blob: a87907bc0134001b02dc9c515705fd36c7b25960 [file] [log] [blame]
/*********************************************************************************************************
* Software License Agreement (BSD License) *
* Author: Sebastien Decugis <sdecugis@freediameter.net> *
* *
* Copyright (c) 2013, WIDE Project and NICT *
* All rights reserved. *
* *
* Redistribution and use of this software in source and binary forms, with or without modification, are *
* permitted provided that the following conditions are met: *
* *
* * Redistributions of source code must retain the above *
* copyright notice, this list of conditions and the *
* following disclaimer. *
* *
* * Redistributions in binary form must reproduce the above *
* copyright notice, this list of conditions and the *
* following disclaimer in the documentation and/or other *
* materials provided with the distribution. *
* *
* * Neither the name of the WIDE Project or NICT nor the *
* names of its contributors may be used to endorse or *
* promote products derived from this software without *
* specific prior written permission of WIDE Project and *
* NICT. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR *
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS *
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR *
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF *
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
*********************************************************************************************************/
/*
* Dictionary definitions of objects specified in Diameter NASREQ (RFC4005).
*/
#include <freeDiameter/extension.h>
/* The content of this file follows the same structure as dict_base_proto.c */
#define CHECK_dict_new( _type, _data, _parent, _ref ) \
CHECK_FCT( fd_dict_new( fd_g_config->cnf_dict, (_type), (_data), (_parent), (_ref)) );
#define CHECK_dict_search( _type, _criteria, _what, _result ) \
CHECK_FCT( fd_dict_search( fd_g_config->cnf_dict, (_type), (_criteria), (_what), (_result), ENOENT) );
struct local_rules_definition {
char *avp_name;
enum rule_position position;
int min;
int max;
};
#define RULE_ORDER( _position ) ((((_position) == RULE_FIXED_HEAD) || ((_position) == RULE_FIXED_TAIL)) ? 1 : 0 )
#define PARSE_loc_rules( _rulearray, _parent) { \
int __ar; \
for (__ar=0; __ar < sizeof(_rulearray) / sizeof((_rulearray)[0]); __ar++) { \
struct dict_rule_data __data = { NULL, \
(_rulearray)[__ar].position, \
0, \
(_rulearray)[__ar].min, \
(_rulearray)[__ar].max}; \
__data.rule_order = RULE_ORDER(__data.rule_position); \
CHECK_FCT( fd_dict_search( \
fd_g_config->cnf_dict, \
DICT_AVP, \
AVP_BY_NAME, \
(_rulearray)[__ar].avp_name, \
&__data.rule_avp, 0 ) ); \
if ( !__data.rule_avp ) { \
TRACE_DEBUG(INFO, "AVP Not found: '%s'", (_rulearray)[__ar].avp_name ); \
return ENOENT; \
} \
CHECK_FCT_DO( fd_dict_new( fd_g_config->cnf_dict, DICT_RULE, &__data, _parent, NULL), \
{ \
TRACE_DEBUG(INFO, "Error on rule with AVP '%s'", \
(_rulearray)[__ar].avp_name ); \
return EINVAL; \
} ); \
} \
}
#define enumval_def_u32( _val_, _str_ ) \
{ _str_, { .u32 = _val_ }}
#define enumval_def_os( _len_, _val_, _str_ ) \
{ _str_, { .os = { .data = (unsigned char *)_val_, .len = _len_ }}}
static int dnr_entry(char * conffile)
{
struct dict_object * nasreq;
TRACE_ENTRY("%p", conffile);
/* No Vendors definitions */
/* Applications section */
{
/* NASREQ (RFC 4005) */
{
struct dict_application_data data = { 1, "Diameter Network Access Server Application" };
CHECK_dict_new( DICT_APPLICATION, &data, NULL, &nasreq);
}
}
/* Derived AVP types section */
{
/* QoSFilterRule */
{
/*
The QosFilterRule format is derived from the OctetString AVP Base
Format. It uses the ASCII charset. Packets may be marked or
metered based on the following information:
Direction (in or out)
Source and destination IP address (possibly masked)
Protocol
Source and destination port (lists or ranges)
DSCP values (no mask or range)
Rules for the appropriate direction are evaluated in order; the
first matched rule terminates the evaluation. Each packet is
evaluated once. If no rule matches, the packet is treated as best
effort. An access device unable to interpret or apply a QoS rule
SHOULD NOT terminate the session.
QoSFilterRule filters MUST follow the following format:
action dir proto from src to dst [options]
tag - Mark packet with a specific DSCP
[DIFFSERV]. The DSCP option MUST be
included.
meter - Meter traffic. The metering options
MUST be included.
dir The format is as described under IPFilterRule.
proto The format is as described under IPFilterRule.
src and dst The format is as described under IPFilterRule.
options:
DSCP <color>
Color values as defined in [DIFFSERV]. Exact
matching of DSCP values is required (no masks or
ranges).
metering <rate> <color_under> <color_over>
The metering option provides Assured Forwarding,
as defined in [DIFFSERVAF], and MUST be present
if the action is set to meter. The rate option is
the throughput, in bits per second, used
by the access device to mark packets. Traffic
over the rate is marked with the color_over
codepoint, and traffic under the rate is marked
with the color_under codepoint. The color_under
and color_over options contain the drop
preferences and MUST conform to the recommended
codepoint keywords described in [DIFFSERVAF]
(e.g., AF13).
The metering option also supports the strict
limit on traffic required by Expedited
Forwarding, as defined in [DIFFSERVEF]. The
color_over option may contain the keyword "drop"
to prevent forwarding of traffic that exceeds the
rate parameter.
The rule syntax is a modified subset of ipfw(8) from FreeBSD,
and the ipfw.c code may provide a useful base for
implementations.
*/
struct dict_type_data data = { AVP_TYPE_OCTETSTRING, "QoSFilterRule" , NULL , NULL };
CHECK_dict_new( DICT_TYPE, &data , NULL, NULL);
}
}
/* AVP section */
{
struct dict_object * UTF8String_type;
struct dict_object * IPFilterRule_type;
struct dict_object * QoSFilterRule_type;
CHECK_dict_search( DICT_TYPE, TYPE_BY_NAME, "UTF8String", &UTF8String_type);
CHECK_dict_search( DICT_TYPE, TYPE_BY_NAME, "IPFilterRule", &IPFilterRule_type);
CHECK_dict_search( DICT_TYPE, TYPE_BY_NAME, "QoSFilterRule", &QoSFilterRule_type);
/********************************
* NAS Session AVPs *
********************************/
/* NAS-Port */
{
/*
The NAS-Port AVP (AVP Code 5) is of type Unsigned32 and contains the
physical or virtual port number of the NAS which is authenticating
the user. Note that "port" is meant in its sense as a service
connection on the NAS, not as an IP protocol identifier.
Either NAS-Port or NAS-Port-Id (AVP Code 87) SHOULD be present in
AA-Request (AAR) commands if the NAS differentiates among its ports.
*/
struct dict_avp_data data = {
5, /* Code */
0, /* Vendor */
"NAS-Port", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* NAS-Port-Id */
{
/*
The NAS-Port-Id AVP (AVP Code 87) is of type UTF8String and consists
of ASCII text identifying the port of the NAS authenticating the
user. Note that "port" is meant in its sense as a service connection
on the NAS, not as an IP protocol identifier.
Either NAS-Port or NAS-Port-Id SHOULD be present in AA-Request (AAR)
commands if the NAS differentiates among its ports. NAS-Port-Id is
intended for use by NASes that cannot conveniently number their
ports.
*/
struct dict_avp_data data = {
87, /* Code */
0, /* Vendor */
"NAS-Port-Id", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , UTF8String_type, NULL);
}
/* NAS-Port-Type */
{
/*
The NAS-Port-Type AVP (AVP Code 61) is of type Enumerated and
contains the type of the port on which the NAS is authenticating the
user. This AVP SHOULD be present if the NAS uses the same NAS-Port
number ranges for different service types concurrently.
The supported values are defined in [RADIUSTypes]. The following
list is informational and subject to change by the IANA.
http://www.iana.org/assignments/radius-types
Sub-registry: Values for RADIUS Attribute 61, NAS-Port-Type
Reference: [RFC2865]
Extract on 2009.06.01:
0 Async [RFC2865]
1 Sync [RFC2865]
2 ISDN Sync [RFC2865]
3 ISDN Async V.120 [RFC2865]
4 ISDN Async V.110 [RFC2865]
5 Virtual [RFC2865]
6 PIAFS [RFC2865]
7 HDLC Clear Channel [RFC2865]
8 X.25 [RFC2865]
9 X.75 [RFC2865]
10 G.3 Fax [RFC2865]
11 SDSL - Symmetric DSL [RFC2865]
12 ADSL-CAP - Asymmetric DSL, Carrierless Amplitude Phase Modulation [RFC2865]
13 ADSL-DMT - Asymmetric DSL, Discrete Multi-Tone [RFC2865]
14 IDSL - ISDN Digital Subscriber Line [RFC2865]
15 Ethernet [RFC2865]
16 xDSL - Digital Subscriber Line of unknown type [RFC2865]
17 Cable [RFC2865]
18 Wireless - Other [RFC2865]
19 Wireless - IEEE 802.11 [RFC2865]
20 Token-Ring [RFC3580]
21 FDDI [RFC3580]
22 Wireless - CDMA2000 [McCann]
23 Wireless - UMTS [McCann]
24 Wireless - 1X-EV [McCann]
25 IAPP [IEEE 802.11F][Kerry]
26 FTTP - Fiber to the Premises [Nyce]
27 Wireless - IEEE 802.16 [IEEE 802.16] 12 December 2006
28 Wireless - IEEE 802.20 [IEEE 802.20] 12 December 2006
29 Wireless - IEEE 802.22 [IEEE 802.22] 12 December 2006
30 PPPoA - PPP over ATM [RFC4603]
31 PPPoEoA - PPP over Ethernet over ATM [RFC4603]
32 PPPoEoE - PPP over Ethernet over Ethernet [RFC4603]
33 PPPoEoVLAN - PPP over Ethernet over VLAN [RFC4603]
34 PPPoEoQinQ - PPP over Ethernet over IEEE 802.1QinQ [RFC4603]
35 xPON - Passive Optical Network [Hublet][Yan] 19 June 2007
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(NAS-Port-Type)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 0, "Async [RFC2865]"),
enumval_def_u32( 1, "Sync [RFC2865]"),
enumval_def_u32( 2, "ISDN Sync [RFC2865]"),
enumval_def_u32( 3, "ISDN Async V.120 [RFC2865]"),
enumval_def_u32( 4, "ISDN Async V.110 [RFC2865]"),
enumval_def_u32( 5, "Virtual [RFC2865]"),
enumval_def_u32( 6, "PIAFS [RFC2865]"),
enumval_def_u32( 7, "HDLC Clear Channel [RFC2865]"),
enumval_def_u32( 8, "X.25 [RFC2865]"),
enumval_def_u32( 9, "X.75 [RFC2865]"),
enumval_def_u32(10, "G.3 Fax [RFC2865]"),
enumval_def_u32(11, "SDSL - Symmetric DSL [RFC2865]"),
enumval_def_u32(12, "ADSL-CAP - Asymmetric DSL, Carrierless Amplitude Phase Modulation [RFC2865]"),
enumval_def_u32(13, "ADSL-DMT - Asymmetric DSL, Discrete Multi-Tone [RFC2865]"),
enumval_def_u32(14, "IDSL - ISDN Digital Subscriber Line [RFC2865]"),
enumval_def_u32(15, "Ethernet [RFC2865]"),
enumval_def_u32(16, "xDSL - Digital Subscriber Line of unknown type [RFC2865]"),
enumval_def_u32(17, "Cable [RFC2865]"),
enumval_def_u32(18, "Wireless - Other [RFC2865]"),
enumval_def_u32(19, "Wireless - IEEE 802.11 [RFC2865]"),
enumval_def_u32(20, "Token-Ring [RFC3580]"),
enumval_def_u32(21, "FDDI [RFC3580]"),
enumval_def_u32(22, "Wireless - CDMA2000 [McCann]"),
enumval_def_u32(23, "Wireless - UMTS [McCann]"),
enumval_def_u32(24, "Wireless - 1X-EV [McCann]"),
enumval_def_u32(25, "IAPP [IEEE 802.11F][Kerry]"),
enumval_def_u32(26, "FTTP - Fiber to the Premises [Nyce]"),
enumval_def_u32(27, "Wireless - IEEE 802.16 [IEEE 802.16]"),
enumval_def_u32(28, "Wireless - IEEE 802.20 [IEEE 802.20]"),
enumval_def_u32(29, "Wireless - IEEE 802.22 [IEEE 802.22]"),
enumval_def_u32(30, "PPPoA - PPP over ATM [RFC4603]"),
enumval_def_u32(31, "PPPoEoA - PPP over Ethernet over ATM [RFC4603]"),
enumval_def_u32(32, "PPPoEoE - PPP over Ethernet over Ethernet [RFC4603]"),
enumval_def_u32(33, "PPPoEoVLAN - PPP over Ethernet over VLAN [RFC4603]"),
enumval_def_u32(34, "PPPoEoQinQ - PPP over Ethernet over IEEE 802.1QinQ [RFC4603]"),
enumval_def_u32(35, "xPON - Passive Optical Network [Hublet][Yan]")
};
struct dict_avp_data data = {
61, /* Code */
0, /* Vendor */
"NAS-Port-Type", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/* Called-Station-Id */
{
/*
The Called-Station-Id AVP (AVP Code 30) is of type UTF8String and
allows the NAS to send the ASCII string describing the layer 2
address the user contacted in the request. For dialup access, this
can be a phone number obtained by using Dialed Number Identification
(DNIS) or a similar technology. Note that this may be different from
the phone number the call comes in on. For use with IEEE 802 access,
the Called-Station-Id MAY contain a MAC address formatted as
described in [RAD802.1X]. It SHOULD only be present in
authentication and/or authorization requests.
If the Auth-Request-Type AVP is set to authorization-only and the
User-Name AVP is absent, the Diameter Server MAY perform
authorization based on this field. This can be used by a NAS to
request whether a call should be answered based on the DNIS.
*/
struct dict_avp_data data = {
30, /* Code */
0, /* Vendor */
"Called-Station-Id", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , UTF8String_type, NULL);
}
/* Calling-Station-Id */
{
/*
The Calling-Station-Id AVP (AVP Code 31) is of type UTF8String and
allows the NAS to send the ASCII string describing the layer 2
address from which the user connected in the request. For dialup
access, this is the phone number the call came from, using Automatic
Number Identification (ANI) or a similar technology. For use with
IEEE 802 access, the Calling-Station-Id AVP MAY contain a MAC
address, formated as described in [RAD802.1X]. It SHOULD only be
present in authentication and/or authorization requests.
If the Auth-Request-Type AVP is set to authorization-only and the
User-Name AVP is absent, the Diameter Server MAY perform
authorization based on this field. This can be used by a NAS to
request whether a call should be answered based on the layer 2
address (ANI, MAC Address, etc.)
*/
struct dict_avp_data data = {
31, /* Code */
0, /* Vendor */
"Calling-Station-Id", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , UTF8String_type, NULL);
}
/* Connect-Info */
{
/*
The Connect-Info AVP (AVP Code 77) is of type UTF8String and is sent
in the AA-Request message or ACR STOP message. When sent in the
Access-Request, it indicates the nature of the user's connection.
The connection speed SHOULD be included at the beginning of the first
Connect-Info AVP in the message. If the transmit and receive
connection speeds differ, both may be included in the first AVP with
the transmit speed listed first (the speed the NAS modem transmits
at), then a slash (/), then the receive speed, and then other
optional information.
For example: "28800 V42BIS/LAPM" or "52000/31200 V90"
More than one Connect-Info attribute may be present in an
Accounting-Request packet to accommodate expected efforts by the ITU
to have modems report more connection information in a standard
format that might exceed 252 octets.
If sent in the ACR STOP, this attribute may summarize statistics
relating to session quality. For example, in IEEE 802.11, the
Connect-Info attribute may contain information on the number of link
layer retransmissions. The exact format of this attribute is
implementation specific.
*/
struct dict_avp_data data = {
77, /* Code */
0, /* Vendor */
"Connect-Info", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , UTF8String_type, NULL);
}
/* Originating-Line-Info */
{
/*
The Originating-Line-Info AVP (AVP Code 94) is of type OctetString
and is sent by the NAS system to convey information about the origin
of the call from an SS7 system.
The originating line information (OLI) element indicates the nature
and/or characteristics of the line from which a call originated
(e.g., pay phone, hotel, cellular). Telephone companies are starting
to offer OLI to their customers as an option over Primary Rate
Interface (PRI). Internet Service Providers (ISPs) can use OLI in
addition to Called-Station-Id and Calling-Station-Id attributes to
differentiate customer calls and to define different services.
The Value field contains two octets (00 - 99). ANSI T1.113 and
BELLCORE 394 can be used for additional information about these
values and their use. For more information on current assignment
values, see [http://www.nanpa.com/number_resource_info/ani_ii_assignments.html].
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_OCTETSTRING, "Enumerated(Originating-Line-Info)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_os( 2, "00", "Plain Old Telephone Service (POTS)"),
enumval_def_os( 2, "01", "Multiparty Line (more than 2)"),
enumval_def_os( 2, "02", "ANI Failure"),
enumval_def_os( 2, "06", "Station Level Rating"),
enumval_def_os( 2, "07", "Special Operator Handling Required"),
enumval_def_os( 2, "20", "Automatic Identified Outward Dialing (AIOD)"),
enumval_def_os( 2, "23", "Coin or Non-Coin"),
enumval_def_os( 2, "24", "Toll Free Service (Non-Pay Origination)"),
enumval_def_os( 2, "25", "Toll Free Service (Pay Origination)"),
enumval_def_os( 2, "27", "Toll Free Service (Coin Control Origination)"),
enumval_def_os( 2, "29", "Prison/Inmate Service"),
enumval_def_os( 2, "30", "Intercept (Blank)"),
enumval_def_os( 2, "31", "Intercept (Trouble)"),
enumval_def_os( 2, "32", "Intercept (Regular)"),
enumval_def_os( 2, "34", "Telco Operator Handled Call"),
enumval_def_os( 2, "52", "Outward Wide Area Telecommunications Service (OUTWATS)"),
enumval_def_os( 2, "60", "Telecommunications Relay Service (TRS)(Unrestricted)"),
enumval_def_os( 2, "61", "Cellular/Wireless PCS (Type 1)"),
enumval_def_os( 2, "62", "Cellular/Wireless PCS (Type 2)"),
enumval_def_os( 2, "63", "Cellular/Wireless PCS (Roaming)"),
enumval_def_os( 2, "66", "TRS (Hotel)"),
enumval_def_os( 2, "67", "TRS (Restricted)"),
enumval_def_os( 2, "70", "Pay Station, No Coin Control"),
enumval_def_os( 2, "93", "Access for Private Virtual Network Service")
};
struct dict_avp_data data = {
94, /* Code */
0, /* Vendor */
"Originating-Line-Info", /* Name */
AVP_FLAG_VENDOR, /* Fixed flags */
0, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/* Reply-Message */
{
/*
The Reply-Message AVP (AVP Code 18) is of type UTF8String and
contains text that MAY be displayed to the user. When used in an
AA-Answer message with a successful Result-Code AVP, it indicates
success. When found in an AAA message with a Result-Code other than
DIAMETER_SUCCESS, the AVP contains a failure message.
The Reply-Message AVP MAY indicate dialog text to prompt the user
before another AA-Request attempt. When used in an AA-Answer with a
Result-Code of DIAMETER_MULTI_ROUND_AUTH or in an Re-Auth-Request
message, it MAY contain a dialog text to prompt the user for a
response.
Multiple Reply-Messages MAY be included, and if any are displayed,
they MUST be displayed in the same order as they appear in the
Diameter message.
*/
struct dict_avp_data data = {
18, /* Code */
0, /* Vendor */
"Reply-Message", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , UTF8String_type, NULL);
}
/********************************
* NAS Authentication AVPs *
********************************/
/* User-Password */
{
/*
The User-Password AVP (AVP Code 2) is of type OctetString and
contains the password of the user to be authenticated, or the user's
input in a multi-round authentication exchange.
The User-Password AVP contains a user password or one-time password
and therefore represents sensitive information. As required in
[BASE], Diameter messages are encrypted by using IPsec or TLS.
Unless this AVP is used for one-time passwords, the User-Password AVP
SHOULD NOT be used in untrusted proxy environments without encrypting
it by using end-to-end security techniques, such as the proposed CMS
Security [DiamCMS].
The clear-text password (prior to encryption) MUST NOT be longer than
128 bytes in length.
*/
struct dict_avp_data data = {
2, /* Code */
0, /* Vendor */
"User-Password", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Password-Retry */
{
/*
The Password-Retry AVP (AVP Code 75) is of type Unsigned32 and MAY be
included in the AA-Answer if the Result-Code indicates an
authentication failure. The value of this AVP indicates how many
authentication attempts a user is permitted before being
disconnected. This AVP is primarily intended for use when the
Framed-Protocol AVP (see section 6.10.1) is set to ARAP.
*/
struct dict_avp_data data = {
75, /* Code */
0, /* Vendor */
"Password-Retry", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Prompt */
{
/*
The Prompt AVP (AVP Code 76) is of type Enumerated and MAY be present
in the AA-Answer message. When present, it is used by the NAS to
determine whether the user's response, when entered, should be
echoed.
The supported values are listed in http://www.iana.org/assignments/radius-types
Sub-registry: Values for RADIUS Attribute 76, Prompt
Reference: [RFC2869]
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(Prompt)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 0, "No Echo [RFC2869]"),
enumval_def_u32( 1, "Echo [RFC2869]")
};
struct dict_avp_data data = {
76, /* Code */
0, /* Vendor */
"Prompt", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/* CHAP-Algorithm */
{
/*
The CHAP-Algorithm AVP (AVP Code 403) is of type Enumerated and
contains the algorithm identifier used in the computation of the CHAP
response [PPPCHAP]. The following values are currently supported:
CHAP with MD5 5
The CHAP response is computed by using the procedure described
in [PPPCHAP]. This algorithm requires that the CHAP-Response
AVP MUST be present in the CHAP-Auth AVP.
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(CHAP-Algorithm)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 5, "CHAP with MD5")
};
struct dict_avp_data adata = {
403, /* Code */
0, /* Vendor */
"CHAP-Algorithm", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &adata , type, NULL);
}
/* CHAP-Ident */
{
/*
The CHAP-Ident AVP (AVP Code 404) is of type OctetString and contains
the 1 octet CHAP Identifier used in the computation of the CHAP
response [PPPCHAP].
*/
struct dict_avp_data adata = {
404, /* Code */
0, /* Vendor */
"CHAP-Ident", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &adata , NULL, NULL);
}
/* CHAP-Response */
{
/*
The CHAP-Response AVP (AVP Code 405) is of type OctetString and
contains the 16 octet authentication data provided by the user in
response to the CHAP challenge [PPPCHAP].
*/
struct dict_avp_data adata = {
405, /* Code */
0, /* Vendor */
"CHAP-Response", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &adata , NULL, NULL);
}
/* CHAP-Auth */
{
/*
The CHAP-Auth AVP (AVP Code 402) is of type Grouped and contains the
information necessary to authenticate a user using the PPP
Challenge-Handshake Authentication Protocol (CHAP) [PPPCHAP]. If the
CHAP-Auth AVP is found in a message, the CHAP-Challenge AVP MUST be
present as well. The optional AVPs containing the CHAP response
depend upon the value of the CHAP-Algorithm AVP. The grouped AVP has
the following ABNF grammar:
CHAP-Auth ::= < AVP Header: 402 >
{ CHAP-Algorithm }
{ CHAP-Ident }
[ CHAP-Response ]
* [ AVP ]
*/
struct dict_object * avp;
struct dict_avp_data data = {
402, /* Code */
0, /* Vendor */
"CHAP-Auth", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_GROUPED /* base type of data */
};
struct local_rules_definition rules[] =
{ { "CHAP-Algorithm", RULE_REQUIRED, -1, 1 }
,{ "CHAP-Ident", RULE_REQUIRED, -1, 1 }
,{ "CHAP-Response", RULE_OPTIONAL, -1, 1 }
};
CHECK_dict_new( DICT_AVP, &data , NULL, &avp);
PARSE_loc_rules( rules, avp );
}
/* CHAP-Challenge */
{
/*
The CHAP-Challenge AVP (AVP Code 60) is of type OctetString and
contains the CHAP Challenge sent by the NAS to the CHAP peer
[PPPCHAP].
*/
struct dict_avp_data data = {
60, /* Code */
0, /* Vendor */
"CHAP-Challenge", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* ARAP-Password */
{
/*
The ARAP-Password AVP (AVP Code 70) is of type OctetString and is
only present when the Framed-Protocol AVP (see section 6.10.1) is
included in the message and is set to ARAP. This AVP MUST NOT be
present if either the User-Password or the CHAP-Auth AVP is present.
See [RADIUSExt] for more information on the contents of this AVP.
*/
struct dict_avp_data data = {
70, /* Code */
0, /* Vendor */
"ARAP-Password", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* ARAP-Challenge-Response */
{
/*
The ARAP-Challenge-Response AVP (AVP Code 84) is of type OctetString
and is only present when the Framed-Protocol AVP (see section 6.10.1)
is included in the message and is set to ARAP. This AVP contains an
8 octet response to the dial-in client's challenge. The RADIUS
server calculates this value by taking the dial-in client's challenge
from the high-order 8 octets of the ARAP-Password AVP and performing
DES encryption on this value with the authenticating user's password
as the key. If the user's password is fewer than 8 octets in length,
the password is padded at the end with NULL octets to a length of 8
before it is used as a key.
*/
struct dict_avp_data data = {
84, /* Code */
0, /* Vendor */
"ARAP-Challenge-Response", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* ARAP-Security */
{
/*
The ARAP-Security AVP (AVP Code 73) is of type Unsigned32 and MAY be
present in the AA-Answer message if the Framed-Protocol AVP (see
section 6.10.1) is set to the value of ARAP, and the Result-Code AVP
is set to DIAMETER_MULTI_ROUND_AUTH. See [RADIUSExt] for more
information on the format of this AVP.
*/
struct dict_avp_data data = {
73, /* Code */
0, /* Vendor */
"ARAP-Security", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* ARAP-Security-Data */
{
/*
The ARAP-Security-Data AVP (AVP Code 74) is of type OctetString and MAY be
present in the AA-Request or AA-Answer message if the Framed-Protocol
AVP is set to the value of ARAP, and the Result-Code AVP is set to
DIAMETER_MULTI_ROUND_AUTH. This AVP contains the security module
challenge or response associated with the ARAP Security Module
specified in ARAP-Security.
*/
struct dict_avp_data data = {
74, /* Code */
0, /* Vendor */
"ARAP-Security-Data", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/********************************
* NAS Authorization AVPs *
********************************/
/* Service-Type */
{
/*
The Service-Type AVP (AVP Code 6) is of type Enumerated and contains
the type of service the user has requested or the type of service to
be provided. One such AVP MAY be present in an authentication and/or
authorization request or response. A NAS is not required to
implement all of these service types. It MUST treat unknown or
unsupported Service-Types received in a response as a failure and end
the session with a DIAMETER_INVALID_AVP_VALUE Result-Code.
When used in a request, the Service-Type AVP SHOULD be considered a
hint to the server that the NAS believes the user would prefer the
kind of service indicated. The server is not required to honor the
hint. Furthermore, if the service specified by the server is
supported, but not compatible with the current mode of access, the
NAS MUST fail to start the session. The NAS MUST also generate the
appropriate error message(s).
The following values have been defined for the Service-Type AVP. The
complete list of defined values can be found in [RADIUS] and
[RADIUSTypes].
Registry Name: Radius Attribute Values
Reference: [RFC2865][RFC3575]
Sub-registry: Values for RADIUS Attribute 6, Service-Type
Reference: [RFC2865][RFC3575]
1 Login
2 Framed
3 Callback Login
4 Callback Framed
5 Outbound
6 Administrative
7 NAS Prompt
8 Authenticate Only
9 Callback NAS Prompt
10 Call Check
11 Callback Administrative
12 Voice [Chiba]
13 Fax [Chiba]
14 Modem Relay [Chiba]
15 IAPP-Register [IEEE 802.11f][Kerry]
16 IAPP-AP-Check [IEEE 802.11f][Kerry]
17 Authorize Only [RFC3576]
The following values are further qualified:
Login 1
The user should be connected to a host. The message MAY
include additional AVPs defined in sections 6.16 or 6.17.
Framed 2
A Framed Protocol, such as PPP or SLIP, should be started for
the User. The message MAY include additional AVPs defined in
section 6.10, or section 7 for tunneling services.
Callback Login 3
The user should be disconnected and called back, then connected
to a host. The message MAY include additional AVPs defined in
this section.
Callback Framed 4
The user should be disconnected and called back, and then a
Framed Protocol, such as PPP or SLIP, should be started for the
User. The message MAY include additional AVPs defined in
section 6.10, or in section 7 for tunneling services.
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(Service-Type)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 1, "Login"),
enumval_def_u32( 2, "Framed"),
enumval_def_u32( 3, "Callback Login"),
enumval_def_u32( 4, "Callback Framed"),
enumval_def_u32( 5, "Outbound"),
enumval_def_u32( 6, "Administrative"),
enumval_def_u32( 7, "NAS Prompt"),
enumval_def_u32( 8, "Authenticate Only"),
enumval_def_u32( 9, "Callback NAS Prompt"),
enumval_def_u32(10, "Call Check"),
enumval_def_u32(11, "Callback Administrative"),
enumval_def_u32(12, "Voice [Chiba]"),
enumval_def_u32(13, "Fax [Chiba]"),
enumval_def_u32(14, "Modem Relay [Chiba]"),
enumval_def_u32(15, "IAPP-Register [IEEE 802.11f][Kerry]"),
enumval_def_u32(16, "IAPP-AP-Check [IEEE 802.11f][Kerry]"),
enumval_def_u32(17, "Authorize Only [RFC3576]")
};
struct dict_avp_data data = {
6, /* Code */
0, /* Vendor */
"Service-Type", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/* Callback-Number */
{
/*
The Callback-Number AVP (AVP Code 19) is of type UTF8String and
contains a dialing string to be used for callback. It MAY be used in
an authentication and/or authorization request as a hint to the
server that a Callback service is desired, but the server is not
required to honor the hint in the corresponding response.
*/
struct dict_avp_data data = {
19, /* Code */
0, /* Vendor */
"Callback-Number", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , UTF8String_type, NULL);
}
/* Callback-Id */
{
/*
The Callback-Id AVP (AVP Code 20) is of type UTF8String and contains
the name of a place to be called, to be interpreted by the NAS. This
AVP MAY be present in an authentication and/or authorization
response.
This AVP is not roaming-friendly as it assumes that the Callback-Id
is configured on the NAS. Using the Callback-Number AVP therefore
preferable.
*/
struct dict_avp_data data = {
20, /* Code */
0, /* Vendor */
"Callback-Id", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , UTF8String_type, NULL);
}
/* Idle-Timeout */
{
/*
The Idle-Timeout AVP (AVP Code 28) is of type Unsigned32 and sets the
maximum number of consecutive seconds of idle connection allowable to
the user before termination of the session or before a prompt is
issued. The default is none, or system specific.
*/
struct dict_avp_data data = {
28, /* Code */
0, /* Vendor */
"Idle-Timeout", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Port-Limit */
{
/*
The Port-Limit AVP (AVP Code 62) is of type Unsigned32 and sets the
maximum number of ports the NAS provides to the user. It MAY be used
in an authentication and/or authorization request as a hint to the
server that multilink PPP [PPPMP] service is desired, but the server
is not required to honor the hint in the corresponding response.
*/
struct dict_avp_data data = {
62, /* Code */
0, /* Vendor */
"Port-Limit", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* NAS-Filter-Rule */
{
/*
The NAS-Filter-Rule AVP (AVP Code 400) is of type IPFilterRule and
provides filter rules that need to be configured on the NAS for the
user. One or more of these AVPs MAY be present in an authorization
response.
*/
struct dict_avp_data data = {
400, /* Code */
0, /* Vendor */
"NAS-Filter-Rule", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , IPFilterRule_type, NULL);
}
/* Filter-Id */
{
/*
The Filter-Id AVP (AVP Code 11) is of type UTF8String and contains
the name of the filter list for this user. Zero or more Filter-Id
AVPs MAY be sent in an authorization answer.
Identifying a filter list by name allows the filter to be used on
different NASes without regard to filter-list implementation details.
However, this AVP is not roaming friendly, as filter naming differs
from one service provider to another.
In non-RADIUS environments, it is RECOMMENDED that the NAS-Filter-
Rule AVP be used instead.
*/
struct dict_avp_data data = {
11, /* Code */
0, /* Vendor */
"Filter-Id", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , UTF8String_type, NULL);
}
/* Configuration-Token */
{
/*
The Configuration-Token AVP (AVP Code 78) is of type OctetString and
is sent by a Diameter Server to a Diameter Proxy Agent or Translation
Agent in an AA-Answer command to indicate a type of user profile to
be used. It should not be sent to a Diameter Client (NAS).
The format of the Data field of this AVP is site specific.
*/
struct dict_avp_data data = {
78, /* Code */
0, /* Vendor */
"Configuration-Token", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* QoS-Filter-Rule */
{
/*
The QoS-Filter-Rule AVP (AVP Code 407) is of type QoSFilterRule and
provides QoS filter rules that need to be configured on the NAS for
the user. One or more such AVPs MAY be present in an authorization
response.
*/
struct dict_avp_data data = {
407, /* Code */
0, /* Vendor */
"QoS-Filter-Rule", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , QoSFilterRule_type, NULL);
}
/*** Framed Access Authorization AVPs ***/
/* Framed-Protocol */
{
/*
The Framed-Protocol AVP (AVP Code 7) is of type Enumerated and
contains the framing to be used for framed access. This AVP MAY be
present in both requests and responses. The supported values are
listed in [RADIUSTypes].
Sub-registry: Values for RADIUS Attribute 7, Framed-Protocol
Reference: [RFC2865]
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(Framed-Protocol)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 1, "PPP"),
enumval_def_u32( 2, "SLIP"),
enumval_def_u32( 3, "AppleTalk Remote Access Protocol (ARAP)"),
enumval_def_u32( 4, "Gandalf proprietary SingleLink/MultiLink protocol"),
enumval_def_u32( 5, "Xylogics proprietary IPX/SLIP"),
enumval_def_u32( 6, "X.75 Synchronous"),
enumval_def_u32( 7, "GPRS PDP Context [Moore]")
};
struct dict_avp_data data = {
7, /* Code */
0, /* Vendor */
"Framed-Protocol", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/* Framed-Routing */
{
/*
The Framed-Routing AVP (AVP Code 10) is of type Enumerated and
contains the routing method for the user when the user is a router to
a network. This AVP SHOULD only be present in authorization
responses. The supported values are listed in [RADIUSTypes].
Sub-registry: Values for RADIUS Attribute 10, Framed-Routing
Reference: [RFC2865]
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(Framed-Routing)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 0, "None"),
enumval_def_u32( 1, "Send routing packets"),
enumval_def_u32( 2, "Listen for routing packets"),
enumval_def_u32( 3, "Send and Listen")
};
struct dict_avp_data data = {
10, /* Code */
0, /* Vendor */
"Framed-Routing", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/* Framed-MTU */
{
/*
The Framed-MTU AVP (AVP Code 12) is of type Unsigned32 and contains
the Maximum Transmission Unit to be configured for the user, when it
is not negotiated by some other means (such as PPP). This AVP SHOULD
only be present in authorization responses. The MTU value MUST be in
the range from 64 to 65535.
*/
struct dict_avp_data data = {
12, /* Code */
0, /* Vendor */
"Framed-MTU", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Framed-Compression */
{
/*
The Framed-Compression AVP (AVP Code 13) is of type Enumerated and
contains the compression protocol to be used for the link. It MAY be
used in an authorization request as a hint to the server that a
specific compression type is desired, but the server is not required
to honor the hint in the corresponding response.
More than one compression protocol AVP MAY be sent. The NAS is
responsible for applying the proper compression protocol to the
appropriate link traffic.
The supported values are listed in [RADIUSTypes].
Sub-registry: Values for RADIUS Attribute 13, Framed-Compression
Reference: [RFC2865]
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(Framed-Compression)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 0, "None"),
enumval_def_u32( 1, "VJ TCP/IP header compression"),
enumval_def_u32( 2, "IPX header compression"),
enumval_def_u32( 3, "Stac-LZS compression")
};
struct dict_avp_data data = {
13, /* Code */
0, /* Vendor */
"Framed-Compression", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/*** IP Access Authorization AVPs ***/
/* Framed-IP-Address */
{
/*
The Framed-IP-Address AVP (AVP Code 8) [RADIUS] is of type
OctetString and contains an IPv4 address of the type specified in the
attribute value to be configured for the user. It MAY be used in an
authorization request as a hint to the server that a specific address
is desired, but the server is not required to honor the hint in the
corresponding response.
Two values have special significance: 0xFFFFFFFF and 0xFFFFFFFE. The
value 0xFFFFFFFF indicates that the NAS should allow the user to
select an address (i.e., negotiated). The value 0xFFFFFFFE indicates
that the NAS should select an address for the user (e.g., assigned
from a pool of addresses kept by the NAS).
*/
struct dict_avp_data data = {
8, /* Code */
0, /* Vendor */
"Framed-IP-Address", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Framed-IP-Netmask */
{
/*
The Framed-IP-Netmask AVP (AVP Code 9) is of type OctetString and
contains the four octets of the IPv4 netmask to be configured for the
user when the user is a router to a network. It MAY be used in an
authorization request as a hint to the server that a specific netmask
is desired, but the server is not required to honor the hint in the
corresponding response. This AVP MUST be present in a response if
the request included this AVP with a value of 0xFFFFFFFF.
*/
struct dict_avp_data data = {
9, /* Code */
0, /* Vendor */
"Framed-IP-Netmask", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Framed-Route */
{
/*
The Framed-Route AVP (AVP Code 22) is of type UTF8String and contains
the ASCII routing information to be configured for the user on the
NAS. Zero or more of these AVPs MAY be present in an authorization
response.
The string MUST contain a destination prefix in dotted quad form
optionally followed by a slash and a decimal length specifier stating
how many high-order bits of the prefix should be used. This is
followed by a space, a gateway address in dotted quad form, a space,
and one or more metrics separated by spaces; for example,
"192.168.1.0/24 192.168.1.1 1".
The length specifier may be omitted, in which case it should default
to 8 bits for class A prefixes, to 16 bits for class B prefixes, and
to 24 bits for class C prefixes; for example,
"192.168.1.0 192.168.1.1 1".
Whenever the gateway address is specified as "0.0.0.0" the IP address
of the user SHOULD be used as the gateway address.
*/
struct dict_avp_data data = {
22, /* Code */
0, /* Vendor */
"Framed-Route", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , UTF8String_type, NULL);
}
/* Framed-Pool */
{
/*
The Framed-Pool AVP (AVP Code 88) is of type OctetString and contains
the name of an assigned address pool that SHOULD be used to assign an
address for the user. If a NAS does not support multiple address
pools, the NAS SHOULD ignore this AVP. Address pools are usually
used for IP addresses but can be used for other protocols if the NAS
supports pools for those protocols.
Although specified as type OctetString for compatibility with RADIUS
[RADIUSExt], the encoding of the Data field SHOULD also conform to
the rules for the UTF8String Data Format.
*/
struct dict_avp_data data = {
88, /* Code */
0, /* Vendor */
"Framed-Pool", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Framed-Interface-Id */
{
/*
The Framed-Interface-Id AVP (AVP Code 96) is of type Unsigned64 and
contains the IPv6 interface identifier to be configured for the user.
It MAY be used in authorization requests as a hint to the server that
a specific interface id is desired, but the server is not required to
honor the hint in the corresponding response.
*/
struct dict_avp_data data = {
96, /* Code */
0, /* Vendor */
"Framed-Interface-Id", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED64 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Framed-IPv6-Prefix */
{
/*
The Framed-IPv6-Prefix AVP (AVP Code 97) is of type OctetString and
contains the IPv6 prefix to be configured for the user. One or more
AVPs MAY be used in authorization requests as a hint to the server
that specific IPv6 prefixes are desired, but the server is not
required to honor the hint in the corresponding response.
*/
struct dict_avp_data data = {
97, /* Code */
0, /* Vendor */
"Framed-IPv6-Prefix", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Framed-IPv6-Route */
{
/*
The Framed-IPv6-Route AVP (AVP Code 99) is of type UTF8String and
contains the ASCII routing information to be configured for the user
on the NAS. Zero or more of these AVPs MAY be present in an
authorization response.
The string MUST contain an IPv6 address prefix followed by a slash
and a decimal length specifier stating how many high order bits of
the prefix should be used. This is followed by a space, a gateway
address in hexadecimal notation, a space, and one or more metrics
separated by spaces; for example,
"2000:0:0:106::/64 2000::106:a00:20ff:fe99:a998 1".
Whenever the gateway address is the IPv6 unspecified address, the IP
address of the user SHOULD be used as the gateway address, such as
in:
"2000:0:0:106::/64 :: 1".
*/
struct dict_avp_data data = {
99, /* Code */
0, /* Vendor */
"Framed-IPv6-Route", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , UTF8String_type, NULL);
}
/* Framed-IPv6-Pool */
{
/*
The Framed-IPv6-Pool AVP (AVP Code 100) is of type OctetString and
contains the name of an assigned pool that SHOULD be used to assign
an IPv6 prefix for the user. If the access device does not support
multiple prefix pools, it MUST ignore this AVP.
Although specified as type OctetString for compatibility with RADIUS
[RADIUSIPv6], the encoding of the Data field SHOULD also conform to
the rules for the UTF8String Data Format.
*/
struct dict_avp_data data = {
100, /* Code */
0, /* Vendor */
"Framed-IPv6-Pool", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/*** IPX Access ***/
/* Framed-IPX-Network */
{
/*
The Framed-IPX-Network AVP (AVP Code 23) is of type Unsigned32 and
contains the IPX Network number to be configured for the user. It
MAY be used in an authorization request as a hint to the server that
a specific address is desired, but the server is not required to
honor the hint in the corresponding response.
Two addresses have special significance: 0xFFFFFFFF and 0xFFFFFFFE.
The value 0xFFFFFFFF indicates that the NAS should allow the user to
select an address (i.e., Negotiated). The value 0xFFFFFFFE indicates
that the NAS should select an address for the user (e.g., assign it
from a pool of one or more IPX networks kept by the NAS).
*/
struct dict_avp_data data = {
23, /* Code */
0, /* Vendor */
"Framed-IPX-Network", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/*** AppleTalk Network Access ***/
/* Framed-AppleTalk-Link */
{
/*
The Framed-AppleTalk-Link AVP (AVP Code 37) is of type Unsigned32 and
contains the AppleTalk network number that should be used for the
serial link to the user, which is another AppleTalk router. This AVP
MUST only be present in an authorization response and is never used
when the user is not another router.
Despite the size of the field, values range from 0 to 65,535. The
special value of 0 indicates an unnumbered serial link. A value of 1
to 65,535 means that the serial line between the NAS and the user
should be assigned that value as an AppleTalk network number.
*/
struct dict_avp_data data = {
37, /* Code */
0, /* Vendor */
"Framed-AppleTalk-Link", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Framed-AppleTalk-Network */
{
/*
The Framed-AppleTalk-Network AVP (AVP Code 38) is of type Unsigned32
and contains the AppleTalk Network number that the NAS should probe
to allocate an AppleTalk node for the user. This AVP MUST only be
present in an authorization response and is never used when the user
is not another router. Multiple instances of this AVP indicate that
the NAS may probe, using any of the network numbers specified.
Despite the size of the field, values range from 0 to 65,535. The
special value 0 indicates that the NAS should assign a network for
the user, using its default cable range. A value between 1 and
65,535 (inclusive) indicates to the AppleTalk Network that the NAS
should probe to find an address for the user.
*/
struct dict_avp_data data = {
38, /* Code */
0, /* Vendor */
"Framed-AppleTalk-Network", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Framed-AppleTalk-Zone */
{
/*
The Framed-AppleTalk-Zone AVP (AVP Code 39) is of type OctetString
and contains the AppleTalk Default Zone to be used for this user.
This AVP MUST only be present in an authorization response. Multiple
instances of this AVP in the same message are not allowed.
The codification of this field's allowed range is outside the scope
of this specification.
*/
struct dict_avp_data data = {
39, /* Code */
0, /* Vendor */
"Framed-AppleTalk-Zone", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/*** AppleTalk Remote Access [RFC2869] ***/
/* ARAP-Features */
{
/*
The ARAP-Features AVP (AVP Code 71) is of type OctetString and MAY be
present in the AA-Accept message if the Framed-Protocol AVP is set to
the value of ARAP. See [RADIUSExt] for more information about the
format of this AVP.
*/
struct dict_avp_data data = {
71, /* Code */
0, /* Vendor */
"ARAP-Features", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* ARAP-Zone-Access */
{
/*
The ARAP-Zone-Access AVP (AVP Code 72) is of type Enumerated and MAY
be present in the AA-Accept message if the Framed-Protocol AVP is set
to the value of ARAP.
The supported values are listed in [RADIUSTypes] and defined in
[RADIUSExt].
Sub-registry: Values for RADIUS Attribute 72, ARAP-Zone-Access
Reference: [RFC2869]
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(ARAP-Zone-Access)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 1, "Only allow access to default zone [RFC2869]"),
enumval_def_u32( 2, "Use zone filter inclusively [RFC2869]"),
enumval_def_u32( 3, "Not used [RFC2869]"),
enumval_def_u32( 4, "Use zone filter exclusively [RFC2869]")
};
struct dict_avp_data data = {
72, /* Code */
0, /* Vendor */
"ARAP-Zone-Access", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/*** Non-Framed Access Authorization AVPs ***/
/* Login-IP-Host */
{
/*
The Login-IP-Host AVP (AVP Code 14) [RADIUS] is of type OctetString
and contains the IPv4 address of a host with which to connect the
user when the Login-Service AVP is included. It MAY be used in an
AA-Request command as a hint to the Diameter Server that a specific
host is desired, but the Diameter Server is not required to honor the
hint in the AA-Answer.
Two addresses have special significance: all ones and 0. The value
of all ones indicates that the NAS SHOULD allow the user to select an
address. The value 0 indicates that the NAS SHOULD select a host to
connect the user to.
*/
struct dict_object *type;
uint32_t allzeros = 0;
uint32_t allones = (uint32_t) -1;
struct dict_type_data tdata = { AVP_TYPE_OCTETSTRING, "Enumerated(Login-IP-Host)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_os( 4, &allzeros, "(0) NAS selects the host"),
enumval_def_os( 4, &allones , "(1) User selects the address")
};
struct dict_avp_data data = {
14, /* Code */
0, /* Vendor */
"Login-IP-Host", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/* Login-IPv6-Host */
{
/*
The Login-IPv6-Host AVP (AVP Code 98) [RADIUSIPv6] is of type
OctetString and contains the IPv6 address of a host with which to
connect the user when the Login-Service AVP is included. It MAY be
used in an AA-Request command as a hint to the Diameter Server that a
specific host is desired, but the Diameter Server is not required to
honor the hint in the AA-Answer.
Two addresses have special significance:
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF and 0. The value
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF indicates that the NAS SHOULD
allow the user to select an address. The value 0 indicates that the
NAS SHOULD select a host to connect the user to.
*/
struct dict_object *type;
unsigned char allzeros[16];
unsigned char allones[16];
struct dict_type_data tdata = { AVP_TYPE_OCTETSTRING, "Enumerated(Login-IPv6-Host)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_os( 16, &allzeros, "(0) NAS selects the host"),
enumval_def_os( 16, &allones , "(1) User selects the address")
};
struct dict_avp_data data = {
98, /* Code */
0, /* Vendor */
"Login-IPv6-Host", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
int i;
memset(allzeros, 0, sizeof(allzeros));
memset(allones, 0xff, sizeof(allones));
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/* Login-Service */
{
/*
The Login-Service AVP (AVP Code 15) is of type Enumerated and
contains the service that should be used to connect the user to the
login host. This AVP SHOULD only be present in authorization
responses.
The supported values are listed in [RADIUSTypes].
Sub-registry: Values for RADIUS Attribute 15, Login-Service
Reference: [RFC2865]
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(Login-Service)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 0, "Telnet"),
enumval_def_u32( 1, "Rlogin"),
enumval_def_u32( 2, "TCP Clear"),
enumval_def_u32( 3, "PortMaster (proprietary)"),
enumval_def_u32( 4, "LAT"),
enumval_def_u32( 5, "X25-PAD"),
enumval_def_u32( 6, "X25-T3POS"),
enumval_def_u32( 8, "TCP Clear Quiet (suppresses any NAS-generated connect string)")
};
struct dict_avp_data data = {
15, /* Code */
0, /* Vendor */
"Login-Service", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/*** TCP Services ***/
/* Login-TCP-Port */
{
/*
The Login-TCP-Port AVP (AVP Code 16) is of type Unsigned32 and
contains the TCP port with which the user is to be connected when the
Login-Service AVP is also present. This AVP SHOULD only be present
in authorization responses. The value MUST NOT be greater than
65,535.
*/
struct dict_avp_data data = {
16, /* Code */
0, /* Vendor */
"Login-TCP-Port", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/*** LAT Services ***/
/* Login-LAT-Service */
{
/*
The Login-LAT-Service AVP (AVP Code 34) is of type OctetString and
contains the system with which the user is to be connected by LAT.
It MAY be used in an authorization request as a hint to the server
that a specific service is desired, but the server is not required to
honor the hint in the corresponding response. This AVP MUST only be
present in the response if the Login-Service AVP states that LAT is
desired.
Administrators use this service attribute when dealing with clustered
systems, such as a VAX or Alpha cluster. In these environments,
several different time-sharing hosts share the same resources (disks,
printers, etc.), and administrators often configure each host to
offer access (service) to each of the shared resources. In this
case, each host in the cluster advertises its services through LAT
broadcasts.
Sophisticated users often know which service providers (machines) are
faster and tend to use a node name when initiating a LAT connection.
Some administrators want particular users to use certain machines as
a primitive form of load balancing (although LAT knows how to do load
balancing itself).
The String field contains the identity of the LAT service to use.
The LAT Architecture allows this string to contain $ (dollar), -
(hyphen), . (period), _ (underscore), numerics, upper- and lowercase
alphabetics, and the ISO Latin-1 character set extension [ISOLatin].
All LAT string comparisons are case insensitive.
*/
struct dict_avp_data data = {
34, /* Code */
0, /* Vendor */
"Login-LAT-Service", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Login-LAT-Node */
{
/*
The Login-LAT-Node AVP (AVP Code 35) is of type OctetString and
contains the Node with which the user is to be automatically
connected by LAT. It MAY be used in an authorization request as a
hint to the server that a specific LAT node is desired, but the
server is not required to honor the hint in the corresponding
response. This AVP MUST only be present in a response if the Login-
Service-Type AVP is set to LAT.
The String field contains the identity of the LAT service to use.
The LAT Architecture allows this string to contain $ (dollar), -
(hyphen), . (period), _ (underscore), numerics, upper- and lowercase
alphabetics, and the ISO Latin-1 character set extension [ISOLatin].
All LAT string comparisons are case insensitive.
*/
struct dict_avp_data data = {
35, /* Code */
0, /* Vendor */
"Login-LAT-Node", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Login-LAT-Group */
{
/*
The Login-LAT-Group AVP (AVP Code 36) is of type OctetString and
contains a string identifying the LAT group codes this user is
authorized to use. It MAY be used in an authorization request as a
hint to the server that a specific group is desired, but the server
is not required to honor the hint in the corresponding response.
This AVP MUST only be present in a response if the Login-Service-Type
AVP is set to LAT.
LAT supports 256 different group codes, which LAT uses as a form of
access rights. LAT encodes the group codes as a 256-bit bitmap.
Administrators can assign one or more of the group code bits at the
LAT service provider; it will only accept LAT connections that have
these group codes set in the bitmap. The administrators assign a
bitmap of authorized group codes to each user. LAT gets these from
the operating system and uses them in its requests to the service
providers.
The codification of the range of allowed usage of this field is
outside the scope of this specification.
*/
struct dict_avp_data data = {
36, /* Code */
0, /* Vendor */
"Login-LAT-Group", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Login-LAT-Port */
{
/*
The Login-LAT-Port AVP (AVP Code 63) is of type OctetString and
contains the Port with which the user is to be connected by LAT. It
MAY be used in an authorization request as a hint to the server that
a specific port is desired, but the server is not required to honor
the hint in the corresponding response. This AVP MUST only be
present in a response if the Login-Service-Type AVP is set to LAT.
The String field contains the identity of the LAT service to use.
The LAT Architecture allows this string to contain $ (dollar), -
(hyphen), . (period), _ (underscore), numerics, upper- and lower-case
alphabetics, and the ISO Latin-1 character set extension [ISOLatin].
All LAT string comparisons are case insensitive.
*/
struct dict_avp_data data = {
63, /* Code */
0, /* Vendor */
"Login-LAT-Port", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/********************************
* NAS Tunneling AVPs *
********************************/
/* Tunnel-Type */
{
/*
The Tunnel-Type AVP (AVP Code 64) is of type Enumerated and contains
the tunneling protocol(s) to be used (in the case of a tunnel
initiator) or in use (in the case of a tunnel terminator). It MAY be
used in an authorization request as a hint to the server that a
specific tunnel type is desired, but the server is not required to
honor the hint in the corresponding response.
The Tunnel-Type AVP SHOULD also be included in Accounting-Request
messages.
A tunnel initiator is not required to implement any of these tunnel
types. If a tunnel initiator receives a response that contains only
unknown or unsupported Tunnel-Types, the tunnel initiator MUST behave
as though a response were received with the Result-Code indicating a
failure.
The supported values are listed in [RADIUSTypes].
Sub-registry: Values for RADIUS Attribute 64, Tunnel-Type
Reference: [RFC2868]
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(Tunnel-Type)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 1, "Point-to-Point Tunneling Protocol (PPTP) [RFC2868]"),
enumval_def_u32( 2, "Layer Two Forwarding (L2F) [RFC2868]"),
enumval_def_u32( 3, "Layer Two Tunneling Protocol (L2TP) [RFC2868]"),
enumval_def_u32( 4, "Ascend Tunnel Management Protocol (ATMP) [RFC2868]"),
enumval_def_u32( 5, "Virtual Tunneling Protocol (VTP) [RFC2868]"),
enumval_def_u32( 6, "IP Authentication Header in the Tunnel-mode (AH) [RFC2868]"),
enumval_def_u32( 7, "IP-in-IP Encapsulation (IP-IP) [RFC2868]"),
enumval_def_u32( 8, "Minimal IP-in-IP Encapsulation (MIN-IP-IP) [RFC2868]"),
enumval_def_u32( 9, "IP Encapsulating Security Payload in the Tunnel-mode (ESP) [RFC2868]"),
enumval_def_u32(10, "Generic Route Encapsulation (GRE) [RFC2868]"),
enumval_def_u32(11, "Bay Dial Virtual Services (DVS) [RFC2868]"),
enumval_def_u32(12, "IP-in-IP Tunneling [RFC2868]"),
enumval_def_u32(13, "Virtual LANs (VLAN) [RFC3580]")
};
struct dict_avp_data adata = {
64, /* Code */
0, /* Vendor */
"Tunnel-Type", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &adata , type, NULL);
}
/* Tunnel-Medium-Type */
{
/*
The Tunnel-Medium-Type AVP (AVP Code 65) is of type Enumerated and
contains the transport medium to use when creating a tunnel for
protocols (such as L2TP) that can operate over multiple transports.
It MAY be used in an authorization request as a hint to the server
that a specific medium is desired, but the server is not required to
honor the hint in the corresponding response.
The supported values are listed in [RADIUSTypes].
Sub-registry: Values for RADIUS Attribute 65, Tunnel-Medium-Type
Reference: [RFC2868]
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(Tunnel-Medium-Type)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 1, "IPv4 (IP version 4) [RFC2868]"),
enumval_def_u32( 2, "IPv6 (IP version 6) [RFC2868]"),
enumval_def_u32( 3, "NSAP [RFC2868]"),
enumval_def_u32( 4, "HDLC (8-bit multidrop) [RFC2868]"),
enumval_def_u32( 5, "BBN 1822 [RFC2868]"),
enumval_def_u32( 6, "802 (includes all 802 media plus Ethernet \"canonical format\") [RFC2868]"),
enumval_def_u32( 7, "E.163 (POTS) [RFC2868]"),
enumval_def_u32( 8, "E.164 (SMDS, Frame Relay, ATM) [RFC2868]"),
enumval_def_u32( 9, "F.69 (Telex) [RFC2868]"),
enumval_def_u32(10, "X.121 (X.25, Frame Relay) [RFC2868]"),
enumval_def_u32(11, "IPX [RFC2868]"),
enumval_def_u32(12, "Appletalk [RFC2868]"),
enumval_def_u32(13, "Decnet IV [RFC2868]"),
enumval_def_u32(14, "Banyan Vines [RFC2868]"),
enumval_def_u32(15, "E.164 with NSAP format subaddress [RFC2868]")
};
struct dict_avp_data adata = {
65, /* Code */
0, /* Vendor */
"Tunnel-Medium-Type", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &adata , type, NULL);
}
/* Tunnel-Client-Endpoint */
{
/*
The Tunnel-Client-Endpoint AVP (AVP Code 66) is of type UTF8String
and contains the address of the initiator end of the tunnel. It MAY
be used in an authorization request as a hint to the server that a
specific endpoint is desired, but the server is not required to honor
the hint in the corresponding response.
This AVP SHOULD be included in the corresponding Accounting-Request
messages, in which case it indicates the address from which the
tunnel was initiated. This AVP, along with the Tunnel-Server-
Endpoint and Session-Id AVP [BASE], MAY be used to provide a globally
unique means to identify a tunnel for accounting and auditing
purposes.
If Tunnel-Medium-Type is IPv4 (1), then this string is either the
fully qualified domain name (FQDN) of the tunnel client machine, or a
"dotted-decimal" IP address. Implementations MUST support the
dotted-decimal format and SHOULD support the FQDN format for IP
addresses.
If Tunnel-Medium-Type is IPv6 (2), then this string is either the
FQDN of the tunnel client machine, or a text representation of the
address in either the preferred or alternate form [IPv6Addr].
Conforming implementations MUST support the preferred form and SHOULD
support both the alternate text form and the FQDN format for IPv6
addresses.
If Tunnel-Medium-Type is neither IPv4 nor IPv6, then this string is a
tag referring to configuration data local to the Diameter client that
describes the interface or medium-specific client address to use.
*/
struct dict_avp_data adata = {
66, /* Code */
0, /* Vendor */
"Tunnel-Client-Endpoint", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &adata , UTF8String_type, NULL);
}
/* Tunnel-Server-Endpoint */
{
/*
The Tunnel-Server-Endpoint AVP (AVP Code 67) is of type UTF8String
and contains the address of the server end of the tunnel. It MAY be
used in an authorization request as a hint to the server that a
specific endpoint is desired, but the server is not required to honor
the hint in the corresponding response.
This AVP SHOULD be included in the corresponding Accounting-Request
messages, in which case it indicates the address from which the
tunnel was initiated. This AVP, along with the Tunnel-Client-
Endpoint and Session-Id AVP [BASE], MAY be used to provide a globally
unique means to identify a tunnel for accounting and auditing
purposes.
If Tunnel-Medium-Type is IPv4 (1), then this string is either the
fully qualified domain name (FQDN) of the tunnel server machine, or a
"dotted-decimal" IP address. Implementations MUST support the
dotted-decimal format and SHOULD support the FQDN format for IP
addresses.
If Tunnel-Medium-Type is IPv6 (2), then this string is either the
FQDN of the tunnel server machine, or a text representation of the
address in either the preferred or alternate form [IPv6Addr].
Implementations MUST support the preferred form and SHOULD support
both the alternate text form and the FQDN format for IPv6 addresses.
If Tunnel-Medium-Type is not IPv4 or IPv6, this string is a tag
referring to configuration data local to the Diameter client that
describes the interface or medium-specific server address to use.
*/
struct dict_avp_data adata = {
67, /* Code */
0, /* Vendor */
"Tunnel-Server-Endpoint", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &adata , UTF8String_type, NULL);
}
/* Tunnel-Password */
{
/*
The Tunnel-Password AVP (AVP Code 69) is of type OctetString and may
contain a password to be used to authenticate to a remote server.
The Tunnel-Password AVP contains sensitive information. This value
is not protected in the same manner as RADIUS [RADTunnels].
As required in [BASE], Diameter messages are encrypted by using IPsec
or TLS. The Tunnel-Password AVP SHOULD NOT be used in untrusted
proxy environments without encrypting it by using end-to-end security
techniques, such as CMS Security [DiamCMS].
*/
struct dict_avp_data adata = {
69, /* Code */
0, /* Vendor */
"Tunnel-Password", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &adata , NULL, NULL);
}
/* Tunnel-Private-Group-Id */
{
/*
The Tunnel-Private-Group-Id AVP (AVP Code 81) is of type OctetString
and contains the group Id for a particular tunneled session. The
Tunnel-Private-Group-Id AVP MAY be included in an authorization
request if the tunnel initiator can predetermine the group resulting
from a particular connection. It SHOULD be included in the
authorization response if this tunnel session is to be treated as
belonging to a particular private group. Private groups may be used
to associate a tunneled session with a particular group of users.
For example, it MAY be used to facilitate routing of unregistered IP
addresses through a particular interface. This AVP SHOULD be
included in the Accounting-Request messages that pertain to the
tunneled session.
*/
struct dict_avp_data adata = {
81, /* Code */
0, /* Vendor */
"Tunnel-Private-Group-Id", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &adata , NULL, NULL);
}
/* Tunnel-Assignment-Id */
{
/*
The Tunnel-Assignment-Id AVP (AVP Code 82) is of type OctetString and
is used to indicate to the tunnel initiator the particular tunnel to
which a session is to be assigned. Some tunneling protocols, such as
[PPTP] and [L2TP], allow for sessions between the same two tunnel
endpoints to be multiplexed over the same tunnel and also for a given
session to use its own dedicated tunnel. This attribute provides a
mechanism for Diameter to inform the tunnel initiator (e.g., PAC,
LAC) whether to assign the session to a multiplexed tunnel or to a
separate tunnel. Furthermore, it allows for sessions sharing
multiplexed tunnels to be assigned to different multiplexed tunnels.
A particular tunneling implementation may assign differing
characteristics to particular tunnels. For example, different
tunnels may be assigned different QoS parameters. Such tunnels may
be used to carry either individual or multiple sessions. The
Tunnel-Assignment-Id attribute thus allows the Diameter server to
indicate that a particular session is to be assigned to a tunnel
providing an appropriate level of service. It is expected that any
QoS-related Diameter tunneling attributes defined in the future
accompanying this one will be associated by the tunnel initiator with
the Id given by this attribute. In the meantime, any semantic given
to a particular Id string is a matter left to local configuration in
the tunnel initiator.
The Tunnel-Assignment-Id AVP is of significance only to Diameter and
the tunnel initiator. The Id it specifies is only intended to be of
local use to Diameter and the tunnel initiator. The Id assigned by
the tunnel initiator is not conveyed to the tunnel peer.
This attribute MAY be included in authorization responses. The
tunnel initiator receiving this attribute MAY choose to ignore it and
to assign the session to an arbitrary multiplexed or non-multiplexed
tunnel between the desired endpoints. This AVP SHOULD also be
included in the Accounting-Request messages pertaining to the
tunneled session.
If a tunnel initiator supports the Tunnel-Assignment-Id AVP, then it
should assign a session to a tunnel in the following manner:
- If this AVP is present and a tunnel exists between the
specified endpoints with the specified Id, then the session
should be assigned to that tunnel.
- If this AVP is present and no tunnel exists between the
specified endpoints with the specified Id, then a new tunnel
should be established for the session and the specified Id
should be associated with the new tunnel.
- If this AVP is not present, then the session is assigned to an
unnamed tunnel. If an unnamed tunnel does not yet exist
between the specified endpoints, then it is established and
used for this session and for subsequent ones established
without the Tunnel-Assignment-Id attribute. A tunnel initiator
MUST NOT assign a session for which a Tunnel-Assignment-Id AVP
was not specified to a named tunnel (i.e., one that was
initiated by a session specifying this AVP).
Note that the same Id may be used to name different tunnels if these
tunnels are between different endpoints.
*/
struct dict_avp_data adata = {
82, /* Code */
0, /* Vendor */
"Tunnel-Assignment-Id", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &adata , NULL, NULL);
}
/* Tunnel-Preference */
{
/*
The Tunnel-Preference AVP (AVP Code 83) is of type Unsigned32 and is
used to identify the relative preference assigned to each tunnel when
more than one set of tunneling AVPs is returned within separate
Grouped-AVP AVPs. It MAY be used in an authorization request as a
hint to the server that a specific preference is desired, but the
server is not required to honor the hint in the corresponding
response.
For example, suppose that AVPs describing two tunnels are returned by
the server, one with a Tunnel-Type of PPTP and the other with a
Tunnel-Type of L2TP. If the tunnel initiator supports only one of
the Tunnel-Types returned, it will initiate a tunnel of that type.
If, however, it supports both tunnel protocols, it SHOULD use the
value of the Tunnel-Preference AVP to decide which tunnel should be
started. The tunnel with the lowest numerical value in the Value
field of this AVP SHOULD be given the highest preference. The values
assigned to two or more instances of the Tunnel-Preference AVP within
a given authorization response MAY be identical. In this case, the
tunnel initiator SHOULD use locally configured metrics to decide
which set of AVPs to use.
*/
struct dict_avp_data adata = {
83, /* Code */
0, /* Vendor */
"Tunnel-Preference", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &adata , NULL, NULL);
}
/* Tunnel-Client-Auth-Id */
{
/*
The Tunnel-Client-Auth-Id AVP (AVP Code 90) is of type UTF8String and
specifies the name used by the tunnel initiator during the
authentication phase of tunnel establishment. It MAY be used in an
authorization request as a hint to the server that a specific
preference is desired, but the server is not required to honor the
hint in the corresponding response. This AVP MUST be present in the
authorization response if an authentication name other than the
default is desired. This AVP SHOULD be included in the Accounting-
Request messages pertaining to the tunneled session.
*/
struct dict_avp_data adata = {
90, /* Code */
0, /* Vendor */
"Tunnel-Client-Auth-Id", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &adata , UTF8String_type, NULL);
}
/* Tunnel-Server-Auth-Id */
{
/*
The Tunnel-Server-Auth-Id AVP (AVP Code 91) is of type UTF8String and
specifies the name used by the tunnel terminator during the
authentication phase of tunnel establishment. It MAY be used in an
authorization request as a hint to the server that a specific
preference is desired, but the server is not required to honor the
hint in the corresponding response. This AVP MUST be present in the
authorization response if an authentication name other than the
default is desired. This AVP SHOULD be included in the Accounting-
Request messages pertaining to the tunneled session.
*/
struct dict_avp_data adata = {
91, /* Code */
0, /* Vendor */
"Tunnel-Server-Auth-Id", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &adata , UTF8String_type, NULL);
}
/* Tunneling */
{
/*
The Tunneling AVP (AVP Code 401) is of type Grouped and contains the
following AVPs, used to describe a compulsory tunnel service:
[RADTunnels], [RADTunlAcct]. Its data field has the following ABNF
grammar:
Tunneling ::= < AVP Header: 401 >
{ Tunnel-Type }
{ Tunnel-Medium-Type }
{ Tunnel-Client-Endpoint }
{ Tunnel-Server-Endpoint }
[ Tunnel-Preference ]
[ Tunnel-Client-Auth-Id ]
[ Tunnel-Server-Auth-Id ]
[ Tunnel-Assignment-Id ]
[ Tunnel-Password ]
[ Tunnel-Private-Group-Id ]
*/
struct dict_object * avp;
struct dict_avp_data data = {
401, /* Code */
0, /* Vendor */
"Tunneling", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_GROUPED /* base type of data */
};
struct local_rules_definition rules[] =
{ { "Tunnel-Type", RULE_REQUIRED, -1, 1 }
,{ "Tunnel-Medium-Type", RULE_OPTIONAL, -1, 1 }
,{ "Tunnel-Client-Endpoint", RULE_OPTIONAL, -1, 1 }
,{ "Tunnel-Server-Endpoint", RULE_OPTIONAL, -1, 1 }
,{ "Tunnel-Preference", RULE_OPTIONAL, -1, 1 }
,{ "Tunnel-Client-Auth-Id", RULE_OPTIONAL, -1, 1 }
,{ "Tunnel-Server-Auth-Id", RULE_OPTIONAL, -1, 1 }
,{ "Tunnel-Assignment-Id", RULE_OPTIONAL, -1, 1 }
,{ "Tunnel-Password", RULE_OPTIONAL, -1, 1 }
,{ "Tunnel-Private-Group-Id", RULE_OPTIONAL, -1, 1 }
};
CHECK_dict_new( DICT_AVP, &data , NULL, &avp);
PARSE_loc_rules( rules, avp );
}
/********************************
* NAS Accounting AVPs *
********************************/
/* Accounting-Input-Octets */
{
/*
The Accounting-Input-Octets AVP (AVP Code 363) is of type Unsigned64
and contains the number of octets received from the user.
For NAS usage, this AVP indicates how many octets have been received
from the port in the course of this session. It can only be present
in ACR messages with an Accounting-Record-Type of INTERIM_RECORD or
STOP_RECORD.
*/
struct dict_avp_data data = {
363, /* Code */
0, /* Vendor */
"Accounting-Input-Octets", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED64 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Accounting-Output-Octets */
{
/*
The Accounting-Output-Octets AVP (AVP Code 364) is of type Unsigned64
and contains the number of octets sent to the user.
For NAS usage, this AVP indicates how many octets have been sent to
the port in the course of this session. It can only be present in
ACR messages with an Accounting-Record-Type of INTERIM_RECORD or
STOP_RECORD.
*/
struct dict_avp_data data = {
364, /* Code */
0, /* Vendor */
"Accounting-Output-Octets", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED64 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Accounting-Input-Packets */
{
/*
The Accounting-Input-Packets (AVP Code 365) is of type Unsigned64 and
contains the number of packets received from the user.
For NAS usage, this AVP indicates how many packets have been received
from the port over the course of a session being provided to a Framed
User. It can only be present in ACR messages with an Accounting-
Record-Type of INTERIM_RECORD or STOP_RECORD.
*/
struct dict_avp_data data = {
365, /* Code */
0, /* Vendor */
"Accounting-Input-Packets", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED64 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Accounting-Output-Packets */
{
/*
The Accounting-Output-Packets (AVP Code 366) is of type Unsigned64
and contains the number of IP packets sent to the user.
For NAS usage, this AVP indicates how many packets have been sent to
the port over the course of a session being provided to a Framed
User. It can only be present in ACR messages with an Accounting-
Record-Type of INTERIM_RECORD or STOP_RECORD.
*/
struct dict_avp_data data = {
366, /* Code */
0, /* Vendor */
"Accounting-Output-Packets", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED64 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Acct-Session-Time */
{
/*
The Acct-Session-Time AVP (AVP Code 46) is of type Unsigned32 and
indicates the length of the current session in seconds. It can only
be present in ACR messages with an Accounting-Record-Type of
INTERIM_RECORD or STOP_RECORD.
*/
struct dict_avp_data data = {
46, /* Code */
0, /* Vendor */
"Acct-Session-Time", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Acct-Authentic */
{
/*
The Acct-Authentic AVP (AVP Code 45) is of type Enumerated and
specifies how the user was authenticated. The supported values are
listed in [RADIUSTypes].
Sub-registry: Values for RADIUS Attribute 45, Acct-Authentic
Reference: [RFC2866]
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(Acct-Authentic)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 1, "RADIUS"),
enumval_def_u32( 2, "Local"),
enumval_def_u32( 3, "Remote"),
enumval_def_u32( 4, "Diameter")
};
struct dict_avp_data data = {
45, /* Code */
0, /* Vendor */
"Acct-Authentic", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/* Accounting-Auth-Method */
{
/*
The Accounting-Auth-Method AVP (AVP Code 406) is of type Enumerated.
A NAS MAY include this AVP in an Accounting-Request message to
indicate the method used to authenticate the user. (Note that this
is equivalent to the RADIUS MS-Acct-Auth-Type VSA attribute).
The following values are defined:
1 PAP
2 CHAP
3 MS-CHAP-1
4 MS-CHAP-2
5 EAP
7 None
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(Accounting-Auth-Method)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 1, "PAP"),
enumval_def_u32( 2, "CHAP"),
enumval_def_u32( 3, "MS-CHAP-1"),
enumval_def_u32( 4, "MS-CHAP-2"),
enumval_def_u32( 5, "EAP"),
enumval_def_u32( 7, "None")
};
struct dict_avp_data data = {
406, /* Code */
0, /* Vendor */
"Accounting-Auth-Method", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
/* Acct-Delay-Time */
{
/*
The Acct-Delay-Time AVP (AVP Code 41) is of type Unsigned32 and
indicates the number of seconds the Diameter client has been trying
to send the Accounting-Request (ACR). The accounting server may
subtract this value from the time when the ACR arrives at the server
to calculate the approximate time of the event that caused the ACR to
be generated.
This AVP is not used for retransmissions at the transport level (TCP
or SCTP). Rather, it may be used when an ACR command cannot be
transmitted because there is no appropriate peer to transmit it to or
was rejected because it could not be delivered. In these cases, the
command MAY be buffered and transmitted later, when an appropriate
peer-connection is available or after sufficient time has passed that
the destination-host may be reachable and operational. If the ACR is
resent in this way, the Acct-Delay-Time AVP SHOULD be included. The
value of this AVP indicates the number of seconds that elapsed
between the time of the first attempt at transmission and the current
attempt.
*/
struct dict_avp_data data = {
41, /* Code */
0, /* Vendor */
"Acct-Delay-Time", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Acct-Link-Count */
{
/*
The Acct-Link-Count AVP (AVP Code 51) is of type Unsigned32 and
indicates the total number of links that have been active (current or
closed) in a given multilink session at the time the accounting
record is generated. This AVP MAY be included in Accounting-Requests
for any session that may be part of a multilink service.
The Acct-Link-Count AVP may be used to make it easier for an
accounting server to know when it has all the records for a given
multilink service. When the number of Accounting-Requests received
with Accounting-Record-Type = STOP_RECORD and with the same Acct-
Multi-Session-Id and unique Session-Ids equals the largest value of
Acct-Link-Count seen in those Accounting-Requests, all STOP_RECORD
Accounting-Requests for that multilink service have been received.
The following example, showing eight Accounting-Requests, illustrates
how the Acct-Link-Count AVP is used. In the table below, only the
relevant AVPs are shown, although additional AVPs containing
accounting information will be present in the Accounting-Requests.
Acct-Multi- Accounting- Acct-
Session-Id Session-Id Record-Type Link-Count
--------------------------------------------------------
"...10" "...10" START_RECORD 1
"...10" "...11" START_RECORD 2
"...10" "...11" STOP_RECORD 2
"...10" "...12" START_RECORD 3
"...10" "...13" START_RECORD 4
"...10" "...12" STOP_RECORD 4
"...10" "...13" STOP_RECORD 4
"...10" "...10" STOP_RECORD 4
*/
struct dict_avp_data data = {
51, /* Code */
0, /* Vendor */
"Acct-Link-Count", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Acct-Tunnel-Connection */
{
/*
The Acct-Tunnel-Connection AVP (AVP Code 68) is of type OctetString
and contains the identifier assigned to the tunnel session. This
AVP, along with the Tunnel-Client-Endpoint and Tunnel-Server-Endpoint
AVPs, may be used to provide a means to uniquely identify a tunnel
session for auditing purposes.
The format of the identifier in this AVP depends upon the value of
the Tunnel-Type AVP. For example, to identify an L2TP tunnel
connection fully, the L2TP Tunnel Id and Call Id might be encoded in
this field. The exact encoding of this field is implementation
dependent.
*/
struct dict_avp_data data = {
68, /* Code */
0, /* Vendor */
"Acct-Tunnel-Connection", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Acct-Tunnel-Packets-Lost */
{
/*
The Acct-Tunnel-Packets-Lost AVP (AVP Code 86) is of type Unsigned32
and contains the number of packets lost on a given link.
*/
struct dict_avp_data data = {
86, /* Code */
0, /* Vendor */
"Acct-Tunnel-Packets-Lost", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/***********************************
* Compatibility with RADIUS AVPs *
***********************************/
/* NAS-Identifier */
{
/*
The NAS-Identifier AVP (AVP Code 32) [RADIUS] is of type UTF8String
and contains the identity of the NAS providing service to the user.
This AVP SHOULD only be added by a RADIUS/Diameter Translation Agent.
When this AVP is present, the Origin-Host AVP identifies the NAS
providing service to the user.
In RADIUS it would be possible for a rogue NAS to forge the NAS-
Identifier attribute. Diameter/RADIUS translation agents SHOULD
attempt to check a received NAS-Identifier attribute against the
source address of the RADIUS packet, by doing an A/AAAA RR query. If
the NAS-Identifier attribute contains an FQDN, then such a query
would resolve to an IP address matching the source address. However,
the NAS-Identifier attribute is not required to contain an FQDN, so
such a query could fail. If it fails, an error should be logged, but
no action should be taken, other than a reverse lookup on the source
address and insert the resulting FQDN into the Route-Record AVP.
Diameter agents and servers SHOULD check whether a NAS-Identifier AVP
corresponds to an entry in the Route-Record AVP. If no match is
found, then an error is logged, but no other action is taken.
*/
struct dict_avp_data data = {
32, /* Code */
0, /* Vendor */
"NAS-Identifier", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , UTF8String_type, NULL);
}
/* NAS-IP-Address */
{
/*
The NAS-IP-Address AVP (AVP Code 4) [RADIUS] is of type OctetString
and contains the IP Address of the NAS providing service to the user.
This AVP SHOULD only be added by a RADIUS/Diameter Translation Agent.
When this AVP is present, the Origin-Host AVP identifies the NAS
providing service to the user.
In RADIUS it would be possible for a rogue NAS to forge the NAS-IP-
Address attribute value. Diameter/RADIUS translation agents MUST
check a received NAS-IP-Address or NAS-IPv6-Address attribute against
the source address of the RADIUS packet. If they do not match and
the Diameter/RADIUS translation agent does not know whether the
packet was sent by a RADIUS proxy or NAS (e.g., no Proxy-State
attribute), then by default it is assumed that the source address
corresponds to a RADIUS proxy, and that the NAS Address is behind
that proxy, potentially with some additional RADIUS proxies in
between. The Diameter/RADIUS translation agent MUST insert entries
in the Route-Record AVP corresponding to the apparent route. This
implies doing a reverse lookup on the source address and NAS-IP-
Address or NAS-IPv6-Address attributes to determine the corresponding
FQDNs.
If the source address and the NAS-IP-Address or NAS-IPv6-Address do
not match, and the Diameter/RADIUS translation agent knows that it is
talking directly to the NAS (e.g., there are no RADIUS proxies
between it and the NAS), then the error should be logged, and the
packet MUST be discarded.
Diameter agents and servers MUST check whether the NAS-IP-Address AVP
corresponds to an entry in the Route-Record AVP. This is done by
doing a reverse lookup (PTR RR) for the NAS-IP-Address to retrieve
the corresponding FQDN, and by checking for a match with the Route-
Record AVP. If no match is found, then an error is logged, but no
other action is taken.
*/
struct dict_avp_data data = {
4, /* Code */
0, /* Vendor */
"NAS-IP-Address", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* NAS-IPv6-Address */
{
/*
The NAS-IPv6-Address AVP (AVP Code 95) [RADIUSIPv6] is of type
OctetString and contains the IPv6 Address of the NAS providing
service to the user. This AVP SHOULD only be added by a
RADIUS/Diameter Translation Agent. When this AVP is present, the
Origin-Host AVP identifies the NAS providing service to the user.
In RADIUS it would be possible for a rogue NAS to forge the NAS-
IPv6-Address attribute. Diameter/RADIUS translation agents MUST
check a received NAS-IPv6-Address attribute against the source
address of the RADIUS packet. If they do not match and the
Diameter/RADIUS translation agent does not know whether the packet
was sent by a RADIUS proxy or NAS (e.g., no Proxy-State attribute),
then by default it is assumed that the source address corresponds to
a RADIUS proxy, and that the NAS-IPv6-Address is behind that proxy,
potentially with some additional RADIUS proxies in between. The
Diameter/RADIUS translation agent MUST insert entries in the Route-
Record AVP corresponding to the apparent route. This implies doing a
reverse lookup on the source address and NAS-IPv6-Address attributes
to determine the corresponding FQDNs.
If the source address and the NAS-IPv6-Address do not match, and the
Diameter/RADIUS translation agent knows that it is talking directly
to the NAS (e.g., there are no RADIUS proxies between it and the
NAS), then the error should be logged, and the packet MUST be
discarded.
Diameter agents and servers MUST check whether the NAS-IPv6-Address
AVP corresponds to an entry in the Route-Record AVP. This is done by
doing a reverse lookup (PTR RR) for the NAS-IPv6-Address to retrieve
the corresponding FQDN, and by checking for a match with the Record-
Route AVP. If no match is found, then an error is logged, but no
other action is taken.
*/
struct dict_avp_data data = {
95, /* Code */
0, /* Vendor */
"NAS-IPv6-Address", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* State */
{
/*
The State AVP (AVP Code 24) [RADIUS] is of type OctetString and has
two uses in the Diameter NAS application.
The State AVP MAY be sent by a Diameter Server to a NAS in an AA-
Response command that contains a Result-Code of
DIAMETER_MULTI_ROUND_AUTH. If so, the NAS MUST return it unmodified
in the subsequent AA-Request command.
The State AVP MAY also be sent by a Diameter Server to a NAS in an
AA-Response command that also includes a Termination-Action AVP with
the value of AA-REQUEST. If the NAS performs the Termination-Action
by sending a new AA-Request command upon termination of the current
service, it MUST return the State AVP unmodified in the new request
command.
In either usage, the NAS MUST NOT interpret the AVP locally. Usage
of the State AVP is implementation dependent.
*/
struct dict_avp_data data = {
24, /* Code */
0, /* Vendor */
"State", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_OCTETSTRING /* base type of data */
};
CHECK_dict_new( DICT_AVP, &data , NULL, NULL);
}
/* Termination-Cause mapping */
{
struct dict_object *type;
struct dict_enumval_data tvals[] = {
enumval_def_u32(11, "[RADIUS] User Request"),
enumval_def_u32(12, "[RADIUS] Lost Carrier"),
enumval_def_u32(13, "[RADIUS] Lost Service"),
enumval_def_u32(14, "[RADIUS] Idle Timeout"),
enumval_def_u32(15, "[RADIUS] Session Timeout"),
enumval_def_u32(16, "[RADIUS] Admin Reset"),
enumval_def_u32(17, "[RADIUS] Admin Reboot"),
enumval_def_u32(18, "[RADIUS] Port Error"),
enumval_def_u32(19, "[RADIUS] NAS Error"),
enumval_def_u32(20, "[RADIUS] NAS Request"),
enumval_def_u32(21, "[RADIUS] NAS Reboot"),
enumval_def_u32(22, "[RADIUS] Port Unneeded"),
enumval_def_u32(23, "[RADIUS] Port Preempted"),
enumval_def_u32(24, "[RADIUS] Port Suspended"),
enumval_def_u32(25, "[RADIUS] Service Unavailable"),
enumval_def_u32(26, "[RADIUS] Callback"),
enumval_def_u32(27, "[RADIUS] User Error"),
enumval_def_u32(28, "[RADIUS] Host Request"),
enumval_def_u32(29, "[RADIUS] Supplicant Restart"),
enumval_def_u32(30, "[RADIUS] Reauthentication Failure"),
enumval_def_u32(31, "[RADIUS] Port Reinit"),
enumval_def_u32(32, "[RADIUS] Port Disabled")
};
int i;
CHECK_dict_search( DICT_TYPE, TYPE_BY_NAME, "Enumerated(Termination-Cause)", &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
}
/* Origin-AAA-Protocol */
{
/*
The Origin-AAA-Protocol AVP (AVP Code 408) is of the type Enumerated
and should be inserted in a Diameter message translated by a gateway
system from another AAA protocol, such as RADIUS. It identifies the
source protocol of the message to the Diameter system receiving the
message.
The supported values are:
1 RADIUS
*/
struct dict_object *type;
struct dict_type_data tdata = { AVP_TYPE_UNSIGNED32, "Enumerated(Origin-AAA-Protocol)" , NULL, NULL};
struct dict_enumval_data tvals[] = {
enumval_def_u32( 1, "RADIUS")
};
struct dict_avp_data data = {
408, /* Code */
0, /* Vendor */
"Origin-AAA-Protocol", /* Name */
AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, /* Fixed flags */
AVP_FLAG_MANDATORY, /* Fixed flag values */
AVP_TYPE_UNSIGNED32 /* base type of data */
};
int i;
/* Create the Enumerated type, enumerated values, and the AVP */
CHECK_dict_new( DICT_TYPE, &tdata , NULL, &type);
for (i = 0; i < sizeof(tvals) / sizeof(tvals[0]); i++) {
CHECK_dict_new( DICT_ENUMVAL, &tvals[i], type, NULL);
}
CHECK_dict_new( DICT_AVP, &data , type, NULL);
}
}
/********************/
/* Commands section */
/********************/
{
/* To avoid defining global variables for all the AVP that we use here, we do search the dictionary in each sub-block.
* This is far from optimal, but the code is clearer like this, and the time it requires at execution is not noticeable.
*/
/* AA-Request (AAR) Command */
{
/*
The AA-Request (AAR), which is indicated by setting the Command-Code
field to 265 and the 'R' bit in the Command Flags field, is used to
request authentication and/or authorization for a given NAS user.
The type of request is identified through the Auth-Request-Type AVP
[BASE]. The recommended value for most RADIUS interoperabily
situations is AUTHORIZE_AUTHENTICATE.
If Authentication is requested, the User-Name attribute SHOULD be
present, as well as any additional authentication AVPs that would
carry the password information. A request for authorization SHOULD
only include the information from which the authorization will be
performed, such as the User-Name, Called-Station-Id, or Calling-
Station-Id AVPs. All requests SHOULD contain AVPs uniquely
identifying the source of the call, such as Origin-Host and NAS-Port.
Certain networks MAY use different AVPs for authorization purposes.
A request for authorization will include some AVPs defined in section
6.
It is possible for a single session to be authorized first and then
for an authentication request to follow.
This AA-Request message MAY be the result of a multi-round
authentication exchange, which occurs when the AA-Answer message is
received with the Result-Code AVP set to DIAMETER_MULTI_ROUND_AUTH.
A subsequent AAR message SHOULD be sent, with the User-Password AVP
that includes the user's response to the prompt, and MUST include any
State AVPs that were present in the AAA message.
Message Format
<AA-Request> ::= < Diameter Header: 265, REQ, PXY >
< Session-Id >
{ Auth-Application-Id }
{ Origin-Host }
{ Origin-Realm }
{ Destination-Realm }
{ Auth-Request-Type }
[ Destination-Host ]
[ NAS-Identifier ]
[ NAS-IP-Address ]
[ NAS-IPv6-Address ]
[ NAS-Port ]
[ NAS-Port-Id ]
[ NAS-Port-Type ]
[ Origin-AAA-Protocol ]
[ Origin-State-Id ]
[ Port-Limit ]
[ User-Name ]
[ User-Password ]
[ Service-Type ]
[ State ]
[ Authorization-Lifetime ]
[ Auth-Grace-Period ]
[ Auth-Session-State ]
[ Callback-Number ]
[ Called-Station-Id ]
[ Calling-Station-Id ]
[ Originating-Line-Info ]
[ Connect-Info ]
[ CHAP-Auth ]
[ CHAP-Challenge ]
* [ Framed-Compression ]
[ Framed-Interface-Id ]
[ Framed-IP-Address ]
* [ Framed-IPv6-Prefix ]
[ Framed-IP-Netmask ]
[ Framed-MTU ]
[ Framed-Protocol ]
[ ARAP-Password ]
[ ARAP-Security ]
* [ ARAP-Security-Data ]
* [ Login-IP-Host ]
* [ Login-IPv6-Host ]
[ Login-LAT-Group ]
[ Login-LAT-Node ]
[ Login-LAT-Port ]
[ Login-LAT-Service ]
* [ Tunneling ]
* [ Proxy-Info ]
* [ Route-Record ]
* [ AVP ]
*/
struct dict_object * cmd;
struct dict_cmd_data data = {
265, /* Code */
"AA-Request", /* Name */
CMD_FLAG_REQUEST | CMD_FLAG_PROXIABLE | CMD_FLAG_ERROR, /* Fixed flags */
CMD_FLAG_REQUEST | CMD_FLAG_PROXIABLE /* Fixed flag values */
};
struct local_rules_definition rules[] =
{ { "Session-Id", RULE_FIXED_HEAD, -1, 1 }
,{ "Auth-Application-Id", RULE_REQUIRED, -1, 1 }
,{ "Origin-Host", RULE_REQUIRED, -1, 1 }
,{ "Origin-Realm", RULE_REQUIRED, -1, 1 }
,{ "Destination-Realm", RULE_REQUIRED, -1, 1 }
,{ "Auth-Request-Type", RULE_REQUIRED, -1, 1 }
,{ "Destination-Host", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Identifier", RULE_OPTIONAL, -1, 1 }
,{ "NAS-IP-Address", RULE_OPTIONAL, -1, 1 }
,{ "NAS-IPv6-Address", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port-Id", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port-Type", RULE_OPTIONAL, -1, 1 }
,{ "Origin-AAA-Protocol", RULE_OPTIONAL, -1, 1 }
,{ "Origin-State-Id", RULE_OPTIONAL, -1, 1 }
,{ "Port-Limit", RULE_OPTIONAL, -1, 1 }
,{ "User-Name", RULE_OPTIONAL, -1, 1 }
,{ "User-Password", RULE_OPTIONAL, -1, 1 }
,{ "Service-Type", RULE_OPTIONAL, -1, 1 }
,{ "State", RULE_OPTIONAL, -1, 1 }
,{ "Authorization-Lifetime", RULE_OPTIONAL, -1, 1 }
,{ "Auth-Grace-Period", RULE_OPTIONAL, -1, 1 }
,{ "Auth-Session-State", RULE_OPTIONAL, -1, 1 }
,{ "Callback-Number", RULE_OPTIONAL, -1, 1 }
,{ "Called-Station-Id", RULE_OPTIONAL, -1, 1 }
,{ "Calling-Station-Id", RULE_OPTIONAL, -1, 1 }
,{ "Originating-Line-Info", RULE_OPTIONAL, -1, 1 }
,{ "Connect-Info", RULE_OPTIONAL, -1, 1 }
,{ "CHAP-Auth", RULE_OPTIONAL, -1, 1 }
,{ "CHAP-Challenge", RULE_OPTIONAL, -1, 1 }
,{ "Framed-Compression", RULE_OPTIONAL, -1,-1 }
,{ "Framed-Interface-Id", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IP-Address", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IPv6-Prefix", RULE_OPTIONAL, -1,-1 }
,{ "Framed-IP-Netmask", RULE_OPTIONAL, -1, 1 }
,{ "Framed-MTU", RULE_OPTIONAL, -1, 1 }
,{ "Framed-Protocol", RULE_OPTIONAL, -1, 1 }
,{ "ARAP-Password", RULE_OPTIONAL, -1, 1 }
,{ "ARAP-Security", RULE_OPTIONAL, -1, 1 }
,{ "ARAP-Security-Data", RULE_OPTIONAL, -1,-1 }
,{ "Login-IP-Host", RULE_OPTIONAL, -1,-1 }
,{ "Login-IPv6-Host", RULE_OPTIONAL, -1,-1 }
,{ "Login-LAT-Group", RULE_OPTIONAL, -1, 1 }
,{ "Login-LAT-Node", RULE_OPTIONAL, -1, 1 }
,{ "Login-LAT-Port", RULE_OPTIONAL, -1, 1 }
,{ "Login-LAT-Service", RULE_OPTIONAL, -1, 1 }
,{ "Tunneling", RULE_OPTIONAL, -1,-1 }
,{ "Proxy-Info", RULE_OPTIONAL, -1,-1 }
,{ "Route-Record", RULE_OPTIONAL, -1,-1 }
};
CHECK_dict_new( DICT_COMMAND, &data , nasreq, &cmd);
PARSE_loc_rules( rules, cmd );
}
/* AA-Answer (AAA) Command */
{
/*
The AA-Answer (AAA) message is indicated by setting the Command-Code
field to 265 and clearing the 'R' bit in the Command Flags field. It
is sent in response to the AA-Request (AAR) message. If
authorization was requested, a successful response will include the
authorization AVPs appropriate for the service being provided, as
defined in section 6.
For authentication exchanges requiring more than a single round trip,
the server MUST set the Result-Code AVP to DIAMETER_MULTI_ROUND_AUTH.
An AAA message with this result code MAY include one Reply-Message or
more and MAY include zero or one State AVPs.
If the Reply-Message AVP was present, the network access server
SHOULD send the text to the user's client to display to the user,
instructing the client to prompt the user for a response. For
example, this capability can be achieved in PPP via PAP. If the
access client is unable to prompt the user for a new response, it
MUST treat the AA-Answer (AAA) with the Reply-Message AVP as an error
and deny access.
Message Format
<AA-Answer> ::= < Diameter Header: 265, PXY >
< Session-Id >
{ Auth-Application-Id }
{ Auth-Request-Type }
{ Result-Code }
{ Origin-Host }
{ Origin-Realm }
[ User-Name ]
[ Service-Type ]
* [ Class ]
* [ Configuration-Token ]
[ Acct-Interim-Interval ]
[ Error-Message ]
[ Error-Reporting-Host ]
* [ Failed-AVP ]
[ Idle-Timeout ]
[ Authorization-Lifetime ]
[ Auth-Grace-Period ]
[ Auth-Session-State ]
[ Re-Auth-Request-Type ]
[ Multi-Round-Time-Out ]
[ Session-Timeout ]
[ State ]
* [ Reply-Message ]
[ Origin-AAA-Protocol ]
[ Origin-State-Id ]
* [ Filter-Id ]
[ Password-Retry ]
[ Port-Limit ]
[ Prompt ]
[ ARAP-Challenge-Response ]
[ ARAP-Features ]
[ ARAP-Security ]
* [ ARAP-Security-Data ]
[ ARAP-Zone-Access ]
[ Callback-Id ]
[ Callback-Number ]
[ Framed-Appletalk-Link ]
* [ Framed-Appletalk-Network ]
[ Framed-Appletalk-Zone ]
* [ Framed-Compression ]
[ Framed-Interface-Id ]
[ Framed-IP-Address ]
* [ Framed-IPv6-Prefix ]
[ Framed-IPv6-Pool ]
* [ Framed-IPv6-Route ]
[ Framed-IP-Netmask ]
* [ Framed-Route ]
[ Framed-Pool ]
[ Framed-IPX-Network ]
[ Framed-MTU ]
[ Framed-Protocol ]
[ Framed-Routing ]
* [ Login-IP-Host ]
* [ Login-IPv6-Host ]
[ Login-LAT-Group ]
[ Login-LAT-Node ]
[ Login-LAT-Port ]
[ Login-LAT-Service ]
[ Login-Service ]
[ Login-TCP-Port ]
* [ NAS-Filter-Rule ]
* [ QoS-Filter-Rule ]
* [ Tunneling ]
* [ Redirect-Host ]
[ Redirect-Host-Usage ]
[ Redirect-Max-Cache-Time ]
* [ Proxy-Info ]
* [ AVP ]
*/
struct dict_object * cmd;
struct dict_cmd_data data = {
265, /* Code */
"AA-Answer", /* Name */
CMD_FLAG_REQUEST | CMD_FLAG_PROXIABLE, /* Fixed flags */
CMD_FLAG_PROXIABLE /* Fixed flag values */
};
struct local_rules_definition rules[] =
{ { "Session-Id", RULE_FIXED_HEAD, -1, 1 }
,{ "Auth-Application-Id", RULE_REQUIRED, -1, 1 }
,{ "Auth-Request-Type", RULE_REQUIRED, -1, 1 }
,{ "Result-Code", RULE_REQUIRED, -1, 1 }
,{ "Origin-Host", RULE_REQUIRED, -1, 1 }
,{ "Origin-Realm", RULE_REQUIRED, -1, 1 }
,{ "User-Name", RULE_OPTIONAL, -1, 1 }
,{ "Service-Type", RULE_OPTIONAL, -1, 1 }
,{ "Class", RULE_OPTIONAL, -1,-1 }
,{ "Configuration-Token", RULE_OPTIONAL, -1,-1 }
,{ "Acct-Interim-Interval", RULE_OPTIONAL, -1, 1 }
,{ "Error-Message", RULE_OPTIONAL, -1, 1 }
,{ "Error-Reporting-Host", RULE_OPTIONAL, -1, 1 }
,{ "Failed-AVP", RULE_OPTIONAL, -1,-1 }
,{ "Idle-Timeout", RULE_OPTIONAL, -1, 1 }
,{ "Authorization-Lifetime", RULE_OPTIONAL, -1, 1 }
,{ "Auth-Grace-Period", RULE_OPTIONAL, -1, 1 }
,{ "Auth-Session-State", RULE_OPTIONAL, -1, 1 }
,{ "Re-Auth-Request-Type", RULE_OPTIONAL, -1, 1 }
,{ "Multi-Round-Time-Out", RULE_OPTIONAL, -1, 1 }
,{ "Session-Timeout", RULE_OPTIONAL, -1, 1 }
,{ "State", RULE_OPTIONAL, -1, 1 }
,{ "Reply-Message", RULE_OPTIONAL, -1,-1 }
,{ "Origin-AAA-Protocol", RULE_OPTIONAL, -1, 1 }
,{ "Origin-State-Id", RULE_OPTIONAL, -1, 1 }
,{ "Filter-Id", RULE_OPTIONAL, -1,-1 }
,{ "Password-Retry", RULE_OPTIONAL, -1, 1 }
,{ "Port-Limit", RULE_OPTIONAL, -1, 1 }
,{ "Prompt", RULE_OPTIONAL, -1, 1 }
,{ "ARAP-Challenge-Response", RULE_OPTIONAL, -1, 1 }
,{ "ARAP-Features", RULE_OPTIONAL, -1, 1 }
,{ "ARAP-Security", RULE_OPTIONAL, -1, 1 }
,{ "ARAP-Security-Data", RULE_OPTIONAL, -1,-1 }
,{ "ARAP-Zone-Access", RULE_OPTIONAL, -1, 1 }
,{ "Callback-Id", RULE_OPTIONAL, -1, 1 }
,{ "Callback-Number", RULE_OPTIONAL, -1, 1 }
,{ "Framed-AppleTalk-Link", RULE_OPTIONAL, -1, 1 }
,{ "Framed-AppleTalk-Network", RULE_OPTIONAL, -1,-1 }
,{ "Framed-AppleTalk-Zone", RULE_OPTIONAL, -1, 1 }
,{ "Framed-Compression", RULE_OPTIONAL, -1,-1 }
,{ "Framed-Interface-Id", RULE_OPTIONAL, -1,-1 }
,{ "Framed-IP-Address", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IPv6-Prefix", RULE_OPTIONAL, -1,-1 }
,{ "Framed-IPv6-Pool", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IPv6-Route", RULE_OPTIONAL, -1,-1 }
,{ "Framed-IP-Netmask", RULE_OPTIONAL, -1,-1 }
,{ "Framed-Route", RULE_OPTIONAL, -1,-1 }
,{ "Framed-Pool", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IPX-Network", RULE_OPTIONAL, -1, 1 }
,{ "Framed-MTU", RULE_OPTIONAL, -1, 1 }
,{ "Framed-Protocol", RULE_OPTIONAL, -1, 1 }
,{ "Framed-Routing", RULE_OPTIONAL, -1, 1 }
,{ "Login-IP-Host", RULE_OPTIONAL, -1,-1 }
,{ "Login-IPv6-Host", RULE_OPTIONAL, -1,-1 }
,{ "Login-LAT-Group", RULE_OPTIONAL, -1, 1 }
,{ "Login-LAT-Node", RULE_OPTIONAL, -1, 1 }
,{ "Login-LAT-Port", RULE_OPTIONAL, -1, 1 }
,{ "Login-LAT-Service", RULE_OPTIONAL, -1, 1 }
,{ "Login-Service", RULE_OPTIONAL, -1, 1 }
,{ "Login-TCP-Port", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Filter-Rule", RULE_OPTIONAL, -1,-1 }
,{ "QoS-Filter-Rule", RULE_OPTIONAL, -1,-1 }
,{ "Tunneling", RULE_OPTIONAL, -1,-1 }
,{ "Redirect-Host", RULE_OPTIONAL, -1,-1 }
,{ "Redirect-Host-Usage", RULE_OPTIONAL, -1, 1 }
,{ "Redirect-Max-Cache-Time", RULE_OPTIONAL, -1, 1 }
,{ "Proxy-Info", RULE_OPTIONAL, -1,-1 }
};
CHECK_dict_new( DICT_COMMAND, &data , nasreq, &cmd);
PARSE_loc_rules( rules, cmd );
}
/* Re-Auth-Request */
{
/*
Add additional rules of the ABNF (compared to Base definition):
<RA-Request> ::= < Diameter Header: 258, REQ, PXY >
< Session-Id >
{ Origin-Host }
{ Origin-Realm }
{ Destination-Realm }
{ Destination-Host }
{ Auth-Application-Id }
{ Re-Auth-Request-Type }
[ User-Name ]
[ Origin-AAA-Protocol ]
[ Origin-State-Id ]
[ NAS-Identifier ]
[ NAS-IP-Address ]
[ NAS-IPv6-Address ]
[ NAS-Port ]
[ NAS-Port-Id ]
[ NAS-Port-Type ]
[ Service-Type ]
[ Framed-IP-Address ]
[ Framed-IPv6-Prefix ]
[ Framed-Interface-Id ]
[ Called-Station-Id ]
[ Calling-Station-Id ]
[ Originating-Line-Info ]
[ Acct-Session-Id ]
[ Acct-Multi-Session-Id ]
[ State ]
* [ Class ]
[ Reply-Message ]
* [ Proxy-Info ]
* [ Route-Record ]
* [ AVP ]
*/
struct dict_object * cmd;
struct local_rules_definition rules[] =
{ { "Origin-AAA-Protocol", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Identifier", RULE_OPTIONAL, -1, 1 }
,{ "NAS-IP-Address", RULE_OPTIONAL, -1, 1 }
,{ "NAS-IPv6-Address", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port-Id", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port-Type", RULE_OPTIONAL, -1, 1 }
,{ "Service-Type", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IP-Address", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IPv6-Prefix", RULE_OPTIONAL, -1, 1 }
,{ "Framed-Interface-Id", RULE_OPTIONAL, -1, 1 }
,{ "Called-Station-Id", RULE_OPTIONAL, -1, 1 }
,{ "Calling-Station-Id", RULE_OPTIONAL, -1, 1 }
,{ "Originating-Line-Info", RULE_OPTIONAL, -1, 1 }
,{ "Acct-Session-Id", RULE_OPTIONAL, -1, 1 }
,{ "Acct-Multi-Session-Id", RULE_OPTIONAL, -1, 1 }
,{ "State", RULE_OPTIONAL, -1, 1 }
,{ "Class", RULE_OPTIONAL, -1,-1 }
,{ "Reply-Message", RULE_OPTIONAL, -1,-1 }
};
CHECK_dict_search( DICT_COMMAND, CMD_BY_NAME, "Re-Auth-Request", &cmd);
PARSE_loc_rules( rules, cmd );
}
/* Re-Auth-Answer */
{
/*
Add additional rules of the ABNF (compared to Base definition):
<RA-Answer> ::= < Diameter Header: 258, PXY >
< Session-Id >
{ Result-Code }
{ Origin-Host }
{ Origin-Realm }
[ User-Name ]
[ Origin-AAA-Protocol ]
[ Origin-State-Id ]
[ Error-Message ]
[ Error-Reporting-Host ]
* [ Failed-AVP ]
* [ Redirected-Host ]
[ Redirected-Host-Usage ]
[ Redirected-Host-Cache-Time ]
[ Service-Type ]
* [ Configuration-Token ]
[ Idle-Timeout ]
[ Authorization-Lifetime ]
[ Auth-Grace-Period ]
[ Re-Auth-Request-Type ]
[ State ]
* [ Class ]
* [ Reply-Message ]
[ Prompt ]
* [ Proxy-Info ]
* [ AVP ]
*/
struct dict_object * cmd;
struct local_rules_definition rules[] =
{ { "Origin-AAA-Protocol", RULE_OPTIONAL, -1, 1 }
,{ "Service-Type", RULE_OPTIONAL, -1, 1 }
,{ "Configuration-Token", RULE_OPTIONAL, -1,-1 }
,{ "Idle-Timeout", RULE_OPTIONAL, -1, 1 }
,{ "Authorization-Lifetime", RULE_OPTIONAL, -1, 1 }
,{ "Auth-Grace-Period", RULE_OPTIONAL, -1, 1 }
,{ "Re-Auth-Request-Type", RULE_OPTIONAL, -1, 1 }
,{ "State", RULE_OPTIONAL, -1, 1 }
,{ "Class", RULE_OPTIONAL, -1,-1 }
,{ "Reply-Message", RULE_OPTIONAL, -1,-1 }
,{ "Prompt", RULE_OPTIONAL, -1, 1 }
};
CHECK_dict_search( DICT_COMMAND, CMD_BY_NAME, "Re-Auth-Answer", &cmd);
PARSE_loc_rules( rules, cmd );
}
/* Session-Termination-Request */
{
/*
Add additional rules of the ABNF (compared to Base definition):
<ST-Request> ::= < Diameter Header: 275, REQ, PXY >
< Session-Id >
{ Origin-Host }
{ Origin-Realm }
{ Destination-Realm }
{ Auth-Application-Id }
{ Termination-Cause }
[ User-Name ]
[ Destination-Host ]
* [ Class ]
[ Origin-AAA-Protocol ]
[ Origin-State-Id ]
* [ Proxy-Info ]
* [ Route-Record ]
* [ AVP ]
*/
struct dict_object * cmd;
struct local_rules_definition rules[] =
{ { "Origin-AAA-Protocol", RULE_OPTIONAL, -1, 1 }
};
CHECK_dict_search( DICT_COMMAND, CMD_BY_NAME, "Session-Termination-Request", &cmd);
PARSE_loc_rules( rules, cmd );
}
/* Session-Termination-Answer */
{
/*
Add additional rules of the ABNF (compared to Base definition):
<ST-Answer> ::= < Diameter Header: 275, PXY >
< Session-Id >
{ Result-Code }
{ Origin-Host }
{ Origin-Realm }
[ User-Name ]
* [ Class ]
[ Error-Message ]
[ Error-Reporting-Host ]
* [ Failed-AVP ]
[ Origin-AAA-Protocol ]
[ Origin-State-Id ]
* [ Redirect-Host ]
[ Redirect-Host-Usase ]
[ Redirect-Max-Cache-Time ]
* [ Proxy-Info ]
* [ AVP ]
*/
struct dict_object * cmd;
struct local_rules_definition rules[] =
{ { "Origin-AAA-Protocol", RULE_OPTIONAL, -1, 1 }
};
CHECK_dict_search( DICT_COMMAND, CMD_BY_NAME, "Session-Termination-Answer", &cmd);
PARSE_loc_rules( rules, cmd );
}
/* Abort-Session-Request */
{
/*
Add additional rules of the ABNF (compared to Base definition):
<AS-Request> ::= < Diameter Header: 274, REQ, PXY >
< Session-Id >
{ Origin-Host }
{ Origin-Realm }
{ Destination-Realm }
{ Destination-Host }
{ Auth-Application-Id }
[ User-Name ]
[ Origin-AAA-Protocol ]
[ Origin-State-Id ]
[ NAS-Identifier ]
[ NAS-IP-Address ]
[ NAS-IPv6-Address ]
[ NAS-Port ]
[ NAS-Port-Id ]
[ NAS-Port-Type ]
[ Service-Type ]
[ Framed-IP-Address ]
[ Framed-IPv6-Prefix ]
[ Framed-Interface-Id ]
[ Called-Station-Id ]
[ Calling-Station-Id ]
[ Originating-Line-Info ]
[ Acct-Session-Id ]
[ Acct-Multi-Session-Id ]
[ State ]
* [ Class ]
* [ Reply-Message ]
* [ Proxy-Info ]
* [ Route-Record ]
* [ AVP ]
*/
struct dict_object * cmd;
struct local_rules_definition rules[] =
{ { "Origin-AAA-Protocol", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Identifier", RULE_OPTIONAL, -1, 1 }
,{ "NAS-IP-Address", RULE_OPTIONAL, -1, 1 }
,{ "NAS-IPv6-Address", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port-Id", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port-Type", RULE_OPTIONAL, -1, 1 }
,{ "Service-Type", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IP-Address", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IPv6-Prefix", RULE_OPTIONAL, -1, 1 }
,{ "Framed-Interface-Id", RULE_OPTIONAL, -1, 1 }
,{ "Called-Station-Id", RULE_OPTIONAL, -1, 1 }
,{ "Calling-Station-Id", RULE_OPTIONAL, -1, 1 }
,{ "Originating-Line-Info", RULE_OPTIONAL, -1, 1 }
,{ "Acct-Session-Id", RULE_OPTIONAL, -1, 1 }
,{ "Acct-Multi-Session-Id", RULE_OPTIONAL, -1, 1 }
,{ "State", RULE_OPTIONAL, -1, 1 }
,{ "Class", RULE_OPTIONAL, -1,-1 }
,{ "Reply-Message", RULE_OPTIONAL, -1,-1 }
};
CHECK_dict_search( DICT_COMMAND, CMD_BY_NAME, "Abort-Session-Request", &cmd);
PARSE_loc_rules( rules, cmd );
}
/* Abort-Session-Answer */
{
/*
Add additional rules of the ABNF (compared to Base definition):
<AS-Answer> ::= < Diameter Header: 274, PXY >
< Session-Id >
{ Result-Code }
{ Origin-Host }
{ Origin-Realm }
[ User-Name ]
[ Origin-AAA-Protocol ]
[ Origin-State-Id ]
[ State]
[ Error-Message ]
[ Error-Reporting-Host ]
* [ Failed-AVP ]
* [ Redirected-Host ]
[ Redirected-Host-Usage ]
[ Redirected-Max-Cache-Time ]
* [ Proxy-Info ]
* [ AVP ]
*/
struct dict_object * cmd;
struct local_rules_definition rules[] =
{ { "Origin-AAA-Protocol", RULE_OPTIONAL, -1, 1 }
,{ "State", RULE_OPTIONAL, -1, 1 }
};
CHECK_dict_search( DICT_COMMAND, CMD_BY_NAME, "Abort-Session-Answer", &cmd);
PARSE_loc_rules( rules, cmd );
}
/* Accounting-Request */
{
/*
Add additional rules of the ABNF (compared to Base definition):
<AC-Request> ::= < Diameter Header: 271, REQ, PXY >
< Session-Id >
{ Origin-Host }
{ Origin-Realm }
{ Destination-Realm }
{ Accounting-Record-Type }
{ Accounting-Record-Number }
[ Acct-Application-Id ]
[ Vendor-Specific-Application-Id ]
[ User-Name ]
[ Accounting-Sub-Session-Id ]
[ Acct-Session-Id ]
[ Acct-Multi-Session-Id ]
[ Origin-AAA-Protocol ]
[ Origin-State-Id ]
[ Destination-Host ]
[ Event-Timestamp ]
[ Acct-Delay-Time ]
[ NAS-Identifier ]
[ NAS-IP-Address ]
[ NAS-IPv6-Address ]
[ NAS-Port ]
[ NAS-Port-Id ]
[ NAS-Port-Type ]
* [ Class ]
[ Service-Type ]
[ Termination-Cause ]
[ Accounting-Input-Octets ]
[ Accounting-Input-Packets ]
[ Accounting-Output-Octets ]
[ Accounting-Output-Packets ]
[ Acct-Authentic ]
[ Accounting-Auth-Method ]
[ Acct-Link-Count ]
[ Acct-Session-Time ]
[ Acct-Tunnel-Connection ]
[ Acct-Tunnel-Packets-Lost ]
[ Callback-Id ]
[ Callback-Number ]
[ Called-Station-Id ]
[ Calling-Station-Id ]
* [ Connection-Info ]
[ Originating-Line-Info ]
[ Authorization-Lifetime ]
[ Session-Timeout ]
[ Idle-Timeout ]
[ Port-Limit ]
[ Accounting-Realtime-Required ]
[ Acct-Interim-Interval ]
* [ Filter-Id ]
* [ NAS-Filter-Rule ]
* [ Qos-Filter-Rule ]
[ Framed-AppleTalk-Link ]
[ Framed-AppleTalk-Network ]
[ Framed-AppleTalk-Zone ]
[ Framed-Compression ]
[ Framed-Interface-Id ]
[ Framed-IP-Address ]
[ Framed-IP-Netmask ]
* [ Framed-IPv6-Prefix ]
[ Framed-IPv6-Pool ]
* [ Framed-IPv6-Route ]
[ Framed-IPX-Network ]
[ Framed-MTU ]
[ Framed-Pool ]
[ Framed-Protocol ]
* [ Framed-Route ]
[ Framed-Routing ]
* [ Login-IP-Host ]
* [ Login-IPv6-Host ]
[ Login-LAT-Group ]
[ Login-LAT-Node ]
[ Login-LAT-Port ]
[ Login-LAT-Service ]
[ Login-Service ]
[ Login-TCP-Port ]
* [ Tunneling ]
* [ Proxy-Info ]
* [ Route-Record ]
* [ AVP ]
*/
struct dict_object * cmd;
struct local_rules_definition rules[] =
{ { "Origin-AAA-Protocol", RULE_OPTIONAL, -1, 1 }
,{ "Acct-Delay-Time", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Identifier", RULE_OPTIONAL, -1, 1 }
,{ "NAS-IP-Address", RULE_OPTIONAL, -1, 1 }
,{ "NAS-IPv6-Address", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port-Id", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port-Type", RULE_OPTIONAL, -1, 1 }
,{ "Class", RULE_OPTIONAL, -1,-1 }
,{ "Service-Type", RULE_OPTIONAL, -1, 1 }
,{ "Termination-Cause", RULE_OPTIONAL, -1, 1 }
,{ "Accounting-Input-Octets", RULE_OPTIONAL, -1, 1 }
,{ "Accounting-Input-Packets", RULE_OPTIONAL, -1, 1 }
,{ "Accounting-Output-Octets", RULE_OPTIONAL, -1, 1 }
,{ "Accounting-Output-Packets", RULE_OPTIONAL, -1, 1 }
,{ "Acct-Authentic", RULE_OPTIONAL, -1, 1 }
,{ "Accounting-Auth-Method", RULE_OPTIONAL, -1, 1 }
,{ "Acct-Link-Count", RULE_OPTIONAL, -1, 1 }
,{ "Acct-Session-Time", RULE_OPTIONAL, -1, 1 }
,{ "Acct-Tunnel-Connection", RULE_OPTIONAL, -1, 1 }
,{ "Acct-Tunnel-Packets-Lost", RULE_OPTIONAL, -1, 1 }
,{ "Callback-Id", RULE_OPTIONAL, -1, 1 }
,{ "Callback-Number", RULE_OPTIONAL, -1, 1 }
,{ "Called-Station-Id", RULE_OPTIONAL, -1, 1 }
,{ "Calling-Station-Id", RULE_OPTIONAL, -1, 1 }
,{ "Connect-Info", RULE_OPTIONAL, -1,-1 }
,{ "Originating-Line-Info", RULE_OPTIONAL, -1, 1 }
,{ "Authorization-Lifetime", RULE_OPTIONAL, -1, 1 }
,{ "Session-Timeout", RULE_OPTIONAL, -1, 1 }
,{ "Idle-Timeout", RULE_OPTIONAL, -1, 1 }
,{ "Port-Limit", RULE_OPTIONAL, -1, 1 }
,{ "Filter-Id", RULE_OPTIONAL, -1,-1 }
,{ "NAS-Filter-Rule", RULE_OPTIONAL, -1,-1 }
,{ "QoS-Filter-Rule", RULE_OPTIONAL, -1,-1 }
,{ "Framed-AppleTalk-Link", RULE_OPTIONAL, -1, 1 }
,{ "Framed-AppleTalk-Network", RULE_OPTIONAL, -1, 1 }
,{ "Framed-AppleTalk-Zone", RULE_OPTIONAL, -1, 1 }
,{ "Framed-Compression", RULE_OPTIONAL, -1, 1 }
,{ "Framed-Interface-Id", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IP-Address", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IPv6-Prefix", RULE_OPTIONAL, -1,-1 }
,{ "Framed-IPv6-Pool", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IPv6-Route", RULE_OPTIONAL, -1,-1 }
,{ "Framed-IP-Netmask", RULE_OPTIONAL, -1, 1 }
,{ "Framed-Route", RULE_OPTIONAL, -1,-1 }
,{ "Framed-Pool", RULE_OPTIONAL, -1, 1 }
,{ "Framed-IPX-Network", RULE_OPTIONAL, -1, 1 }
,{ "Framed-MTU", RULE_OPTIONAL, -1, 1 }
,{ "Framed-Protocol", RULE_OPTIONAL, -1, 1 }
,{ "Framed-Routing", RULE_OPTIONAL, -1, 1 }
,{ "Login-IP-Host", RULE_OPTIONAL, -1,-1 }
,{ "Login-IPv6-Host", RULE_OPTIONAL, -1,-1 }
,{ "Login-LAT-Group", RULE_OPTIONAL, -1, 1 }
,{ "Login-LAT-Node", RULE_OPTIONAL, -1, 1 }
,{ "Login-LAT-Port", RULE_OPTIONAL, -1, 1 }
,{ "Login-LAT-Service", RULE_OPTIONAL, -1, 1 }
,{ "Login-Service", RULE_OPTIONAL, -1, 1 }
,{ "Login-TCP-Port", RULE_OPTIONAL, -1, 1 }
,{ "Tunneling", RULE_OPTIONAL, -1,-1 }
};
CHECK_dict_search( DICT_COMMAND, CMD_BY_NAME, "Accounting-Request", &cmd);
PARSE_loc_rules( rules, cmd );
}
/* Accounting-Answer */
{
/*
Add additional rules of the ABNF (compared to Base definition):
<AC-Answer> ::= < Diameter Header: 271, PXY >
< Session-Id >
{ Result-Code }
{ Origin-Host }
{ Origin-Realm }
{ Accounting-Record-Type }
{ Accounting-Record-Number }
[ Acct-Application-Id ]
[ Vendor-Specific-Application-Id ]
[ User-Name ]
[ Accounting-Sub-Session-Id ]
[ Acct-Session-Id ]
[ Acct-Multi-Session-Id ]
[ Event-Timestamp ]
[ Error-Message ]
[ Error-Reporting-Host ]
* [ Failed-AVP ]
[ Origin-AAA-Protocol ]
[ Origin-State-Id ]
[ NAS-Identifier ]
[ NAS-IP-Address ]
[ NAS-IPv6-Address ]
[ NAS-Port ]
[ NAS-Port-Id ]
[ NAS-Port-Type ]
[ Service-Type ]
[ Termination-Cause ]
[ Accounting-Realtime-Required ]
[ Acct-Interim-Interval ]
* [ Class ]
* [ Proxy-Info ]
* [ Route-Record ]
* [ AVP ]
*/
struct dict_object * cmd;
struct local_rules_definition rules[] =
{ { "Origin-AAA-Protocol", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Identifier", RULE_OPTIONAL, -1, 1 }
,{ "NAS-IP-Address", RULE_OPTIONAL, -1, 1 }
,{ "NAS-IPv6-Address", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port-Id", RULE_OPTIONAL, -1, 1 }
,{ "NAS-Port-Type", RULE_OPTIONAL, -1, 1 }
,{ "Service-Type", RULE_OPTIONAL, -1, 1 }
,{ "Termination-Cause", RULE_OPTIONAL, -1, 1 }
};
CHECK_dict_search( DICT_COMMAND, CMD_BY_NAME, "Accounting-Answer", &cmd);
PARSE_loc_rules( rules, cmd );
}
}
LOG_D( "Extension 'Dictionary definitions for NASREQ' initialized");
return 0;
}
EXTENSION_ENTRY("dict_nasreq", dnr_entry);