50 | // sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the |
| 51 | // longest *contiguous* & junk-free matching subsequence. That's what |
| 52 | // catches peoples' eyes. The Windows(tm) windiff has another interesting |
| 53 | // notion, pairing up elements that appear uniquely in each sequence. |
| 54 | // That, and the method here, appear to yield more intuitive difference |
| 55 | // reports than does diff. This method appears to be the least vulnerable |
| 56 | // to synching up on blocks of "junk lines", though (like blank lines in |
| 57 | // ordinary text files, or maybe "<P>" lines in HTML files). That may be |
| 58 | // because this is the only method of the 3 that has a *concept* of |
| 59 | // "junk" <wink>. |
| 60 | // |
| 61 | // Timing: Basic R-O is cubic time worst case and quadratic time expected |
| 62 | // case. SequenceMatcher is quadratic time for the worst case and has |
| 63 | // expected-case behavior dependent in a complicated way on how many |
| 64 | // elements the sequences have in common; best case time is linear. |
| 65 | type SequenceMatcher struct { |
| 66 | a []string |
| 67 | b []string |
| 68 | b2j map[string][]int |
| 69 | IsJunk func(string) bool |
| 70 | autoJunk bool |
| 71 | bJunk map[string]struct{} |
| 72 | matchingBlocks []Match |
| 73 | fullBCount map[string]int |
| 74 | bPopular map[string]struct{} |
| 75 | opCodes []OpCode |
| 76 | } |
| 77 | |
| 78 | // NewMatcher returns a new SequenceMatcher |
| 79 | func NewMatcher(a, b []string) *SequenceMatcher { |
| 80 | m := SequenceMatcher{autoJunk: true} |
| 81 | m.SetSeqs(a, b) |
| 82 | return &m |
| 83 | } |
| 84 | |
| 85 | // SetSeqs sets two sequences to be compared. |
| 86 | func (m *SequenceMatcher) SetSeqs(a, b []string) { |
| 87 | m.SetSeq1(a) |
| 88 | m.SetSeq2(b) |
| 89 | } |
| 90 | |
| 91 | // SetSeq1 sets the first sequence to be compared. The second sequence to be compared is |
| 92 | // not changed. |
| 93 | // |
| 94 | // SequenceMatcher computes and caches detailed information about the second |
| 95 | // sequence, so if you want to compare one sequence S against many sequences, |
| 96 | // use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other |
| 97 | // sequences. |
| 98 | // |
| 99 | // See also SetSeqs() and SetSeq2(). |
| 100 | func (m *SequenceMatcher) SetSeq1(a []string) { |
| 101 | if &a == &m.a { |
| 102 | return |
| 103 | } |
| 104 | m.a = a |
| 105 | m.matchingBlocks = nil |
| 106 | m.opCodes = nil |
| 107 | } |
| 108 | |
| 109 | // SetSeq2 sets the second sequence to be compared. The first sequence to be compared is |
| 110 | // not changed. |
| 111 | func (m *SequenceMatcher) SetSeq2(b []string) { |
| 112 | if &b == &m.b { |
| 113 | return |
| 114 | } |
| 115 | m.b = b |
| 116 | m.matchingBlocks = nil |
| 117 | m.opCodes = nil |
| 118 | m.fullBCount = nil |
| 119 | m.chainB() |
| 120 | } |
| 121 | |
| 122 | func (m *SequenceMatcher) chainB() { |
| 123 | // Populate line -> index mapping |
| 124 | b2j := map[string][]int{} |
| 125 | for i, s := range m.b { |
| 126 | indices := b2j[s] |
| 127 | indices = append(indices, i) |
| 128 | b2j[s] = indices |
| 129 | } |
| 130 | |
| 131 | // Purge junk elements |
| 132 | m.bJunk = map[string]struct{}{} |
| 133 | if m.IsJunk != nil { |
| 134 | junk := m.bJunk |
| 135 | for s := range b2j { |
| 136 | if m.IsJunk(s) { |
| 137 | junk[s] = struct{}{} |
| 138 | } |
| 139 | } |
| 140 | for s := range junk { |
| 141 | delete(b2j, s) |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | // Purge remaining popular elements |
| 146 | popular := map[string]struct{}{} |
| 147 | n := len(m.b) |
| 148 | if m.autoJunk && n >= 200 { |
| 149 | ntest := n/100 + 1 |
| 150 | for s, indices := range b2j { |
| 151 | if len(indices) > ntest { |
| 152 | popular[s] = struct{}{} |
| 153 | } |
| 154 | } |
| 155 | for s := range popular { |
| 156 | delete(b2j, s) |
| 157 | } |
| 158 | } |
| 159 | m.bPopular = popular |
| 160 | m.b2j = b2j |
| 161 | } |
| 162 | |
| 163 | func (m *SequenceMatcher) isBJunk(s string) bool { |
| 164 | _, ok := m.bJunk[s] |
| 165 | return ok |
| 166 | } |
| 167 | |
| 168 | // Find longest matching block in a[alo:ahi] and b[blo:bhi]. |
| 169 | // |
| 170 | // If IsJunk is not defined: |
| 171 | // |
| 172 | // Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where |
| 173 | // alo <= i <= i+k <= ahi |
| 174 | // blo <= j <= j+k <= bhi |
| 175 | // and for all (i',j',k') meeting those conditions, |
| 176 | // k >= k' |
| 177 | // i <= i' |
| 178 | // and if i == i', j <= j' |
| 179 | // |
| 180 | // In other words, of all maximal matching blocks, return one that |
| 181 | // starts earliest in a, and of all those maximal matching blocks that |
| 182 | // start earliest in a, return the one that starts earliest in b. |
| 183 | // |
| 184 | // If IsJunk is defined, first the longest matching block is |
| 185 | // determined as above, but with the additional restriction that no |
| 186 | // junk element appears in the block. Then that block is extended as |
| 187 | // far as possible by matching (only) junk elements on both sides. So |
| 188 | // the resulting block never matches on junk except as identical junk |
| 189 | // happens to be adjacent to an "interesting" match. |
| 190 | // |
| 191 | // If no blocks match, return (alo, blo, 0). |
| 192 | func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match { |
| 193 | // CAUTION: stripping common prefix or suffix would be incorrect. |
| 194 | // E.g., |
| 195 | // ab |
| 196 | // acab |
| 197 | // Longest matching block is "ab", but if common prefix is |
| 198 | // stripped, it's "a" (tied with "b"). UNIX(tm) diff does so |
| 199 | // strip, so ends up claiming that ab is changed to acab by |
| 200 | // inserting "ca" in the middle. That's minimal but unintuitive: |
| 201 | // "it's obvious" that someone inserted "ac" at the front. |
| 202 | // Windiff ends up at the same place as diff, but by pairing up |
| 203 | // the unique 'b's and then matching the first two 'a's. |
| 204 | besti, bestj, bestsize := alo, blo, 0 |
| 205 | |
| 206 | // find longest junk-free match |
| 207 | // during an iteration of the loop, j2len[j] = length of longest |
| 208 | // junk-free match ending with a[i-1] and b[j] |
| 209 | j2len := map[int]int{} |
| 210 | for i := alo; i != ahi; i++ { |
| 211 | // look at all instances of a[i] in b; note that because |
| 212 | // b2j has no junk keys, the loop is skipped if a[i] is junk |
| 213 | newj2len := map[int]int{} |
| 214 | for _, j := range m.b2j[m.a[i]] { |
| 215 | // a[i] matches b[j] |
| 216 | if j < blo { |
| 217 | continue |
| 218 | } |
| 219 | if j >= bhi { |
| 220 | break |
| 221 | } |
| 222 | k := j2len[j-1] + 1 |
| 223 | newj2len[j] = k |
| 224 | if k > bestsize { |
| 225 | besti, bestj, bestsize = i-k+1, j-k+1, k |
| 226 | } |
| 227 | } |
| 228 | j2len = newj2len |
| 229 | } |
| 230 | |
| 231 | // Extend the best by non-junk elements on each end. In particular, |
| 232 | // "popular" non-junk elements aren't in b2j, which greatly speeds |
| 233 | // the inner loop above, but also means "the best" match so far |
| 234 | // doesn't contain any junk *or* popular non-junk elements. |
| 235 | for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) && |
| 236 | m.a[besti-1] == m.b[bestj-1] { |
| 237 | besti, bestj, bestsize = besti-1, bestj-1, bestsize+1 |
| 238 | } |
| 239 | for besti+bestsize < ahi && bestj+bestsize < bhi && |
| 240 | !m.isBJunk(m.b[bestj+bestsize]) && |
| 241 | m.a[besti+bestsize] == m.b[bestj+bestsize] { |
| 242 | bestsize += 1 |
| 243 | } |
| 244 | |
| 245 | // Now that we have a wholly interesting match (albeit possibly |
| 246 | // empty!), we may as well suck up the matching junk on each |
| 247 | // side of it too. Can't think of a good reason not to, and it |
| 248 | // saves post-processing the (possibly considerable) expense of |
| 249 | // figuring out what to do with it. In the case of an empty |
| 250 | // interesting match, this is clearly the right thing to do, |
| 251 | // because no other kind of match is possible in the regions. |
| 252 | for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) && |
| 253 | m.a[besti-1] == m.b[bestj-1] { |
| 254 | besti, bestj, bestsize = besti-1, bestj-1, bestsize+1 |
| 255 | } |
| 256 | for besti+bestsize < ahi && bestj+bestsize < bhi && |
| 257 | m.isBJunk(m.b[bestj+bestsize]) && |
| 258 | m.a[besti+bestsize] == m.b[bestj+bestsize] { |
| 259 | bestsize += 1 |
| 260 | } |
| 261 | |
| 262 | return Match{A: besti, B: bestj, Size: bestsize} |
| 263 | } |
| 264 | |
| 265 | // GetMatchingBlocks returns a list of triples describing matching subsequences. |
| 266 | // |
| 267 | // Each triple is of the form (i, j, n), and means that |
| 268 | // a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in |
| 269 | // i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are |
| 270 | // adjacent triples in the list, and the second is not the last triple in the |
| 271 | // list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe |
| 272 | // adjacent equal blocks. |
| 273 | // |
| 274 | // The last triple is a dummy, (len(a), len(b), 0), and is the only |
| 275 | // triple with n==0. |
| 276 | func (m *SequenceMatcher) GetMatchingBlocks() []Match { |
| 277 | if m.matchingBlocks != nil { |
| 278 | return m.matchingBlocks |
| 279 | } |
| 280 | |
| 281 | var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match |
| 282 | matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match { |
| 283 | match := m.findLongestMatch(alo, ahi, blo, bhi) |
| 284 | i, j, k := match.A, match.B, match.Size |
| 285 | if match.Size > 0 { |
| 286 | if alo < i && blo < j { |
| 287 | matched = matchBlocks(alo, i, blo, j, matched) |
| 288 | } |
| 289 | matched = append(matched, match) |
| 290 | if i+k < ahi && j+k < bhi { |
| 291 | matched = matchBlocks(i+k, ahi, j+k, bhi, matched) |
| 292 | } |
| 293 | } |
| 294 | return matched |
| 295 | } |
| 296 | matched := matchBlocks(0, len(m.a), 0, len(m.b), nil) |
| 297 | |
| 298 | // It's possible that we have adjacent equal blocks in the |
| 299 | // matching_blocks list now. |
| 300 | nonAdjacent := []Match{} |
| 301 | i1, j1, k1 := 0, 0, 0 |
| 302 | for _, b := range matched { |
| 303 | // Is this block adjacent to i1, j1, k1? |
| 304 | i2, j2, k2 := b.A, b.B, b.Size |
| 305 | if i1+k1 == i2 && j1+k1 == j2 { |
| 306 | // Yes, so collapse them -- this just increases the length of |
| 307 | // the first block by the length of the second, and the first |
| 308 | // block so lengthened remains the block to compare against. |
| 309 | k1 += k2 |
| 310 | } else { |
| 311 | // Not adjacent. Remember the first block (k1==0 means it's |
| 312 | // the dummy we started with), and make the second block the |
| 313 | // new block to compare against. |
| 314 | if k1 > 0 { |
| 315 | nonAdjacent = append(nonAdjacent, Match{i1, j1, k1}) |
| 316 | } |
| 317 | i1, j1, k1 = i2, j2, k2 |
| 318 | } |
| 319 | } |
| 320 | if k1 > 0 { |
| 321 | nonAdjacent = append(nonAdjacent, Match{i1, j1, k1}) |
| 322 | } |
| 323 | |
| 324 | nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0}) |
| 325 | m.matchingBlocks = nonAdjacent |
| 326 | return m.matchingBlocks |
| 327 | } |
| 328 | |
| 329 | // GetOpCodes returns a list of 5-tuples describing how to turn a into b. |
| 330 | // |
| 331 | // Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple |
| 332 | // has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the |
| 333 | // tuple preceding it, and likewise for j1 == the previous j2. |
| 334 | // |
| 335 | // The tags are characters, with these meanings: |
| 336 | // |
| 337 | // 'r' (replace): a[i1:i2] should be replaced by b[j1:j2] |
| 338 | // |
| 339 | // 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case. |
| 340 | // |
| 341 | // 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case. |
| 342 | // |
| 343 | // 'e' (equal): a[i1:i2] == b[j1:j2] |
| 344 | func (m *SequenceMatcher) GetOpCodes() []OpCode { |
| 345 | if m.opCodes != nil { |
| 346 | return m.opCodes |
| 347 | } |
| 348 | i, j := 0, 0 |
| 349 | matching := m.GetMatchingBlocks() |
| 350 | opCodes := make([]OpCode, 0, len(matching)) |
| 351 | for _, m := range matching { |
| 352 | // invariant: we've pumped out correct diffs to change |
| 353 | // a[:i] into b[:j], and the next matching block is |
| 354 | // a[ai:ai+size] == b[bj:bj+size]. So we need to pump |
| 355 | // out a diff to change a[i:ai] into b[j:bj], pump out |
| 356 | // the matching block, and move (i,j) beyond the match |
| 357 | ai, bj, size := m.A, m.B, m.Size |
| 358 | tag := byte(0) |
| 359 | if i < ai && j < bj { |
| 360 | tag = 'r' |
| 361 | } else if i < ai { |
| 362 | tag = 'd' |
| 363 | } else if j < bj { |
| 364 | tag = 'i' |
| 365 | } |
| 366 | if tag > 0 { |
| 367 | opCodes = append(opCodes, OpCode{tag, i, ai, j, bj}) |
| 368 | } |
| 369 | i, j = ai+size, bj+size |
| 370 | // the list of matching blocks is terminated by a |
| 371 | // sentinel with size 0 |
| 372 | if size > 0 { |
| 373 | opCodes = append(opCodes, OpCode{'e', ai, i, bj, j}) |
| 374 | } |
| 375 | } |
| 376 | m.opCodes = opCodes |
| 377 | return m.opCodes |
| 378 | } |
| 379 | |
| 380 | // GetGroupedOpCodes isolates change clusters by eliminating ranges with no changes. |
| 381 | // |
| 382 | // Return a generator of groups with up to n lines of context. |
| 383 | // Each group is in the same format as returned by GetOpCodes(). |
| 384 | func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode { |
| 385 | if n < 0 { |
| 386 | n = 3 |
| 387 | } |
| 388 | codes := m.GetOpCodes() |
| 389 | if len(codes) == 0 { |
| 390 | codes = []OpCode{{'e', 0, 1, 0, 1}} |
| 391 | } |
| 392 | // Fixup leading and trailing groups if they show no changes. |
| 393 | if codes[0].Tag == 'e' { |
| 394 | c := codes[0] |
| 395 | i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2 |
| 396 | codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2} |
| 397 | } |
| 398 | if codes[len(codes)-1].Tag == 'e' { |
| 399 | c := codes[len(codes)-1] |
| 400 | i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2 |
| 401 | codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)} |
| 402 | } |
| 403 | nn := n + n |
| 404 | groups := [][]OpCode{} |
| 405 | group := []OpCode{} |
| 406 | for _, c := range codes { |
| 407 | i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2 |
| 408 | // End the current group and start a new one whenever |
| 409 | // there is a large range with no changes. |
| 410 | if c.Tag == 'e' && i2-i1 > nn { |
| 411 | group = append(group, OpCode{c.Tag, i1, min(i2, i1+n), |
| 412 | j1, min(j2, j1+n)}) |
| 413 | groups = append(groups, group) |
| 414 | group = []OpCode{} |
| 415 | i1, j1 = max(i1, i2-n), max(j1, j2-n) |
| 416 | } |
| 417 | group = append(group, OpCode{c.Tag, i1, i2, j1, j2}) |
| 418 | } |
| 419 | if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') { |
| 420 | groups = append(groups, group) |
| 421 | } |
| 422 | return groups |
| 423 | } |