blob: 8f1ffe8197a83b7b37f5e5ba9a86ecec0080e892 [file] [log] [blame]
# Example file for the dbg_interactive.fdx extension.
#
# This extension provides an interactive python interpreter console that allows
# interacting with freeDiameter framework.
#
# The adaptation layer between Python and C is provided by SWIG (http://swig.org).
# You may refer to SWIG documentation for more information on how the wrapper is generated and used.
# The name of the module wrapping freeDiameter framework is: _fDpy
#
# Similar to all freeDiameter extensions, an optional filename can be specified in the
# main freeDiameter.conf configuration file for the dbg_interactive.fdx extension.
# If such file is provided, it will be passed to the python interpreter as a python script
# to execute. Otherwise, the interpreter will be interactive.
#
# SWIG deals with structures as follow:
# Given the structure:
# struct foo { int a; }
# The following functions are available to python (their C equivalent processing is given in [ ]):
# s = new_foo() [ s = calloc(1, sizeof(struct foo)) ]
# foo_a_set(s, 2) [ s->a = 2 ]
# foo_a_get(s) [ returns s->a value ]
# delete_foo(s) [ free(s) ]
#
# In addition, thanks to the proxy (aka shadow) class, we can also do the more user-friendly:
# s = foo()
# s.a = 2
# s.a
# del s
#
# The remaining of this file gives some examples of how to use the python interpreter.
# Note that at the moment not 100% of the framework is usable.
# You may have to extend some classes or write some typemaps in the source code
# of the extension to do what you want.
############# Compilation-time constants (from freeDiameter-host.h) ############
# Display current version
print "%s %d.%d.%d" % (FD_PROJECT_NAME, FD_PROJECT_VERSION_MAJOR, FD_PROJECT_VERSION_MINOR, FD_PROJECT_VERSION_REV)
############# Debug ############
# Change the global debug level of the framework (cvar contains all global variables)
cvar.fd_g_debug_lvl = 1
# Turn on debug for a specific function (if framework compiled with DEBUG support)
cvar.fd_debug_one_function = "gc_th_fct"
# Print messages to freeDiameter's debug facility
# Note: the python version does not support printf-like argument list. The formating should be done in python.
# See SWIG documentation about varargs functions for more information.
fd_log(FD_LOG_NOTICE, "3 + 4 = %d" % (7))
# Display some framework state information
conf = fd_conf_dump();
print conf;
fd_peer_dump_list(0)
fd_servers_dump(0)
fd_ext_dump(0)
############# Global variables ############
# Display the local Diameter Identity:
print "Local Diameter Identity:", cvar.fd_g_config.cnf_diamid
# Display realm, using the low-level functions (skip proxy classe definitions):
print "Realm:", _fDpy.fd_config_cnf_diamrlm_get(_fDpy.cvar.fd_g_config)
############# Lists ############
# Note: we use different names from the C API here, for usability.
l1 = fd_list() # Will be our sentinel
l2 = fd_list()
l3 = fd_list()
l1.isempty()
l1.insert_next(l2) # l1 -> l2
l1.isempty()
l1.insert_prev(l3) # l1 -> l2 -> l3 (circular list)
l1.dump()
l3.detach() # l1 -> l2
l4=fd_list()
l5=fd_list()
l3.insert_next(l4) # l3 -> l4
l3.insert_next(l5) # l3 -> l5 -> l4
l1.concat(l3) # l1 -> l2 -> l5 -> l4
elements = l1.enum_as() # default: enumerates as fd_list. Warning: this a copy, changing the python list has no effect on the underlying fd_list.
for li in elements:
li.dump()
del elements
del l2
del l3
del l4
del l5
l1.isempty() # The destructor has an implicit fd_list_unlink call
del l1
############# Hash ############
hex(fd_os_hash("hello world")) # It accepts binary data
############# Dictionary ############
##### Create a dedicated dictionary for our tests
d = dictionary()
d.dump()
# New vendor
v = dict_vendor_data()
v.vendor_id = 123
v.vendor_name = "My test vendor"
my_vendor = d.new_obj(DICT_VENDOR, v)
del v
d.dump()
d.vendors_list()
# Compact invocation also possible:
v2 = dict_vendor_data(124, "My test vendor 2")
del v2
# New application
a = dict_application_data()
a.application_id = 99
a.application_name = "My test appl"
my_appl = d.new_obj(DICT_APPLICATION, a, my_vendor)
del a
a2 = dict_application_data(99, "My test appl 2")
del a2
# New type (callbacks are not supported yet...)
t = dict_type_data()
t.type_base = AVP_TYPE_INTEGER32
t.type_name = "My integer AVP"
my_type_int = d.new_obj(DICT_TYPE, t, my_appl)
t.type_base = AVP_TYPE_OCTETSTRING
t.type_name = "My binary buffer AVP"
my_type_os = d.new_obj(DICT_TYPE, t, my_appl)
del t
t2 = dict_type_data(AVP_TYPE_UNSIGNED32, "u32 type")
del t2
# Constants
c = dict_enumval_data()
c.enum_name = "AVP_VALUE_TROIS"
c.enum_value.i32 = 3
d.new_obj(DICT_ENUMVAL, c, my_type_int)
c.enum_name = "A_BUFFER_CONSTANT"
c.enum_value.os = "This is a very long AVP value that we prefer to represent as a constant"
c.enum_value.os.dump()
d.new_obj(DICT_ENUMVAL, c, my_type_os)
del c
c2 = dict_enumval_data("enum 23", 23) # The constructor only accepts unsigned32, for other values, set them afterwards
c3 = dict_enumval_data("enum other")
c3.os = "other value"
del c2
del c3
# AVP
a = dict_avp_data()
a.avp_code = 234
a.avp_name = "my integer avp"
a.avp_flag_mask = AVP_FLAG_MANDATORY
a.avp_basetype = AVP_TYPE_INTEGER32
my_avp_int = d.new_obj(DICT_AVP, a, my_type_int)
a.avp_vendor = 123
a.avp_name = "my OS avp"
a.avp_flag_mask = AVP_FLAG_MANDATORY + AVP_FLAG_VENDOR
a.avp_flag_val = AVP_FLAG_VENDOR
a.avp_basetype = AVP_TYPE_OCTETSTRING
my_avp_os = d.new_obj(DICT_AVP, a, my_type_os)
del a
a2 = dict_avp_data(235, "no vendor, not mandatory", AVP_TYPE_OCTETSTRING)
a3 = dict_avp_data(236, "vendor 12, not mandatory", AVP_TYPE_OCTETSTRING, 12)
a4 = dict_avp_data(237, "vendor 12, mandatory", AVP_TYPE_OCTETSTRING, 12, 1)
a5 = dict_avp_data(238, "no vendor, mandatory", AVP_TYPE_OCTETSTRING, 0, 1)
del a2
del a3
del a4
del a5
# Command
c = dict_cmd_data()
c.cmd_code = 345
c.cmd_name = "My-Python-Request"
c.cmd_flag_mask = CMD_FLAG_REQUEST + CMD_FLAG_PROXIABLE
c.cmd_flag_val = CMD_FLAG_REQUEST + CMD_FLAG_PROXIABLE
my_req = d.new_obj(DICT_COMMAND, c, my_appl)
c.cmd_name = "My-Python-Answer"
c.cmd_flag_val = CMD_FLAG_PROXIABLE
my_ans = d.new_obj(DICT_COMMAND, c, my_appl)
del c
c2 = dict_cmd_data(346, "Second-Request", 1) # Default created with PROXIABLE flag.
c3 = dict_cmd_data(346, "Second-Answer", 0)
del c2
del c3
# Rule
r = dict_rule_data()
r.rule_avp = my_avp_int
r.rule_position = RULE_REQUIRED
r.rule_min = -1
r.rule_max = -1
d.new_obj(DICT_RULE, r, my_req)
d.new_obj(DICT_RULE, r, my_ans)
r.rule_avp = my_avp_os
d.new_obj(DICT_RULE, r, my_req)
d.new_obj(DICT_RULE, r, my_ans)
del r
r2 = dict_rule_data(my_avp_int, RULE_REQUIRED) # min & max are optional parameters, default to -1
r3 = dict_rule_data(my_avp_int, RULE_REQUIRED, 2, 3) # min is 2, max is 3
r4 = dict_rule_data(my_avp_int, RULE_FIXED_HEAD) # The r4.rule_order = 1 by default, change afterwards if needed.
del r2
del r3
del r4
d.dump()
del d
####### Now play with the "real" dictionary
gdict = cvar.fd_g_config.cnf_dict
appl = gdict.search ( DICT_APPLICATION, APPLICATION_BY_ID, 3 )
appl.dump()
avp = gdict.search ( DICT_AVP, AVP_BY_NAME, "Origin-Host")
avp.dump()
errcmd = gdict.error_cmd()
v = avp.getval()
print v.avp_code
del v
t = avp.gettype()
print t
del t
dict = avp.getdict()
del dict
############# Sessions ############
# handler
def my_cleanup(state,sid):
print "Cleaning up python state for session:", sid
print "Received state:", state
del state
hdl = session_handler(my_cleanup)
hdl.dump()
del hdl
# Session
hdl = session_handler(my_cleanup)
s1 = session()
s1.getsid()
s2 = session("this.is.a.full.session.id")
r,s3,isnew = fd_sess_fromsid("this.is.a.full.session.id") # use this call if "isnew" is really needed...
s4 = session("host.id", "optional.part")
s4.settimeout(30) # the python wrapper takes a number of seconds as parameter for simplicity
s4.dump()
# states
mystate = [ 34, "blah", [ 32, 12 ] ]
s1.store(hdl, mystate)
del mystate
gotstate = s1.retrieve(hdl)
print gotstate
del gotstate
############# Routing ############
rd = rt_data()
rd.add("p1.testbed.aaa", "testbed.aaa")
rd.add("p2.testbed.aaa", "testbed.aaa")
rd.add("p3.testbed.aaa", "testbed.aaa")
rd.add("p4.testbed.aaa", "testbed.aaa")
rd.remove("p2.testbed.aaa")
rd.error("p3.testbed.aaa", "relay.testbed.aaa", 3002)
list = rd.extract(-1)
for c in list.enum_as("struct rtd_candidate *"):
print "%s (%s): %s" % (c.diamid, c.realm, c.score)
del rd
# A rt_fwd callback has the following prototype:
def my_rtfwd_cb(msg):
print "Forwarding the following message:"
msg.dump()
return [ 0, msg ] # return None instead of msg to stop forwarding.
fwdhdl = fd_rt_fwd_hdl( my_rtfwd_cb, RT_FWD_REQ )
# A rt_out cb has the following prototype:
def my_rtout_cb(msg, list):
print "Sending out the following message:"
msg.dump()
print "The possible candidates are:"
for c in list.enum_as("struct rtd_candidate *"):
print "%s (%s): %s" % (c.diamid, c.realm, c.score)
return 0 # returns an error code (standard errno values)
outhdl = fd_rt_out_hdl( my_rtout_cb ) # a priority can be specified as 2nd parameter, default is 0.
############# Messages, AVPs ############
## AVP
# Create empty
blank_avp = avp()
del blank_avp
# Create from dictionary definitions
oh = avp(cvar.fd_g_config.cnf_dict.search ( DICT_AVP, AVP_BY_NAME, "Origin-Host")) # Octet String
vi = avp(cvar.fd_g_config.cnf_dict.search ( DICT_AVP, AVP_BY_NAME, "Vendor-Id")) # U32
vsai = avp(cvar.fd_g_config.cnf_dict.search ( DICT_AVP, AVP_BY_NAME, "Vendor-Specific-Application-Id")) # Grouped
# Set values
val = avp_value()
val.u32 = 123
vi.setval(None) # this cleans a previous value (usually not needed)
vi.setval(val)
val.os = "my.origin.host"
oh.setval(val)
vsai.add_child(vi) # call as add_child(vi, 1) to add the new AVP at the beginning, default is at the end
# It is possible to initialize the AVP with a blank value as follow:
blank_with_value = avp(None, AVPFL_SET_BLANK_VALUE)
# it enables this without doing the setval call:
blank_with_value.header().avp_value.u32 = 12
## Messages
# Create empt (as for avps, pass None or a dictionary object as 1st param, and flags as optional 2nd param)y
a_msg = msg()
a_msg.dump()
del a_msg
# It is also possible to pass MSGFL_* flags in second parameter (ALLOC_ETEID is default)
msg_no_eid = msg(None, 0)
msg_no_eid.dump()
del msg_no_eid
# Create from dictionary
dwr_dict = cvar.fd_g_config.cnf_dict.search ( DICT_COMMAND, CMD_BY_NAME, "Device-Watchdog-Request" )
dwr = msg(dwr_dict)
dwr.dump()
# Create msg from a binary buffer (then you should call parse_dict and parse_rules methods)
dwr2 = msg("\x01\x00\x00\x14\x80\x00\x01\x18\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xf0\x00\x01")
# Create answer from request (optional parameters: dictionary to use, and flags):
dwr3 = msg(cvar.fd_g_config.cnf_dict.search ( DICT_COMMAND, CMD_BY_NAME, "Device-Watchdog-Request" ))
dwa3 = dwr3.create_answer()
dwr3cpy = dwa3.get_query()
## Other functions with AVPs & messages
# Add the AVPs in the message
dwr.add_child(oh)
oh.add_next(vsai) # equivalent to add_child on the parent
# Create a network byte buffer from the message
dwr.bufferize()
# Get first child AVP (fast)
avp = dwr.first_child()
# then:
avp = avp.get_next() # when last AVP, returns None
# Get all 1st level children (slower) -- warning, changes to the python list will not be reflected on the underlying message. read-only use.
dwr.children()
# example use:
for a in dwr.children():
a.dump(0) # 0 means: dump only this object, do not walk the tree
# Search the first AVP of a given type
oh_dict = cvar.fd_g_config.cnf_dict.search( DICT_AVP, AVP_BY_NAME, "Origin-Host")
oh = dwr.search( oh_dict )
# After adding AVPs, the length in the message header is outdated, refresh as follow:
dwr.update_length()
# Get dictionary model for a message or avp
dwr.model()
oh.model().dump()
# Retrieve the header of messages & avp:
dwr_hdr = dwr.header()
dwr_hdr.msg_version
dwr_hdr.msg_hbhid
oh_hdr = oh.header()
hex(oh_hdr.avp_flags)
oh_hdr.avp_vendor
oh_hdr.avp_value.os.as_str()
# Get or set the routing data
rd = rt_data()
dwr.set_rtd(rd)
rd = dwr.get_rtd()
# Test if message is routable
dwr.is_routable()
# Which peer the message was received from (when received from network)
dwr.source()
# The session corresponding to this message (returns None when no Session-Id AVP is included)
dwr.get_session()
# Parse a buffer
buf = "\x01\x00\x00@\x80\x00\x01\x18\x00\x00\x00\x00\x00\x00\x00\x00N\x10\x00\x00\x00\x00\x01\x08@\x00\x00\x16my.origin.host\x00\x00\x00\x00\x01\x04@\x00\x00\x14\x00\x00\x01\n@\x00\x00\x0c\x00\x00\x00{"
mydwr = msg(buf)
# Resolve objects in the dictionary. Return value is None or a struct pei_error in case of problem.
mydwr.parse_dict() # if not using the fD global dict, pass it as parameter
err = mydwr.parse_rules()
err.pei_errcode
# Grouped AVPs are browsed with same methods as messages:
gavp = dwr.children()[1]
gavp.first_child().dump()
gavp.children()
# Send a message:
mydwr = msg(buf)
mydwr.send()
# Optionally, a callback can be registered when a request is sent, with an optional object.
# This callback takes the answer message as parameter and should return None or a message. (cf. fd_msg_send)
def send_callback(msg, obj):
print "Received answer:"
msg.dump()
print "Associated data:"
obj
return None
mydwr = msg(buf)
mydwr.send(send_callback, some_object)
# Again optionally, a time limit can be specified in this case as follow:
mydwr.send(send_callback, some_object, 10)
# In that case, if no answer / error is received after 10 seconds (the value specified),
# the callback is called with the request as parameter.
# Testing for timeout case is done by using msg.is_request()
def send_callback(msg, obj):
if (msg.is_request()):
print "Request timed out without answer:"
else:
print "Received answer:"
msg.dump()
print "Associated data:"
obj
return None
# Set a result code in an answer message.
mydwr = msg(buf)
dwa = mydwr.create_answer()
dwa.rescode_set() # This adds the DIAMETER_SUCCESS result code
dwa.rescode_set("DIAMETER_LIMITED_SUCCESS" ) # This adds a different result code
dwa.rescode_set("DIAMETER_LIMITED_SUCCESS", "Something went not so well" ) # This adds a different result code + specified Error-Message
dwa.rescode_set("DIAMETER_INVALID_AVP", None, faulty_avp ) # This adds a Failed-AVP
dwa.rescode_set("DIAMETER_SUCCESS", None, None, 1 ) # This adds origin information (see fd_msg_rescode_set's type_id for more info)
# Set the origin to local host
mydwr.add_origin() # adds Origin-Host & Origin-Realm
mydwr.add_origin(1) # adds Origin-State-Id in addition.
############# DISPATCH (aka. server application) ############
# As for sessions, only one dispatch handler can be registered in this extension at the moment.
# The callback for the handler has the following syntax:
def dispatch_cb_model(inmsg, inavp, insession):
print "Callback trigged on message: "
inmsg.dump()
# inavp is None or the AVP that trigged the callback, depending on how it was registered.
if inavp:
print "From the following AVP:"
inavp.dump()
else:
print "No AVP"
# Session is provided only if a Session-Id is in the message
if insession:
print "The session is: ", insession.getsid()
else:
print "No session"
# Now, for the return value.
# This callback must return 3 elements:
# - an integer which is interpreted as an error code (errno.h)
# - a message or None, depending on the next item
# - an enum disp_action value, with the same meaning as in C (see libfreeDiameter.h)
del inmsg
return [ 0, None, DISP_ACT_CONT ]
### Example use: rebuild the server-side of test_app.fdx in python
# The following block defines the dictionary objects from the test_app.fdx application that we use on the remote peer
gdict = cvar.fd_g_config.cnf_dict
d_si = gdict.search ( DICT_AVP, AVP_BY_NAME, "Session-Id" )
d_oh = gdict.search ( DICT_AVP, AVP_BY_NAME, "Origin-Host" )
d_or = gdict.search ( DICT_AVP, AVP_BY_NAME, "Origin-Realm" )
d_dh = gdict.search ( DICT_AVP, AVP_BY_NAME, "Destination-Host" )
d_dr = gdict.search ( DICT_AVP, AVP_BY_NAME, "Destination-Realm" )
d_rc = gdict.search ( DICT_AVP, AVP_BY_NAME, "Result-Code" )
d_vnd = gdict.new_obj(DICT_VENDOR, dict_vendor_data(999999, "app_test_py vendor") )
d_app = gdict.new_obj(DICT_APPLICATION, dict_application_data(0xffffff, "app_test_py appli"), d_vnd)
d_req = gdict.new_obj(DICT_COMMAND, dict_cmd_data(0xfffffe, "Test_py-Request", 1), d_app)
d_ans = gdict.new_obj(DICT_COMMAND, dict_cmd_data(0xfffffe, "Test_py-Answer", 0), d_app)
d_avp = gdict.new_obj(DICT_AVP, dict_avp_data(0xffffff, "app_test_py avp", AVP_TYPE_INTEGER32, 999999 ))
gdict.new_obj(DICT_RULE, dict_rule_data(d_si, RULE_FIXED_HEAD, 1, 1), d_req)
gdict.new_obj(DICT_RULE, dict_rule_data(d_si, RULE_FIXED_HEAD, 1, 1), d_ans)
gdict.new_obj(DICT_RULE, dict_rule_data(d_avp, RULE_REQUIRED, 1, 1), d_req)
gdict.new_obj(DICT_RULE, dict_rule_data(d_avp, RULE_REQUIRED, 1, 1), d_ans)
gdict.new_obj(DICT_RULE, dict_rule_data(d_oh, RULE_REQUIRED, 1, 1), d_req)
gdict.new_obj(DICT_RULE, dict_rule_data(d_oh, RULE_REQUIRED, 1, 1), d_ans)
gdict.new_obj(DICT_RULE, dict_rule_data(d_or, RULE_REQUIRED, 1, 1), d_req)
gdict.new_obj(DICT_RULE, dict_rule_data(d_or, RULE_REQUIRED, 1, 1), d_ans)
gdict.new_obj(DICT_RULE, dict_rule_data(d_dr, RULE_REQUIRED, 1, 1), d_req)
gdict.new_obj(DICT_RULE, dict_rule_data(d_dh, RULE_OPTIONAL, 0, 1), d_req)
gdict.new_obj(DICT_RULE, dict_rule_data(d_rc, RULE_REQUIRED, 1, 1), d_ans)
# Now, create the Test_app server callback:
def test_app_cb(inmsg, inavp, insession):
tval = inmsg.search(d_avp).header().avp_value.u32
print "Py ECHO Test message from '%s' with test value %x, replying..." % (inmsg.search(d_oh).header().avp_value.os.as_str(), tval)
answ = inmsg.create_answer()
answ.rescode_set()
answ.add_origin()
ta = avp(d_avp, AVPFL_SET_BLANK_VALUE)
ta.header().avp_value.u32 = tval
answ.add_child(ta)
return [ 0, answ, DISP_ACT_SEND ]
# Register the callback for dispatch thread:
hdl = disp_hdl(test_app_cb, DISP_HOW_CC, disp_when(d_app, d_req)) # disp_when() takes 0 to 4 arguments as follow: (app=NULL, cmd=NULL, avp=NULL, val=NULL)
# Don't forget to register the application in the daemon for CER/CEA capabilities.
fd_disp_app_support ( d_app, d_vnd, 1, 0 )
### For the fun, the client part of the test_app:
def receive_answer(ans, testval):
try:
tval = ans.search(d_avp).header().avp_value.u32
except:
print "Error in receive_answer: no Test-AVP included"
tval = 0
try:
print "Py RECV %x (expected: %x) Status: %d From: '%s'" % (tval, testval, ans.search(d_rc).header().avp_value.u32, ans.search(d_oh).header().avp_value.os.as_str())
except:
print "Error in receive_answer: Result-Code or Origin-Host are missing"
del ans
return None
import random
def send_query(destrealm="localdomain"):
qry = msg(d_req)
sess = session()
tv = random.randint(1, 1<<32)
# Session-Id
a = avp(d_si, AVPFL_SET_BLANK_VALUE)
a.header().avp_value.os = sess.getsid()
qry.add_child(a)
# Destination-Realm
a = avp(d_dr, AVPFL_SET_BLANK_VALUE)
a.header().avp_value.os = destrealm
qry.add_child(a)
# Origin-Host, Origin-Realm
qry.add_origin()
# Test-AVP
a = avp(d_avp, AVPFL_SET_BLANK_VALUE)
a.header().avp_value.u32 = tv
qry.add_child(a)
print "Py SEND %x to '%s'" % (tv, destrealm)
qry.send(receive_answer, tv)
send_query()
############# FIFO queues ############
myqueue = fifo()
# enqueue any object
myqueue.post(3)
myqueue.post("blah")
myqueue.post( [ 3, 2 ] )
# Simple get (blocks when the queue is empty)
myqueue.get()
# Try get: returns the next object, or None if the queue is empty
myqueue.tryget()
# timed get: like get, but returns None after x seconds
myqueue.timedget(3)
# Show the number of items in the queue
myqueue.length()
## Variants:
# All the previous calls are suitable to queue Python objects.
# In order to interact with objects queued / poped by C counterpart,
# a second parameter must be passed to specify the object type,
# as follow:
ev = fd_event()
ev.code = FDEV_DUMP_EXT
cvar.fd_g_config.cnf_main_ev.post(ev, "struct fd_event *")
# Similarly, for *get, we can specify the structure that was queued:
myqueue.get("struct fd_event *")
myqueue.tryget("struct fd_event *")
myqueue.timedget(3, "struct fd_event *")
del myqueue
############# HOOKS ############
def my_hook_cb(type, msg, peer, other, oldpmd):
print "callback type ", type, " called: ", msg, other, oldpmd
return "this is the new pmd"
# Create a wrapped fd_hook_data_hdl:
datahdl = fd_hook_data_hdl()
# Register the hook callback:
hdl = fd_hook_hdl(1 << HOOK_MESSAGE_SENT, my_hook_cb, datahdl)
############# PEERS ############
# Get the list of peers defined in the system
# (we are supposed to readlock fd_g_peers_rw before accessing this list)
cvar.fd_g_peers_rw.rdlock()
peers = cvar.fd_g_peers.enum_as("struct peer_hdr *")
cvar.fd_g_peers_rw.unlock()
for p in peers:
print "Peer:", p.info.pi_diamid
# Create a new peer
np = peer_info()
np.pi_diamid = "nas.localdomain"
np.config.pic_flags.pro4 = PI_P4_TCP
# Add this peer into the framework.
np.add()
# It is possible to specify a callback for when the connection completes or fails with this peer.
# The prototype is as follow:
def add_cb(peer):
if peer:
if peer.runtime.pir_state == STATE_OPEN:
print "Connection to peer '%s' completed" % (peer.pi_diamid)
# can find more information in peer.runtime.*
else:
print "Connection to peer '%s' failed (state:%d)" % (peer.pi_diamid, peer.runtime.pir_state)
else:
print "The peer has been destroyed before it completed the connection."
# Then add the peer like this:
np.add(add_cb)
# Search a peer by its diameter id (returns a peer_hdr object if found) -- similar to fd_peer_getbyid
p = peer_search("nas.domain.aaa")
## Validation callback (see fd_peer_validate_register documentation)
# cb2 prototype:
def my_validate_cb2(pinfo):
print "Cb2 callback trigged for peer %s" % (pinfo.pi_diamid)
# Usually, this would be used only to check some TLS properties,
# which is not really possible yet through the python interpreter...
return 0 # return an error code if the peer is not validated
# cb prototype:
def my_validate_cb(pinfo):
print "Validate callback trigged for peer %s" % (pinfo.pi_diamid)
# If the peer is not allowed to connect:
#return -1
# If the peer is authorized:
#return 1
# In addition, if IPsec is allowed,
#pinfo.config.pic_flags.sec = PI_SEC_NONE
# If no decision has been made:
#return 0
# If the peer is temporarily authorized but a second callback must be called after TLS negociation:
return my_validate_cb2
# Register the callback, it will be called on new incoming connections.
peer_validate_register(my_validate_cb)
############# ENDPOINTS ############
ep = fd_endpoint("129.168.168.192")
# with port:
ep = fd_endpoint("129.168.168.192", 3868)
# With different flags:
ep = fd_endpoint("129.168.168.192", 3868, EP_FL_PRIMARY)
# Add IP information for the peer
np = peer_info()
ep.add_merge(np.pi_endpoints)
fd_ep_dump(0, np.pi_endpoints)
############# POSIX functions wrappers ############
# The interface also provides wrappers around base POSIX
# synchronization functions:
m = pthread_mutex_t()
m.lock()
m.unlock()
c = pthread_cond_t()
c.signal()
c.broadcast()
c.wait(m)
c.timedwait(m, 5) # it takes a relative time
r = pthread_rwlock_t()
r.rdlock()
r.unlock()
r.wrlock()