A R Karthick | 307483c | 2016-06-06 17:05:19 -0700 | [diff] [blame] | 1 | ## This file is part of Scapy |
| 2 | ## See http://www.secdev.org/projects/scapy for more informations |
| 3 | ## Copyright (C) Arnaud Ebalard <arno@natisbad.org> |
| 4 | ## This program is published under a GPLv2 license |
| 5 | |
| 6 | """ |
| 7 | Cryptographic certificates. |
| 8 | """ |
| 9 | |
| 10 | import os, sys, math, struct, random |
| 11 | from scapy.utils import strxor |
| 12 | from scapy_ssl_tls.ssl_tls_crypto import x509_extract_pubkey_from_der |
| 13 | try: |
| 14 | HAS_HASHLIB=True |
| 15 | import hashlib |
| 16 | except: |
| 17 | HAS_HASHLIB=False |
| 18 | |
| 19 | from Crypto.PublicKey import * |
| 20 | from Crypto.Cipher import * |
| 21 | from Crypto.Hash import * |
| 22 | from Crypto.Util import number |
| 23 | |
| 24 | # Maximum allowed size in bytes for a certificate file, to avoid |
| 25 | # loading huge file when importing a cert |
| 26 | MAX_KEY_SIZE=50*1024 |
| 27 | |
| 28 | ##################################################################### |
| 29 | # Some helpers |
| 30 | ##################################################################### |
| 31 | |
| 32 | def warning(m): |
| 33 | print "WARNING: %s" % m |
| 34 | |
| 35 | def randstring(l): |
| 36 | """ |
| 37 | Returns a random string of length l (l >= 0) |
| 38 | """ |
| 39 | tmp = map(lambda x: struct.pack("B", random.randrange(0, 256, 1)), [""]*l) |
| 40 | return "".join(tmp) |
| 41 | |
| 42 | def zerofree_randstring(l): |
| 43 | """ |
| 44 | Returns a random string of length l (l >= 0) without zero in it. |
| 45 | """ |
| 46 | tmp = map(lambda x: struct.pack("B", random.randrange(1, 256, 1)), [""]*l) |
| 47 | return "".join(tmp) |
| 48 | |
| 49 | def strand(s1, s2): |
| 50 | """ |
| 51 | Returns the binary AND of the 2 provided strings s1 and s2. s1 and s2 |
| 52 | must be of same length. |
| 53 | """ |
| 54 | return "".join(map(lambda x,y:chr(ord(x)&ord(y)), s1, s2)) |
| 55 | |
| 56 | # OS2IP function defined in RFC 3447 for octet string to integer conversion |
| 57 | def pkcs_os2ip(x): |
| 58 | """ |
| 59 | Accepts a byte string as input parameter and return the associated long |
| 60 | value: |
| 61 | |
| 62 | Input : x octet string to be converted |
| 63 | |
| 64 | Output: x corresponding nonnegative integer |
| 65 | |
| 66 | Reverse function is pkcs_i2osp() |
| 67 | """ |
| 68 | return number.bytes_to_long(x) |
| 69 | |
| 70 | # IP2OS function defined in RFC 3447 for octet string to integer conversion |
| 71 | def pkcs_i2osp(x,xLen): |
| 72 | """ |
| 73 | Converts a long (the first parameter) to the associated byte string |
| 74 | representation of length l (second parameter). Basically, the length |
| 75 | parameters allow the function to perform the associated padding. |
| 76 | |
| 77 | Input : x nonnegative integer to be converted |
| 78 | xLen intended length of the resulting octet string |
| 79 | |
| 80 | Output: x corresponding nonnegative integer |
| 81 | |
| 82 | Reverse function is pkcs_os2ip(). |
| 83 | """ |
| 84 | z = number.long_to_bytes(x) |
| 85 | padlen = max(0, xLen-len(z)) |
| 86 | return '\x00'*padlen + z |
| 87 | |
| 88 | # for every hash function a tuple is provided, giving access to |
| 89 | # - hash output length in byte |
| 90 | # - associated hash function that take data to be hashed as parameter |
| 91 | # XXX I do not provide update() at the moment. |
| 92 | # - DER encoding of the leading bits of digestInfo (the hash value |
| 93 | # will be concatenated to create the complete digestInfo). |
| 94 | # |
| 95 | # Notes: |
| 96 | # - MD4 asn.1 value should be verified. Also, as stated in |
| 97 | # PKCS#1 v2.1, MD4 should not be used. |
| 98 | # - hashlib is available from http://code.krypto.org/python/hashlib/ |
| 99 | # - 'tls' one is the concatenation of both md5 and sha1 hashes used |
| 100 | # by SSL/TLS when signing/verifying things |
| 101 | _hashFuncParams = { |
| 102 | "md2" : (16, |
| 103 | lambda x: MD2.new(x).digest(), |
| 104 | '\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x02\x05\x00\x04\x10'), |
| 105 | "md4" : (16, |
| 106 | lambda x: MD4.new(x).digest(), |
| 107 | '\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x04\x05\x00\x04\x10'), # is that right ? |
| 108 | "md5" : (16, |
| 109 | lambda x: MD5.new(x).digest(), |
| 110 | '\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x05\x05\x00\x04\x10'), |
| 111 | "sha1" : (20, |
| 112 | lambda x: SHA.new(x).digest(), |
| 113 | '\x30\x21\x30\x09\x06\x05\x2b\x0e\x03\x02\x1a\x05\x00\x04\x14'), |
| 114 | "tls" : (36, |
| 115 | lambda x: MD5.new(x).digest() + SHA.new(x).digest(), |
| 116 | '') } |
| 117 | |
| 118 | if HAS_HASHLIB: |
| 119 | _hashFuncParams["sha224"] = (28, |
| 120 | lambda x: hashlib.sha224(x).digest(), |
| 121 | '\x30\x2d\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x04\x05\x00\x04\x1c') |
| 122 | _hashFuncParams["sha256"] = (32, |
| 123 | lambda x: hashlib.sha256(x).digest(), |
| 124 | '\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x01\x05\x00\x04\x20') |
| 125 | _hashFuncParams["sha384"] = (48, |
| 126 | lambda x: hashlib.sha384(x).digest(), |
| 127 | '\x30\x41\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x02\x05\x00\x04\x30') |
| 128 | _hashFuncParams["sha512"] = (64, |
| 129 | lambda x: hashlib.sha512(x).digest(), |
| 130 | '\x30\x51\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x03\x05\x00\x04\x40') |
| 131 | else: |
| 132 | warning("hashlib support is not available. Consider installing it") |
| 133 | warning("if you need sha224, sha256, sha384 and sha512 algs.") |
| 134 | |
| 135 | def pkcs_mgf1(mgfSeed, maskLen, h): |
| 136 | """ |
| 137 | Implements generic MGF1 Mask Generation function as described in |
| 138 | Appendix B.2.1 of RFC 3447. The hash function is passed by name. |
| 139 | valid values are 'md2', 'md4', 'md5', 'sha1', 'tls, 'sha256', |
| 140 | 'sha384' and 'sha512'. Returns None on error. |
| 141 | |
| 142 | Input: |
| 143 | mgfSeed: seed from which mask is generated, an octet string |
| 144 | maskLen: intended length in octets of the mask, at most 2^32 * hLen |
| 145 | hLen (see below) |
| 146 | h : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls', |
| 147 | 'sha256', 'sha384'). hLen denotes the length in octets of |
| 148 | the hash function output. |
| 149 | |
| 150 | Output: |
| 151 | an octet string of length maskLen |
| 152 | """ |
| 153 | |
| 154 | # steps are those of Appendix B.2.1 |
| 155 | if not _hashFuncParams.has_key(h): |
| 156 | warning("pkcs_mgf1: invalid hash (%s) provided") |
| 157 | return None |
| 158 | hLen = _hashFuncParams[h][0] |
| 159 | hFunc = _hashFuncParams[h][1] |
| 160 | if maskLen > 2**32 * hLen: # 1) |
| 161 | warning("pkcs_mgf1: maskLen > 2**32 * hLen") |
| 162 | return None |
| 163 | T = "" # 2) |
| 164 | maxCounter = math.ceil(float(maskLen) / float(hLen)) # 3) |
| 165 | counter = 0 |
| 166 | while counter < maxCounter: |
| 167 | C = pkcs_i2osp(counter, 4) |
| 168 | T += hFunc(mgfSeed + C) |
| 169 | counter += 1 |
| 170 | return T[:maskLen] |
| 171 | |
| 172 | |
| 173 | def pkcs_emsa_pss_encode(M, emBits, h, mgf, sLen): |
| 174 | """ |
| 175 | Implements EMSA-PSS-ENCODE() function described in Sect. 9.1.1 of RFC 3447 |
| 176 | |
| 177 | Input: |
| 178 | M : message to be encoded, an octet string |
| 179 | emBits: maximal bit length of the integer resulting of pkcs_os2ip(EM), |
| 180 | where EM is the encoded message, output of the function. |
| 181 | h : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls', |
| 182 | 'sha256', 'sha384'). hLen denotes the length in octets of |
| 183 | the hash function output. |
| 184 | mgf : the mask generation function f : seed, maskLen -> mask |
| 185 | sLen : intended length in octets of the salt |
| 186 | |
| 187 | Output: |
| 188 | encoded message, an octet string of length emLen = ceil(emBits/8) |
| 189 | |
| 190 | On error, None is returned. |
| 191 | """ |
| 192 | |
| 193 | # 1) is not done |
| 194 | hLen = _hashFuncParams[h][0] # 2) |
| 195 | hFunc = _hashFuncParams[h][1] |
| 196 | mHash = hFunc(M) |
| 197 | emLen = int(math.ceil(emBits/8.)) |
| 198 | if emLen < hLen + sLen + 2: # 3) |
| 199 | warning("encoding error (emLen < hLen + sLen + 2)") |
| 200 | return None |
| 201 | salt = randstring(sLen) # 4) |
| 202 | MPrime = '\x00'*8 + mHash + salt # 5) |
| 203 | H = hFunc(MPrime) # 6) |
| 204 | PS = '\x00'*(emLen - sLen - hLen - 2) # 7) |
| 205 | DB = PS + '\x01' + salt # 8) |
| 206 | dbMask = mgf(H, emLen - hLen - 1) # 9) |
| 207 | maskedDB = strxor(DB, dbMask) # 10) |
| 208 | l = (8*emLen - emBits)/8 # 11) |
| 209 | rem = 8*emLen - emBits - 8*l # additionnal bits |
| 210 | andMask = l*'\x00' |
| 211 | if rem: |
| 212 | j = chr(reduce(lambda x,y: x+y, map(lambda x: 1<<x, range(8-rem)))) |
| 213 | andMask += j |
| 214 | l += 1 |
| 215 | maskedDB = strand(maskedDB[:l], andMask) + maskedDB[l:] |
| 216 | EM = maskedDB + H + '\xbc' # 12) |
| 217 | return EM # 13) |
| 218 | |
| 219 | |
| 220 | def pkcs_emsa_pss_verify(M, EM, emBits, h, mgf, sLen): |
| 221 | """ |
| 222 | Implements EMSA-PSS-VERIFY() function described in Sect. 9.1.2 of RFC 3447 |
| 223 | |
| 224 | Input: |
| 225 | M : message to be encoded, an octet string |
| 226 | EM : encoded message, an octet string of length emLen = ceil(emBits/8) |
| 227 | emBits: maximal bit length of the integer resulting of pkcs_os2ip(EM) |
| 228 | h : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls', |
| 229 | 'sha256', 'sha384'). hLen denotes the length in octets of |
| 230 | the hash function output. |
| 231 | mgf : the mask generation function f : seed, maskLen -> mask |
| 232 | sLen : intended length in octets of the salt |
| 233 | |
| 234 | Output: |
| 235 | True if the verification is ok, False otherwise. |
| 236 | """ |
| 237 | |
| 238 | # 1) is not done |
| 239 | hLen = _hashFuncParams[h][0] # 2) |
| 240 | hFunc = _hashFuncParams[h][1] |
| 241 | mHash = hFunc(M) |
| 242 | emLen = int(math.ceil(emBits/8.)) # 3) |
| 243 | if emLen < hLen + sLen + 2: |
| 244 | return False |
| 245 | if EM[-1] != '\xbc': # 4) |
| 246 | return False |
| 247 | l = emLen - hLen - 1 # 5) |
| 248 | maskedDB = EM[:l] |
| 249 | H = EM[l:l+hLen] |
| 250 | l = (8*emLen - emBits)/8 # 6) |
| 251 | rem = 8*emLen - emBits - 8*l # additionnal bits |
| 252 | andMask = l*'\xff' |
| 253 | if rem: |
| 254 | val = reduce(lambda x,y: x+y, map(lambda x: 1<<x, range(8-rem))) |
| 255 | j = chr(~val & 0xff) |
| 256 | andMask += j |
| 257 | l += 1 |
| 258 | if strand(maskedDB[:l], andMask) != '\x00'*l: |
| 259 | return False |
| 260 | dbMask = mgf(H, emLen - hLen - 1) # 7) |
| 261 | DB = strxor(maskedDB, dbMask) # 8) |
| 262 | l = (8*emLen - emBits)/8 # 9) |
| 263 | rem = 8*emLen - emBits - 8*l # additionnal bits |
| 264 | andMask = l*'\x00' |
| 265 | if rem: |
| 266 | j = chr(reduce(lambda x,y: x+y, map(lambda x: 1<<x, range(8-rem)))) |
| 267 | andMask += j |
| 268 | l += 1 |
| 269 | DB = strand(DB[:l], andMask) + DB[l:] |
| 270 | l = emLen - hLen - sLen - 1 # 10) |
| 271 | if DB[:l] != '\x00'*(l-1) + '\x01': |
| 272 | return False |
| 273 | salt = DB[-sLen:] # 11) |
| 274 | MPrime = '\x00'*8 + mHash + salt # 12) |
| 275 | HPrime = hFunc(MPrime) # 13) |
| 276 | return H == HPrime # 14) |
| 277 | |
| 278 | |
| 279 | def pkcs_emsa_pkcs1_v1_5_encode(M, emLen, h): # section 9.2 of RFC 3447 |
| 280 | """ |
| 281 | Implements EMSA-PKCS1-V1_5-ENCODE() function described in Sect. |
| 282 | 9.2 of RFC 3447. |
| 283 | |
| 284 | Input: |
| 285 | M : message to be encode, an octet string |
| 286 | emLen: intended length in octets of the encoded message, at least |
| 287 | tLen + 11, where tLen is the octet length of the DER encoding |
| 288 | T of a certain value computed during the encoding operation. |
| 289 | h : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls', |
| 290 | 'sha256', 'sha384'). hLen denotes the length in octets of |
| 291 | the hash function output. |
| 292 | |
| 293 | Output: |
| 294 | encoded message, an octet string of length emLen |
| 295 | |
| 296 | On error, None is returned. |
| 297 | """ |
| 298 | hLen = _hashFuncParams[h][0] # 1) |
| 299 | hFunc = _hashFuncParams[h][1] |
| 300 | H = hFunc(M) |
| 301 | hLeadingDigestInfo = _hashFuncParams[h][2] # 2) |
| 302 | T = hLeadingDigestInfo + H |
| 303 | tLen = len(T) |
| 304 | if emLen < tLen + 11: # 3) |
| 305 | warning("pkcs_emsa_pkcs1_v1_5_encode: intended encoded message length too short") |
| 306 | return None |
| 307 | PS = '\xff'*(emLen - tLen - 3) # 4) |
| 308 | EM = '\x00' + '\x01' + PS + '\x00' + T # 5) |
| 309 | return EM # 6) |
| 310 | |
| 311 | |
| 312 | ##################################################################### |
| 313 | # Public Key Cryptography related stuff |
| 314 | ##################################################################### |
| 315 | |
| 316 | class _EncryptAndVerify: |
| 317 | ### Below are encryption methods |
| 318 | |
| 319 | def _rsaep(self, m): |
| 320 | """ |
| 321 | Internal method providing raw RSA encryption, i.e. simple modular |
| 322 | exponentiation of the given message representative 'm', a long |
| 323 | between 0 and n-1. |
| 324 | |
| 325 | This is the encryption primitive RSAEP described in PKCS#1 v2.1, |
| 326 | i.e. RFC 3447 Sect. 5.1.1. |
| 327 | |
| 328 | Input: |
| 329 | m: message representative, a long between 0 and n-1, where |
| 330 | n is the key modulus. |
| 331 | |
| 332 | Output: |
| 333 | ciphertext representative, a long between 0 and n-1 |
| 334 | |
| 335 | Not intended to be used directly. Please, see encrypt() method. |
| 336 | """ |
| 337 | |
| 338 | n = self.modulus |
| 339 | if type(m) is int: |
| 340 | m = long(m) |
| 341 | if type(m) is not long or m > n-1: |
| 342 | warning("Key._rsaep() expects a long between 0 and n-1") |
| 343 | return None |
| 344 | |
| 345 | return self.key.encrypt(m, "")[0] |
| 346 | |
| 347 | |
| 348 | def _rsaes_pkcs1_v1_5_encrypt(self, M): |
| 349 | """ |
| 350 | Implements RSAES-PKCS1-V1_5-ENCRYPT() function described in section |
| 351 | 7.2.1 of RFC 3447. |
| 352 | |
| 353 | Input: |
| 354 | M: message to be encrypted, an octet string of length mLen, where |
| 355 | mLen <= k - 11 (k denotes the length in octets of the key modulus) |
| 356 | |
| 357 | Output: |
| 358 | ciphertext, an octet string of length k |
| 359 | |
| 360 | On error, None is returned. |
| 361 | """ |
| 362 | |
| 363 | # 1) Length checking |
| 364 | mLen = len(M) |
| 365 | k = self.modulusLen / 8 |
| 366 | if mLen > k - 11: |
| 367 | warning("Key._rsaes_pkcs1_v1_5_encrypt(): message too " |
| 368 | "long (%d > %d - 11)" % (mLen, k)) |
| 369 | return None |
| 370 | |
| 371 | # 2) EME-PKCS1-v1_5 encoding |
| 372 | PS = zerofree_randstring(k - mLen - 3) # 2.a) |
| 373 | EM = '\x00' + '\x02' + PS + '\x00' + M # 2.b) |
| 374 | |
| 375 | # 3) RSA encryption |
| 376 | m = pkcs_os2ip(EM) # 3.a) |
| 377 | c = self._rsaep(m) # 3.b) |
| 378 | C = pkcs_i2osp(c, k) # 3.c) |
| 379 | |
| 380 | return C # 4) |
| 381 | |
| 382 | |
| 383 | def _rsaes_oaep_encrypt(self, M, h=None, mgf=None, L=None): |
| 384 | """ |
| 385 | Internal method providing RSAES-OAEP-ENCRYPT as defined in Sect. |
| 386 | 7.1.1 of RFC 3447. Not intended to be used directly. Please, see |
| 387 | encrypt() method for type "OAEP". |
| 388 | |
| 389 | |
| 390 | Input: |
| 391 | M : message to be encrypted, an octet string of length mLen |
| 392 | where mLen <= k - 2*hLen - 2 (k denotes the length in octets |
| 393 | of the RSA modulus and hLen the length in octets of the hash |
| 394 | function output) |
| 395 | h : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls', |
| 396 | 'sha256', 'sha384'). hLen denotes the length in octets of |
| 397 | the hash function output. 'sha1' is used by default if not |
| 398 | provided. |
| 399 | mgf: the mask generation function f : seed, maskLen -> mask |
| 400 | L : optional label to be associated with the message; the default |
| 401 | value for L, if not provided is the empty string |
| 402 | |
| 403 | Output: |
| 404 | ciphertext, an octet string of length k |
| 405 | |
| 406 | On error, None is returned. |
| 407 | """ |
| 408 | # The steps below are the one described in Sect. 7.1.1 of RFC 3447. |
| 409 | # 1) Length Checking |
| 410 | # 1.a) is not done |
| 411 | mLen = len(M) |
| 412 | if h is None: |
| 413 | h = "sha1" |
| 414 | if not _hashFuncParams.has_key(h): |
| 415 | warning("Key._rsaes_oaep_encrypt(): unknown hash function %s.", h) |
| 416 | return None |
| 417 | hLen = _hashFuncParams[h][0] |
| 418 | hFun = _hashFuncParams[h][1] |
| 419 | k = self.modulusLen / 8 |
| 420 | if mLen > k - 2*hLen - 2: # 1.b) |
| 421 | warning("Key._rsaes_oaep_encrypt(): message too long.") |
| 422 | return None |
| 423 | |
| 424 | # 2) EME-OAEP encoding |
| 425 | if L is None: # 2.a) |
| 426 | L = "" |
| 427 | lHash = hFun(L) |
| 428 | PS = '\x00'*(k - mLen - 2*hLen - 2) # 2.b) |
| 429 | DB = lHash + PS + '\x01' + M # 2.c) |
| 430 | seed = randstring(hLen) # 2.d) |
| 431 | if mgf is None: # 2.e) |
| 432 | mgf = lambda x,y: pkcs_mgf1(x,y,h) |
| 433 | dbMask = mgf(seed, k - hLen - 1) |
| 434 | maskedDB = strxor(DB, dbMask) # 2.f) |
| 435 | seedMask = mgf(maskedDB, hLen) # 2.g) |
| 436 | maskedSeed = strxor(seed, seedMask) # 2.h) |
| 437 | EM = '\x00' + maskedSeed + maskedDB # 2.i) |
| 438 | |
| 439 | # 3) RSA Encryption |
| 440 | m = pkcs_os2ip(EM) # 3.a) |
| 441 | c = self._rsaep(m) # 3.b) |
| 442 | C = pkcs_i2osp(c, k) # 3.c) |
| 443 | |
| 444 | return C # 4) |
| 445 | |
| 446 | |
| 447 | def encrypt(self, m, t=None, h=None, mgf=None, L=None): |
| 448 | """ |
| 449 | Encrypt message 'm' using 't' encryption scheme where 't' can be: |
| 450 | |
| 451 | - None: the message 'm' is directly applied the RSAEP encryption |
| 452 | primitive, as described in PKCS#1 v2.1, i.e. RFC 3447 |
| 453 | Sect 5.1.1. Simply put, the message undergo a modular |
| 454 | exponentiation using the public key. Additionnal method |
| 455 | parameters are just ignored. |
| 456 | |
| 457 | - 'pkcs': the message 'm' is applied RSAES-PKCS1-V1_5-ENCRYPT encryption |
| 458 | scheme as described in section 7.2.1 of RFC 3447. In that |
| 459 | context, other parameters ('h', 'mgf', 'l') are not used. |
| 460 | |
| 461 | - 'oaep': the message 'm' is applied the RSAES-OAEP-ENCRYPT encryption |
| 462 | scheme, as described in PKCS#1 v2.1, i.e. RFC 3447 Sect |
| 463 | 7.1.1. In that context, |
| 464 | |
| 465 | o 'h' parameter provides the name of the hash method to use. |
| 466 | Possible values are "md2", "md4", "md5", "sha1", "tls", |
| 467 | "sha224", "sha256", "sha384" and "sha512". if none is provided, |
| 468 | sha1 is used. |
| 469 | |
| 470 | o 'mgf' is the mask generation function. By default, mgf |
| 471 | is derived from the provided hash function using the |
| 472 | generic MGF1 (see pkcs_mgf1() for details). |
| 473 | |
| 474 | o 'L' is the optional label to be associated with the |
| 475 | message. If not provided, the default value is used, i.e |
| 476 | the empty string. No check is done on the input limitation |
| 477 | of the hash function regarding the size of 'L' (for |
| 478 | instance, 2^61 - 1 for SHA-1). You have been warned. |
| 479 | """ |
| 480 | |
| 481 | if t is None: # Raw encryption |
| 482 | m = pkcs_os2ip(m) |
| 483 | c = self._rsaep(m) |
| 484 | return pkcs_i2osp(c, self.modulusLen/8) |
| 485 | |
| 486 | elif t == "pkcs": |
| 487 | return self._rsaes_pkcs1_v1_5_encrypt(m) |
| 488 | |
| 489 | elif t == "oaep": |
| 490 | return self._rsaes_oaep_encrypt(m, h, mgf, L) |
| 491 | |
| 492 | else: |
| 493 | warning("Key.encrypt(): Unknown encryption type (%s) provided" % t) |
| 494 | return None |
| 495 | |
| 496 | ### Below are verification related methods |
| 497 | |
| 498 | def _rsavp1(self, s): |
| 499 | """ |
| 500 | Internal method providing raw RSA verification, i.e. simple modular |
| 501 | exponentiation of the given signature representative 'c', an integer |
| 502 | between 0 and n-1. |
| 503 | |
| 504 | This is the signature verification primitive RSAVP1 described in |
| 505 | PKCS#1 v2.1, i.e. RFC 3447 Sect. 5.2.2. |
| 506 | |
| 507 | Input: |
| 508 | s: signature representative, an integer between 0 and n-1, |
| 509 | where n is the key modulus. |
| 510 | |
| 511 | Output: |
| 512 | message representative, an integer between 0 and n-1 |
| 513 | |
| 514 | Not intended to be used directly. Please, see verify() method. |
| 515 | """ |
| 516 | return self._rsaep(s) |
| 517 | |
| 518 | def _rsassa_pss_verify(self, M, S, h=None, mgf=None, sLen=None): |
| 519 | """ |
| 520 | Implements RSASSA-PSS-VERIFY() function described in Sect 8.1.2 |
| 521 | of RFC 3447 |
| 522 | |
| 523 | Input: |
| 524 | M: message whose signature is to be verified |
| 525 | S: signature to be verified, an octet string of length k, where k |
| 526 | is the length in octets of the RSA modulus n. |
| 527 | |
| 528 | Output: |
| 529 | True is the signature is valid. False otherwise. |
| 530 | """ |
| 531 | |
| 532 | # Set default parameters if not provided |
| 533 | if h is None: # By default, sha1 |
| 534 | h = "sha1" |
| 535 | if not _hashFuncParams.has_key(h): |
| 536 | warning("Key._rsassa_pss_verify(): unknown hash function " |
| 537 | "provided (%s)" % h) |
| 538 | return False |
| 539 | if mgf is None: # use mgf1 with underlying hash function |
| 540 | mgf = lambda x,y: pkcs_mgf1(x, y, h) |
| 541 | if sLen is None: # use Hash output length (A.2.3 of RFC 3447) |
| 542 | hLen = _hashFuncParams[h][0] |
| 543 | sLen = hLen |
| 544 | |
| 545 | # 1) Length checking |
| 546 | modBits = self.modulusLen |
| 547 | k = modBits / 8 |
| 548 | if len(S) != k: |
| 549 | return False |
| 550 | |
| 551 | # 2) RSA verification |
| 552 | s = pkcs_os2ip(S) # 2.a) |
| 553 | m = self._rsavp1(s) # 2.b) |
| 554 | emLen = math.ceil((modBits - 1) / 8.) # 2.c) |
| 555 | EM = pkcs_i2osp(m, emLen) |
| 556 | |
| 557 | # 3) EMSA-PSS verification |
| 558 | Result = pkcs_emsa_pss_verify(M, EM, modBits - 1, h, mgf, sLen) |
| 559 | |
| 560 | return Result # 4) |
| 561 | |
| 562 | |
| 563 | def _rsassa_pkcs1_v1_5_verify(self, M, S, h): |
| 564 | """ |
| 565 | Implements RSASSA-PKCS1-v1_5-VERIFY() function as described in |
| 566 | Sect. 8.2.2 of RFC 3447. |
| 567 | |
| 568 | Input: |
| 569 | M: message whose signature is to be verified, an octet string |
| 570 | S: signature to be verified, an octet string of length k, where |
| 571 | k is the length in octets of the RSA modulus n |
| 572 | h: hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls', |
| 573 | 'sha256', 'sha384'). |
| 574 | |
| 575 | Output: |
| 576 | True if the signature is valid. False otherwise. |
| 577 | """ |
| 578 | |
| 579 | # 1) Length checking |
| 580 | k = self.modulusLen / 8 |
| 581 | if len(S) != k: |
| 582 | warning("invalid signature (len(S) != k)") |
| 583 | return False |
| 584 | |
| 585 | # 2) RSA verification |
| 586 | s = pkcs_os2ip(S) # 2.a) |
| 587 | m = self._rsavp1(s) # 2.b) |
| 588 | EM = pkcs_i2osp(m, k) # 2.c) |
| 589 | |
| 590 | # 3) EMSA-PKCS1-v1_5 encoding |
| 591 | EMPrime = pkcs_emsa_pkcs1_v1_5_encode(M, k, h) |
| 592 | if EMPrime is None: |
| 593 | warning("Key._rsassa_pkcs1_v1_5_verify(): unable to encode.") |
| 594 | return False |
| 595 | |
| 596 | # 4) Comparison |
| 597 | return EM == EMPrime |
| 598 | |
| 599 | |
| 600 | def verify(self, M, S, t=None, h=None, mgf=None, sLen=None): |
| 601 | """ |
| 602 | Verify alleged signature 'S' is indeed the signature of message 'M' using |
| 603 | 't' signature scheme where 't' can be: |
| 604 | |
| 605 | - None: the alleged signature 'S' is directly applied the RSAVP1 signature |
| 606 | primitive, as described in PKCS#1 v2.1, i.e. RFC 3447 Sect |
| 607 | 5.2.1. Simply put, the provided signature is applied a moular |
| 608 | exponentiation using the public key. Then, a comparison of the |
| 609 | result is done against 'M'. On match, True is returned. |
| 610 | Additionnal method parameters are just ignored. |
| 611 | |
| 612 | - 'pkcs': the alleged signature 'S' and message 'M' are applied |
| 613 | RSASSA-PKCS1-v1_5-VERIFY signature verification scheme as |
| 614 | described in Sect. 8.2.2 of RFC 3447. In that context, |
| 615 | the hash function name is passed using 'h'. Possible values are |
| 616 | "md2", "md4", "md5", "sha1", "tls", "sha224", "sha256", "sha384" |
| 617 | and "sha512". If none is provided, sha1 is used. Other additionnal |
| 618 | parameters are ignored. |
| 619 | |
| 620 | - 'pss': the alleged signature 'S' and message 'M' are applied |
| 621 | RSASSA-PSS-VERIFY signature scheme as described in Sect. 8.1.2. |
| 622 | of RFC 3447. In that context, |
| 623 | |
| 624 | o 'h' parameter provides the name of the hash method to use. |
| 625 | Possible values are "md2", "md4", "md5", "sha1", "tls", "sha224", |
| 626 | "sha256", "sha384" and "sha512". if none is provided, sha1 |
| 627 | is used. |
| 628 | |
| 629 | o 'mgf' is the mask generation function. By default, mgf |
| 630 | is derived from the provided hash function using the |
| 631 | generic MGF1 (see pkcs_mgf1() for details). |
| 632 | |
| 633 | o 'sLen' is the length in octet of the salt. You can overload the |
| 634 | default value (the octet length of the hash value for provided |
| 635 | algorithm) by providing another one with that parameter. |
| 636 | """ |
| 637 | if t is None: # RSAVP1 |
| 638 | S = pkcs_os2ip(S) |
| 639 | n = self.modulus |
| 640 | if S > n-1: |
| 641 | warning("Signature to be verified is too long for key modulus") |
| 642 | return False |
| 643 | m = self._rsavp1(S) |
| 644 | if m is None: |
| 645 | return False |
| 646 | l = int(math.ceil(math.log(m, 2) / 8.)) # Hack |
| 647 | m = pkcs_i2osp(m, l) |
| 648 | return M == m |
| 649 | |
| 650 | elif t == "pkcs": # RSASSA-PKCS1-v1_5-VERIFY |
| 651 | if h is None: |
| 652 | h = "sha1" |
| 653 | return self._rsassa_pkcs1_v1_5_verify(M, S, h) |
| 654 | |
| 655 | elif t == "pss": # RSASSA-PSS-VERIFY |
| 656 | return self._rsassa_pss_verify(M, S, h, mgf, sLen) |
| 657 | |
| 658 | else: |
| 659 | warning("Key.verify(): Unknown signature type (%s) provided" % t) |
| 660 | return None |
| 661 | |
| 662 | class _DecryptAndSignMethods: |
| 663 | ### Below are decryption related methods. Encryption ones are inherited |
| 664 | ### from PubKey |
| 665 | |
| 666 | def _rsadp(self, c): |
| 667 | """ |
| 668 | Internal method providing raw RSA decryption, i.e. simple modular |
| 669 | exponentiation of the given ciphertext representative 'c', a long |
| 670 | between 0 and n-1. |
| 671 | |
| 672 | This is the decryption primitive RSADP described in PKCS#1 v2.1, |
| 673 | i.e. RFC 3447 Sect. 5.1.2. |
| 674 | |
| 675 | Input: |
| 676 | c: ciphertest representative, a long between 0 and n-1, where |
| 677 | n is the key modulus. |
| 678 | |
| 679 | Output: |
| 680 | ciphertext representative, a long between 0 and n-1 |
| 681 | |
| 682 | Not intended to be used directly. Please, see encrypt() method. |
| 683 | """ |
| 684 | |
| 685 | n = self.modulus |
| 686 | if type(c) is int: |
| 687 | c = long(c) |
| 688 | if type(c) is not long or c > n-1: |
| 689 | warning("Key._rsaep() expects a long between 0 and n-1") |
| 690 | return None |
| 691 | |
| 692 | return self.key.decrypt(c) |
| 693 | |
| 694 | |
| 695 | def _rsaes_pkcs1_v1_5_decrypt(self, C): |
| 696 | """ |
| 697 | Implements RSAES-PKCS1-V1_5-DECRYPT() function described in section |
| 698 | 7.2.2 of RFC 3447. |
| 699 | |
| 700 | Input: |
| 701 | C: ciphertext to be decrypted, an octet string of length k, where |
| 702 | k is the length in octets of the RSA modulus n. |
| 703 | |
| 704 | Output: |
| 705 | an octet string of length k at most k - 11 |
| 706 | |
| 707 | on error, None is returned. |
| 708 | """ |
| 709 | |
| 710 | # 1) Length checking |
| 711 | cLen = len(C) |
| 712 | k = self.modulusLen / 8 |
| 713 | if cLen != k or k < 11: |
| 714 | warning("Key._rsaes_pkcs1_v1_5_decrypt() decryption error " |
| 715 | "(cLen != k or k < 11)") |
| 716 | return None |
| 717 | |
| 718 | # 2) RSA decryption |
| 719 | c = pkcs_os2ip(C) # 2.a) |
| 720 | m = self._rsadp(c) # 2.b) |
| 721 | EM = pkcs_i2osp(m, k) # 2.c) |
| 722 | |
| 723 | # 3) EME-PKCS1-v1_5 decoding |
| 724 | |
| 725 | # I am aware of the note at the end of 7.2.2 regarding error |
| 726 | # conditions reporting but the one provided below are for _local_ |
| 727 | # debugging purposes. --arno |
| 728 | |
| 729 | if EM[0] != '\x00': |
| 730 | warning("Key._rsaes_pkcs1_v1_5_decrypt(): decryption error " |
| 731 | "(first byte is not 0x00)") |
| 732 | return None |
| 733 | |
| 734 | if EM[1] != '\x02': |
| 735 | warning("Key._rsaes_pkcs1_v1_5_decrypt(): decryption error " |
| 736 | "(second byte is not 0x02)") |
| 737 | return None |
| 738 | |
| 739 | tmp = EM[2:].split('\x00', 1) |
| 740 | if len(tmp) != 2: |
| 741 | warning("Key._rsaes_pkcs1_v1_5_decrypt(): decryption error " |
| 742 | "(no 0x00 to separate PS from M)") |
| 743 | return None |
| 744 | |
| 745 | PS, M = tmp |
| 746 | if len(PS) < 8: |
| 747 | warning("Key._rsaes_pkcs1_v1_5_decrypt(): decryption error " |
| 748 | "(PS is less than 8 byte long)") |
| 749 | return None |
| 750 | |
| 751 | return M # 4) |
| 752 | |
| 753 | |
| 754 | def _rsaes_oaep_decrypt(self, C, h=None, mgf=None, L=None): |
| 755 | """ |
| 756 | Internal method providing RSAES-OAEP-DECRYPT as defined in Sect. |
| 757 | 7.1.2 of RFC 3447. Not intended to be used directly. Please, see |
| 758 | encrypt() method for type "OAEP". |
| 759 | |
| 760 | |
| 761 | Input: |
| 762 | C : ciphertext to be decrypted, an octet string of length k, where |
| 763 | k = 2*hLen + 2 (k denotes the length in octets of the RSA modulus |
| 764 | and hLen the length in octets of the hash function output) |
| 765 | h : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls', |
| 766 | 'sha256', 'sha384'). 'sha1' is used if none is provided. |
| 767 | mgf: the mask generation function f : seed, maskLen -> mask |
| 768 | L : optional label whose association with the message is to be |
| 769 | verified; the default value for L, if not provided is the empty |
| 770 | string. |
| 771 | |
| 772 | Output: |
| 773 | message, an octet string of length k mLen, where mLen <= k - 2*hLen - 2 |
| 774 | |
| 775 | On error, None is returned. |
| 776 | """ |
| 777 | # The steps below are the one described in Sect. 7.1.2 of RFC 3447. |
| 778 | |
| 779 | # 1) Length Checking |
| 780 | # 1.a) is not done |
| 781 | if h is None: |
| 782 | h = "sha1" |
| 783 | if not _hashFuncParams.has_key(h): |
| 784 | warning("Key._rsaes_oaep_decrypt(): unknown hash function %s.", h) |
| 785 | return None |
| 786 | hLen = _hashFuncParams[h][0] |
| 787 | hFun = _hashFuncParams[h][1] |
| 788 | k = self.modulusLen / 8 |
| 789 | cLen = len(C) |
| 790 | if cLen != k: # 1.b) |
| 791 | warning("Key._rsaes_oaep_decrypt(): decryption error. " |
| 792 | "(cLen != k)") |
| 793 | return None |
| 794 | if k < 2*hLen + 2: |
| 795 | warning("Key._rsaes_oaep_decrypt(): decryption error. " |
| 796 | "(k < 2*hLen + 2)") |
| 797 | return None |
| 798 | |
| 799 | # 2) RSA decryption |
| 800 | c = pkcs_os2ip(C) # 2.a) |
| 801 | m = self._rsadp(c) # 2.b) |
| 802 | EM = pkcs_i2osp(m, k) # 2.c) |
| 803 | |
| 804 | # 3) EME-OAEP decoding |
| 805 | if L is None: # 3.a) |
| 806 | L = "" |
| 807 | lHash = hFun(L) |
| 808 | Y = EM[:1] # 3.b) |
| 809 | if Y != '\x00': |
| 810 | warning("Key._rsaes_oaep_decrypt(): decryption error. " |
| 811 | "(Y is not zero)") |
| 812 | return None |
| 813 | maskedSeed = EM[1:1+hLen] |
| 814 | maskedDB = EM[1+hLen:] |
| 815 | if mgf is None: |
| 816 | mgf = lambda x,y: pkcs_mgf1(x, y, h) |
| 817 | seedMask = mgf(maskedDB, hLen) # 3.c) |
| 818 | seed = strxor(maskedSeed, seedMask) # 3.d) |
| 819 | dbMask = mgf(seed, k - hLen - 1) # 3.e) |
| 820 | DB = strxor(maskedDB, dbMask) # 3.f) |
| 821 | |
| 822 | # I am aware of the note at the end of 7.1.2 regarding error |
| 823 | # conditions reporting but the one provided below are for _local_ |
| 824 | # debugging purposes. --arno |
| 825 | |
| 826 | lHashPrime = DB[:hLen] # 3.g) |
| 827 | tmp = DB[hLen:].split('\x01', 1) |
| 828 | if len(tmp) != 2: |
| 829 | warning("Key._rsaes_oaep_decrypt(): decryption error. " |
| 830 | "(0x01 separator not found)") |
| 831 | return None |
| 832 | PS, M = tmp |
| 833 | if PS != '\x00'*len(PS): |
| 834 | warning("Key._rsaes_oaep_decrypt(): decryption error. " |
| 835 | "(invalid padding string)") |
| 836 | return None |
| 837 | if lHash != lHashPrime: |
| 838 | warning("Key._rsaes_oaep_decrypt(): decryption error. " |
| 839 | "(invalid hash)") |
| 840 | return None |
| 841 | return M # 4) |
| 842 | |
| 843 | |
| 844 | def decrypt(self, C, t=None, h=None, mgf=None, L=None): |
| 845 | """ |
| 846 | Decrypt ciphertext 'C' using 't' decryption scheme where 't' can be: |
| 847 | |
| 848 | - None: the ciphertext 'C' is directly applied the RSADP decryption |
| 849 | primitive, as described in PKCS#1 v2.1, i.e. RFC 3447 |
| 850 | Sect 5.1.2. Simply, put the message undergo a modular |
| 851 | exponentiation using the private key. Additionnal method |
| 852 | parameters are just ignored. |
| 853 | |
| 854 | - 'pkcs': the ciphertext 'C' is applied RSAES-PKCS1-V1_5-DECRYPT |
| 855 | decryption scheme as described in section 7.2.2 of RFC 3447. |
| 856 | In that context, other parameters ('h', 'mgf', 'l') are not |
| 857 | used. |
| 858 | |
| 859 | - 'oaep': the ciphertext 'C' is applied the RSAES-OAEP-DECRYPT decryption |
| 860 | scheme, as described in PKCS#1 v2.1, i.e. RFC 3447 Sect |
| 861 | 7.1.2. In that context, |
| 862 | |
| 863 | o 'h' parameter provides the name of the hash method to use. |
| 864 | Possible values are "md2", "md4", "md5", "sha1", "tls", |
| 865 | "sha224", "sha256", "sha384" and "sha512". if none is provided, |
| 866 | sha1 is used by default. |
| 867 | |
| 868 | o 'mgf' is the mask generation function. By default, mgf |
| 869 | is derived from the provided hash function using the |
| 870 | generic MGF1 (see pkcs_mgf1() for details). |
| 871 | |
| 872 | o 'L' is the optional label to be associated with the |
| 873 | message. If not provided, the default value is used, i.e |
| 874 | the empty string. No check is done on the input limitation |
| 875 | of the hash function regarding the size of 'L' (for |
| 876 | instance, 2^61 - 1 for SHA-1). You have been warned. |
| 877 | """ |
| 878 | if t is None: |
| 879 | C = pkcs_os2ip(C) |
| 880 | c = self._rsadp(C) |
| 881 | l = int(math.ceil(math.log(c, 2) / 8.)) # Hack |
| 882 | return pkcs_i2osp(c, l) |
| 883 | |
| 884 | elif t == "pkcs": |
| 885 | return self._rsaes_pkcs1_v1_5_decrypt(C) |
| 886 | |
| 887 | elif t == "oaep": |
| 888 | return self._rsaes_oaep_decrypt(C, h, mgf, L) |
| 889 | |
| 890 | else: |
| 891 | warning("Key.decrypt(): Unknown decryption type (%s) provided" % t) |
| 892 | return None |
| 893 | |
| 894 | ### Below are signature related methods. Verification ones are inherited from |
| 895 | ### PubKey |
| 896 | |
| 897 | def _rsasp1(self, m): |
| 898 | """ |
| 899 | Internal method providing raw RSA signature, i.e. simple modular |
| 900 | exponentiation of the given message representative 'm', an integer |
| 901 | between 0 and n-1. |
| 902 | |
| 903 | This is the signature primitive RSASP1 described in PKCS#1 v2.1, |
| 904 | i.e. RFC 3447 Sect. 5.2.1. |
| 905 | |
| 906 | Input: |
| 907 | m: message representative, an integer between 0 and n-1, where |
| 908 | n is the key modulus. |
| 909 | |
| 910 | Output: |
| 911 | signature representative, an integer between 0 and n-1 |
| 912 | |
| 913 | Not intended to be used directly. Please, see sign() method. |
| 914 | """ |
| 915 | return self._rsadp(m) |
| 916 | |
| 917 | |
| 918 | def _rsassa_pss_sign(self, M, h=None, mgf=None, sLen=None): |
| 919 | """ |
| 920 | Implements RSASSA-PSS-SIGN() function described in Sect. 8.1.1 of |
| 921 | RFC 3447. |
| 922 | |
| 923 | Input: |
| 924 | M: message to be signed, an octet string |
| 925 | |
| 926 | Output: |
| 927 | signature, an octet string of length k, where k is the length in |
| 928 | octets of the RSA modulus n. |
| 929 | |
| 930 | On error, None is returned. |
| 931 | """ |
| 932 | |
| 933 | # Set default parameters if not provided |
| 934 | if h is None: # By default, sha1 |
| 935 | h = "sha1" |
| 936 | if not _hashFuncParams.has_key(h): |
| 937 | warning("Key._rsassa_pss_sign(): unknown hash function " |
| 938 | "provided (%s)" % h) |
| 939 | return None |
| 940 | if mgf is None: # use mgf1 with underlying hash function |
| 941 | mgf = lambda x,y: pkcs_mgf1(x, y, h) |
| 942 | if sLen is None: # use Hash output length (A.2.3 of RFC 3447) |
| 943 | hLen = _hashFuncParams[h][0] |
| 944 | sLen = hLen |
| 945 | |
| 946 | # 1) EMSA-PSS encoding |
| 947 | modBits = self.modulusLen |
| 948 | k = modBits / 8 |
| 949 | EM = pkcs_emsa_pss_encode(M, modBits - 1, h, mgf, sLen) |
| 950 | if EM is None: |
| 951 | warning("Key._rsassa_pss_sign(): unable to encode") |
| 952 | return None |
| 953 | |
| 954 | # 2) RSA signature |
| 955 | m = pkcs_os2ip(EM) # 2.a) |
| 956 | s = self._rsasp1(m) # 2.b) |
| 957 | S = pkcs_i2osp(s, k) # 2.c) |
| 958 | |
| 959 | return S # 3) |
| 960 | |
| 961 | |
| 962 | def _rsassa_pkcs1_v1_5_sign(self, M, h): |
| 963 | """ |
| 964 | Implements RSASSA-PKCS1-v1_5-SIGN() function as described in |
| 965 | Sect. 8.2.1 of RFC 3447. |
| 966 | |
| 967 | Input: |
| 968 | M: message to be signed, an octet string |
| 969 | h: hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls' |
| 970 | 'sha256', 'sha384'). |
| 971 | |
| 972 | Output: |
| 973 | the signature, an octet string. |
| 974 | """ |
| 975 | |
| 976 | # 1) EMSA-PKCS1-v1_5 encoding |
| 977 | k = self.modulusLen / 8 |
| 978 | EM = pkcs_emsa_pkcs1_v1_5_encode(M, k, h) |
| 979 | if EM is None: |
| 980 | warning("Key._rsassa_pkcs1_v1_5_sign(): unable to encode") |
| 981 | return None |
| 982 | |
| 983 | # 2) RSA signature |
| 984 | m = pkcs_os2ip(EM) # 2.a) |
| 985 | s = self._rsasp1(m) # 2.b) |
| 986 | S = pkcs_i2osp(s, k) # 2.c) |
| 987 | |
| 988 | return S # 3) |
| 989 | |
| 990 | |
| 991 | def sign(self, M, t=None, h=None, mgf=None, sLen=None): |
| 992 | """ |
| 993 | Sign message 'M' using 't' signature scheme where 't' can be: |
| 994 | |
| 995 | - None: the message 'M' is directly applied the RSASP1 signature |
| 996 | primitive, as described in PKCS#1 v2.1, i.e. RFC 3447 Sect |
| 997 | 5.2.1. Simply put, the message undergo a modular exponentiation |
| 998 | using the private key. Additionnal method parameters are just |
| 999 | ignored. |
| 1000 | |
| 1001 | - 'pkcs': the message 'M' is applied RSASSA-PKCS1-v1_5-SIGN signature |
| 1002 | scheme as described in Sect. 8.2.1 of RFC 3447. In that context, |
| 1003 | the hash function name is passed using 'h'. Possible values are |
| 1004 | "md2", "md4", "md5", "sha1", "tls", "sha224", "sha256", "sha384" |
| 1005 | and "sha512". If none is provided, sha1 is used. Other additionnal |
| 1006 | parameters are ignored. |
| 1007 | |
| 1008 | - 'pss' : the message 'M' is applied RSASSA-PSS-SIGN signature scheme as |
| 1009 | described in Sect. 8.1.1. of RFC 3447. In that context, |
| 1010 | |
| 1011 | o 'h' parameter provides the name of the hash method to use. |
| 1012 | Possible values are "md2", "md4", "md5", "sha1", "tls", "sha224", |
| 1013 | "sha256", "sha384" and "sha512". if none is provided, sha1 |
| 1014 | is used. |
| 1015 | |
| 1016 | o 'mgf' is the mask generation function. By default, mgf |
| 1017 | is derived from the provided hash function using the |
| 1018 | generic MGF1 (see pkcs_mgf1() for details). |
| 1019 | |
| 1020 | o 'sLen' is the length in octet of the salt. You can overload the |
| 1021 | default value (the octet length of the hash value for provided |
| 1022 | algorithm) by providing another one with that parameter. |
| 1023 | """ |
| 1024 | |
| 1025 | if t is None: # RSASP1 |
| 1026 | M = pkcs_os2ip(M) |
| 1027 | n = self.modulus |
| 1028 | if M > n-1: |
| 1029 | warning("Message to be signed is too long for key modulus") |
| 1030 | return None |
| 1031 | s = self._rsasp1(M) |
| 1032 | if s is None: |
| 1033 | return None |
| 1034 | return pkcs_i2osp(s, self.modulusLen/8) |
| 1035 | |
| 1036 | elif t == "pkcs": # RSASSA-PKCS1-v1_5-SIGN |
| 1037 | if h is None: |
| 1038 | h = "sha1" |
| 1039 | return self._rsassa_pkcs1_v1_5_sign(M, h) |
| 1040 | |
| 1041 | elif t == "pss": # RSASSA-PSS-SIGN |
| 1042 | return self._rsassa_pss_sign(M, h, mgf, sLen) |
| 1043 | |
| 1044 | else: |
| 1045 | warning("Key.sign(): Unknown signature type (%s) provided" % t) |
| 1046 | return None |
| 1047 | |
| 1048 | class Key(_DecryptAndSignMethods, _EncryptAndVerify): |
| 1049 | |
| 1050 | def __init__(self, pem_data): |
| 1051 | self.key = RSA.importKey(pem_data) |
| 1052 | self.modulus = self.key.key.n |
| 1053 | self.modulusLen = self.key.key.size() + 1 |
| 1054 | self.privExp = self.key.key.d |
| 1055 | self.pubExp = self.key.key.e |
| 1056 | self.prime1 = self.key.key.p |
| 1057 | self.prime2 = self.key.key.q |
| 1058 | self.exponent1 = 0 |
| 1059 | self.exponent2 = 0 |
| 1060 | self.coefficient = self.key.key.u |