blob: 619836f52f0433f14eb5ae122a4009d6d4efcec4 [file] [log] [blame]
Dinesh Belwalkare63f7f92019-11-22 23:11:16 +00001// Copyright 2019+ Klaus Post. All rights reserved.
2// License information can be found in the LICENSE file.
3// Based on work by Yann Collet, released under BSD License.
4
5package zstd
6
7import (
8 "errors"
9 "fmt"
10 "math"
11)
12
13const (
14 // For encoding we only support up to
15 maxEncTableLog = 8
16 maxEncTablesize = 1 << maxTableLog
17 maxEncTableMask = (1 << maxTableLog) - 1
18 minEncTablelog = 5
19 maxEncSymbolValue = maxMatchLengthSymbol
20)
21
22// Scratch provides temporary storage for compression and decompression.
23type fseEncoder struct {
24 symbolLen uint16 // Length of active part of the symbol table.
25 actualTableLog uint8 // Selected tablelog.
26 ct cTable // Compression tables.
27 maxCount int // count of the most probable symbol
28 zeroBits bool // no bits has prob > 50%.
29 clearCount bool // clear count
30 useRLE bool // This encoder is for RLE
31 preDefined bool // This encoder is predefined.
32 reUsed bool // Set to know when the encoder has been reused.
33 rleVal uint8 // RLE Symbol
34 maxBits uint8 // Maximum output bits after transform.
35
36 // TODO: Technically zstd should be fine with 64 bytes.
37 count [256]uint32
38 norm [256]int16
39}
40
41// cTable contains tables used for compression.
42type cTable struct {
43 tableSymbol []byte
44 stateTable []uint16
45 symbolTT []symbolTransform
46}
47
48// symbolTransform contains the state transform for a symbol.
49type symbolTransform struct {
50 deltaNbBits uint32
51 deltaFindState int16
52 outBits uint8
53}
54
55// String prints values as a human readable string.
56func (s symbolTransform) String() string {
57 return fmt.Sprintf("{deltabits: %08x, findstate:%d outbits:%d}", s.deltaNbBits, s.deltaFindState, s.outBits)
58}
59
60// Histogram allows to populate the histogram and skip that step in the compression,
61// It otherwise allows to inspect the histogram when compression is done.
62// To indicate that you have populated the histogram call HistogramFinished
63// with the value of the highest populated symbol, as well as the number of entries
64// in the most populated entry. These are accepted at face value.
65// The returned slice will always be length 256.
66func (s *fseEncoder) Histogram() []uint32 {
67 return s.count[:]
68}
69
70// HistogramFinished can be called to indicate that the histogram has been populated.
71// maxSymbol is the index of the highest set symbol of the next data segment.
72// maxCount is the number of entries in the most populated entry.
73// These are accepted at face value.
74func (s *fseEncoder) HistogramFinished(maxSymbol uint8, maxCount int) {
75 s.maxCount = maxCount
76 s.symbolLen = uint16(maxSymbol) + 1
77 s.clearCount = maxCount != 0
78}
79
80// prepare will prepare and allocate scratch tables used for both compression and decompression.
81func (s *fseEncoder) prepare() (*fseEncoder, error) {
82 if s == nil {
83 s = &fseEncoder{}
84 }
85 s.useRLE = false
86 if s.clearCount && s.maxCount == 0 {
87 for i := range s.count {
88 s.count[i] = 0
89 }
90 s.clearCount = false
91 }
92 return s, nil
93}
94
95// allocCtable will allocate tables needed for compression.
96// If existing tables a re big enough, they are simply re-used.
97func (s *fseEncoder) allocCtable() {
98 tableSize := 1 << s.actualTableLog
99 // get tableSymbol that is big enough.
100 if cap(s.ct.tableSymbol) < int(tableSize) {
101 s.ct.tableSymbol = make([]byte, tableSize)
102 }
103 s.ct.tableSymbol = s.ct.tableSymbol[:tableSize]
104
105 ctSize := tableSize
106 if cap(s.ct.stateTable) < ctSize {
107 s.ct.stateTable = make([]uint16, ctSize)
108 }
109 s.ct.stateTable = s.ct.stateTable[:ctSize]
110
111 if cap(s.ct.symbolTT) < 256 {
112 s.ct.symbolTT = make([]symbolTransform, 256)
113 }
114 s.ct.symbolTT = s.ct.symbolTT[:256]
115}
116
117// buildCTable will populate the compression table so it is ready to be used.
118func (s *fseEncoder) buildCTable() error {
119 tableSize := uint32(1 << s.actualTableLog)
120 highThreshold := tableSize - 1
121 var cumul [256]int16
122
123 s.allocCtable()
124 tableSymbol := s.ct.tableSymbol[:tableSize]
125 // symbol start positions
126 {
127 cumul[0] = 0
128 for ui, v := range s.norm[:s.symbolLen-1] {
129 u := byte(ui) // one less than reference
130 if v == -1 {
131 // Low proba symbol
132 cumul[u+1] = cumul[u] + 1
133 tableSymbol[highThreshold] = u
134 highThreshold--
135 } else {
136 cumul[u+1] = cumul[u] + v
137 }
138 }
139 // Encode last symbol separately to avoid overflowing u
140 u := int(s.symbolLen - 1)
141 v := s.norm[s.symbolLen-1]
142 if v == -1 {
143 // Low proba symbol
144 cumul[u+1] = cumul[u] + 1
145 tableSymbol[highThreshold] = byte(u)
146 highThreshold--
147 } else {
148 cumul[u+1] = cumul[u] + v
149 }
150 if uint32(cumul[s.symbolLen]) != tableSize {
151 return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize)
152 }
153 cumul[s.symbolLen] = int16(tableSize) + 1
154 }
155 // Spread symbols
156 s.zeroBits = false
157 {
158 step := tableStep(tableSize)
159 tableMask := tableSize - 1
160 var position uint32
161 // if any symbol > largeLimit, we may have 0 bits output.
162 largeLimit := int16(1 << (s.actualTableLog - 1))
163 for ui, v := range s.norm[:s.symbolLen] {
164 symbol := byte(ui)
165 if v > largeLimit {
166 s.zeroBits = true
167 }
168 for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ {
169 tableSymbol[position] = symbol
170 position = (position + step) & tableMask
171 for position > highThreshold {
172 position = (position + step) & tableMask
173 } /* Low proba area */
174 }
175 }
176
177 // Check if we have gone through all positions
178 if position != 0 {
179 return errors.New("position!=0")
180 }
181 }
182
183 // Build table
184 table := s.ct.stateTable
185 {
186 tsi := int(tableSize)
187 for u, v := range tableSymbol {
188 // TableU16 : sorted by symbol order; gives next state value
189 table[cumul[v]] = uint16(tsi + u)
190 cumul[v]++
191 }
192 }
193
194 // Build Symbol Transformation Table
195 {
196 total := int16(0)
197 symbolTT := s.ct.symbolTT[:s.symbolLen]
198 tableLog := s.actualTableLog
199 tl := (uint32(tableLog) << 16) - (1 << tableLog)
200 for i, v := range s.norm[:s.symbolLen] {
201 switch v {
202 case 0:
203 case -1, 1:
204 symbolTT[i].deltaNbBits = tl
205 symbolTT[i].deltaFindState = int16(total - 1)
206 total++
207 default:
208 maxBitsOut := uint32(tableLog) - highBit(uint32(v-1))
209 minStatePlus := uint32(v) << maxBitsOut
210 symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus
211 symbolTT[i].deltaFindState = int16(total - v)
212 total += v
213 }
214 }
215 if total != int16(tableSize) {
216 return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize)
217 }
218 }
219 return nil
220}
221
222var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}
223
224func (s *fseEncoder) setRLE(val byte) {
225 s.allocCtable()
226 s.actualTableLog = 0
227 s.ct.stateTable = s.ct.stateTable[:1]
228 s.ct.symbolTT[val] = symbolTransform{
229 deltaFindState: 0,
230 deltaNbBits: 0,
231 }
232 if debug {
233 println("setRLE: val", val, "symbolTT", s.ct.symbolTT[val])
234 }
235 s.rleVal = val
236 s.useRLE = true
237}
238
239// setBits will set output bits for the transform.
240// if nil is provided, the number of bits is equal to the index.
241func (s *fseEncoder) setBits(transform []byte) {
242 if s.reUsed || s.preDefined {
243 return
244 }
245 if s.useRLE {
246 if transform == nil {
247 s.ct.symbolTT[s.rleVal].outBits = s.rleVal
248 s.maxBits = s.rleVal
249 return
250 }
251 s.maxBits = transform[s.rleVal]
252 s.ct.symbolTT[s.rleVal].outBits = s.maxBits
253 return
254 }
255 if transform == nil {
256 for i := range s.ct.symbolTT[:s.symbolLen] {
257 s.ct.symbolTT[i].outBits = uint8(i)
258 }
259 s.maxBits = uint8(s.symbolLen - 1)
260 return
261 }
262 s.maxBits = 0
263 for i, v := range transform[:s.symbolLen] {
264 s.ct.symbolTT[i].outBits = v
265 if v > s.maxBits {
266 // We could assume bits always going up, but we play safe.
267 s.maxBits = v
268 }
269 }
270}
271
272// normalizeCount will normalize the count of the symbols so
273// the total is equal to the table size.
274// If successful, compression tables will also be made ready.
275func (s *fseEncoder) normalizeCount(length int) error {
276 if s.reUsed {
277 return nil
278 }
279 s.optimalTableLog(length)
280 var (
281 tableLog = s.actualTableLog
282 scale = 62 - uint64(tableLog)
283 step = (1 << 62) / uint64(length)
284 vStep = uint64(1) << (scale - 20)
285 stillToDistribute = int16(1 << tableLog)
286 largest int
287 largestP int16
288 lowThreshold = (uint32)(length >> tableLog)
289 )
290 if s.maxCount == length {
291 s.useRLE = true
292 return nil
293 }
294 s.useRLE = false
295 for i, cnt := range s.count[:s.symbolLen] {
296 // already handled
297 // if (count[s] == s.length) return 0; /* rle special case */
298
299 if cnt == 0 {
300 s.norm[i] = 0
301 continue
302 }
303 if cnt <= lowThreshold {
304 s.norm[i] = -1
305 stillToDistribute--
306 } else {
307 proba := (int16)((uint64(cnt) * step) >> scale)
308 if proba < 8 {
309 restToBeat := vStep * uint64(rtbTable[proba])
310 v := uint64(cnt)*step - (uint64(proba) << scale)
311 if v > restToBeat {
312 proba++
313 }
314 }
315 if proba > largestP {
316 largestP = proba
317 largest = i
318 }
319 s.norm[i] = proba
320 stillToDistribute -= proba
321 }
322 }
323
324 if -stillToDistribute >= (s.norm[largest] >> 1) {
325 // corner case, need another normalization method
326 err := s.normalizeCount2(length)
327 if err != nil {
328 return err
329 }
330 if debug {
331 err = s.validateNorm()
332 if err != nil {
333 return err
334 }
335 }
336 return s.buildCTable()
337 }
338 s.norm[largest] += stillToDistribute
339 if debug {
340 err := s.validateNorm()
341 if err != nil {
342 return err
343 }
344 }
345 return s.buildCTable()
346}
347
348// Secondary normalization method.
349// To be used when primary method fails.
350func (s *fseEncoder) normalizeCount2(length int) error {
351 const notYetAssigned = -2
352 var (
353 distributed uint32
354 total = uint32(length)
355 tableLog = s.actualTableLog
356 lowThreshold = uint32(total >> tableLog)
357 lowOne = uint32((total * 3) >> (tableLog + 1))
358 )
359 for i, cnt := range s.count[:s.symbolLen] {
360 if cnt == 0 {
361 s.norm[i] = 0
362 continue
363 }
364 if cnt <= lowThreshold {
365 s.norm[i] = -1
366 distributed++
367 total -= cnt
368 continue
369 }
370 if cnt <= lowOne {
371 s.norm[i] = 1
372 distributed++
373 total -= cnt
374 continue
375 }
376 s.norm[i] = notYetAssigned
377 }
378 toDistribute := (1 << tableLog) - distributed
379
380 if (total / toDistribute) > lowOne {
381 // risk of rounding to zero
382 lowOne = uint32((total * 3) / (toDistribute * 2))
383 for i, cnt := range s.count[:s.symbolLen] {
384 if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) {
385 s.norm[i] = 1
386 distributed++
387 total -= cnt
388 continue
389 }
390 }
391 toDistribute = (1 << tableLog) - distributed
392 }
393 if distributed == uint32(s.symbolLen)+1 {
394 // all values are pretty poor;
395 // probably incompressible data (should have already been detected);
396 // find max, then give all remaining points to max
397 var maxV int
398 var maxC uint32
399 for i, cnt := range s.count[:s.symbolLen] {
400 if cnt > maxC {
401 maxV = i
402 maxC = cnt
403 }
404 }
405 s.norm[maxV] += int16(toDistribute)
406 return nil
407 }
408
409 if total == 0 {
410 // all of the symbols were low enough for the lowOne or lowThreshold
411 for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) {
412 if s.norm[i] > 0 {
413 toDistribute--
414 s.norm[i]++
415 }
416 }
417 return nil
418 }
419
420 var (
421 vStepLog = 62 - uint64(tableLog)
422 mid = uint64((1 << (vStepLog - 1)) - 1)
423 rStep = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining
424 tmpTotal = mid
425 )
426 for i, cnt := range s.count[:s.symbolLen] {
427 if s.norm[i] == notYetAssigned {
428 var (
429 end = tmpTotal + uint64(cnt)*rStep
430 sStart = uint32(tmpTotal >> vStepLog)
431 sEnd = uint32(end >> vStepLog)
432 weight = sEnd - sStart
433 )
434 if weight < 1 {
435 return errors.New("weight < 1")
436 }
437 s.norm[i] = int16(weight)
438 tmpTotal = end
439 }
440 }
441 return nil
442}
443
444// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
445func (s *fseEncoder) optimalTableLog(length int) {
446 tableLog := uint8(maxEncTableLog)
447 minBitsSrc := highBit(uint32(length)) + 1
448 minBitsSymbols := highBit(uint32(s.symbolLen-1)) + 2
449 minBits := uint8(minBitsSymbols)
450 if minBitsSrc < minBitsSymbols {
451 minBits = uint8(minBitsSrc)
452 }
453
454 maxBitsSrc := uint8(highBit(uint32(length-1))) - 2
455 if maxBitsSrc < tableLog {
456 // Accuracy can be reduced
457 tableLog = maxBitsSrc
458 }
459 if minBits > tableLog {
460 tableLog = minBits
461 }
462 // Need a minimum to safely represent all symbol values
463 if tableLog < minEncTablelog {
464 tableLog = minEncTablelog
465 }
466 if tableLog > maxEncTableLog {
467 tableLog = maxEncTableLog
468 }
469 s.actualTableLog = tableLog
470}
471
472// validateNorm validates the normalized histogram table.
473func (s *fseEncoder) validateNorm() (err error) {
474 var total int
475 for _, v := range s.norm[:s.symbolLen] {
476 if v >= 0 {
477 total += int(v)
478 } else {
479 total -= int(v)
480 }
481 }
482 defer func() {
483 if err == nil {
484 return
485 }
486 fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen)
487 for i, v := range s.norm[:s.symbolLen] {
488 fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v)
489 }
490 }()
491 if total != (1 << s.actualTableLog) {
492 return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog)
493 }
494 for i, v := range s.count[s.symbolLen:] {
495 if v != 0 {
496 return fmt.Errorf("warning: Found symbol out of range, %d after cut", i)
497 }
498 }
499 return nil
500}
501
502// writeCount will write the normalized histogram count to header.
503// This is read back by readNCount.
504func (s *fseEncoder) writeCount(out []byte) ([]byte, error) {
Dinesh Belwalkare63f7f92019-11-22 23:11:16 +0000505 if s.useRLE {
506 return append(out, s.rleVal), nil
507 }
508 if s.preDefined || s.reUsed {
509 // Never write predefined.
510 return out, nil
511 }
Dinesh Belwalkar396b6522020-02-06 22:11:53 +0000512
513 var (
514 tableLog = s.actualTableLog
515 tableSize = 1 << tableLog
516 previous0 bool
517 charnum uint16
518
519 // maximum header size plus 2 extra bytes for final output if bitCount == 0.
520 maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3 + 2
521
522 // Write Table Size
523 bitStream = uint32(tableLog - minEncTablelog)
524 bitCount = uint(4)
525 remaining = int16(tableSize + 1) /* +1 for extra accuracy */
526 threshold = int16(tableSize)
527 nbBits = uint(tableLog + 1)
528 outP = len(out)
529 )
530 if cap(out) < outP+maxHeaderSize {
531 out = append(out, make([]byte, maxHeaderSize*3)...)
532 out = out[:len(out)-maxHeaderSize*3]
533 }
Dinesh Belwalkare63f7f92019-11-22 23:11:16 +0000534 out = out[:outP+maxHeaderSize]
535
536 // stops at 1
537 for remaining > 1 {
538 if previous0 {
539 start := charnum
540 for s.norm[charnum] == 0 {
541 charnum++
542 }
543 for charnum >= start+24 {
544 start += 24
545 bitStream += uint32(0xFFFF) << bitCount
546 out[outP] = byte(bitStream)
547 out[outP+1] = byte(bitStream >> 8)
548 outP += 2
549 bitStream >>= 16
550 }
551 for charnum >= start+3 {
552 start += 3
553 bitStream += 3 << bitCount
554 bitCount += 2
555 }
556 bitStream += uint32(charnum-start) << bitCount
557 bitCount += 2
558 if bitCount > 16 {
559 out[outP] = byte(bitStream)
560 out[outP+1] = byte(bitStream >> 8)
561 outP += 2
562 bitStream >>= 16
563 bitCount -= 16
564 }
565 }
566
567 count := s.norm[charnum]
568 charnum++
569 max := (2*threshold - 1) - remaining
570 if count < 0 {
571 remaining += count
572 } else {
573 remaining -= count
574 }
575 count++ // +1 for extra accuracy
576 if count >= threshold {
577 count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[
578 }
579 bitStream += uint32(count) << bitCount
580 bitCount += nbBits
581 if count < max {
582 bitCount--
583 }
584
585 previous0 = count == 1
586 if remaining < 1 {
587 return nil, errors.New("internal error: remaining < 1")
588 }
589 for remaining < threshold {
590 nbBits--
591 threshold >>= 1
592 }
593
594 if bitCount > 16 {
595 out[outP] = byte(bitStream)
596 out[outP+1] = byte(bitStream >> 8)
597 outP += 2
598 bitStream >>= 16
599 bitCount -= 16
600 }
601 }
602
Dinesh Belwalkar396b6522020-02-06 22:11:53 +0000603 if outP+2 > len(out) {
604 return nil, fmt.Errorf("internal error: %d > %d, maxheader: %d, sl: %d, tl: %d, normcount: %v", outP+2, len(out), maxHeaderSize, s.symbolLen, int(tableLog), s.norm[:s.symbolLen])
605 }
Dinesh Belwalkare63f7f92019-11-22 23:11:16 +0000606 out[outP] = byte(bitStream)
607 out[outP+1] = byte(bitStream >> 8)
608 outP += int((bitCount + 7) / 8)
609
Dinesh Belwalkar396b6522020-02-06 22:11:53 +0000610 if charnum > s.symbolLen {
Dinesh Belwalkare63f7f92019-11-22 23:11:16 +0000611 return nil, errors.New("internal error: charnum > s.symbolLen")
612 }
613 return out[:outP], nil
614}
615
616// Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
617// note 1 : assume symbolValue is valid (<= maxSymbolValue)
618// note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits *
619func (s *fseEncoder) bitCost(symbolValue uint8, accuracyLog uint32) uint32 {
620 minNbBits := s.ct.symbolTT[symbolValue].deltaNbBits >> 16
621 threshold := (minNbBits + 1) << 16
622 if debug {
623 if !(s.actualTableLog < 16) {
624 panic("!s.actualTableLog < 16")
625 }
626 // ensure enough room for renormalization double shift
627 if !(uint8(accuracyLog) < 31-s.actualTableLog) {
628 panic("!uint8(accuracyLog) < 31-s.actualTableLog")
629 }
630 }
631 tableSize := uint32(1) << s.actualTableLog
632 deltaFromThreshold := threshold - (s.ct.symbolTT[symbolValue].deltaNbBits + tableSize)
633 // linear interpolation (very approximate)
634 normalizedDeltaFromThreshold := (deltaFromThreshold << accuracyLog) >> s.actualTableLog
635 bitMultiplier := uint32(1) << accuracyLog
636 if debug {
637 if s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold {
638 panic("s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold")
639 }
640 if normalizedDeltaFromThreshold > bitMultiplier {
641 panic("normalizedDeltaFromThreshold > bitMultiplier")
642 }
643 }
644 return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold
645}
646
647// Returns the cost in bits of encoding the distribution in count using ctable.
648// Histogram should only be up to the last non-zero symbol.
649// Returns an -1 if ctable cannot represent all the symbols in count.
650func (s *fseEncoder) approxSize(hist []uint32) uint32 {
651 if int(s.symbolLen) < len(hist) {
652 // More symbols than we have.
653 return math.MaxUint32
654 }
655 if s.useRLE {
656 // We will never reuse RLE encoders.
657 return math.MaxUint32
658 }
659 const kAccuracyLog = 8
660 badCost := (uint32(s.actualTableLog) + 1) << kAccuracyLog
661 var cost uint32
662 for i, v := range hist {
663 if v == 0 {
664 continue
665 }
666 if s.norm[i] == 0 {
667 return math.MaxUint32
668 }
669 bitCost := s.bitCost(uint8(i), kAccuracyLog)
670 if bitCost > badCost {
671 return math.MaxUint32
672 }
673 cost += v * bitCost
674 }
675 return cost >> kAccuracyLog
676}
677
678// maxHeaderSize returns the maximum header size in bits.
679// This is not exact size, but we want a penalty for new tables anyway.
680func (s *fseEncoder) maxHeaderSize() uint32 {
681 if s.preDefined {
682 return 0
683 }
684 if s.useRLE {
685 return 8
686 }
687 return (((uint32(s.symbolLen) * uint32(s.actualTableLog)) >> 3) + 3) * 8
688}
689
690// cState contains the compression state of a stream.
691type cState struct {
692 bw *bitWriter
693 stateTable []uint16
694 state uint16
695}
696
697// init will initialize the compression state to the first symbol of the stream.
698func (c *cState) init(bw *bitWriter, ct *cTable, first symbolTransform) {
699 c.bw = bw
700 c.stateTable = ct.stateTable
701 if len(c.stateTable) == 1 {
702 // RLE
703 c.stateTable[0] = uint16(0)
704 c.state = 0
705 return
706 }
707 nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16
708 im := int32((nbBitsOut << 16) - first.deltaNbBits)
709 lu := (im >> nbBitsOut) + int32(first.deltaFindState)
710 c.state = c.stateTable[lu]
711 return
712}
713
714// encode the output symbol provided and write it to the bitstream.
715func (c *cState) encode(symbolTT symbolTransform) {
716 nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
717 dstState := int32(c.state>>(nbBitsOut&15)) + int32(symbolTT.deltaFindState)
718 c.bw.addBits16NC(c.state, uint8(nbBitsOut))
719 c.state = c.stateTable[dstState]
720}
721
722// flush will write the tablelog to the output and flush the remaining full bytes.
723func (c *cState) flush(tableLog uint8) {
724 c.bw.flush32()
725 c.bw.addBits16NC(c.state, tableLog)
726}