| /********************************************************************************************************* |
| * Software License Agreement (BSD License) * |
| * Author: Sebastien Decugis <sdecugis@freediameter.net> * |
| * * |
| * Copyright (c) 2015, WIDE Project and NICT * |
| * All rights reserved. * |
| * * |
| * Redistribution and use of this software in source and binary forms, with or without modification, are * |
| * permitted provided that the following conditions are met: * |
| * * |
| * * Redistributions of source code must retain the above * |
| * copyright notice, this list of conditions and the * |
| * following disclaimer. * |
| * * |
| * * Redistributions in binary form must reproduce the above * |
| * copyright notice, this list of conditions and the * |
| * following disclaimer in the documentation and/or other * |
| * materials provided with the distribution. * |
| * * |
| * * Neither the name of the WIDE Project or NICT nor the * |
| * names of its contributors may be used to endorse or * |
| * promote products derived from this software without * |
| * specific prior written permission of WIDE Project and * |
| * NICT. * |
| * * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED * |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * |
| * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * |
| * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * |
| * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * |
| * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * |
| *********************************************************************************************************/ |
| |
| #include "fdproto-internal.h" |
| #include <time.h> |
| |
| /* This file contains helpers functions to be reused as callbacks in the struct dict_type_data structure. |
| There are three callbacks there: |
| |
| - type_encode : |
| - type_interpret : |
| Those two callbacks allow to manipulate more natural structures of data in the code, and to |
| map transparently these natural structures with the AVP-encoded format by calling the functions |
| msg_avp_value_encode or msg_avp_value_interpret. |
| - type_dump : |
| This callback if provided gives a more human-readable debug information. |
| |
| */ |
| |
| /****************************/ |
| /* Address AVP type */ |
| /****************************/ |
| |
| /* The interpret and encode functions work with a "struct sockaddr_storage" pointer for mapping |
| the contents of the AVP */ |
| |
| int fd_dictfct_Address_encode(void * data, union avp_value * avp_value) |
| { |
| sSS * ss = (sSS *) data; |
| uint16_t AddressType = 0; |
| size_t size = 0; |
| unsigned char * buf = NULL; |
| |
| TRACE_ENTRY("%p %p", data, avp_value); |
| CHECK_PARAMS( data && avp_value ); |
| |
| switch (ss->ss_family) { |
| case AF_INET: |
| { |
| /* We are encoding an IP address */ |
| sSA4 * sin = (sSA4 *)ss; |
| |
| AddressType = 1;/* see http://www.iana.org/assignments/address-family-numbers/ */ |
| size = 6; /* 2 for AddressType + 4 for data */ |
| |
| CHECK_MALLOC( buf = malloc(size) ); |
| |
| /* may not work because of alignment: *(uint32_t *)(buf+2) = htonl(sin->sin_addr.s_addr); */ |
| memcpy(buf + 2, &sin->sin_addr.s_addr, 4); |
| } |
| break; |
| |
| case AF_INET6: |
| { |
| /* We are encoding an IPv6 address */ |
| sSA6 * sin6 = (sSA6 *)ss; |
| |
| AddressType = 2;/* see http://www.iana.org/assignments/address-family-numbers/ */ |
| size = 18; /* 2 for AddressType + 16 for data */ |
| |
| CHECK_MALLOC( buf = malloc(size) ); |
| |
| /* The order is already good here */ |
| memcpy(buf + 2, &sin6->sin6_addr.s6_addr, 16); |
| |
| } |
| break; |
| |
| default: |
| CHECK_PARAMS( AddressType = 0 ); |
| } |
| |
| *(uint16_t *)buf = htons(AddressType); |
| |
| avp_value->os.len = size; |
| avp_value->os.data = buf; |
| |
| return 0; |
| } |
| |
| int fd_dictfct_Address_interpret(union avp_value * avp_value, void * interpreted) |
| { |
| uint16_t AddressType = 0; |
| unsigned char * buf; |
| |
| TRACE_ENTRY("%p %p", avp_value, interpreted); |
| |
| CHECK_PARAMS( avp_value && interpreted && (avp_value->os.len >= 2) ); |
| |
| AddressType = ntohs(*(uint16_t *)avp_value->os.data); |
| buf = &avp_value->os.data[2]; |
| |
| switch (AddressType) { |
| case 1 /* IP */: |
| { |
| sSA4 * sin = (sSA4 *)interpreted; |
| |
| CHECK_PARAMS( avp_value->os.len == 6 ); |
| |
| sin->sin_family = AF_INET; |
| /* sin->sin_addr.s_addr = ntohl( * (uint32_t *) buf); -- may not work because of bad alignment */ |
| memcpy(&sin->sin_addr.s_addr, buf, 4); |
| } |
| break; |
| |
| case 2 /* IP6 */: |
| { |
| sSA6 * sin6 = (sSA6 *)interpreted; |
| |
| CHECK_PARAMS( avp_value->os.len == 18 ); |
| |
| sin6->sin6_family = AF_INET6; |
| memcpy(&sin6->sin6_addr.s6_addr, buf, 16); |
| |
| } |
| break; |
| |
| default: |
| CHECK_PARAMS( AddressType = 0 ); |
| } |
| |
| return 0; |
| } |
| |
| /* Dump the content of an Address AVP */ |
| DECLARE_FD_DUMP_PROTOTYPE(fd_dictfct_Address_dump, union avp_value * avp_value) |
| { |
| union { |
| sSA sa; |
| sSS ss; |
| sSA4 sin; |
| sSA6 sin6; |
| } s; |
| uint16_t fam; |
| |
| FD_DUMP_HANDLE_OFFSET(); |
| |
| memset(&s, 0, sizeof(s)); |
| |
| /* The first two octets represent the address family, http://www.iana.org/assignments/address-family-numbers/ */ |
| if (avp_value->os.len < 2) { |
| CHECK_MALLOC_DO( fd_dump_extend(FD_DUMP_STD_PARAMS, "[invalid length: %zd]", avp_value->os.len), return NULL); |
| return *buf; |
| } |
| |
| /* Following octets are the address in network byte order already */ |
| fam = avp_value->os.data[0] << 8 | avp_value->os.data[1]; |
| switch (fam) { |
| case 1: |
| /* IP */ |
| s.sa.sa_family = AF_INET; |
| if ((avp_value->os.len != 6) && (avp_value->os.len != 8)) { |
| CHECK_MALLOC_DO( fd_dump_extend(FD_DUMP_STD_PARAMS, "[invalid IP length: %zd]", avp_value->os.len), return NULL); |
| return *buf; |
| } |
| memcpy(&s.sin.sin_addr.s_addr, avp_value->os.data + 2, 4); |
| if (avp_value->os.len == 8) |
| memcpy(&s.sin.sin_port, avp_value->os.data + 6, 2); |
| break; |
| case 2: |
| /* IP6 */ |
| s.sa.sa_family = AF_INET6; |
| if ((avp_value->os.len != 18) && (avp_value->os.len != 20)) { |
| CHECK_MALLOC_DO( fd_dump_extend(FD_DUMP_STD_PARAMS, "[invalid IP6 length: %zd]", avp_value->os.len), return NULL); |
| return *buf; |
| } |
| memcpy(&s.sin6.sin6_addr.s6_addr, avp_value->os.data + 2, 16); |
| if (avp_value->os.len == 20) |
| memcpy(&s.sin6.sin6_port, avp_value->os.data + 18, 2); |
| break; |
| case 8: |
| /* E.164 */ |
| CHECK_MALLOC_DO( fd_dump_extend(FD_DUMP_STD_PARAMS, "%.*s", (int)(avp_value->os.len-2), avp_value->os.data+2), return NULL); |
| return *buf; |
| default: |
| CHECK_MALLOC_DO( fd_dump_extend(FD_DUMP_STD_PARAMS, "[unsupported family: 0x%hx]", fam), return NULL); |
| return *buf; |
| } |
| |
| return fd_sa_dump(FD_DUMP_STD_PARAMS, &s.sa, NI_NUMERICHOST); |
| } |
| |
| |
| |
| /*******************************/ |
| /* UTF8String AVP type */ |
| /*******************************/ |
| |
| /* Dump the AVP in a natural human-readable format. This dumps the complete length of the AVP, it is up to the caller to truncate if needed */ |
| DECLARE_FD_DUMP_PROTOTYPE(fd_dictfct_UTF8String_dump, union avp_value * avp_value) |
| { |
| size_t l; |
| FD_DUMP_HANDLE_OFFSET(); |
| |
| l = avp_value->os.len; |
| /* Just in case the string ends in invalid UTF-8 chars, we shorten it */ |
| while ((l > 0) && (avp_value->os.data[l - 1] & 0x80)) { |
| /* this byte is start or cont. of multibyte sequence, as we do not know the next byte we need to delete it. */ |
| l--; |
| if (avp_value->os.data[l] & 0x40) |
| break; /* This was a start byte, we can stop the loop */ |
| } |
| |
| CHECK_MALLOC_DO( fd_dump_extend(FD_DUMP_STD_PARAMS, "\"%.*s\"", (int)l, (char *)avp_value->os.data), return NULL); |
| |
| return *buf; |
| } |
| |
| |
| /*******************************/ |
| /* Time AVP type */ |
| /*******************************/ |
| |
| /* The interpret and encode functions work with a "time_t" pointer for mapping |
| the contents of the AVP */ |
| |
| /* Unix Epoch starts 1970-01-01, NTP 0 is at 1900-01-01 */ |
| #define DIFF_EPOCH_TO_NTP ((365*(1970-1900) + 17ul) * 24 * 60 * 60) |
| |
| static int diameter_string_to_time_t(const char *str, size_t len, time_t *result) { |
| time_t time_stamp; |
| CHECK_PARAMS(len == 4); |
| |
| time_stamp = (((unsigned long)(str[0]&0xff))<<24) + ((str[1]&0xff)<<16) + ((str[2]&0xff)<<8) + ((str[3]&0xff)); |
| time_stamp -= DIFF_EPOCH_TO_NTP; |
| #ifdef FIX__NEEDED_FOR_YEAR_2036_AND_LATER |
| /* NTP overflows in 2036; after that, values start at zero again */ |
| #define NTP_OVERFLOW_CORRECTION (0x100000000ull) |
| /* XXX: debug and find correct conversion */ |
| if (str[0] & 0x80 == 0x00) { |
| time_stamp += NTP_OVERFLOW_CORRECTION; |
| } |
| #endif |
| *result = time_stamp; |
| return 0; |
| } |
| |
| static int time_t_to_diameter_string(time_t time_stamp, char **result) { |
| uint64_t out = time_stamp; |
| char *conv; |
| /* XXX: 2036 fix */ |
| out += DIFF_EPOCH_TO_NTP; |
| CHECK_PARAMS( (out >> 32) == 0); |
| |
| CHECK_MALLOC(conv=(char *)malloc(5)); |
| |
| conv[0] = (out>>24) & 0xff; |
| conv[1] = (out>>16) & 0xff; |
| conv[2] = (out>> 8) & 0xff; |
| conv[3] = out & 0xff; |
| conv[4] = '\0'; |
| *result = conv; |
| return 0; |
| } |
| |
| int fd_dictfct_Time_encode(void * data, union avp_value * avp_value) |
| { |
| char * buf; |
| size_t len; |
| |
| TRACE_ENTRY("%p %p", data, avp_value); |
| CHECK_PARAMS( data && avp_value ); |
| |
| CHECK_FCT( time_t_to_diameter_string( *((time_t *)data), &buf) ); |
| /* FIXME: return len from the function above? */ len = 4; |
| |
| avp_value->os.len = len; |
| avp_value->os.data = (uint8_t *)buf; |
| return 0; |
| } |
| |
| int fd_dictfct_Time_interpret(union avp_value * avp_value, void * interpreted) |
| { |
| TRACE_ENTRY("%p %p", avp_value, interpreted); |
| |
| CHECK_PARAMS( avp_value && interpreted ); |
| |
| return diameter_string_to_time_t((const char *)avp_value->os.data, avp_value->os.len, interpreted); |
| } |
| |
| static void _format_offs (long offset, char *buf) { |
| int offs_hours, offs_minutes, sgn = 1; |
| if (offset < 0) { |
| offset = -offset; |
| sgn = 1; |
| } |
| offs_hours = (int)(offset/3600); |
| offs_minutes = (offset%3600)/60; |
| |
| char* s = buf; |
| |
| *(s++) = sgn == 1 ? '+' : '-'; |
| *(s++) = (char)(offs_hours/10) + '0'; |
| *(s++) = offs_hours%10 + '0'; |
| |
| if (offs_minutes == 0) { |
| *(s++) = '\0'; |
| } else { |
| *(s++) = (char)(offs_minutes/10) + '0'; |
| *(s++) = offs_minutes%10 + '0'; |
| *(s++) = '\0'; |
| } |
| } |
| |
| DECLARE_FD_DUMP_PROTOTYPE(fd_dictfct_Time_dump, union avp_value * avp_value) |
| { |
| time_t val; |
| struct tm conv; |
| char tz_buf[7]; |
| |
| FD_DUMP_HANDLE_OFFSET(); |
| |
| if (avp_value->os.len != 4) { |
| CHECK_MALLOC_DO( fd_dump_extend(FD_DUMP_STD_PARAMS, "[invalid length: %zd]", avp_value->os.len), return NULL); |
| return *buf; |
| } |
| |
| if (diameter_string_to_time_t((char *)avp_value->os.data, avp_value->os.len, &val) != 0) { |
| CHECK_MALLOC_DO( fd_dump_extend(FD_DUMP_STD_PARAMS, "[time conversion error]"), return NULL); |
| return *buf; |
| } |
| |
| CHECK_MALLOC_DO( localtime_r(&val, &conv), return NULL); |
| _format_offs(conv.tm_gmtoff, tz_buf); |
| CHECK_MALLOC_DO( fd_dump_extend(FD_DUMP_STD_PARAMS, "%d%02d%02dT%02d%02d%02d%s", conv.tm_year+1900, conv.tm_mon+1, conv.tm_mday, conv.tm_hour, conv.tm_min, conv.tm_sec, tz_buf), return NULL); |
| return *buf; |
| } |
| |
| /* Check that a given AVP value contains all the characters from data in the same order */ |
| static char error_message[80]; |
| int fd_dictfct_CharInOS_check(void * data, union avp_value * val, char ** error_msg) |
| { |
| char * inChar = data; |
| char * inData = (char *)val->os.data; |
| int i = 0; |
| CHECK_PARAMS(data); |
| while (*inChar != '\0') { |
| while (i < val->os.len) { |
| if (*inChar == inData[i++]) { |
| inChar++; |
| break; |
| } |
| } |
| if (i >= val->os.len) |
| break; |
| } |
| if (*inChar == '\0') |
| return 0; |
| |
| if (error_msg) { |
| snprintf(error_message, sizeof(error_message), "Could not find '%c' in AVP", *inChar); |
| *error_msg = error_message; |
| } |
| return EBADMSG; |
| } |