blob: 3da8d2e9260fe3c1d998b961d2f886617922909c [file] [log] [blame]
/*********************************************************************************************************
* Software License Agreement (BSD License) *
* Author: Sebastien Decugis <sdecugis@freediameter.net> *
* *
* Copyright (c) 2015, WIDE Project and NICT *
* All rights reserved. *
* *
* Redistribution and use of this software in source and binary forms, with or without modification, are *
* permitted provided that the following conditions are met: *
* *
* * Redistributions of source code must retain the above *
* copyright notice, this list of conditions and the *
* following disclaimer. *
* *
* * Redistributions in binary form must reproduce the above *
* copyright notice, this list of conditions and the *
* following disclaimer in the documentation and/or other *
* materials provided with the distribution. *
* *
* * Neither the name of the WIDE Project or NICT nor the *
* names of its contributors may be used to endorse or *
* promote products derived from this software without *
* specific prior written permission of WIDE Project and *
* NICT. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR *
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS *
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR *
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF *
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
*********************************************************************************************************/
/* Messages module.
*
* This module allows to manipulate the msg and avp structures that represents a Diameter message in memory.
*/
#include "fdproto-internal.h"
#include <sys/param.h>
/* Type of object */
enum msg_objtype {
MSG_MSG = 1,
MSG_AVP
};
/* Chaining of elements as a free hierarchy */
struct msg_avp_chain {
struct fd_list chaining; /* Chaining information at this level. */
struct fd_list children; /* sentinel for the children of this object */
enum msg_objtype type; /* Type of this object, _MSG_MSG or _MSG_AVP */
};
/* Return the chain information from an AVP or MSG. Since it's the first field, we just cast */
#define _C(_x) ((struct msg_avp_chain *)(_x))
/* Some details about chaining:
*
* A message is made of a header ( msg ) and 0 or more AVPs ( avp ).
* The structure is a kind of tree, where some AVPs (grouped AVPs) can contain other AVPs.
* Example:
* msg
* |-avp
* |-gavp
* | |-avp
* | |-avp
* | \-avp
* |-avp
* \-avp
*
* Each item (msg or avp) structure begins with a msg_avp_chain structure.
* The element at the top of the hierarchy (msg in our example) has all the fields of its "chaining" equal to the same value.
*
* All elements at the same level are linked by their "chaining" list.
* The "children" list is the sentinel for the lists of children of this element.
*/
/* The following definitions are used to recognize objects in memory. */
#define MSG_MSG_EYEC (0x11355463)
#define MSG_AVP_EYEC (0x11355467)
/* The following structure represents an AVP instance. */
struct avp {
struct msg_avp_chain avp_chain; /* Chaining information of this AVP */
int avp_eyec; /* Must be equal to MSG_AVP_EYEC */
struct dict_object *avp_model; /* If not NULL, pointer to the dictionary object of this avp */
struct {
avp_code_t mnf_code;
vendor_id_t mnf_vendor;
} avp_model_not_found; /* When model resolution has failed, store a copy of the data here to avoid searching again */
struct avp_hdr avp_public; /* AVP data that can be managed by other modules */
uint8_t *avp_source; /* If the message was parsed from a buffer, pointer to the AVP data start in the buffer. */
uint8_t *avp_rawdata; /* when the data can not be interpreted, the raw data is copied here. The header is not part of it. */
size_t avp_rawlen; /* The length of the raw buffer. */
union avp_value avp_storage; /* To avoid many alloc/free, store the integer values here and set avp_public.avp_data to &storage */
int avp_mustfreeos; /* 1 if an octetstring is malloc'd in avp_storage and must be freed. */
};
/* Macro to compute the AVP header size */
#define AVPHDRSZ_NOVEND 8
#define AVPHDRSZ_VENDOR 12
#define GETAVPHDRSZ( _flag ) ((_flag & AVP_FLAG_VENDOR) ? AVPHDRSZ_VENDOR : AVPHDRSZ_NOVEND)
/* Macro to cast a msg_avp_t */
#define _A(_x) ((struct avp *)(_x))
/* Check the type and eyecatcher */
#define CHECK_AVP(_x) ((_x) && (_C(_x)->type == MSG_AVP) && (_A(_x)->avp_eyec == MSG_AVP_EYEC))
/* The following structure represents an instance of a message (command and children AVPs). */
struct msg {
struct msg_avp_chain msg_chain; /* List of the AVPs in the message */
int msg_eyec; /* Must be equal to MSG_MSG_EYEC */
struct dict_object *msg_model; /* If not NULL, pointer to the dictionary object of this message */
struct {
command_code_t mnf_code;
uint8_t mnf_flags;
} msg_model_not_found; /* When model resolution has failed, store a copy of the data here to avoid searching again */
struct msg_hdr msg_public; /* Message data that can be managed by extensions. */
uint8_t *msg_rawbuffer; /* data buffer that was received, saved during fd_msg_parse_buffer and freed in fd_msg_parse_dict */
int msg_routable; /* Is this a routable message? (0: undef, 1: routable, 2: non routable) */
struct msg *msg_query; /* the associated query if the message is a received answer */
int msg_associated; /* and the counter part information in the query, to avoid double free */
struct rt_data *msg_rtdata; /* Routing list for the query */
struct session *msg_sess; /* Cached message session if any */
struct {
void (*anscb)(void *, struct msg **);
void (*expirecb)(void *, DiamId_t, size_t, struct msg **);
void * data;
struct timespec timeout;
} msg_cb; /* Callback to be called when an answer is received, or timeout expires, if not NULL */
DiamId_t msg_src_id; /* Diameter Id of the peer this message was received from. This string is malloc'd and must be freed */
size_t msg_src_id_len; /* cached length of this string */
struct fd_msg_pmdl msg_pmdl; /* list of permessagedata structures. */
};
/* Macro to compute the message header size */
#define GETMSGHDRSZ() 20
/* Macro to cast a msg_avp_t */
#define _M(_x) ((struct msg *)(_x))
/* Check the type and eyecatcher */
#define CHECK_MSG(_x) ((_x) && (_C(_x)->type == MSG_MSG) && (_M(_x)->msg_eyec == MSG_MSG_EYEC))
#define VALIDATE_OBJ(_x) ( (CHECK_MSG(_x)) || (CHECK_AVP(_x)) )
/* Macro to validate a MSGFL_ value */
#define CHECK_AVPFL(_fl) ( ((_fl) & (- (AVPFL_MAX << 1) )) == 0 )
#define CHECK_MSGFL(_fl) ( ((_fl) & (- (MSGFL_MAX << 1) )) == 0 )
/* initial sizes of AVP from their types, in bytes. */
static int avp_value_sizes[] = {
0, /* AVP_TYPE_GROUPED: size is dynamic */
0, /* AVP_TYPE_OCTETSTRING: size is dynamic */
4, /* AVP_TYPE_INTEGER32: size is 32 bits */
8, /* AVP_TYPE_INTEGER64: size is 64 bits */
4, /* AVP_TYPE_UNSIGNED32: size is 32 bits */
8, /* AVP_TYPE_UNSIGNED64: size is 64 bits */
4, /* AVP_TYPE_FLOAT32: size is 32 bits */
8 /* AVP_TYPE_FLOAT64: size is 64 bits */
};
#define CHECK_BASETYPE( _type ) ( ((_type) <= AVP_TYPE_MAX) && ((_type) >= 0) )
#define GETINITIALSIZE( _type, _vend ) (avp_value_sizes[ CHECK_BASETYPE(_type) ? (_type) : 0] + GETAVPHDRSZ(_vend))
/* Forward declaration */
static int parsedict_do_msg(struct dictionary * dict, struct msg * msg, int only_hdr, struct fd_pei *error_info);
/***************************************************************************************************************/
/* Creating objects */
/* Initialize a msg_avp_chain structure */
static void init_chain(struct msg_avp_chain * chain, int type)
{
fd_list_init( &chain->chaining, (void *)chain);
fd_list_init( &chain->children, (void *)chain);
chain->type = type;
}
/* Initialize a new AVP object */
static void init_avp ( struct avp * avp )
{
TRACE_ENTRY("%p", avp);
memset(avp, 0, sizeof(struct avp));
init_chain( &avp->avp_chain, MSG_AVP);
avp->avp_eyec = MSG_AVP_EYEC;
}
/* Initialize a new MSG object */
static void init_msg ( struct msg * msg )
{
TRACE_ENTRY("%p", msg);
memset(msg, 0, sizeof(struct msg));
init_chain( &msg->msg_chain, MSG_MSG);
msg->msg_eyec = MSG_MSG_EYEC;
fd_list_init(&msg->msg_pmdl.sentinel, NULL);
CHECK_POSIX_DO( pthread_mutex_init(&msg->msg_pmdl.lock, NULL), );
}
/* Create a new AVP instance */
int fd_msg_avp_new ( struct dict_object * model, int flags, struct avp ** avp )
{
struct avp *new = NULL;
TRACE_ENTRY("%p %x %p", model, flags, avp);
/* Check the parameters */
CHECK_PARAMS( avp && CHECK_AVPFL(flags) );
if (model) {
enum dict_object_type dicttype;
CHECK_PARAMS( (fd_dict_gettype(model, &dicttype) == 0) && (dicttype == DICT_AVP) );
}
/* Create a new object */
CHECK_MALLOC( new = malloc (sizeof(struct avp)) );
/* Initialize the fields */
init_avp(new);
if (model) {
struct dict_avp_data dictdata;
CHECK_FCT_DO( fd_dict_getval(model, &dictdata), { free(new); return __ret__; } );
new->avp_model = model;
new->avp_public.avp_code = dictdata.avp_code;
new->avp_public.avp_flags = dictdata.avp_flag_val;
new->avp_public.avp_len = GETINITIALSIZE(dictdata.avp_basetype, dictdata.avp_flag_val );
new->avp_public.avp_vendor = dictdata.avp_vendor;
}
if (flags & AVPFL_SET_BLANK_VALUE) {
new->avp_public.avp_value = &new->avp_storage;
}
if (flags & AVPFL_SET_RAWDATA_FROM_AVP) {
new->avp_rawlen = (*avp)->avp_public.avp_len - GETAVPHDRSZ( (*avp)->avp_public.avp_flags );
if (new->avp_rawlen) {
CHECK_MALLOC_DO( new->avp_rawdata = malloc(new->avp_rawlen), { free(new); return __ret__; } );
memset(new->avp_rawdata, 0x00, new->avp_rawlen);
}
}
/* The new object is ready, return */
*avp = new;
return 0;
}
int fd_msg_new ( struct dict_object * model, int flags, struct msg ** msg )
{
return fd_msg_new_appl( model, NULL, flags, msg );
}
/* Create a new message instance */
int fd_msg_new_appl ( struct dict_object * model, struct dict_object * appl, int flags, struct msg ** msg )
{
struct msg * new = NULL;
TRACE_ENTRY("%p %x %p", model, flags, msg);
/* Check the parameters */
CHECK_PARAMS( msg && CHECK_MSGFL(flags) );
if (model) {
enum dict_object_type dicttype;
CHECK_PARAMS( (fd_dict_gettype(model, &dicttype) == 0) && (dicttype == DICT_COMMAND) );
}
/* Create a new object */
CHECK_MALLOC( new = malloc (sizeof(struct msg)) );
/* Initialize the fields */
init_msg(new);
new->msg_public.msg_version = DIAMETER_VERSION;
new->msg_public.msg_length = GETMSGHDRSZ(); /* This will be updated later */
if (model) {
struct dictionary *dict;
struct dict_cmd_data dictdata;
struct dict_object *dictappl;
CHECK_FCT_DO( fd_dict_getdict(model, &dict), { free(new); return __ret__; } );
CHECK_FCT_DO( fd_dict_getval(model, &dictdata), { free(new); return __ret__; } );
new->msg_model = model;
new->msg_public.msg_flags = dictdata.cmd_flag_val;
new->msg_public.msg_code = dictdata.cmd_code;
/* Initialize application from the parent, if any */
if (appl)
dictappl = appl;
else
CHECK_FCT_DO( fd_dict_search( dict, DICT_APPLICATION, APPLICATION_OF_COMMAND, model, &dictappl, 0), { free(new); return __ret__; } );
if (dictappl != NULL) {
struct dict_application_data appdata;
CHECK_FCT_DO( fd_dict_getval(dictappl, &appdata), { free(new); return __ret__; } );
new->msg_public.msg_appl = appdata.application_id;
}
}
if (flags & MSGFL_ALLOC_ETEID) {
new->msg_public.msg_eteid = fd_msg_eteid_get();
}
/* The new object is ready, return */
*msg = new;
return 0;
}
static int bufferize_avp(unsigned char * buffer, size_t buflen, size_t * offset, struct avp * avp);
static int parsebuf_list(unsigned char * buf, size_t buflen, struct fd_list * head);
static int parsedict_do_chain(struct dictionary * dict, struct fd_list * head, int mandatory, struct fd_pei *error_info);
/* Create answer from a request */
int fd_msg_new_answer_from_req ( struct dictionary * dict, struct msg ** msg, int flags )
{
struct dict_object * model = NULL;
struct msg *qry, *ans;
struct session * sess = NULL;
TRACE_ENTRY("%p %x", msg, flags);
/* Check the parameters */
CHECK_PARAMS( msg );
qry = *msg;
CHECK_PARAMS( CHECK_MSG(qry) && (qry->msg_public.msg_flags & CMD_FLAG_REQUEST) );
if (! (flags & MSGFL_ANSW_NOSID)) {
/* Get the session of the message */
CHECK_FCT_DO( fd_msg_sess_get(dict, qry, &sess, NULL), /* ignore an error */ );
}
/* Find the model for the answer */
if (flags & MSGFL_ANSW_ERROR) {
/* The model is the generic error format */
CHECK_FCT( fd_dict_get_error_cmd(dict, &model) );
} else {
/* The model is the answer corresponding to the query. It supposes that these are defined in the dictionary */
CHECK_FCT_DO( parsedict_do_msg( dict, qry, 1, NULL), /* continue */ );
if (qry->msg_model) {
CHECK_FCT( fd_dict_search ( dict, DICT_COMMAND, CMD_ANSWER, qry->msg_model, &model, EINVAL ) );
}
}
/* Create the answer */
CHECK_FCT( fd_msg_new( model, flags, &ans ) );
/* Set informations in the answer as in the query */
ans->msg_public.msg_code = qry->msg_public.msg_code; /* useful for MSGFL_ANSW_ERROR */
ans->msg_public.msg_appl = qry->msg_public.msg_appl;
ans->msg_public.msg_eteid = qry->msg_public.msg_eteid;
ans->msg_public.msg_hbhid = qry->msg_public.msg_hbhid;
/* Add the Session-Id AVP if session is known */
if (sess && dict) {
static struct dict_object * sess_id_avp = NULL;
os0_t sid;
size_t sidlen;
struct avp * avp;
union avp_value val;
if (!sess_id_avp) {
CHECK_FCT_DO( fd_dict_search( dict, DICT_AVP, AVP_BY_NAME, "Session-Id", &sess_id_avp, ENOENT), { free(ans); return __ret__; } );
}
CHECK_FCT_DO( fd_sess_getsid ( sess, &sid, &sidlen ), { free(ans); return __ret__; } );
CHECK_FCT_DO( fd_msg_avp_new ( sess_id_avp, 0, &avp ), { free(ans); return __ret__; } );
val.os.data = sid;
val.os.len = sidlen;
CHECK_FCT_DO( fd_msg_avp_setvalue( avp, &val ), { free(avp); free(ans); return __ret__; } );
CHECK_FCT_DO( fd_msg_avp_add( ans, MSG_BRW_FIRST_CHILD, avp ), { free(avp); free(ans); return __ret__; } );
ans->msg_sess = sess;
CHECK_FCT_DO( fd_sess_ref_msg(sess), { free(ans); return __ret__; } );
}
/* Add all Proxy-Info AVPs from the query if any */
if (! (flags & MSGFL_ANSW_NOPROXYINFO)) {
struct avp * avp;
struct fd_pei pei;
struct fd_list avpcpylist = FD_LIST_INITIALIZER(avpcpylist);
CHECK_FCT_DO( fd_msg_browse(qry, MSG_BRW_FIRST_CHILD, &avp, NULL) , { free(ans); return __ret__; } );
while (avp) {
if ( (avp->avp_public.avp_code == AC_PROXY_INFO)
&& (avp->avp_public.avp_vendor == 0) ) {
/* We found a Proxy-Info, need to duplicate it in the answer */
/* In order to avoid dealing with all different possibilities of states, we just create a buffer then parse it */
unsigned char * buf = NULL;
size_t offset = 0;
/* Create a buffer with the content of the AVP. This is easier than going through the list */
CHECK_FCT_DO( fd_msg_update_length(avp), { free(ans); return __ret__; } );
CHECK_MALLOC_DO( buf = malloc(avp->avp_public.avp_len), { free(ans); return __ret__; } );
CHECK_FCT_DO( bufferize_avp(buf, avp->avp_public.avp_len, &offset, avp), { free(buf); free(ans); return __ret__; } );
/* Now we parse this buffer to create a copy AVP */
CHECK_FCT_DO( parsebuf_list(buf, avp->avp_public.avp_len, &avpcpylist), { free(buf); free(ans); return __ret__; } );
/* Parse dictionary objects now to remove the dependency on the buffer */
CHECK_FCT_DO( parsedict_do_chain(dict, &avpcpylist, 0, &pei), { /* leaking the avpcpylist -- this should never happen anyway */ free(buf); free(ans); return __ret__; } );
/* Done for this AVP */
free(buf);
/* We move this AVP now so that we do not parse again in next loop */
fd_list_move_end(&ans->msg_chain.children, &avpcpylist);
}
/* move to next AVP in the message, we can have several Proxy-Info instances */
CHECK_FCT_DO( fd_msg_browse(avp, MSG_BRW_NEXT, &avp, NULL), { free(ans); return __ret__; } );
}
}
/* associate with query */
ans->msg_query = qry;
qry->msg_associated = 1;
/* Done */
*msg = ans;
return 0;
}
/***************************************************************************************************************/
/* Explore a message */
int fd_msg_browse_internal ( msg_or_avp * reference, enum msg_brw_dir dir, msg_or_avp ** found, int * depth )
{
struct msg_avp_chain *result = NULL;
int diff = 0;
struct fd_list *li = NULL;
TRACE_ENTRY("%p %d %p %p", reference, dir, found, depth);
/* Initialize the "found" result if any */
if (found)
*found = NULL;
/* Check the parameters */
CHECK_PARAMS( VALIDATE_OBJ(reference) );
TRACE_DEBUG(FCTS, "chaining(%p): nxt:%p prv:%p hea:%p top:%p",
&_C(reference)->chaining,
_C(reference)->chaining.next,
_C(reference)->chaining.prev,
_C(reference)->chaining.head,
_C(reference)->chaining.o);
TRACE_DEBUG(FCTS, "children(%p): nxt:%p prv:%p hea:%p top:%p",
&_C(reference)->children,
_C(reference)->children.next,
_C(reference)->children.prev,
_C(reference)->children.head,
_C(reference)->children.o);
/* Now search */
switch (dir) {
case MSG_BRW_NEXT:
/* Check the reference is an AVP */
CHECK_PARAMS( _C(reference)->type == MSG_AVP );
li = &_C(reference)->chaining;
/* Check if the next element is not the sentinel ( ==> the parent) */
if (li->next != li->head)
result = _C(li->next->o);
break;
case MSG_BRW_PREV:
/* Check the reference is an AVP */
CHECK_PARAMS( _C(reference)->type == MSG_AVP );
li = &_C(reference)->chaining;
/* Check if the prev element is not the sentinel ( ==> the parent) */
if (li->prev != li->head)
result = _C(li->prev->o);
break;
case MSG_BRW_FIRST_CHILD:
li = &_C(reference)->children;
if (! FD_IS_LIST_EMPTY(li)) {
result = _C(li->next->o);
diff = 1;
}
break;
case MSG_BRW_LAST_CHILD:
li = &_C(reference)->children;
if (! FD_IS_LIST_EMPTY(li)) {
result = _C(li->prev->o);
diff = 1;
}
break;
case MSG_BRW_PARENT:
/* If the object is not chained, it has no parent */
li = &_C(reference)->chaining;
if (li != li->head) {
/* The sentinel is the parent's children list */
result = _C(li->head->o);
diff = -1;
}
break;
case MSG_BRW_WALK:
/* First, try to find a child */
li = &_C(reference)->children;
if ( ! FD_IS_LIST_EMPTY(li) ) {
result = _C(li->next->o);
diff = 1;
break;
}
/* Then try to find a "next" at this level or one of the parent's */
li = &_C(reference)->chaining;
do {
/* If this element has a "next" element, return it */
if (li->next != li->head) {
result = _C(li->next->o);
break;
}
/* otherwise, check if we have a parent */
if (li == li->head) {
/* no parent */
break;
}
/* Go to the parent's chaining information and loop */
diff -= 1;
li = &_C(li->head->o)->chaining;
} while (1);
break;
default:
/* Other directions are invalid */
CHECK_PARAMS( dir = 0 );
}
/* Save the found object, if any */
if (found && result)
*found = (void *)result;
/* Modify the depth according to the walk direction */
if (depth && diff)
(*depth) += diff;
/* Return ENOENT if found was NULL */
if ((!found) && (!result))
return ENOENT;
else
return 0;
}
/* Add an AVP into a tree */
int fd_msg_avp_add ( msg_or_avp * reference, enum msg_brw_dir dir, struct avp *avp)
{
TRACE_ENTRY("%p %d %p", reference, dir, avp);
/* Check the parameters */
CHECK_PARAMS( VALIDATE_OBJ(reference) && CHECK_AVP(avp) && FD_IS_LIST_EMPTY(&avp->avp_chain.chaining) );
/* Now insert */
switch (dir) {
case MSG_BRW_NEXT:
/* Check the reference is an AVP -- we do not chain AVPs at same level as msgs. */
CHECK_PARAMS( _C(reference)->type == MSG_AVP );
/* Insert the new avp after the reference */
fd_list_insert_after( &_A(reference)->avp_chain.chaining, &avp->avp_chain.chaining );
break;
case MSG_BRW_PREV:
/* Check the reference is an AVP */
CHECK_PARAMS( _C(reference)->type == MSG_AVP );
/* Insert the new avp before the reference */
fd_list_insert_before( &_A(reference)->avp_chain.chaining, &avp->avp_chain.chaining );
break;
case MSG_BRW_FIRST_CHILD:
/* Insert the new avp after the children sentinel */
fd_list_insert_after( &_C(reference)->children, &avp->avp_chain.chaining );
break;
case MSG_BRW_LAST_CHILD:
/* Insert the new avp before the children sentinel */
fd_list_insert_before( &_C(reference)->children, &avp->avp_chain.chaining );
break;
default:
/* Other directions are invalid */
CHECK_PARAMS( dir = 0 );
}
return 0;
}
/* Search a given AVP model in a message */
int fd_msg_search_avp ( struct msg * msg, struct dict_object * what, struct avp ** avp )
{
struct avp * nextavp;
struct dict_avp_data dictdata;
enum dict_object_type dicttype;
TRACE_ENTRY("%p %p %p", msg, what, avp);
CHECK_PARAMS( CHECK_MSG(msg) && what );
CHECK_PARAMS( (fd_dict_gettype(what, &dicttype) == 0) && (dicttype == DICT_AVP) );
CHECK_FCT( fd_dict_getval(what, &dictdata) );
/* Loop on all top AVPs */
CHECK_FCT( fd_msg_browse(msg, MSG_BRW_FIRST_CHILD, (void *)&nextavp, NULL) );
while (nextavp) {
if ( (nextavp->avp_public.avp_code == dictdata.avp_code)
&& (nextavp->avp_public.avp_vendor == dictdata.avp_vendor) ) /* always 0 if no V flag */
break;
/* Otherwise move to next AVP in the message */
CHECK_FCT( fd_msg_browse(nextavp, MSG_BRW_NEXT, (void *)&nextavp, NULL) );
}
if (avp)
*avp = nextavp;
if (avp && nextavp) {
struct dictionary * dict;
CHECK_FCT( fd_dict_getdict( what, &dict) );
CHECK_FCT_DO( fd_msg_parse_dict( nextavp, dict, NULL ), /* nothing */ );
}
if (avp || nextavp)
return 0;
else
return ENOENT;
}
/***************************************************************************************************************/
/* Deleting objects */
/* Destroy and free an AVP or message */
static int destroy_obj (struct msg_avp_chain * obj )
{
TRACE_ENTRY("%p", obj);
/* Check the parameter is a valid object */
CHECK_PARAMS( VALIDATE_OBJ(obj) && FD_IS_LIST_EMPTY( &obj->children ) );
/* Unlink this object if needed */
fd_list_unlink( &obj->chaining );
/* Free the octetstring if needed */
if ((obj->type == MSG_AVP) && (_A(obj)->avp_mustfreeos == 1)) {
free(_A(obj)->avp_storage.os.data);
}
/* Free the rawdata if needed */
if ((obj->type == MSG_AVP) && (_A(obj)->avp_rawdata != NULL)) {
free(_A(obj)->avp_rawdata);
}
if ((obj->type == MSG_MSG) && (_M(obj)->msg_rawbuffer != NULL)) {
free(_M(obj)->msg_rawbuffer);
}
if ((obj->type == MSG_MSG) && (_M(obj)->msg_src_id != NULL)) {
free(_M(obj)->msg_src_id);
}
if ((obj->type == MSG_MSG) && (_M(obj)->msg_rtdata != NULL)) {
fd_rtd_free(&_M(obj)->msg_rtdata);
}
if ((obj->type == MSG_MSG) && (_M(obj)->msg_sess != NULL)) {
CHECK_FCT_DO( fd_sess_reclaim_msg ( &_M(obj)->msg_sess ), /* continue */);
}
if ((obj->type == MSG_MSG) && (_M(obj)->msg_pmdl.sentinel.o != NULL)) {
((void (*)(struct fd_msg_pmdl *))_M(obj)->msg_pmdl.sentinel.o)(&_M(obj)->msg_pmdl);
}
/* free the object */
free(obj);
return 0;
}
/* Destroy an object and all its children */
static void destroy_tree(struct msg_avp_chain * obj)
{
struct fd_list *rem;
TRACE_ENTRY("%p", obj);
/* Destroy any subtree */
while ( (rem = obj->children.next) != &obj->children)
destroy_tree(_C(rem->o));
/* Then unlink and destroy the object */
CHECK_FCT_DO( destroy_obj(obj), /* nothing */ );
}
/* Free an object and its tree */
int fd_msg_free ( msg_or_avp * object )
{
TRACE_ENTRY("%p", object);
if (object == NULL)
return 0;
if (CHECK_MSG(object)) {
if (_M(object)->msg_query) {
_M(_M(object)->msg_query)->msg_associated = 0;
CHECK_FCT( fd_msg_free( _M(object)->msg_query ) );
_M(object)->msg_query = NULL;
} else {
if (_M(object)->msg_associated) {
TRACE_DEBUG(INFO, "Not freeing query %p referenced in an answer (will be freed along the answer).", object);
return 0;
}
}
}
destroy_tree(_C(object));
return 0;
}
/***************************************************************************************************************/
/* Debug functions: dumping */
/* messages and AVP formatters */
typedef DECLARE_FD_DUMP_PROTOTYPE( (*msg_dump_formatter_msg), struct msg * msg );
typedef DECLARE_FD_DUMP_PROTOTYPE( (*msg_dump_formatter_avp), struct avp * avp, int level, int first, int last );
/* Core function to process the dumping */
static DECLARE_FD_DUMP_PROTOTYPE( msg_dump_process, msg_dump_formatter_msg msg_format, msg_dump_formatter_avp avp_format, msg_or_avp *obj, struct dictionary *dict, int force_parsing, int recurse )
{
FD_DUMP_HANDLE_OFFSET();
if (!VALIDATE_OBJ(obj)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "INVALID MESSAGE OR AVP @%p", obj), return NULL);
return *buf;
}
if (force_parsing) {
(void) fd_msg_parse_dict(obj, dict, NULL);
}
switch (_C(obj)->type) {
case MSG_AVP:
CHECK_MALLOC_DO( (*avp_format)(FD_DUMP_STD_PARAMS, (struct avp *)obj, 0, 1, 1), return NULL);
break;
case MSG_MSG:
CHECK_MALLOC_DO( (*msg_format)(FD_DUMP_STD_PARAMS, (struct msg *)obj), return NULL);
break;
default:
ASSERT(0);
free(*buf);
*buf = NULL;
return NULL;
}
if (recurse) {
struct avp * avp = NULL;
int first = 1;
CHECK_FCT_DO( fd_msg_browse ( obj, MSG_BRW_FIRST_CHILD, &avp, NULL ), avp = NULL );
while (avp) {
struct avp * nextavp = NULL;
CHECK_FCT_DO( fd_msg_browse ( avp, MSG_BRW_NEXT, &nextavp, NULL ), nextavp = NULL );
CHECK_MALLOC_DO( (*avp_format)(FD_DUMP_STD_PARAMS, avp, 1, first, nextavp ? 0 : 1), return NULL);
avp = nextavp;
first = 0;
};
}
return *buf;
}
/*
* Tree View message dump
*/
static DECLARE_FD_DUMP_PROTOTYPE( msg_format_treeview, struct msg * msg )
{
if (!CHECK_MSG(msg)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "INVALID MESSAGE"), return NULL);
return *buf;
}
if (!msg->msg_model) {
if (msg->msg_model_not_found.mnf_code) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(not found in dictionary)\n"), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(not searched in dictionary)\n"), return NULL);
}
} else {
enum dict_object_type dicttype;
struct dict_cmd_data dictdata;
if (fd_dict_gettype(msg->msg_model, &dicttype) || (dicttype != DICT_COMMAND)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(invalid model information)\n"), return NULL);
} else if (fd_dict_getval(msg->msg_model, &dictdata)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(error getting model information)\n"), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "'%s'\n", dictdata.cmd_name), return NULL);
}
}
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " Version: 0x%02hhX\n", msg->msg_public.msg_version), return NULL);
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " Length: %d\n", msg->msg_public.msg_length), return NULL);
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " Flags: 0x%02hhX (" DUMP_CMDFL_str ")\n", msg->msg_public.msg_flags, DUMP_CMDFL_val(msg->msg_public.msg_flags)), return NULL);
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " Command Code: %u\n", msg->msg_public.msg_code), return NULL);
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " ApplicationId: %d\n", msg->msg_public.msg_appl), return NULL);
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " Hop-by-Hop Identifier: 0x%08X\n", msg->msg_public.msg_hbhid), return NULL);
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " End-to-End Identifier: 0x%08X\n", msg->msg_public.msg_eteid), return NULL);
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " {internal data}: src:%s(%zd) rwb:%p rt:%d cb:%p,%p(%p) qry:%p asso:%d sess:%p", msg->msg_src_id?:"(nil)", msg->msg_src_id_len, msg->msg_rawbuffer, msg->msg_routable, msg->msg_cb.anscb, msg->msg_cb.expirecb, msg->msg_cb.data, msg->msg_query, msg->msg_associated, msg->msg_sess), return NULL);
return *buf;
}
static DECLARE_FD_DUMP_PROTOTYPE( avp_format_treeview, struct avp * avp, int level, int first, int last )
{
char * name;
struct dict_avp_data dictdata;
struct dict_avp_data *dictinfo = NULL;
struct dict_vendor_data vendordata;
struct dict_vendor_data *vendorinfo = NULL;
if (level) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "\n"), return NULL);
}
if (!CHECK_AVP(avp)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "INVALID AVP"), return NULL);
return *buf;
}
if (level) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "%*sAVP: ", level * 3, ""), return NULL);
}
if (!avp->avp_model) {
if (avp->avp_model_not_found.mnf_code) {
name = "(not found in dictionary)";
} else {
name = "(not searched in dictionary)";
}
} else {
enum dict_object_type dicttype;
if (fd_dict_gettype(avp->avp_model, &dicttype) || (dicttype != DICT_AVP)) {
name = "(invalid model information)";
} else if (fd_dict_getval(avp->avp_model, &dictdata)) {
name = "(error getting model information)";
} else {
name = dictdata.avp_name;
dictinfo = &dictdata;
if (avp->avp_public.avp_flags & AVP_FLAG_VENDOR) {
struct dictionary * dict;
struct dict_object * vendor;
if ((!fd_dict_getdict(avp->avp_model, &dict))
&& (!fd_dict_search(dict, DICT_VENDOR, VENDOR_OF_AVP, avp->avp_model, &vendor, ENOENT))
&& (!fd_dict_getval(vendor, &vendordata))) {
vendorinfo = &vendordata;
}
}
}
}
if (dictinfo) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "'%s'(%u)", name, avp->avp_public.avp_code), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "%u%s", avp->avp_public.avp_code, name), return NULL);
}
if (avp->avp_public.avp_flags & AVP_FLAG_VENDOR) {
if (vendorinfo) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " vend='%s'(%u)", vendorinfo->vendor_name, avp->avp_public.avp_vendor), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " vend=%u", avp->avp_public.avp_vendor), return NULL);
}
}
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " l=%d f=" DUMP_AVPFL_str " val=", avp->avp_public.avp_len, DUMP_AVPFL_val(avp->avp_public.avp_flags)), return NULL);
if (dictinfo && (dictinfo->avp_basetype == AVP_TYPE_GROUPED)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(grouped)"), return NULL);
if (level) {
struct avp * inavp = NULL;
int first = 1;
CHECK_FCT_DO( fd_msg_browse ( avp, MSG_BRW_FIRST_CHILD, &inavp, NULL ), inavp = NULL );
while (inavp) {
struct avp * nextavp = NULL;
CHECK_FCT_DO( fd_msg_browse ( inavp, MSG_BRW_NEXT, &nextavp, NULL ), inavp = NULL );
CHECK_MALLOC_DO( avp_format_treeview(FD_DUMP_STD_PARAMS, inavp, level + 1, first, nextavp ? 0 : 1), return NULL);
inavp = nextavp;
first = 0;
};
}
} else {
if (avp->avp_public.avp_value) {
CHECK_MALLOC_DO( fd_dict_dump_avp_value(FD_DUMP_STD_PARAMS, avp->avp_public.avp_value, avp->avp_model, 0, 0), return NULL);
} else if (avp->avp_rawdata) {
CHECK_MALLOC_DO( fd_dump_extend_hexdump(FD_DUMP_STD_PARAMS, avp->avp_rawdata, avp->avp_rawlen, 0, 0), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(not set)"), return NULL);
}
}
return *buf;
}
/* multi-line human-readable dump similar to wireshark output */
DECLARE_FD_DUMP_PROTOTYPE( fd_msg_dump_treeview, msg_or_avp *obj, struct dictionary *dict, int force_parsing, int recurse )
{
return msg_dump_process(FD_DUMP_STD_PARAMS, msg_format_treeview, avp_format_treeview, obj, dict, force_parsing, recurse);
}
/*
* One-line dumper for compact but complete traces
*/
static DECLARE_FD_DUMP_PROTOTYPE( msg_format_full, struct msg * msg )
{
int success = 0;
struct dict_cmd_data dictdata;
if (!CHECK_MSG(msg)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "INVALID MESSAGE"), return NULL);
return *buf;
}
if (!msg->msg_model) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(no model) "), return NULL);
} else {
enum dict_object_type dicttype=0;
if (fd_dict_gettype(msg->msg_model, &dicttype) || (dicttype != DICT_COMMAND)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(invalid model %d) ", dicttype), return NULL);
} else if (fd_dict_getval(msg->msg_model, &dictdata)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(error getting model data) "), return NULL);
} else {
success = 1;
}
}
if (msg->msg_public.msg_appl) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS,
"%s(%u/%u)[" DUMP_CMDFL_str "], Length=%u, Hop-By-Hop-Id=0x%08x, End-to-End=0x%08x",
success ? dictdata.cmd_name : "unknown", msg->msg_public.msg_appl, msg->msg_public.msg_code, DUMP_CMDFL_val(msg->msg_public.msg_flags),
msg->msg_public.msg_length, msg->msg_public.msg_hbhid, msg->msg_public.msg_eteid), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS,
"%s(%u)[" DUMP_CMDFL_str "], Length=%u, Hop-By-Hop-Id=0x%08x, End-to-End=0x%08x",
success ? dictdata.cmd_name : "unknown", msg->msg_public.msg_code, DUMP_CMDFL_val(msg->msg_public.msg_flags),
msg->msg_public.msg_length, msg->msg_public.msg_hbhid, msg->msg_public.msg_eteid), return NULL);
}
return *buf;
}
static DECLARE_FD_DUMP_PROTOTYPE( avp_format_full, struct avp * avp, int level, int first, int last )
{
int success = 0;
struct dict_avp_data dictdata;
if (level) {
if ((first) && ((*buf)[*offset - 1] == '=')) {
/* We are first AVP of a grouped AVP */
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "{ "), return NULL);
} else {
/* We follow another AVP, or a message header */
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, ", { "), return NULL);
}
}
if (!CHECK_AVP(avp)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "INVALID AVP"), return NULL);
goto end;
}
if (avp->avp_model) {
enum dict_object_type dicttype;
if (fd_dict_gettype(avp->avp_model, &dicttype) || (dicttype != DICT_AVP)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(invalid model: %d) ", dicttype), return NULL);
} else if (fd_dict_getval(avp->avp_model, &dictdata)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(error getting model data) "), return NULL);
} else {
success = 1;
}
}
if (avp->avp_public.avp_flags & AVP_FLAG_VENDOR) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "%s(%u/%u)[" DUMP_AVPFL_str "]=",
success ? dictdata.avp_name : "unknown", avp->avp_public.avp_vendor, avp->avp_public.avp_code, DUMP_AVPFL_val(avp->avp_public.avp_flags)), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "%s(%u)[" DUMP_AVPFL_str "]=",
success ? dictdata.avp_name : "unknown", avp->avp_public.avp_code, DUMP_AVPFL_val(avp->avp_public.avp_flags)), return NULL);
}
if (success && (dictdata.avp_basetype == AVP_TYPE_GROUPED)) {
if (level) {
struct avp * inavp = NULL;
int first = 1;
CHECK_FCT_DO( fd_msg_browse ( avp, MSG_BRW_FIRST_CHILD, &inavp, NULL ), inavp = NULL );
while (inavp) {
struct avp * nextavp = NULL;
CHECK_FCT_DO( fd_msg_browse ( inavp, MSG_BRW_NEXT, &nextavp, NULL ), inavp = NULL );
CHECK_MALLOC_DO( avp_format_full(FD_DUMP_STD_PARAMS, inavp, level + 1, first, nextavp ? 0 : 1), return NULL);
inavp = nextavp;
first = 0;
};
}
} else {
if (avp->avp_public.avp_value) {
CHECK_MALLOC_DO( fd_dict_dump_avp_value(FD_DUMP_STD_PARAMS, avp->avp_public.avp_value, avp->avp_model, 0, 0), return NULL);
} else if (avp->avp_rawdata) {
CHECK_MALLOC_DO( fd_dump_extend_hexdump(FD_DUMP_STD_PARAMS, avp->avp_rawdata, avp->avp_rawlen, 0, 0), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(not set)"), return NULL);
}
}
end:
if (level) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " }"), return NULL);
}
return *buf;
}
/* one-line dump with all the contents of the message */
DECLARE_FD_DUMP_PROTOTYPE( fd_msg_dump_full, msg_or_avp *obj, struct dictionary *dict, int force_parsing, int recurse )
{
return msg_dump_process(FD_DUMP_STD_PARAMS, msg_format_full, avp_format_full, obj, dict, force_parsing, recurse);
}
/*
* One-line dumper for compact but complete traces
*/
static DECLARE_FD_DUMP_PROTOTYPE( msg_format_summary, struct msg * msg )
{
if (!CHECK_MSG(msg)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "INVALID MESSAGE"), return NULL);
return *buf;
}
if (!msg->msg_model) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(no model)"), return NULL);
} else {
enum dict_object_type dicttype;
struct dict_cmd_data dictdata;
if (fd_dict_gettype(msg->msg_model, &dicttype) || (dicttype != DICT_COMMAND) || (fd_dict_getval(msg->msg_model, &dictdata))) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(model error)"), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "'%s'", dictdata.cmd_name), return NULL);
}
}
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "%u/%u f:" DUMP_CMDFL_str " src:'%s' len:%d",
msg->msg_public.msg_appl, msg->msg_public.msg_code, DUMP_CMDFL_val(msg->msg_public.msg_flags), msg->msg_src_id?:"(nil)", msg->msg_public.msg_length), return NULL);
return *buf;
}
static DECLARE_FD_DUMP_PROTOTYPE( avp_format_summary, struct avp * avp, int level, int first, int last )
{
char * name;
struct dict_avp_data dictdata;
struct dict_avp_data *dictinfo = NULL;
struct dict_vendor_data vendordata;
struct dict_vendor_data *vendorinfo = NULL;
if (level) {
if (first) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " {"), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, ","), return NULL);
}
}
if (!CHECK_AVP(avp)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "INVALID AVP"), return NULL);
goto end;
}
if (!level) {
/* We have been called to explicitely dump this AVP, so we parse its name if available */
if (!avp->avp_model) {
name = "(no model)";
} else {
enum dict_object_type dicttype;
if (fd_dict_gettype(avp->avp_model, &dicttype) || (dicttype != DICT_AVP) || (fd_dict_getval(avp->avp_model, &dictdata))) {
name = "(model error)";
} else {
name = dictdata.avp_name;
dictinfo = &dictdata;
if (avp->avp_public.avp_flags & AVP_FLAG_VENDOR) {
struct dictionary * dict;
struct dict_object * vendor;
if ((!fd_dict_getdict(avp->avp_model, &dict))
&& (!fd_dict_search(dict, DICT_VENDOR, VENDOR_OF_AVP, avp->avp_model, &vendor, ENOENT))
&& (!fd_dict_getval(vendor, &vendordata))) {
vendorinfo = &vendordata;
}
}
}
}
if (dictinfo) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "'%s'(%u)", name, avp->avp_public.avp_code), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "%u%s", avp->avp_public.avp_code, name), return NULL);
}
if (avp->avp_public.avp_flags & AVP_FLAG_VENDOR) {
if (vendorinfo) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " V='%s'(%u)", vendorinfo->vendor_name, avp->avp_public.avp_vendor), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " V=%u", avp->avp_public.avp_vendor), return NULL);
}
}
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, " L=%d F=" DUMP_AVPFL_str " V=", avp->avp_public.avp_len, DUMP_AVPFL_val(avp->avp_public.avp_flags)), return NULL);
if ((!dictinfo) || (dictinfo->avp_basetype != AVP_TYPE_GROUPED)) {
if (avp->avp_public.avp_value) {
CHECK_MALLOC_DO( fd_dict_dump_avp_value(FD_DUMP_STD_PARAMS, avp->avp_public.avp_value, avp->avp_model, 0, 0), return NULL);
} else if (avp->avp_rawdata) {
CHECK_MALLOC_DO( fd_dump_extend_hexdump(FD_DUMP_STD_PARAMS, avp->avp_rawdata, avp->avp_rawlen, 0, 0), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "(not set)"), return NULL);
}
}
} else {
/* For embedded AVPs, we only display (vendor,) code & length */
if (avp->avp_public.avp_flags & AVP_FLAG_VENDOR) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "V:%u/", avp->avp_public.avp_vendor), return NULL);
}
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "C:%u/l:%d", avp->avp_public.avp_code, avp->avp_public.avp_len), return NULL);
}
end:
if ((level) && (last)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "}"), return NULL);
}
return *buf;
}
/* This one only prints a short display, does not go into the complete tree */
DECLARE_FD_DUMP_PROTOTYPE( fd_msg_dump_summary, msg_or_avp *obj, struct dictionary *dict, int force_parsing, int recurse )
{
return msg_dump_process(FD_DUMP_STD_PARAMS, msg_format_summary, avp_format_summary, obj, dict, force_parsing, recurse);
}
/***************************************************************************************************************/
/* Simple meta-data management */
/* Retrieve the model of an object */
int fd_msg_model ( msg_or_avp * reference, struct dict_object ** model )
{
TRACE_ENTRY("%p %p", reference, model);
/* Check the parameters */
CHECK_PARAMS( model && VALIDATE_OBJ(reference) );
/* copy the model reference */
switch (_C(reference)->type) {
case MSG_AVP:
*model = _A(reference)->avp_model;
break;
case MSG_MSG:
*model = _M(reference)->msg_model;
break;
default:
CHECK_PARAMS(0);
}
return 0;
}
/* Retrieve the address of the msg_public field of a message */
int fd_msg_hdr ( struct msg *msg, struct msg_hdr **pdata )
{
TRACE_ENTRY("%p %p", msg, pdata);
CHECK_PARAMS( CHECK_MSG(msg) && pdata );
*pdata = &msg->msg_public;
return 0;
}
/* Retrieve the address of the avp_public field of an avp */
int fd_msg_avp_hdr ( struct avp *avp, struct avp_hdr **pdata )
{
TRACE_ENTRY("%p %p", avp, pdata);
CHECK_PARAMS( CHECK_AVP(avp) && pdata );
*pdata = &avp->avp_public;
return 0;
}
/* Associate answers and queries */
int fd_msg_answ_associate( struct msg * answer, struct msg * query )
{
TRACE_ENTRY( "%p %p", answer, query );
CHECK_PARAMS( CHECK_MSG(answer) && CHECK_MSG(query) && (answer->msg_query == NULL ) );
answer->msg_query = query;
query->msg_associated = 1;
return 0;
}
int fd_msg_answ_getq( struct msg * answer, struct msg ** query )
{
TRACE_ENTRY( "%p %p", answer, query );
CHECK_PARAMS( CHECK_MSG(answer) && query );
*query = answer->msg_query;
return 0;
}
int fd_msg_answ_detach( struct msg * answer )
{
TRACE_ENTRY( "%p", answer );
CHECK_PARAMS( CHECK_MSG(answer) );
answer->msg_query->msg_associated = 0;
answer->msg_query = NULL;
return 0;
}
/* Associate / get answer callbacks */
int fd_msg_anscb_associate( struct msg * msg, void ( *anscb)(void *, struct msg **), void * data, void (*expirecb)(void *, DiamId_t, size_t, struct msg **), const struct timespec *timeout )
{
TRACE_ENTRY("%p %p %p %p", msg, anscb, expirecb, data);
/* Check the parameters */
CHECK_PARAMS( CHECK_MSG(msg) );
if (! (msg->msg_public.msg_flags & CMD_FLAG_REQUEST ))
return anscb ? EINVAL : 0; /* we associate with requests only */
CHECK_PARAMS( (anscb == NULL) || (msg->msg_cb.anscb == NULL) ); /* We are not overwriting a cb */
CHECK_PARAMS( (expirecb == NULL) || (msg->msg_cb.expirecb == NULL) ); /* We are not overwriting a cb */
/* Associate callback and data with the message, if any */
if (anscb) {
msg->msg_cb.anscb = anscb;
msg->msg_cb.data = data;
}
if (expirecb) {
msg->msg_cb.expirecb = expirecb;
if (timeout) {
memcpy(&msg->msg_cb.timeout, timeout, sizeof(struct timespec));
}
}
return 0;
}
/* Remove a callback */
int fd_msg_anscb_reset(struct msg * msg, int clear_anscb, int clear_expirecb)
{
TRACE_ENTRY("%p %d %d", msg, clear_anscb, clear_expirecb);
/* Check the parameters */
CHECK_PARAMS( CHECK_MSG(msg) );
if (clear_anscb) {
msg->msg_cb.anscb = NULL;
msg->msg_cb.data = NULL;
}
if (clear_expirecb) {
msg->msg_cb.expirecb = NULL;
memset(&msg->msg_cb.timeout, 0, sizeof(struct timespec));
}
return 0;
}
int fd_msg_anscb_get( struct msg * msg, void (**anscb)(void *, struct msg **), void (**expirecb)(void *, DiamId_t, size_t, struct msg **), void ** data )
{
TRACE_ENTRY("%p %p %p %p", msg, anscb, expirecb, data);
/* Check the parameters */
CHECK_PARAMS( CHECK_MSG(msg) );
/* Copy the result */
if (anscb)
*anscb = msg->msg_cb.anscb;
if (data)
*data = msg->msg_cb.data;
if (expirecb)
*expirecb = msg->msg_cb.expirecb;
return 0;
}
struct timespec *fd_msg_anscb_gettimeout( struct msg * msg )
{
TRACE_ENTRY("%p", msg);
/* Check the parameters */
CHECK_PARAMS_DO( CHECK_MSG(msg), return NULL );
if (!msg->msg_cb.timeout.tv_sec) {
return NULL;
}
return &msg->msg_cb.timeout;
}
/* Associate routing lists */
int fd_msg_rt_associate( struct msg * msg, struct rt_data * rtd )
{
TRACE_ENTRY( "%p %p", msg, rtd );
CHECK_PARAMS( CHECK_MSG(msg) && rtd );
msg->msg_rtdata = rtd;
return 0;
}
int fd_msg_rt_get( struct msg * msg, struct rt_data ** rtd )
{
TRACE_ENTRY( "%p %p", msg, rtd );
CHECK_PARAMS( CHECK_MSG(msg) && rtd );
*rtd = msg->msg_rtdata;
return 0;
}
/* Find if a message is routable */
int fd_msg_is_routable ( struct msg * msg )
{
TRACE_ENTRY("%p", msg);
CHECK_PARAMS_DO( CHECK_MSG(msg), return 0 /* pretend the message is not routable */ );
if ( ! msg->msg_routable ) {
/* To define if a message is routable, we rely on the "PXY" flag (for application 0). */
msg->msg_routable = ((msg->msg_public.msg_appl != 0) || (msg->msg_public.msg_flags & CMD_FLAG_PROXIABLE)) ? 1 : 2;
/* Note : the 'real' criteria according to the Diameter I-D is that the message is
routable if and only if the "Destination-Realm" AVP is required by the command ABNF.
We could make a test for this here, but it's more computational work and our test
seems accurate (until proven otherwise...) */
}
return (msg->msg_routable == 1) ? 1 : 0;
}
/* cache the dictionary model for next function to avoid re-searching at every incoming message */
static struct dict_object *cached_avp_rr_model = NULL;
static struct dictionary *cached_avp_rr_dict = NULL;
static pthread_mutex_t cached_avp_rr_lock = PTHREAD_MUTEX_INITIALIZER;
/* Associate source peer */
int fd_msg_source_set( struct msg * msg, DiamId_t diamid, size_t diamidlen )
{
TRACE_ENTRY( "%p %p %zd", msg, diamid, diamidlen);
/* Check we received a valid message */
CHECK_PARAMS( CHECK_MSG(msg) );
/* Cleanup any previous source */
free(msg->msg_src_id); msg->msg_src_id = NULL; msg->msg_src_id_len = 0;
/* If the request is to cleanup the source, we are done */
if (diamid == NULL) {
return 0;
}
/* Otherwise save the new informations */
CHECK_MALLOC( msg->msg_src_id = os0dup(diamid, diamidlen) );
msg->msg_src_id_len = diamidlen;
/* done */
return 0;
}
/* Associate source peer */
int fd_msg_source_setrr( struct msg * msg, DiamId_t diamid, size_t diamidlen, struct dictionary * dict )
{
struct dict_object *avp_rr_model = NULL;
avp_code_t code = AC_ROUTE_RECORD;
struct avp *avp;
union avp_value val;
TRACE_ENTRY( "%p %p %zd %p", msg, diamid, diamidlen, dict);
/* Check we received a valid message */
CHECK_PARAMS( CHECK_MSG(msg) && dict );
/* Lock the cached values */
CHECK_POSIX( pthread_mutex_lock(&cached_avp_rr_lock) );
if (cached_avp_rr_dict == dict) {
avp_rr_model = cached_avp_rr_model;
}
CHECK_POSIX( pthread_mutex_unlock(&cached_avp_rr_lock) );
/* If it was not cached */
if (!avp_rr_model) {
/* Find the model for Route-Record in the dictionary */
CHECK_FCT( fd_dict_search ( dict, DICT_AVP, AVP_BY_CODE, &code, &avp_rr_model, ENOENT) );
/* Now cache this result */
CHECK_POSIX( pthread_mutex_lock(&cached_avp_rr_lock) );
cached_avp_rr_dict = dict;
cached_avp_rr_model = avp_rr_model;
CHECK_POSIX( pthread_mutex_unlock(&cached_avp_rr_lock) );
}
/* Create the AVP with this model */
CHECK_FCT( fd_msg_avp_new ( avp_rr_model, 0, &avp ) );
/* Set the AVP value with the diameter id */
memset(&val, 0, sizeof(val));
val.os.data = (uint8_t *)diamid;
val.os.len = diamidlen;
CHECK_FCT( fd_msg_avp_setvalue( avp, &val ) );
/* Add the AVP in the message */
CHECK_FCT( fd_msg_avp_add( msg, MSG_BRW_LAST_CHILD, avp ) );
/* done */
return 0;
}
int fd_msg_source_get( struct msg * msg, DiamId_t* diamid, size_t * diamidlen )
{
TRACE_ENTRY( "%p %p %p", msg, diamid, diamidlen);
/* Check we received valid parameters */
CHECK_PARAMS( CHECK_MSG(msg) );
CHECK_PARAMS( diamid );
/* Copy the informations */
*diamid = msg->msg_src_id;
if (diamidlen)
*diamidlen = msg->msg_src_id_len;
/* done */
return 0;
}
/* Associate a session with a message, use only when the session was just created */
int fd_msg_sess_set(struct msg * msg, struct session * session)
{
TRACE_ENTRY("%p %p", msg, session);
/* Check we received valid parameters */
CHECK_PARAMS( CHECK_MSG(msg) );
CHECK_PARAMS( session );
CHECK_PARAMS( msg->msg_sess == NULL );
msg->msg_sess = session;
return 0;
}
/* Retrieve the session of the message */
int fd_msg_sess_get(struct dictionary * dict, struct msg * msg, struct session ** session, int * new)
{
struct avp * avp;
TRACE_ENTRY("%p %p %p", msg, session, new);
/* Check we received valid parameters */
CHECK_PARAMS( CHECK_MSG(msg) );
CHECK_PARAMS( session );
/* If we already resolved the session, just send it back */
if (msg->msg_sess) {
*session = msg->msg_sess;
if (new)
*new = 0;
return 0;
}
/* OK, we have to search for Session-Id AVP -- it is usually the first AVP, but let's be permissive here */
/* -- note: we accept messages that have not yet been dictionary parsed... */
CHECK_FCT( fd_msg_browse(msg, MSG_BRW_FIRST_CHILD, &avp, NULL) );
while (avp) {
if ( (avp->avp_public.avp_code == AC_SESSION_ID)
&& (avp->avp_public.avp_vendor == 0) )
break;
/* Otherwise move to next AVP in the message */
CHECK_FCT( fd_msg_browse(avp, MSG_BRW_NEXT, &avp, NULL) );
}
if (!avp) {
TRACE_DEBUG(FULL, "No Session-Id AVP found in message %p", msg);
*session = NULL;
return 0;
}
if (!avp->avp_model) {
CHECK_FCT( fd_msg_parse_dict ( avp, dict, NULL ) );
}
ASSERT( avp->avp_public.avp_value );
/* Resolve the session and we are done */
if (avp->avp_public.avp_value->os.len > 0) {
CHECK_FCT( fd_sess_fromsid_msg ( avp->avp_public.avp_value->os.data, avp->avp_public.avp_value->os.len, &msg->msg_sess, new) );
*session = msg->msg_sess;
} else {
TRACE_DEBUG(FULL, "Session-Id AVP with 0-byte length found in message %p", msg);
*session = NULL;
}
return 0;
}
/* Retrieve the location of the pmd list for the message; return NULL if failed */
struct fd_msg_pmdl * fd_msg_pmdl_get(struct msg * msg)
{
CHECK_PARAMS_DO( CHECK_MSG(msg), return NULL );
return &msg->msg_pmdl;
}
/******************* End-to-end counter *********************/
static uint32_t fd_eteid;
static pthread_mutex_t fd_eteid_lck = PTHREAD_MUTEX_INITIALIZER;
void fd_msg_eteid_init(void)
{
uint32_t t = (uint32_t)time(NULL);
srand48(t);
fd_eteid = (t << 20) | ((uint32_t)lrand48() & ( (1 << 20) - 1 ));
}
uint32_t fd_msg_eteid_get ( void )
{
uint32_t ret;
CHECK_POSIX_DO( pthread_mutex_lock(&fd_eteid_lck), /* continue */ );
ret = fd_eteid ++;
CHECK_POSIX_DO( pthread_mutex_unlock(&fd_eteid_lck), /* continue */ );
return ret;
}
/***************************************************************************************************************/
/* Manage AVPs values */
/* Set the value of an AVP */
int fd_msg_avp_setvalue ( struct avp *avp, union avp_value *value )
{
enum dict_avp_basetype type = -1;
TRACE_ENTRY("%p %p", avp, value);
/* Check parameter */
CHECK_PARAMS( CHECK_AVP(avp) && avp->avp_model );
/* Retrieve information from the AVP model */
{
enum dict_object_type dicttype;
struct dict_avp_data dictdata;
CHECK_PARAMS( (fd_dict_gettype(avp->avp_model, &dicttype) == 0) && (dicttype == DICT_AVP) );
CHECK_FCT( fd_dict_getval(avp->avp_model, &dictdata) );
type = dictdata.avp_basetype;
CHECK_PARAMS( type != AVP_TYPE_GROUPED );
}
/* First, clean any previous value */
if (avp->avp_mustfreeos != 0) {
free(avp->avp_storage.os.data);
avp->avp_mustfreeos = 0;
}
memset(&avp->avp_storage, 0, sizeof(union avp_value));
/* If the request was to delete a value: */
if (!value) {
avp->avp_public.avp_value = NULL;
return 0;
}
/* Now we have to set the value */
memcpy(&avp->avp_storage, value, sizeof(union avp_value));
/* Duplicate an octetstring if needed. */
if (type == AVP_TYPE_OCTETSTRING) {
CHECK_MALLOC( avp->avp_storage.os.data = os0dup(value->os.data, value->os.len) );
avp->avp_mustfreeos = 1;
}
/* Set the data pointer of the public part */
avp->avp_public.avp_value = &avp->avp_storage;
return 0;
}
/* Set the value of an AVP, using formatted data */
int fd_msg_avp_value_encode ( void *data, struct avp *avp )
{
enum dict_avp_basetype type = -1;
struct dict_type_data type_data;
TRACE_ENTRY("%p %p", data, avp);
/* Check parameter */
CHECK_PARAMS( CHECK_AVP(avp) && avp->avp_model );
/* Retrieve information from the AVP model and it's parent type */
{
enum dict_object_type dicttype;
struct dict_avp_data dictdata;
struct dictionary * dict;
struct dict_object * parenttype = NULL;
/* First check the base type of the AVP */
CHECK_PARAMS( (fd_dict_gettype(avp->avp_model, &dicttype) == 0) && (dicttype == DICT_AVP) );
CHECK_FCT( fd_dict_getval(avp->avp_model, &dictdata) );
type = dictdata.avp_basetype;
CHECK_PARAMS( type != AVP_TYPE_GROUPED );
/* Then retrieve information about the parent's type (= derived type) */
CHECK_FCT( fd_dict_getdict( avp->avp_model, &dict ) );
CHECK_FCT( fd_dict_search( dict, DICT_TYPE, TYPE_OF_AVP, avp->avp_model, &parenttype, EINVAL) );
CHECK_FCT( fd_dict_getval(parenttype, &type_data) );
if (type_data.type_encode == NULL) {
TRACE_DEBUG(INFO, "This AVP type does not provide a callback to encode formatted data. ENOTSUP.");
return ENOTSUP;
}
}
/* Ok, now we can encode the value */
/* First, clean any previous value */
if (avp->avp_mustfreeos != 0) {
free(avp->avp_storage.os.data);
avp->avp_mustfreeos = 0;
}
avp->avp_public.avp_value = NULL;
memset(&avp->avp_storage, 0, sizeof(union avp_value));
/* Now call the type's callback to encode the data */
CHECK_FCT( (*type_data.type_encode)(data, &avp->avp_storage) );
/* If an octetstring has been allocated, let's mark it to be freed */
if (type == AVP_TYPE_OCTETSTRING)
avp->avp_mustfreeos = 1;
/* Set the data pointer of the public part */
avp->avp_public.avp_value = &avp->avp_storage;
return 0;
}
/* Interpret the value of an AVP into formatted data */
int fd_msg_avp_value_interpret ( struct avp *avp, void *data )
{
struct dict_type_data type_data;
TRACE_ENTRY("%p %p", avp, data);
/* Check parameter */
CHECK_PARAMS( CHECK_AVP(avp) && avp->avp_model && avp->avp_public.avp_value );
/* Retrieve information about the AVP parent type */
{
struct dictionary * dict;
struct dict_object * parenttype = NULL;
CHECK_FCT( fd_dict_getdict( avp->avp_model, &dict ) );
CHECK_FCT( fd_dict_search( dict, DICT_TYPE, TYPE_OF_AVP, avp->avp_model, &parenttype, EINVAL) );
CHECK_FCT( fd_dict_getval(parenttype, &type_data) );
if (type_data.type_interpret == NULL) {
TRACE_DEBUG(INFO, "This AVP type does not provide a callback to interpret value in formatted data. ENOTSUP.");
return ENOTSUP;
}
}
/* Ok, now we can interpret the value */
CHECK_FCT( (*type_data.type_interpret)(avp->avp_public.avp_value, data) );
return 0;
}
/***************************************************************************************************************/
/* Creating a buffer from memory objects (bufferize a struct msg) */
/* Following macros are used to store 32 and 64 bit fields into a buffer in network byte order */
#define PUT_in_buf_32( _u32data, _bufptr ) { \
*(uint32_t *)(_bufptr) = htonl((uint32_t)(_u32data)); \
}
/* The location is not on 64b boundary, so we split the writing in two operations to avoid sigbus */
#define PUT_in_buf_64( _u64data, _bufptr ) { \
uint64_t __v = htonll((uint64_t)(_u64data)); \
memcpy(_bufptr, &__v, sizeof(__v)); \
}
/* Write a message header in the buffer */
static int bufferize_msg(unsigned char * buffer, size_t buflen, size_t * offset, struct msg * msg)
{
TRACE_ENTRY("%p %zd %p %p", buffer, buflen, offset, msg);
if ((buflen - *offset) < GETMSGHDRSZ())
return ENOSPC;
if (*offset & 0x3)
return EFAULT; /* We are supposed to start on 32 bit boundaries */
PUT_in_buf_32(msg->msg_public.msg_length, buffer + *offset);
buffer[*offset] = msg->msg_public.msg_version;
*offset += 4;
PUT_in_buf_32(msg->msg_public.msg_code, buffer + *offset);
buffer[*offset] = msg->msg_public.msg_flags;
*offset += 4;
PUT_in_buf_32(msg->msg_public.msg_appl, buffer + *offset);
*offset += 4;
PUT_in_buf_32(msg->msg_public.msg_hbhid, buffer + *offset);
*offset += 4;
PUT_in_buf_32(msg->msg_public.msg_eteid, buffer + *offset);
*offset += 4;
return 0;
}
static int bufferize_chain(unsigned char * buffer, size_t buflen, size_t * offset, struct fd_list * list);
/* Write an AVP in the buffer */
static int bufferize_avp(unsigned char * buffer, size_t buflen, size_t * offset, struct avp * avp)
{
struct dict_avp_data dictdata;
TRACE_ENTRY("%p %zd %p %p", buffer, buflen, offset, avp);
if ((buflen - *offset) < avp->avp_public.avp_len)
return ENOSPC;
/* Write the header */
PUT_in_buf_32(avp->avp_public.avp_code, buffer + *offset);
*offset += 4;
PUT_in_buf_32(avp->avp_public.avp_len, buffer + *offset);
buffer[*offset] = avp->avp_public.avp_flags;
*offset += 4;
if (avp->avp_public.avp_flags & AVP_FLAG_VENDOR) {
PUT_in_buf_32(avp->avp_public.avp_vendor, buffer + *offset);
*offset += 4;
}
/* Then we must write the AVP value */
if (avp->avp_model == NULL) {
/* In the case where we don't know the type of AVP, just copy the raw data or source */
CHECK_PARAMS( avp->avp_source || avp->avp_rawdata );
if ( avp->avp_rawdata != NULL ) {
/* the content was stored in rawdata */
memcpy(&buffer[*offset], avp->avp_rawdata, avp->avp_rawlen);
*offset += PAD4(avp->avp_rawlen);
} else {
/* the message was not parsed completely */
size_t datalen = avp->avp_public.avp_len - GETAVPHDRSZ(avp->avp_public.avp_flags);
memcpy(&buffer[*offset], avp->avp_source, datalen);
*offset += PAD4(datalen);
}
} else {
/* The AVP is defined in the dictionary */
CHECK_FCT( fd_dict_getval(avp->avp_model, &dictdata) );
CHECK_PARAMS( ( dictdata.avp_basetype == AVP_TYPE_GROUPED ) || avp->avp_public.avp_value );
switch (dictdata.avp_basetype) {
case AVP_TYPE_GROUPED:
return bufferize_chain(buffer, buflen, offset, &avp->avp_chain.children);
case AVP_TYPE_OCTETSTRING:
if (avp->avp_public.avp_value->os.len)
memcpy(&buffer[*offset], avp->avp_public.avp_value->os.data, avp->avp_public.avp_value->os.len);
*offset += PAD4(avp->avp_public.avp_value->os.len);
break;
case AVP_TYPE_INTEGER32:
PUT_in_buf_32(avp->avp_public.avp_value->i32, buffer + *offset);
*offset += 4;
break;
case AVP_TYPE_INTEGER64:
PUT_in_buf_64(avp->avp_public.avp_value->i64, buffer + *offset);
*offset += 8;
break;
case AVP_TYPE_UNSIGNED32:
PUT_in_buf_32(avp->avp_public.avp_value->u32, buffer + *offset);
*offset += 4;
break;
case AVP_TYPE_UNSIGNED64:
PUT_in_buf_64(avp->avp_public.avp_value->u64, buffer + *offset);
*offset += 8;
break;
case AVP_TYPE_FLOAT32:
/* We read the f32 as "u32" here to avoid casting to uint make decimals go away.
The alternative would be something like "*(uint32_t *)(& f32)" but
then the compiler complains about strict-aliasing rules. */
PUT_in_buf_32(avp->avp_public.avp_value->u32, buffer + *offset);
*offset += 4;
break;
case AVP_TYPE_FLOAT64:
/* Same remark as previously */
PUT_in_buf_64(avp->avp_public.avp_value->u64, buffer + *offset);
*offset += 8;
break;
default:
ASSERT(0);
}
}
return 0;
}
/* Write a chain of AVPs in the buffer */
static int bufferize_chain(unsigned char * buffer, size_t buflen, size_t * offset, struct fd_list * list)
{
struct fd_list * avpch;
TRACE_ENTRY("%p %zd %p %p", buffer, buflen, offset, list);
for (avpch = list->next; avpch != list; avpch = avpch->next) {
/* Bufferize the AVP */
CHECK_FCT( bufferize_avp(buffer, buflen, offset, _A(avpch->o)) );
}
return 0;
}
/* Create the message buffer, in network-byte order. We browse the tree twice, this could be probably improved if needed */
int fd_msg_bufferize ( struct msg * msg, unsigned char ** buffer, size_t * len )
{
int ret = 0;
unsigned char * buf = NULL;
size_t offset = 0;
TRACE_ENTRY("%p %p %p", msg, buffer, len);
/* Check the parameters */
CHECK_PARAMS( buffer && CHECK_MSG(msg) );
/* Update the length. This also checks that all AVP have their values set */
CHECK_FCT( fd_msg_update_length(msg) );
/* Now allocate a buffer to store the message */
CHECK_MALLOC( buf = malloc(msg->msg_public.msg_length) );
/* Clear the memory, so that the padding is always 0 (should not matter) */
memset(buf, 0, msg->msg_public.msg_length);
/* Write the message header in the buffer */
CHECK_FCT_DO( ret = bufferize_msg(buf, msg->msg_public.msg_length, &offset, msg),
{
free(buf);
return ret;
} );
/* Write the list of AVPs */
CHECK_FCT_DO( ret = bufferize_chain(buf, msg->msg_public.msg_length, &offset, &msg->msg_chain.children),
{
free(buf);
return ret;
} );
ASSERT(offset == msg->msg_public.msg_length); /* or the msg_update_length is buggy */
if (len) {
*len = offset;
}
*buffer = buf;
return 0;
}
/***************************************************************************************************************/
/* Parsing buffers and building AVP objects lists (not parsing the AVP values which requires dictionary knowledge) */
/* Parse a buffer containing a supposed list of AVPs */
static int parsebuf_list(unsigned char * buf, size_t buflen, struct fd_list * head)
{
size_t offset = 0;
TRACE_ENTRY("%p %zd %p", buf, buflen, head);
while (offset < buflen) {
struct avp * avp;
if (buflen - offset < AVPHDRSZ_NOVEND) {
TRACE_DEBUG(INFO, "truncated buffer: remaining only %zd bytes", buflen - offset);
return EBADMSG;
}
/* Create a new AVP object */
CHECK_MALLOC( avp = malloc (sizeof(struct avp)) );
init_avp(avp);
/* Initialize the header */
avp->avp_public.avp_code = ntohl(*(uint32_t *)(buf + offset));
avp->avp_public.avp_flags = buf[offset + 4];
avp->avp_public.avp_len = ((uint32_t)buf[offset+5]) << 16 | ((uint32_t)buf[offset+6]) << 8 | ((uint32_t)buf[offset+7]) ;
offset += 8;
if (avp->avp_public.avp_flags & AVP_FLAG_VENDOR) {
if (buflen - offset < 4) {
TRACE_DEBUG(INFO, "truncated buffer: remaining only %zd bytes for vendor and data", buflen - offset);
free(avp);
return EBADMSG;
}
avp->avp_public.avp_vendor = ntohl(*(uint32_t *)(buf + offset));
offset += 4;
}
/* Check there is enough remaining data in the buffer */
if ( (avp->avp_public.avp_len > GETAVPHDRSZ(avp->avp_public.avp_flags))
&& (buflen - offset < avp->avp_public.avp_len - GETAVPHDRSZ(avp->avp_public.avp_flags))) {
TRACE_DEBUG(INFO, "truncated buffer: remaining only %zd bytes for data, and avp data size is %d",
buflen - offset,
avp->avp_public.avp_len - GETAVPHDRSZ(avp->avp_public.avp_flags));
free(avp);
return EBADMSG;
}
/* buf[offset] is now the beginning of the data */
avp->avp_source = &buf[offset];
/* Now eat the data and eventual padding */
offset += PAD4(avp->avp_public.avp_len - GETAVPHDRSZ(avp->avp_public.avp_flags));
/* And insert this avp in the list, at the end */
fd_list_insert_before( head, &avp->avp_chain.chaining );
}
return 0;
}
/* Create a message object from a buffer. Dictionary objects are not resolved, AVP contents are not interpreted, buffer is saved in msg */
int fd_msg_parse_buffer ( unsigned char ** buffer, size_t buflen, struct msg ** msg )
{
struct msg * new = NULL;
int ret = 0;
uint32_t msglen = 0;
unsigned char * buf;
TRACE_ENTRY("%p %zd %p", buffer, buflen, msg);
CHECK_PARAMS( buffer && *buffer && msg && (buflen >= GETMSGHDRSZ()) );
buf = *buffer;
if ( buf[0] != DIAMETER_VERSION) {
TRACE_DEBUG(INFO, "Invalid version in message: %d (supported: %d)", buf[0], DIAMETER_VERSION);
return EBADMSG;
}
msglen = ntohl(*(uint32_t *)buf) & 0x00ffffff;
if ( buflen < msglen ) {
TRACE_DEBUG(INFO, "Truncated message (%zd / %d)", buflen, msglen );
return EBADMSG;
}
/* Create a new object */
CHECK_MALLOC( new = malloc (sizeof(struct msg)) );
/* Initialize the fields */
init_msg(new);
/* Now read from the buffer */
new->msg_public.msg_version = buf[0];
new->msg_public.msg_length = msglen;
new->msg_public.msg_flags = buf[4];
new->msg_public.msg_code = ntohl(*(uint32_t *)(buf+4)) & 0x00ffffff;
new->msg_public.msg_appl = ntohl(*(uint32_t *)(buf+8));
new->msg_public.msg_hbhid = ntohl(*(uint32_t *)(buf+12));
new->msg_public.msg_eteid = ntohl(*(uint32_t *)(buf+16));
/* Parse the AVP list */
CHECK_FCT_DO( ret = parsebuf_list(buf + GETMSGHDRSZ(), buflen - GETMSGHDRSZ(), &new->msg_chain.children), { destroy_tree(_C(new)); return ret; } );
/* Parsing successful */
new->msg_rawbuffer = buf;
*buffer = NULL;
*msg = new;
return 0;
}
/***************************************************************************************************************/
/* Parsing messages and AVP with dictionary information */
/* Resolve dictionary objects of the cmd and avp instances, from their headers.
* When the model is found, the data is interpreted from the avp_source buffer and copied to avp_storage.
* When the model is not found, the data is copied as rawdata and saved (in case we FW the message).
* Therefore, after this function has been called, the source buffer can be freed.
* For command, if the dictionary model is not found, an error is returned.
*/
static char error_message[256];
/* Process an AVP. If we are not in recheck, the avp_source must be set. */
static int parsedict_do_avp(struct dictionary * dict, struct avp * avp, int mandatory, struct fd_pei *error_info)
{
struct dict_avp_data dictdata;
struct dict_type_data derivedtypedata;
struct dict_object * avp_derived_type = NULL;
uint8_t * source;
TRACE_ENTRY("%p %p %d %p", dict, avp, mandatory, error_info);
/* First check we received an AVP as input */
CHECK_PARAMS( CHECK_AVP(avp) );
if (avp->avp_model != NULL) {
/* the model has already been resolved. we do check it is still valid */
CHECK_FCT( fd_dict_getval(avp->avp_model, &dictdata) );
if ( avp->avp_public.avp_code == dictdata.avp_code ) {
/* Ok then just process the children if any */
return parsedict_do_chain(dict, &avp->avp_chain.children, mandatory && (avp->avp_public.avp_flags & AVP_FLAG_MANDATORY), error_info);
} else {
/* We just erase the old model */
avp->avp_model = NULL;
}
}
/* Check if we already searched for this model without success */
if ((avp->avp_model_not_found.mnf_code != avp->avp_public.avp_code)
|| (avp->avp_model_not_found.mnf_vendor != avp->avp_public.avp_vendor)) {
/* Now try and resolve the model from the avp code and vendor */
if (avp->avp_public.avp_flags & AVP_FLAG_VENDOR) {
struct dict_avp_request_ex avpreq;
memset(&avpreq, 0, sizeof(avpreq));
avpreq.avp_vendor.vendor_id = avp->avp_public.avp_vendor;
avpreq.avp_data.avp_code = avp->avp_public.avp_code;
CHECK_FCT( fd_dict_search ( dict, DICT_AVP, AVP_BY_STRUCT, &avpreq, &avp->avp_model, 0));
} else {
/* no vendor */
CHECK_FCT( fd_dict_search ( dict, DICT_AVP, AVP_BY_CODE, &avp->avp_public.avp_code, &avp->avp_model, 0));
}
if (!avp->avp_model) {
avp->avp_model_not_found.mnf_code = avp->avp_public.avp_code;
avp->avp_model_not_found.mnf_vendor = avp->avp_public.avp_vendor;
}
}
/* First handle the case where we have not found this AVP in the dictionary */
if (!avp->avp_model) {
if (mandatory && (avp->avp_public.avp_flags & AVP_FLAG_MANDATORY)) {
TRACE_DEBUG(INFO, "Unsupported mandatory AVP found");
if (error_info) {
error_info->pei_errcode = "DIAMETER_AVP_UNSUPPORTED";
error_info->pei_avp = avp;
} else {
char * buf = NULL;
size_t buflen;
CHECK_MALLOC(fd_msg_dump_treeview(&buf, &buflen, NULL, avp, NULL, 0, 0));
LOG_E("Unsupported AVP: %s", buf);
free(buf);
}
return ENOTSUP;
}
if (avp->avp_source) {
/* we must copy the data from the source to the internal buffer area */
CHECK_PARAMS( !avp->avp_rawdata );
avp->avp_rawlen = avp->avp_public.avp_len - GETAVPHDRSZ( avp->avp_public.avp_flags );
if (avp->avp_rawlen) {
CHECK_MALLOC( avp->avp_rawdata = malloc(avp->avp_rawlen) );
memcpy(avp->avp_rawdata, avp->avp_source, avp->avp_rawlen);
}
avp->avp_source = NULL;
TRACE_DEBUG(FULL, "Unsupported optional AVP found, raw source data saved in avp_rawdata.");
}
return 0;
}
/* Ok we have resolved the object. Now we need to interpret its content. */
CHECK_FCT( fd_dict_getval(avp->avp_model, &dictdata) );
if (avp->avp_rawdata) {
/* This happens if the dictionary object was defined after the first check */
avp->avp_source = avp->avp_rawdata;
}
/* A bit of sanity here... */
ASSERT(CHECK_BASETYPE(dictdata.avp_basetype));
/* Check the size is valid */
if ((avp_value_sizes[dictdata.avp_basetype] != 0) &&
(avp->avp_public.avp_len - GETAVPHDRSZ( avp->avp_public.avp_flags ) != avp_value_sizes[dictdata.avp_basetype])) {
TRACE_DEBUG(INFO, "The AVP size is not suitable for the type");
if (error_info) {
error_info->pei_errcode = "DIAMETER_INVALID_AVP_LENGTH";
error_info->pei_avp = avp;
snprintf(error_message, sizeof(error_message), "I expected a size of %d for this AVP according to my dictionary", avp_value_sizes[dictdata.avp_basetype]);
error_info->pei_message = error_message;
} else {
char * buf = NULL;
size_t buflen;
CHECK_MALLOC(fd_msg_dump_treeview(&buf, &buflen, NULL, avp, NULL, 0, 0));
LOG_E("Invalid length AVP: %s", buf);
free(buf);
}
avp->avp_model = NULL;
return EBADMSG;
}
source = avp->avp_source;
avp->avp_source = NULL;
/* Now get the value inside */
switch (dictdata.avp_basetype) {
case AVP_TYPE_GROUPED: {
int ret;
/* This is a grouped AVP, so let's parse the list of AVPs inside */
CHECK_FCT_DO( ret = parsebuf_list(source, avp->avp_public.avp_len - GETAVPHDRSZ( avp->avp_public.avp_flags ), &avp->avp_chain.children),
{
if ((ret == EBADMSG) && (error_info)) {
error_info->pei_errcode = "DIAMETER_INVALID_AVP_VALUE";
error_info->pei_avp = avp;
snprintf(error_message, sizeof(error_message), "I cannot parse this AVP as a Grouped AVP");
error_info->pei_message = error_message;
}
avp->avp_source = source;
return ret;
} );
return parsedict_do_chain(dict, &avp->avp_chain.children, mandatory && (avp->avp_public.avp_flags & AVP_FLAG_MANDATORY), error_info);
}
case AVP_TYPE_OCTETSTRING:
/* We just have to copy the string into the storage area */
CHECK_PARAMS_DO( avp->avp_public.avp_len >= GETAVPHDRSZ( avp->avp_public.avp_flags ),
{
if (error_info) {
error_info->pei_errcode = "DIAMETER_INVALID_AVP_LENGTH";
error_info->pei_avp = avp;
}
avp->avp_source = source;
return EBADMSG;
} );
avp->avp_storage.os.len = avp->avp_public.avp_len - GETAVPHDRSZ( avp->avp_public.avp_flags );
CHECK_MALLOC( avp->avp_storage.os.data = os0dup(source, avp->avp_storage.os.len) );
avp->avp_mustfreeos = 1;
break;
case AVP_TYPE_INTEGER32:
avp->avp_storage.i32 = (int32_t)ntohl(*(uint32_t *)source);
break;
case AVP_TYPE_INTEGER64:
/* the storage might not be aligned on 64b boundary, so no direct indirection here is possible */
{
uint64_t __stor;
memcpy(&__stor, source, sizeof(__stor));
avp->avp_storage.i64 = (int64_t)ntohll(__stor);
}
break;
case AVP_TYPE_UNSIGNED32:
case AVP_TYPE_FLOAT32: /* For float, we must not cast, or the value is changed. Instead we use implicit cast by changing the member of the union */
avp->avp_storage.u32 = (uint32_t)ntohl(*(uint32_t *)source);
break;
case AVP_TYPE_UNSIGNED64:
case AVP_TYPE_FLOAT64: /* same as 32 bits */
{
uint64_t __stor;
memcpy(&__stor, source, sizeof(__stor));
avp->avp_storage.u64 = (uint64_t)ntohll(__stor);
}
break;
}
/* Is there a derived type check function ? */
CHECK_FCT ( fd_dict_search ( dict, DICT_TYPE, TYPE_OF_AVP, avp->avp_model, &avp_derived_type, 0) );
if (avp_derived_type) {
CHECK_FCT( fd_dict_getval(avp_derived_type, &derivedtypedata) );
if (derivedtypedata.type_check != NULL) {
char * err;
int ret = (*derivedtypedata.type_check)( derivedtypedata.type_check_param, &avp->avp_storage, &err );
if (ret != 0) {
TRACE_DEBUG(INFO, "The AVP failed to pass the dictionary validation");
if (error_info) {
error_info->pei_errcode = "DIAMETER_INVALID_AVP_VALUE";
error_info->pei_avp = avp;
strncpy(error_message, err, sizeof(error_message));
error_info->pei_message = error_message;
} else {
char * buf = NULL;
size_t buflen;
CHECK_MALLOC(fd_msg_dump_treeview(&buf, &buflen, NULL, avp, NULL, 0, 0));
LOG_E("Invalid AVP: %s", buf);
free(buf);
}
return ret; /* should we just return EBADMSG? */
}
}
}
/* The value is now set, so set the data pointer and return 0 */
avp->avp_public.avp_value = &avp->avp_storage;
return 0;
}
/* Process a list of AVPs */
static int parsedict_do_chain(struct dictionary * dict, struct fd_list * head, int mandatory, struct fd_pei *error_info)
{
struct fd_list * avpch;
TRACE_ENTRY("%p %p %d %p", dict, head, mandatory, error_info);
/* Sanity check */
ASSERT ( head == head->head );
/* Now process the list */
for (avpch=head->next; avpch != head; avpch = avpch->next) {
CHECK_FCT( parsedict_do_avp(dict, _A(avpch->o), mandatory, error_info) );
}
/* Done */
return 0;
}
/* Process a msg header. */
static int parsedict_do_msg(struct dictionary * dict, struct msg * msg, int only_hdr, struct fd_pei *error_info)
{
int ret = 0;
TRACE_ENTRY("%p %p %d %p", dict, msg, only_hdr, error_info);
CHECK_PARAMS( CHECK_MSG(msg) );
/* First, check if we already have a model. */
if (msg->msg_model != NULL) {
/* Check if this model is still valid for the message data */
enum dict_object_type dicttype;
struct dict_cmd_data data;
ASSERT(((fd_dict_gettype(msg->msg_model, &dicttype) == 0) && (dicttype == DICT_COMMAND)));
(void)fd_dict_getval( msg->msg_model, &data);
if ((data.cmd_code != msg->msg_public.msg_code)
|| ((data.cmd_flag_val & data.cmd_flag_mask) != (msg->msg_public.msg_flags && data.cmd_flag_mask))) {
msg->msg_model = NULL;
} else {
goto chain;
}
}
/* Check if we already searched for this model without success */
if ((msg->msg_model_not_found.mnf_code == msg->msg_public.msg_code)
&& (msg->msg_model_not_found.mnf_flags == msg->msg_public.msg_flags)) {
goto no_model;
} else {
msg->msg_model_not_found.mnf_code = 0;
}
/* Look for the model from the header */
CHECK_FCT_DO( ret = fd_dict_search ( dict, DICT_COMMAND,
(msg->msg_public.msg_flags & CMD_FLAG_REQUEST) ? CMD_BY_CODE_R : CMD_BY_CODE_A,
&msg->msg_public.msg_code,
&msg->msg_model, ENOTSUP),
{
if (ret == ENOTSUP) {
/* update the model not found info */
msg->msg_model_not_found.mnf_code = msg->msg_public.msg_code;
msg->msg_model_not_found.mnf_flags = msg->msg_public.msg_flags;
goto no_model;
}
return ret;
} );
chain:
if (!only_hdr) {
/* Then process the children */
ret = parsedict_do_chain(dict, &msg->msg_chain.children, 1, error_info);
/* Free the raw buffer if any */
if ((ret == 0) && (msg->msg_rawbuffer != NULL)) {
free(msg->msg_rawbuffer);
msg->msg_rawbuffer=NULL;
}
}
return ret;
no_model:
if (error_info) {
error_info->pei_errcode = "DIAMETER_COMMAND_UNSUPPORTED";
error_info->pei_protoerr = 1;
}
return ENOTSUP;
}
int fd_msg_parse_dict ( msg_or_avp * object, struct dictionary * dict, struct fd_pei *error_info )
{
TRACE_ENTRY("%p %p %p", dict, object, error_info);
CHECK_PARAMS( VALIDATE_OBJ(object) );
if (error_info)
memset(error_info, 0, sizeof(struct fd_pei));
switch (_C(object)->type) {
case MSG_MSG:
return parsedict_do_msg(dict, _M(object), 0, error_info);
case MSG_AVP:
return parsedict_do_avp(dict, _A(object), 0, error_info);
default:
ASSERT(0);
}
return EINVAL;
}
/***************************************************************************************************************/
/* Parsing messages and AVP for rules (ABNF) compliance */
/* This function is used to get stats (first occurence position, last occurence position, number of occurences)
of AVP instances of a given model in a chain of AVP */
static void parserules_stat_avps( struct dict_object * model_avp, struct fd_list *list, int * count, int * firstpos, int * lastpos)
{
struct fd_list * li;
int curpos = 0; /* The current position in the list */
TRACE_ENTRY("%p %p %p %p %p", model_avp, list, count, firstpos, lastpos);
*count = 0; /* number of instances found */
*firstpos = 0; /* position of the first instance */
*lastpos = 0; /* position of the last instance, starting from the end */
for (li = list->next; li != list; li = li->next) {
/* Increment the current position counter */
curpos++;
/* If we previously saved a "lastpos" information, increment it */
if (*lastpos != 0)
(*lastpos)++;
/* Check the type of the next AVP. We can compare the references directly, it is safe. */
if (_A(li->o)->avp_model == model_avp) {
/* This AVP is of the type we are searching */
(*count)++;
/* If we don't have yet a "firstpos", save it */
if (*firstpos == 0)
*firstpos = curpos;
/* Reset the lastpos */
(*lastpos) = 1;
}
}
}
/* We use this structure as parameter for the next function */
struct parserules_data {
struct fd_list * sentinel; /* Sentinel of the list of children AVP */
struct fd_pei * pei; /* If the rule conflicts, save the error here */
};
/* Create an empty AVP of a given model (to use in Failed-AVP) */
static struct avp * empty_avp(struct dict_object * model_avp)
{
struct avp * avp = NULL;
struct dict_avp_data avp_info;
union avp_value val;
unsigned char os[1] = { '\0' };
/* Create an instance */
CHECK_FCT_DO( fd_msg_avp_new(model_avp, 0, &avp ), return NULL );
/* Type of the AVP */
CHECK_FCT_DO( fd_dict_getval(model_avp, &avp_info), return NULL );
/* Set an initial size */
avp->avp_public.avp_len = GETAVPHDRSZ( avp->avp_public.avp_flags ) + avp_value_sizes[avp_info.avp_basetype];
/* Prepare the empty value */
memset(&val, 0, sizeof(val));
switch (avp_info.avp_basetype) {
case AVP_TYPE_OCTETSTRING:
val.os.data = os;
val.os.len = sizeof(os);
avp->avp_public.avp_len += val.os.len;
case AVP_TYPE_INTEGER32:
case AVP_TYPE_INTEGER64:
case AVP_TYPE_UNSIGNED32:
case AVP_TYPE_UNSIGNED64:
case AVP_TYPE_FLOAT32:
case AVP_TYPE_FLOAT64:
CHECK_FCT_DO( fd_msg_avp_setvalue(avp, &val), return NULL );
case AVP_TYPE_GROUPED:
/* For AVP_TYPE_GROUPED we don't do anything */
break;
default:
ASSERT(0); /* not handled */
}
return avp;
}
/* Check that a list of AVPs is compliant with a given rule -- will be iterated on the list of rules */
static int parserules_check_one_rule(void * data, struct dict_rule_data *rule)
{
int count, first, last, min;
struct parserules_data * pr_data = data;
char * avp_name = "<unresolved name>";
TRACE_ENTRY("%p %p", data, rule);
/* Get statistics of the AVP concerned by this rule in the parent instance */
parserules_stat_avps( rule->rule_avp, pr_data->sentinel, &count, &first, &last);
if (TRACE_BOOL(INFO))
{
struct dict_avp_data avpdata;
int ret;
ret = fd_dict_getval(rule->rule_avp, &avpdata);
if (ret == 0)
avp_name = avpdata.avp_name;
TRACE_DEBUG(ANNOYING, "Checking rule: p:%d(%d) m/M:%2d/%2d. Counted %d (first: %d, last:%d) of AVP '%s'",
rule->rule_position,
rule->rule_order,
rule->rule_min,
rule->rule_max,
count,
first,
last,
avp_name
);
}
/* Now check the rule is not conflicting */
/* Check the "min" value */
if ((min = rule->rule_min) == -1) {
if (rule->rule_position == RULE_OPTIONAL)
min = 0;
else
min = 1;
}
if (count < min) {
fd_log_error("Conflicting rule: the number of occurences (%d) is < the rule min (%d) for '%s'.", count, min, avp_name);
if (pr_data->pei) {
pr_data->pei->pei_errcode = "DIAMETER_MISSING_AVP";
pr_data->pei->pei_avp = empty_avp(rule->rule_avp);
pr_data->pei->pei_avp_free = 1;
}
return EBADMSG;
}
/* Check the "max" value */
if ((rule->rule_max != -1) && (count > rule->rule_max)) {
fd_log_error("Conflicting rule: the number of occurences (%d) is > the rule max (%d) for '%s'.", count, rule->rule_max, avp_name);
if (pr_data->pei) {
if (rule->rule_max == 0)
pr_data->pei->pei_errcode = "DIAMETER_AVP_NOT_ALLOWED";
else
pr_data->pei->pei_errcode = "DIAMETER_AVP_OCCURS_TOO_MANY_TIMES";
pr_data->pei->pei_avp = empty_avp(rule->rule_avp); /* Well we are supposed to return the (max + 1)th instance of the AVP instead... Pfff... */ TODO("Improve...");
pr_data->pei->pei_avp_free = 1;
}
return EBADMSG;
}
/* Check the position and order (if relevant) */
switch (rule->rule_position) {
case RULE_OPTIONAL:
case RULE_REQUIRED:
/* No special position constraints */
break;
case RULE_FIXED_HEAD:
/* Since "0*1<fixed>" is a valid rule specifier, we only reject cases where the AVP appears *after* its fixed position */
if (first > rule->rule_order) {
fd_log_error("Conflicting rule: the FIXED_HEAD AVP appears first in (%d) position, the rule requires (%d) for '%s'.", first, rule->rule_order, avp_name);
if (pr_data->pei) {
pr_data->pei->pei_errcode = "DIAMETER_MISSING_AVP";
pr_data->pei->pei_message = "AVP was not in its fixed position";
pr_data->pei->pei_avp = empty_avp(rule->rule_avp);
pr_data->pei->pei_avp_free = 1;
}
return EBADMSG;
}
break;
case RULE_FIXED_TAIL:
/* Since "0*1<fixed>" is a valid rule specifier, we only reject cases where the AVP appears *before* its fixed position */
if (last > rule->rule_order) { /* We have a ">" here because we count in reverse order (i.e. from the end) */
fd_log_error("Conflicting rule: the FIXED_TAIL AVP appears last in (%d) position, the rule requires (%d) for '%s'.", last, rule->rule_order, avp_name);
if (pr_data->pei) {
pr_data->pei->pei_errcode = "DIAMETER_MISSING_AVP";
pr_data->pei->pei_message = "AVP was not in its fixed position";
pr_data->pei->pei_avp = empty_avp(rule->rule_avp);
pr_data->pei->pei_avp_free = 1;
}
return EBADMSG;
}
break;
default:
/* What is this position ??? */
ASSERT(0);
return ENOTSUP;
}
/* We've checked all the parameters */
return 0;
}
/* Check the rules recursively */
static int parserules_do ( struct dictionary * dict, msg_or_avp * object, struct fd_pei *error_info, int mandatory)
{
struct parserules_data data;
struct dict_object * model = NULL;
TRACE_ENTRY("%p %p %p %d", dict, object, error_info, mandatory);
/* object has already been checked and dict-parsed when we are called. */
/* First, handle the cases where there is no model */
{
if (CHECK_MSG(object)) {
if ( _M(object)->msg_public.msg_flags & CMD_FLAG_ERROR ) {
/* The case of error messages: the ABNF is different */
CHECK_FCT( fd_dict_get_error_cmd(dict, &model) );
} else {
model = _M(object)->msg_model;
}
/* Commands MUST be supported in the dictionary */
if (model == NULL) {
TRACE_DEBUG(INFO, "Message with no dictionary model. EBADMSG");
if (error_info) {
error_info->pei_errcode = "DIAMETER_COMMAND_UNSUPPORTED";
error_info->pei_protoerr = 1;
}
return EBADMSG;
}
}
/* AVP with the 'M' flag must also be recognized in the dictionary -- except inside an optional grouped AVP */
if (CHECK_AVP(object) && ((model = _A(object)->avp_model) == NULL)) {
if ( mandatory && (_A(object)->avp_public.avp_flags & AVP_FLAG_MANDATORY)) {
/* Return an error in this case */
TRACE_DEBUG(INFO, "Mandatory AVP with no dictionary model. EBADMSG");
if (error_info) {
error_info->pei_errcode = "DIAMETER_AVP_UNSUPPORTED";
error_info->pei_avp = object;
}
return EBADMSG;
} else {
/* We don't know any rule for this object, so assume OK */
TRACE_DEBUG(FULL, "Unknown informational AVP, ignoring...");
return 0;
}
}
}
/* At this point we know "model" is set and points to the object's model */
/* If we are an AVP with no children, just return OK */
if (CHECK_AVP(object)) {
struct dict_avp_data dictdata;
CHECK_FCT( fd_dict_getval(model, &dictdata) );
if (dictdata.avp_basetype != AVP_TYPE_GROUPED) {
/* This object has no children and no rules */
return 0;
}
}
/* If this object has children, first check the rules for all its children */
{
int is_child_mand = 0;
struct fd_list * ch = NULL;
if ( CHECK_MSG(object)
|| (mandatory && (_A(object)->avp_public.avp_flags & AVP_FLAG_MANDATORY)) )
is_child_mand = 1;
for (ch = _C(object)->children.next; ch != &_C(object)->children; ch = ch->next) {
CHECK_FCT( parserules_do ( dict, _C(ch->o), error_info, is_child_mand ) );
}
}
/* Now check all rules of this object */
data.sentinel = &_C(object)->children;
data.pei = error_info;
CHECK_FCT( fd_dict_iterate_rules ( model, &data, parserules_check_one_rule ) );
return 0;
}
int fd_msg_parse_rules ( msg_or_avp * object, struct dictionary * dict, struct fd_pei *error_info)
{
TRACE_ENTRY("%p %p %p", object, dict, error_info);
if (error_info)
memset(error_info, 0, sizeof(struct fd_pei));
/* Resolve the dictionary objects when missing. This also validates the object. */
CHECK_FCT( fd_msg_parse_dict ( object, dict, error_info ) );
/* Call the recursive function */
return parserules_do ( dict, object, error_info, 1 ) ;
}
/***************************************************************************************************************/
/* Compute the lengh of an object and its subtree. */
int fd_msg_update_length ( msg_or_avp * object )
{
size_t sz = 0;
struct dict_object * model;
union {
struct dict_cmd_data cmddata;
struct dict_avp_data avpdata;
} dictdata;
TRACE_ENTRY("%p", object);
/* Get the model of the object. This also validates the object */
CHECK_FCT( fd_msg_model ( object, &model ) );
/* Get the information of the model */
if (model) {
CHECK_FCT( fd_dict_getval(model, &dictdata) );
} else {
/* For unknown AVP, just don't change the size */
if (_C(object)->type == MSG_AVP)
return 0;
}
/* Deal with easy cases: AVPs without children */
if ((_C(object)->type == MSG_AVP) && (dictdata.avpdata.avp_basetype != AVP_TYPE_GROUPED)) {
/* Sanity check */
ASSERT(FD_IS_LIST_EMPTY(&_A(object)->avp_chain.children));
/* Now check that the data is set in the AVP */
CHECK_PARAMS( _A(object)->avp_public.avp_value );
sz = GETAVPHDRSZ( _A(object)->avp_public.avp_flags );
switch (dictdata.avpdata.avp_basetype) {
case AVP_TYPE_OCTETSTRING:
sz += _A(object)->avp_public.avp_value->os.len;
break;
case AVP_TYPE_INTEGER32:
case AVP_TYPE_INTEGER64:
case AVP_TYPE_UNSIGNED32:
case AVP_TYPE_UNSIGNED64:
case AVP_TYPE_FLOAT32:
case AVP_TYPE_FLOAT64:
sz += avp_value_sizes[dictdata.avpdata.avp_basetype];
break;
default:
/* Something went wrong... */
ASSERT(0);
}
}
else /* message or grouped AVP */
{
struct fd_list * ch = NULL;
/* First, compute the header size */
if (_C(object)->type == MSG_AVP) {
sz = GETAVPHDRSZ( _A(object)->avp_public.avp_flags );
} else {
sz = GETMSGHDRSZ( );
}
/* Recurse in all children and update the sz information */
for (ch = _C(object)->children.next; ch != &_C(object)->children; ch = ch->next) {
CHECK_FCT( fd_msg_update_length ( ch->o ) );
/* Add the padded size to the parent */
sz += PAD4( _A(ch->o)->avp_public.avp_len );
}
}
/* When we arrive here, the "sz" variable contains the size to write in the object */
if (_C(object)->type == MSG_AVP)
_A(object)->avp_public.avp_len = sz;
else
_M(object)->msg_public.msg_length = sz;
return 0;
}
/***************************************************************************************************************/
/* Macro to check if further callbacks must be called */
#define TEST_ACTION_STOP() \
if ((*msg == NULL) || (*action != DISP_ACT_CONT)) \
goto out;
/* Call all dispatch callbacks for a given message */
int fd_msg_dispatch ( struct msg ** msg, struct session * session, enum disp_action *action, char ** error_code, char ** drop_reason, struct msg ** drop_msg)
{
struct dictionary * dict;
struct dict_object * app;
struct dict_object * cmd;
struct avp * avp;
struct fd_list * cb_list;
int ret = 0, r2;
TRACE_ENTRY("%p %p %p %p", msg, session, action, error_code);
CHECK_PARAMS( msg && CHECK_MSG(*msg) && action);
if (error_code)
*error_code = NULL;
if (drop_reason)
*drop_reason = NULL;
*action = DISP_ACT_CONT;
/* Take the dispatch lock */
CHECK_FCT( pthread_rwlock_rdlock(&fd_disp_lock) );
pthread_cleanup_push( fd_cleanup_rwlock, &fd_disp_lock );
/* First, call the DISP_HOW_ANY callbacks */
CHECK_FCT_DO( ret = fd_disp_call_cb_int( NULL, msg, NULL, session, action, NULL, NULL, NULL, NULL, drop_reason, drop_msg ), goto out );
TEST_ACTION_STOP();
/* If we don't know the model at this point, we stop cause we cannot get the dictionary. It's invalid: an error should already have been trigged by ANY callbacks */
CHECK_PARAMS_DO(cmd = (*msg)->msg_model, { ret = EINVAL; goto out; } );
/* Now resolve message application */
CHECK_FCT_DO( ret = fd_dict_getdict( cmd, &dict ), goto out );
CHECK_FCT_DO( ret = fd_dict_search( dict, DICT_APPLICATION, APPLICATION_BY_ID, &(*msg)->msg_public.msg_appl, &app, 0 ), goto out );
if (app == NULL) {
if ((*msg)->msg_public.msg_flags & CMD_FLAG_REQUEST) {
if (error_code)
*error_code = "DIAMETER_APPLICATION_UNSUPPORTED";
*action = DISP_ACT_ERROR;
} else {
*drop_reason = "Internal error: Received this answer to a local query with an unsupported application";
*drop_msg = *msg;
*msg = NULL;
}
goto out;
}
/* So start browsing the message */
CHECK_FCT_DO( ret = fd_msg_browse( *msg, MSG_BRW_FIRST_CHILD, &avp, NULL ), goto out );
while (avp != NULL) {
/* For unknown AVP, we don't have a callback registered, so just skip */
if (avp->avp_model) {
struct dict_object * enumval = NULL;
/* Get the list of callback for this AVP */
CHECK_FCT_DO( ret = fd_dict_disp_cb(DICT_AVP, avp->avp_model, &cb_list), goto out );
/* We search enumerated values only in case of non-grouped AVP */
if ( avp->avp_public.avp_value ) {
struct dict_object * type;
/* Check if the AVP has a constant value */
CHECK_FCT_DO( ret = fd_dict_search(dict, DICT_TYPE, TYPE_OF_AVP, avp->avp_model, &type, 0), goto out );
if (type) {
struct dict_enumval_request req;
memset(&req, 0, sizeof(struct dict_enumval_request));
req.type_obj = type;
memcpy( &req.search.enum_value, avp->avp_public.avp_value, sizeof(union avp_value) );
CHECK_FCT_DO( ret = fd_dict_search(dict, DICT_ENUMVAL, ENUMVAL_BY_STRUCT, &req, &enumval, 0), goto out );
}
}
/* Call the callbacks */
CHECK_FCT_DO( ret = fd_disp_call_cb_int( cb_list, msg, avp, session, action, app, cmd, avp->avp_model, enumval, drop_reason, drop_msg ), goto out );
TEST_ACTION_STOP();
}
/* Go to next AVP */
CHECK_FCT_DO( ret = fd_msg_browse( avp, MSG_BRW_WALK, &avp, NULL ), goto out );
}
/* Now call command and application callbacks */
CHECK_FCT_DO( ret = fd_dict_disp_cb(DICT_COMMAND, cmd, &cb_list), goto out );
CHECK_FCT_DO( ret = fd_disp_call_cb_int( cb_list, msg, NULL, session, action, app, cmd, NULL, NULL, drop_reason, drop_msg ), goto out );
TEST_ACTION_STOP();
if (app) {
CHECK_FCT_DO( ret = fd_dict_disp_cb(DICT_APPLICATION, app, &cb_list), goto out );
CHECK_FCT_DO( ret = fd_disp_call_cb_int( cb_list, msg, NULL, session, action, app, cmd, NULL, NULL, drop_reason, drop_msg ), goto out );
TEST_ACTION_STOP();
}
out:
; /* some systems would complain without this */
pthread_cleanup_pop(0);
CHECK_POSIX_DO(r2 = pthread_rwlock_unlock(&fd_disp_lock), /* ignore */ );
return ret ?: r2;
}