| // Copyright 2019+ Klaus Post. All rights reserved. |
| // License information can be found in the LICENSE file. |
| // Based on work by Yann Collet, released under BSD License. |
| |
| package zstd |
| |
| import ( |
| "errors" |
| "fmt" |
| "math" |
| "math/bits" |
| |
| "github.com/klauspost/compress/huff0" |
| ) |
| |
| type blockEnc struct { |
| size int |
| literals []byte |
| sequences []seq |
| coders seqCoders |
| litEnc *huff0.Scratch |
| wr bitWriter |
| |
| extraLits int |
| last bool |
| |
| output []byte |
| recentOffsets [3]uint32 |
| prevRecentOffsets [3]uint32 |
| } |
| |
| // init should be used once the block has been created. |
| // If called more than once, the effect is the same as calling reset. |
| func (b *blockEnc) init() { |
| if cap(b.literals) < maxCompressedLiteralSize { |
| b.literals = make([]byte, 0, maxCompressedLiteralSize) |
| } |
| const defSeqs = 200 |
| b.literals = b.literals[:0] |
| if cap(b.sequences) < defSeqs { |
| b.sequences = make([]seq, 0, defSeqs) |
| } |
| if cap(b.output) < maxCompressedBlockSize { |
| b.output = make([]byte, 0, maxCompressedBlockSize) |
| } |
| if b.coders.mlEnc == nil { |
| b.coders.mlEnc = &fseEncoder{} |
| b.coders.mlPrev = &fseEncoder{} |
| b.coders.ofEnc = &fseEncoder{} |
| b.coders.ofPrev = &fseEncoder{} |
| b.coders.llEnc = &fseEncoder{} |
| b.coders.llPrev = &fseEncoder{} |
| } |
| b.litEnc = &huff0.Scratch{} |
| b.reset(nil) |
| } |
| |
| // initNewEncode can be used to reset offsets and encoders to the initial state. |
| func (b *blockEnc) initNewEncode() { |
| b.recentOffsets = [3]uint32{1, 4, 8} |
| b.litEnc.Reuse = huff0.ReusePolicyNone |
| b.coders.setPrev(nil, nil, nil) |
| } |
| |
| // reset will reset the block for a new encode, but in the same stream, |
| // meaning that state will be carried over, but the block content is reset. |
| // If a previous block is provided, the recent offsets are carried over. |
| func (b *blockEnc) reset(prev *blockEnc) { |
| b.extraLits = 0 |
| b.literals = b.literals[:0] |
| b.size = 0 |
| b.sequences = b.sequences[:0] |
| b.output = b.output[:0] |
| b.last = false |
| if prev != nil { |
| b.recentOffsets = prev.prevRecentOffsets |
| } |
| } |
| |
| // reset will reset the block for a new encode, but in the same stream, |
| // meaning that state will be carried over, but the block content is reset. |
| // If a previous block is provided, the recent offsets are carried over. |
| func (b *blockEnc) swapEncoders(prev *blockEnc) { |
| b.coders.swap(&prev.coders) |
| b.litEnc, prev.litEnc = prev.litEnc, b.litEnc |
| } |
| |
| // blockHeader contains the information for a block header. |
| type blockHeader uint32 |
| |
| // setLast sets the 'last' indicator on a block. |
| func (h *blockHeader) setLast(b bool) { |
| if b { |
| *h = *h | 1 |
| } else { |
| const mask = (1 << 24) - 2 |
| *h = *h & mask |
| } |
| } |
| |
| // setSize will store the compressed size of a block. |
| func (h *blockHeader) setSize(v uint32) { |
| const mask = 7 |
| *h = (*h)&mask | blockHeader(v<<3) |
| } |
| |
| // setType sets the block type. |
| func (h *blockHeader) setType(t blockType) { |
| const mask = 1 | (((1 << 24) - 1) ^ 7) |
| *h = (*h & mask) | blockHeader(t<<1) |
| } |
| |
| // appendTo will append the block header to a slice. |
| func (h blockHeader) appendTo(b []byte) []byte { |
| return append(b, uint8(h), uint8(h>>8), uint8(h>>16)) |
| } |
| |
| // String returns a string representation of the block. |
| func (h blockHeader) String() string { |
| return fmt.Sprintf("Type: %d, Size: %d, Last:%t", (h>>1)&3, h>>3, h&1 == 1) |
| } |
| |
| // literalsHeader contains literals header information. |
| type literalsHeader uint64 |
| |
| // setType can be used to set the type of literal block. |
| func (h *literalsHeader) setType(t literalsBlockType) { |
| const mask = math.MaxUint64 - 3 |
| *h = (*h & mask) | literalsHeader(t) |
| } |
| |
| // setSize can be used to set a single size, for uncompressed and RLE content. |
| func (h *literalsHeader) setSize(regenLen int) { |
| inBits := bits.Len32(uint32(regenLen)) |
| // Only retain 2 bits |
| const mask = 3 |
| lh := uint64(*h & mask) |
| switch { |
| case inBits < 5: |
| lh |= (uint64(regenLen) << 3) | (1 << 60) |
| if debug { |
| got := int(lh>>3) & 0xff |
| if got != regenLen { |
| panic(fmt.Sprint("litRegenSize = ", regenLen, "(want) != ", got, "(got)")) |
| } |
| } |
| case inBits < 12: |
| lh |= (1 << 2) | (uint64(regenLen) << 4) | (2 << 60) |
| case inBits < 20: |
| lh |= (3 << 2) | (uint64(regenLen) << 4) | (3 << 60) |
| default: |
| panic(fmt.Errorf("internal error: block too big (%d)", regenLen)) |
| } |
| *h = literalsHeader(lh) |
| } |
| |
| // setSizes will set the size of a compressed literals section and the input length. |
| func (h *literalsHeader) setSizes(compLen, inLen int, single bool) { |
| compBits, inBits := bits.Len32(uint32(compLen)), bits.Len32(uint32(inLen)) |
| // Only retain 2 bits |
| const mask = 3 |
| lh := uint64(*h & mask) |
| switch { |
| case compBits <= 10 && inBits <= 10: |
| if !single { |
| lh |= 1 << 2 |
| } |
| lh |= (uint64(inLen) << 4) | (uint64(compLen) << (10 + 4)) | (3 << 60) |
| if debug { |
| const mmask = (1 << 24) - 1 |
| n := (lh >> 4) & mmask |
| if int(n&1023) != inLen { |
| panic(fmt.Sprint("regensize:", int(n&1023), "!=", inLen, inBits)) |
| } |
| if int(n>>10) != compLen { |
| panic(fmt.Sprint("compsize:", int(n>>10), "!=", compLen, compBits)) |
| } |
| } |
| case compBits <= 14 && inBits <= 14: |
| lh |= (2 << 2) | (uint64(inLen) << 4) | (uint64(compLen) << (14 + 4)) | (4 << 60) |
| if single { |
| panic("single stream used with more than 10 bits length.") |
| } |
| case compBits <= 18 && inBits <= 18: |
| lh |= (3 << 2) | (uint64(inLen) << 4) | (uint64(compLen) << (18 + 4)) | (5 << 60) |
| if single { |
| panic("single stream used with more than 10 bits length.") |
| } |
| default: |
| panic("internal error: block too big") |
| } |
| *h = literalsHeader(lh) |
| } |
| |
| // appendTo will append the literals header to a byte slice. |
| func (h literalsHeader) appendTo(b []byte) []byte { |
| size := uint8(h >> 60) |
| switch size { |
| case 1: |
| b = append(b, uint8(h)) |
| case 2: |
| b = append(b, uint8(h), uint8(h>>8)) |
| case 3: |
| b = append(b, uint8(h), uint8(h>>8), uint8(h>>16)) |
| case 4: |
| b = append(b, uint8(h), uint8(h>>8), uint8(h>>16), uint8(h>>24)) |
| case 5: |
| b = append(b, uint8(h), uint8(h>>8), uint8(h>>16), uint8(h>>24), uint8(h>>32)) |
| default: |
| panic(fmt.Errorf("internal error: literalsHeader has invalid size (%d)", size)) |
| } |
| return b |
| } |
| |
| // size returns the output size with currently set values. |
| func (h literalsHeader) size() int { |
| return int(h >> 60) |
| } |
| |
| func (h literalsHeader) String() string { |
| return fmt.Sprintf("Type: %d, SizeFormat: %d, Size: 0x%d, Bytes:%d", literalsBlockType(h&3), (h>>2)&3, h&((1<<60)-1)>>4, h>>60) |
| } |
| |
| // pushOffsets will push the recent offsets to the backup store. |
| func (b *blockEnc) pushOffsets() { |
| b.prevRecentOffsets = b.recentOffsets |
| } |
| |
| // pushOffsets will push the recent offsets to the backup store. |
| func (b *blockEnc) popOffsets() { |
| b.recentOffsets = b.prevRecentOffsets |
| } |
| |
| // matchOffset will adjust recent offsets and return the adjusted one, |
| // if it matches a previous offset. |
| func (b *blockEnc) matchOffset(offset, lits uint32) uint32 { |
| // Check if offset is one of the recent offsets. |
| // Adjusts the output offset accordingly. |
| // Gives a tiny bit of compression, typically around 1%. |
| if true { |
| if lits > 0 { |
| switch offset { |
| case b.recentOffsets[0]: |
| offset = 1 |
| case b.recentOffsets[1]: |
| b.recentOffsets[1] = b.recentOffsets[0] |
| b.recentOffsets[0] = offset |
| offset = 2 |
| case b.recentOffsets[2]: |
| b.recentOffsets[2] = b.recentOffsets[1] |
| b.recentOffsets[1] = b.recentOffsets[0] |
| b.recentOffsets[0] = offset |
| offset = 3 |
| default: |
| b.recentOffsets[2] = b.recentOffsets[1] |
| b.recentOffsets[1] = b.recentOffsets[0] |
| b.recentOffsets[0] = offset |
| offset += 3 |
| } |
| } else { |
| switch offset { |
| case b.recentOffsets[1]: |
| b.recentOffsets[1] = b.recentOffsets[0] |
| b.recentOffsets[0] = offset |
| offset = 1 |
| case b.recentOffsets[2]: |
| b.recentOffsets[2] = b.recentOffsets[1] |
| b.recentOffsets[1] = b.recentOffsets[0] |
| b.recentOffsets[0] = offset |
| offset = 2 |
| case b.recentOffsets[0] - 1: |
| b.recentOffsets[2] = b.recentOffsets[1] |
| b.recentOffsets[1] = b.recentOffsets[0] |
| b.recentOffsets[0] = offset |
| offset = 3 |
| default: |
| b.recentOffsets[2] = b.recentOffsets[1] |
| b.recentOffsets[1] = b.recentOffsets[0] |
| b.recentOffsets[0] = offset |
| offset += 3 |
| } |
| } |
| } else { |
| offset += 3 |
| } |
| return offset |
| } |
| |
| // encodeRaw can be used to set the output to a raw representation of supplied bytes. |
| func (b *blockEnc) encodeRaw(a []byte) { |
| var bh blockHeader |
| bh.setLast(b.last) |
| bh.setSize(uint32(len(a))) |
| bh.setType(blockTypeRaw) |
| b.output = bh.appendTo(b.output[:0]) |
| b.output = append(b.output, a...) |
| if debug { |
| println("Adding RAW block, length", len(a)) |
| } |
| } |
| |
| // encodeLits can be used if the block is only litLen. |
| func (b *blockEnc) encodeLits() error { |
| var bh blockHeader |
| bh.setLast(b.last) |
| bh.setSize(uint32(len(b.literals))) |
| |
| // Don't compress extremely small blocks |
| if len(b.literals) < 32 { |
| if debug { |
| println("Adding RAW block, length", len(b.literals)) |
| } |
| bh.setType(blockTypeRaw) |
| b.output = bh.appendTo(b.output) |
| b.output = append(b.output, b.literals...) |
| return nil |
| } |
| |
| var ( |
| out []byte |
| reUsed, single bool |
| err error |
| ) |
| if len(b.literals) >= 1024 { |
| // Use 4 Streams. |
| out, reUsed, err = huff0.Compress4X(b.literals, b.litEnc) |
| if len(out) > len(b.literals)-len(b.literals)>>4 { |
| // Bail out of compression is too little. |
| err = huff0.ErrIncompressible |
| } |
| } else if len(b.literals) > 32 { |
| // Use 1 stream |
| single = true |
| out, reUsed, err = huff0.Compress1X(b.literals, b.litEnc) |
| if len(out) > len(b.literals)-len(b.literals)>>4 { |
| // Bail out of compression is too little. |
| err = huff0.ErrIncompressible |
| } |
| } else { |
| err = huff0.ErrIncompressible |
| } |
| |
| switch err { |
| case huff0.ErrIncompressible: |
| if debug { |
| println("Adding RAW block, length", len(b.literals)) |
| } |
| bh.setType(blockTypeRaw) |
| b.output = bh.appendTo(b.output) |
| b.output = append(b.output, b.literals...) |
| return nil |
| case huff0.ErrUseRLE: |
| if debug { |
| println("Adding RLE block, length", len(b.literals)) |
| } |
| bh.setType(blockTypeRLE) |
| b.output = bh.appendTo(b.output) |
| b.output = append(b.output, b.literals[0]) |
| return nil |
| default: |
| return err |
| case nil: |
| } |
| // Compressed... |
| // Now, allow reuse |
| b.litEnc.Reuse = huff0.ReusePolicyAllow |
| bh.setType(blockTypeCompressed) |
| var lh literalsHeader |
| if reUsed { |
| if debug { |
| println("Reused tree, compressed to", len(out)) |
| } |
| lh.setType(literalsBlockTreeless) |
| } else { |
| if debug { |
| println("New tree, compressed to", len(out), "tree size:", len(b.litEnc.OutTable)) |
| } |
| lh.setType(literalsBlockCompressed) |
| } |
| // Set sizes |
| lh.setSizes(len(out), len(b.literals), single) |
| bh.setSize(uint32(len(out) + lh.size() + 1)) |
| |
| // Write block headers. |
| b.output = bh.appendTo(b.output) |
| b.output = lh.appendTo(b.output) |
| // Add compressed data. |
| b.output = append(b.output, out...) |
| // No sequences. |
| b.output = append(b.output, 0) |
| return nil |
| } |
| |
| // encode will encode the block and put the output in b.output. |
| func (b *blockEnc) encode() error { |
| if len(b.sequences) == 0 { |
| return b.encodeLits() |
| } |
| // We want some difference |
| if len(b.literals) > (b.size - (b.size >> 5)) { |
| return errIncompressible |
| } |
| |
| var bh blockHeader |
| var lh literalsHeader |
| bh.setLast(b.last) |
| bh.setType(blockTypeCompressed) |
| b.output = bh.appendTo(b.output) |
| |
| var ( |
| out []byte |
| reUsed, single bool |
| err error |
| ) |
| if len(b.literals) >= 1024 { |
| // Use 4 Streams. |
| out, reUsed, err = huff0.Compress4X(b.literals, b.litEnc) |
| if len(out) > len(b.literals)-len(b.literals)>>4 { |
| err = huff0.ErrIncompressible |
| } |
| } else if len(b.literals) > 32 { |
| // Use 1 stream |
| single = true |
| out, reUsed, err = huff0.Compress1X(b.literals, b.litEnc) |
| if len(out) > len(b.literals)-len(b.literals)>>4 { |
| err = huff0.ErrIncompressible |
| } |
| } else { |
| err = huff0.ErrIncompressible |
| } |
| switch err { |
| case huff0.ErrIncompressible: |
| lh.setType(literalsBlockRaw) |
| lh.setSize(len(b.literals)) |
| b.output = lh.appendTo(b.output) |
| b.output = append(b.output, b.literals...) |
| if debug { |
| println("Adding literals RAW, length", len(b.literals)) |
| } |
| case huff0.ErrUseRLE: |
| lh.setType(literalsBlockRLE) |
| lh.setSize(len(b.literals)) |
| b.output = lh.appendTo(b.output) |
| b.output = append(b.output, b.literals[0]) |
| if debug { |
| println("Adding literals RLE") |
| } |
| default: |
| if debug { |
| println("Adding literals ERROR:", err) |
| } |
| return err |
| case nil: |
| // Compressed litLen... |
| if reUsed { |
| if debug { |
| println("reused tree") |
| } |
| lh.setType(literalsBlockTreeless) |
| } else { |
| if debug { |
| println("new tree, size:", len(b.litEnc.OutTable)) |
| } |
| lh.setType(literalsBlockCompressed) |
| if debug { |
| _, _, err := huff0.ReadTable(out, nil) |
| if err != nil { |
| panic(err) |
| } |
| } |
| } |
| lh.setSizes(len(out), len(b.literals), single) |
| if debug { |
| printf("Compressed %d literals to %d bytes", len(b.literals), len(out)) |
| println("Adding literal header:", lh) |
| } |
| b.output = lh.appendTo(b.output) |
| b.output = append(b.output, out...) |
| b.litEnc.Reuse = huff0.ReusePolicyAllow |
| if debug { |
| println("Adding literals compressed") |
| } |
| } |
| // Sequence compression |
| |
| // Write the number of sequences |
| switch { |
| case len(b.sequences) < 128: |
| b.output = append(b.output, uint8(len(b.sequences))) |
| case len(b.sequences) < 0x7f00: // TODO: this could be wrong |
| n := len(b.sequences) |
| b.output = append(b.output, 128+uint8(n>>8), uint8(n)) |
| default: |
| n := len(b.sequences) - 0x7f00 |
| b.output = append(b.output, 255, uint8(n), uint8(n>>8)) |
| } |
| if debug { |
| println("Encoding", len(b.sequences), "sequences") |
| } |
| b.genCodes() |
| llEnc := b.coders.llEnc |
| ofEnc := b.coders.ofEnc |
| mlEnc := b.coders.mlEnc |
| err = llEnc.normalizeCount(len(b.sequences)) |
| if err != nil { |
| return err |
| } |
| err = ofEnc.normalizeCount(len(b.sequences)) |
| if err != nil { |
| return err |
| } |
| err = mlEnc.normalizeCount(len(b.sequences)) |
| if err != nil { |
| return err |
| } |
| |
| // Choose the best compression mode for each type. |
| // Will evaluate the new vs predefined and previous. |
| chooseComp := func(cur, prev, preDef *fseEncoder) (*fseEncoder, seqCompMode) { |
| // See if predefined/previous is better |
| hist := cur.count[:cur.symbolLen] |
| nSize := cur.approxSize(hist) + cur.maxHeaderSize() |
| predefSize := preDef.approxSize(hist) |
| prevSize := prev.approxSize(hist) |
| |
| // Add a small penalty for new encoders. |
| // Don't bother with extremely small (<2 byte gains). |
| nSize = nSize + (nSize+2*8*16)>>4 |
| switch { |
| case predefSize <= prevSize && predefSize <= nSize || forcePreDef: |
| if debug { |
| println("Using predefined", predefSize>>3, "<=", nSize>>3) |
| } |
| return preDef, compModePredefined |
| case prevSize <= nSize: |
| if debug { |
| println("Using previous", prevSize>>3, "<=", nSize>>3) |
| } |
| return prev, compModeRepeat |
| default: |
| if debug { |
| println("Using new, predef", predefSize>>3, ". previous:", prevSize>>3, ">", nSize>>3, "header max:", cur.maxHeaderSize()>>3, "bytes") |
| println("tl:", cur.actualTableLog, "symbolLen:", cur.symbolLen, "norm:", cur.norm[:cur.symbolLen], "hist", cur.count[:cur.symbolLen]) |
| } |
| return cur, compModeFSE |
| } |
| } |
| |
| // Write compression mode |
| var mode uint8 |
| if llEnc.useRLE { |
| mode |= uint8(compModeRLE) << 6 |
| llEnc.setRLE(b.sequences[0].llCode) |
| if debug { |
| println("llEnc.useRLE") |
| } |
| } else { |
| var m seqCompMode |
| llEnc, m = chooseComp(llEnc, b.coders.llPrev, &fsePredefEnc[tableLiteralLengths]) |
| mode |= uint8(m) << 6 |
| } |
| if ofEnc.useRLE { |
| mode |= uint8(compModeRLE) << 4 |
| ofEnc.setRLE(b.sequences[0].ofCode) |
| if debug { |
| println("ofEnc.useRLE") |
| } |
| } else { |
| var m seqCompMode |
| ofEnc, m = chooseComp(ofEnc, b.coders.ofPrev, &fsePredefEnc[tableOffsets]) |
| mode |= uint8(m) << 4 |
| } |
| |
| if mlEnc.useRLE { |
| mode |= uint8(compModeRLE) << 2 |
| mlEnc.setRLE(b.sequences[0].mlCode) |
| if debug { |
| println("mlEnc.useRLE, code: ", b.sequences[0].mlCode, "value", b.sequences[0].matchLen) |
| } |
| } else { |
| var m seqCompMode |
| mlEnc, m = chooseComp(mlEnc, b.coders.mlPrev, &fsePredefEnc[tableMatchLengths]) |
| mode |= uint8(m) << 2 |
| } |
| b.output = append(b.output, mode) |
| if debug { |
| printf("Compression modes: 0b%b", mode) |
| } |
| b.output, err = llEnc.writeCount(b.output) |
| if err != nil { |
| return err |
| } |
| start := len(b.output) |
| b.output, err = ofEnc.writeCount(b.output) |
| if err != nil { |
| return err |
| } |
| if false { |
| println("block:", b.output[start:], "tablelog", ofEnc.actualTableLog, "maxcount:", ofEnc.maxCount) |
| fmt.Printf("selected TableLog: %d, Symbol length: %d\n", ofEnc.actualTableLog, ofEnc.symbolLen) |
| for i, v := range ofEnc.norm[:ofEnc.symbolLen] { |
| fmt.Printf("%3d: %5d -> %4d \n", i, ofEnc.count[i], v) |
| } |
| } |
| b.output, err = mlEnc.writeCount(b.output) |
| if err != nil { |
| return err |
| } |
| |
| // Maybe in block? |
| wr := &b.wr |
| wr.reset(b.output) |
| |
| var ll, of, ml cState |
| |
| // Current sequence |
| seq := len(b.sequences) - 1 |
| s := b.sequences[seq] |
| llEnc.setBits(llBitsTable[:]) |
| mlEnc.setBits(mlBitsTable[:]) |
| ofEnc.setBits(nil) |
| |
| llTT, ofTT, mlTT := llEnc.ct.symbolTT[:256], ofEnc.ct.symbolTT[:256], mlEnc.ct.symbolTT[:256] |
| |
| // We have 3 bounds checks here (and in the loop). |
| // Since we are iterating backwards it is kinda hard to avoid. |
| llB, ofB, mlB := llTT[s.llCode], ofTT[s.ofCode], mlTT[s.mlCode] |
| ll.init(wr, &llEnc.ct, llB) |
| of.init(wr, &ofEnc.ct, ofB) |
| wr.flush32() |
| ml.init(wr, &mlEnc.ct, mlB) |
| |
| // Each of these lookups also generates a bounds check. |
| wr.addBits32NC(s.litLen, llB.outBits) |
| wr.addBits32NC(s.matchLen, mlB.outBits) |
| wr.flush32() |
| wr.addBits32NC(s.offset, ofB.outBits) |
| if debugSequences { |
| println("Encoded seq", seq, s, "codes:", s.llCode, s.mlCode, s.ofCode, "states:", ll.state, ml.state, of.state, "bits:", llB, mlB, ofB) |
| } |
| seq-- |
| if llEnc.maxBits+mlEnc.maxBits+ofEnc.maxBits <= 32 { |
| // No need to flush (common) |
| for seq >= 0 { |
| s = b.sequences[seq] |
| wr.flush32() |
| llB, ofB, mlB := llTT[s.llCode], ofTT[s.ofCode], mlTT[s.mlCode] |
| // tabelog max is 8 for all. |
| of.encode(ofB) |
| ml.encode(mlB) |
| ll.encode(llB) |
| wr.flush32() |
| |
| // We checked that all can stay within 32 bits |
| wr.addBits32NC(s.litLen, llB.outBits) |
| wr.addBits32NC(s.matchLen, mlB.outBits) |
| wr.addBits32NC(s.offset, ofB.outBits) |
| |
| if debugSequences { |
| println("Encoded seq", seq, s) |
| } |
| |
| seq-- |
| } |
| } else { |
| for seq >= 0 { |
| s = b.sequences[seq] |
| wr.flush32() |
| llB, ofB, mlB := llTT[s.llCode], ofTT[s.ofCode], mlTT[s.mlCode] |
| // tabelog max is below 8 for each. |
| of.encode(ofB) |
| ml.encode(mlB) |
| ll.encode(llB) |
| wr.flush32() |
| |
| // ml+ll = max 32 bits total |
| wr.addBits32NC(s.litLen, llB.outBits) |
| wr.addBits32NC(s.matchLen, mlB.outBits) |
| wr.flush32() |
| wr.addBits32NC(s.offset, ofB.outBits) |
| |
| if debugSequences { |
| println("Encoded seq", seq, s) |
| } |
| |
| seq-- |
| } |
| } |
| ml.flush(mlEnc.actualTableLog) |
| of.flush(ofEnc.actualTableLog) |
| ll.flush(llEnc.actualTableLog) |
| err = wr.close() |
| if err != nil { |
| return err |
| } |
| b.output = wr.out |
| |
| if len(b.output)-3 >= b.size { |
| // Maybe even add a bigger margin. |
| b.litEnc.Reuse = huff0.ReusePolicyNone |
| return errIncompressible |
| } |
| |
| // Size is output minus block header. |
| bh.setSize(uint32(len(b.output)) - 3) |
| if debug { |
| println("Rewriting block header", bh) |
| } |
| _ = bh.appendTo(b.output[:0]) |
| b.coders.setPrev(llEnc, mlEnc, ofEnc) |
| return nil |
| } |
| |
| var errIncompressible = errors.New("uncompressible") |
| |
| func (b *blockEnc) genCodes() { |
| if len(b.sequences) == 0 { |
| // nothing to do |
| return |
| } |
| |
| if len(b.sequences) > math.MaxUint16 { |
| panic("can only encode up to 64K sequences") |
| } |
| // No bounds checks after here: |
| llH := b.coders.llEnc.Histogram()[:256] |
| ofH := b.coders.ofEnc.Histogram()[:256] |
| mlH := b.coders.mlEnc.Histogram()[:256] |
| for i := range llH { |
| llH[i] = 0 |
| } |
| for i := range ofH { |
| ofH[i] = 0 |
| } |
| for i := range mlH { |
| mlH[i] = 0 |
| } |
| |
| var llMax, ofMax, mlMax uint8 |
| for i, seq := range b.sequences { |
| v := llCode(seq.litLen) |
| seq.llCode = v |
| llH[v]++ |
| if v > llMax { |
| llMax = v |
| } |
| |
| v = ofCode(seq.offset) |
| seq.ofCode = v |
| ofH[v]++ |
| if v > ofMax { |
| ofMax = v |
| } |
| |
| v = mlCode(seq.matchLen) |
| seq.mlCode = v |
| mlH[v]++ |
| if v > mlMax { |
| mlMax = v |
| if debug && mlMax > maxMatchLengthSymbol { |
| panic(fmt.Errorf("mlMax > maxMatchLengthSymbol (%d), matchlen: %d", mlMax, seq.matchLen)) |
| } |
| } |
| b.sequences[i] = seq |
| } |
| maxCount := func(a []uint32) int { |
| var max uint32 |
| for _, v := range a { |
| if v > max { |
| max = v |
| } |
| } |
| return int(max) |
| } |
| if mlMax > maxMatchLengthSymbol { |
| panic(fmt.Errorf("mlMax > maxMatchLengthSymbol (%d)", mlMax)) |
| } |
| if ofMax > maxOffsetBits { |
| panic(fmt.Errorf("ofMax > maxOffsetBits (%d)", ofMax)) |
| } |
| if llMax > maxLiteralLengthSymbol { |
| panic(fmt.Errorf("llMax > maxLiteralLengthSymbol (%d)", llMax)) |
| } |
| |
| b.coders.mlEnc.HistogramFinished(mlMax, maxCount(mlH[:mlMax+1])) |
| b.coders.ofEnc.HistogramFinished(ofMax, maxCount(ofH[:ofMax+1])) |
| b.coders.llEnc.HistogramFinished(llMax, maxCount(llH[:llMax+1])) |
| } |