blob: b6c94fa4efb5c6d8af67a67cc33a27bd65ad0686 [file] [log] [blame]
/*********************************************************************************************************
* Software License Agreement (BSD License) *
* Author: Sebastien Decugis <sdecugis@freediameter.net> *
* *
* Copyright (c) 2013, WIDE Project and NICT *
* All rights reserved. *
* *
* Redistribution and use of this software in source and binary forms, with or without modification, are *
* permitted provided that the following conditions are met: *
* *
* * Redistributions of source code must retain the above *
* copyright notice, this list of conditions and the *
* following disclaimer. *
* *
* * Redistributions in binary form must reproduce the above *
* copyright notice, this list of conditions and the *
* following disclaimer in the documentation and/or other *
* materials provided with the distribution. *
* *
* * Neither the name of the WIDE Project or NICT nor the *
* names of its contributors may be used to endorse or *
* promote products derived from this software without *
* specific prior written permission of WIDE Project and *
* NICT. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR *
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS *
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR *
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF *
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
*********************************************************************************************************/
/* Sessions module.
*
* Basic functionalities to help implementing User sessions state machines from RFC3588.
*/
#include "fdproto-internal.h"
/*********************** Parameters **********************/
/* Size of the hash table containing the session objects (pow of 2. ex: 6 => 2^6 = 64). must be between 0 and 31. */
#ifndef SESS_HASH_SIZE
#define SESS_HASH_SIZE 6
#endif /* SESS_HASH_SIZE */
/* Default lifetime of a session, in seconds. (31 days = 2678400 seconds) */
#ifndef SESS_DEFAULT_LIFETIME
#define SESS_DEFAULT_LIFETIME 2678400
#endif /* SESS_DEFAULT_LIFETIME */
/********************** /Parameters **********************/
/* Eyescatchers definitions */
#define SH_EYEC 0x53554AD1
#define SD_EYEC 0x5355D474
#define SI_EYEC 0x53551D
/* Macro to check an object is valid */
#define VALIDATE_SH( _obj ) ( ((_obj) != NULL) && ( ((struct session_handler *)(_obj))->eyec == SH_EYEC) )
#define VALIDATE_SI( _obj ) ( ((_obj) != NULL) && ( ((struct session *)(_obj))->eyec == SI_EYEC) )
/* Handlers registered by users of the session module */
struct session_handler {
int eyec; /* An eye catcher also used to ensure the object is valid, must be SH_EYEC */
int id; /* A unique integer to identify this handler */
void (*cleanup)(struct sess_state *, os0_t, void *); /* The cleanup function to be called for cleaning a state */
session_state_dump state_dump; /* dumper function */
void *opaque; /* a value that is passed as is to the cleanup callback */
};
static int hdl_id = 0; /* A global counter to initialize the id field */
static pthread_mutex_t hdl_lock = PTHREAD_MUTEX_INITIALIZER; /* lock to protect hdl_id; we could use atomic operations otherwise (less portable) */
/* Data structures linked from the sessions, containing the applications states */
struct state {
int eyec; /* Must be SD_EYEC */
struct sess_state *state; /* The state registered by the application, never NULL (or the whole object is deleted) */
struct fd_list chain; /* Chaining in the list of session's states ordered by hdl->id */
union {
struct session_handler *hdl; /* The handler for which this state was registered */
os0_t sid; /* For deleted state, the sid of the session it belong to */
};
};
/* Session object, one for each value of Session-Id AVP */
struct session {
int eyec; /* Eyecatcher, SI_EYEC */
os0_t sid; /* The \0-terminated Session-Id */
size_t sidlen; /* cached length of sid */
uint32_t hash; /* computed hash of sid */
struct fd_list chain_h;/* chaining in the hash table of sessions. */
struct timespec timeout;/* Timeout date for the session */
struct fd_list expire; /* List of expiring sessions, ordered by timeouts. */
pthread_mutex_t stlock; /* A lock to protect the list of states associated with this session */
struct fd_list states; /* Sentinel for the list of states of this session. */
int msg_cnt;/* Reference counter for the messages pointing to this session */
int is_destroyed; /* boolean telling if fd_sess_detroy has been called on this */
};
/* Sessions hash table, to allow fast sid to session retrieval */
static struct {
struct fd_list sentinel; /* sentinel element for this sublist. The sublist is ordered by hash value, then fd_os_cmp(sid). */
pthread_mutex_t lock; /* the mutex for this sublist -- we might probably change it to rwlock for a little optimization */
} sess_hash [ 1 << SESS_HASH_SIZE ] ;
#define H_MASK( __hash ) ((__hash) & (( 1 << SESS_HASH_SIZE ) - 1))
#define H_LIST( _hash ) (&(sess_hash[H_MASK(_hash)].sentinel))
#define H_LOCK( _hash ) (&(sess_hash[H_MASK(_hash)].lock ))
static uint32_t sess_cnt = 0; /* counts all active session (that are in the expiry list) */
/* The following are used to generate sid values that are eternaly unique */
static uint32_t sid_h; /* initialized to the current time in fd_sess_init */
static uint32_t sid_l; /* incremented each time a session id is created */
static pthread_mutex_t sid_lock = PTHREAD_MUTEX_INITIALIZER;
/* Expiring sessions management */
static struct fd_list exp_sentinel = FD_LIST_INITIALIZER(exp_sentinel); /* list of sessions ordered by their timeout date */
static pthread_mutex_t exp_lock = PTHREAD_MUTEX_INITIALIZER; /* lock protecting the list. */
static pthread_cond_t exp_cond = PTHREAD_COND_INITIALIZER; /* condvar used by the expiry mecahinsm. */
static pthread_t exp_thr = (pthread_t)NULL; /* The expiry thread that handles cleanup of expired sessions */
/* Hierarchy of the locks, to avoid deadlocks:
* hash lock > state lock > expiry lock
* i.e. state lock can be taken while holding the hash lock, but not while holding the expiry lock.
* As well, the hash lock cannot be taken while holding a state lock.
*/
/********************************************************************************************************/
/* Initialize a session object. It is not linked now. sid must be already malloc'ed. The hash has already been computed. */
static struct session * new_session(os0_t sid, size_t sidlen, uint32_t hash)
{
struct session * sess;
TRACE_ENTRY("%p %zd", sid, sidlen);
CHECK_PARAMS_DO( sid && sidlen, return NULL );
CHECK_MALLOC_DO( sess = malloc(sizeof(struct session)), return NULL );
memset(sess, 0, sizeof(struct session));
sess->eyec = SI_EYEC;
sess->sid = sid;
sess->sidlen = sidlen;
sess->hash = hash;
fd_list_init(&sess->chain_h, sess);
CHECK_SYS_DO( clock_gettime(CLOCK_REALTIME, &sess->timeout), return NULL );
sess->timeout.tv_sec += SESS_DEFAULT_LIFETIME;
fd_list_init(&sess->expire, sess);
CHECK_POSIX_DO( pthread_mutex_init(&sess->stlock, NULL), return NULL );
fd_list_init(&sess->states, sess);
return sess;
}
/* destroy the session object. It should really be already unlinked... */
static void del_session(struct session * s)
{
ASSERT(FD_IS_LIST_EMPTY(&s->states));
free(s->sid);
fd_list_unlink(&s->chain_h);
fd_list_unlink(&s->expire);
CHECK_POSIX_DO( pthread_mutex_destroy(&s->stlock), /* continue */ );
free(s);
}
/* The expiry thread */
static void * exp_fct(void * arg)
{
fd_log_threadname ( "Session/expire" );
TRACE_ENTRY( "" );
do {
struct timespec now;
struct session * first;
CHECK_POSIX_DO( pthread_mutex_lock(&exp_lock), break );
pthread_cleanup_push( fd_cleanup_mutex, &exp_lock );
again:
/* Check if there are expiring sessions available */
if (FD_IS_LIST_EMPTY(&exp_sentinel)) {
/* Just wait for a change or cancelation */
CHECK_POSIX_DO( pthread_cond_wait( &exp_cond, &exp_lock ), break /* this might not pop the cleanup handler, but since we ASSERT(0), it is not the big issue... */ );
/* Restart the loop on wakeup */
goto again;
}
/* Get the pointer to the session that expires first */
first = (struct session *)(exp_sentinel.next->o);
ASSERT( VALIDATE_SI(first) );
/* Get the current time */
CHECK_SYS_DO( clock_gettime(CLOCK_REALTIME, &now), break );
/* If first session is not expired, we just wait until it happens */
if ( TS_IS_INFERIOR( &now, &first->timeout ) ) {
CHECK_POSIX_DO2( pthread_cond_timedwait( &exp_cond, &exp_lock, &first->timeout ),
ETIMEDOUT, /* ETIMEDOUT is a normal error, continue */,
/* on other error, */ break );
/* on wakeup, loop */
goto again;
}
/* Now, the first session in the list is expired; destroy it */
pthread_cleanup_pop( 0 );
CHECK_POSIX_DO( pthread_mutex_unlock(&exp_lock), break );
CHECK_FCT_DO( fd_sess_destroy( &first ), break );
} while (1);
TRACE_DEBUG(INFO, "A system error occurred in session module! Expiry thread is terminating...");
ASSERT(0);
return NULL;
}
/********************************************************************************************************/
/* Initialize the session module */
int fd_sess_init(void)
{
int i;
TRACE_ENTRY( "" );
/* Initialize the global counters */
sid_h = (uint32_t) time(NULL);
sid_l = 0;
/* Initialize the hash table */
for (i = 0; i < sizeof(sess_hash) / sizeof(sess_hash[0]); i++) {
fd_list_init( &sess_hash[i].sentinel, NULL );
CHECK_POSIX( pthread_mutex_init(&sess_hash[i].lock, NULL) );
}
return 0;
}
/* Run this when initializations are complete. */
int fd_sess_start(void)
{
/* Start session garbage collector (expiry) */
CHECK_POSIX( pthread_create(&exp_thr, NULL, exp_fct, NULL) );
return 0;
}
/* Terminate */
void fd_sess_fini(void)
{
TRACE_ENTRY("");
CHECK_FCT_DO( fd_thr_term(&exp_thr), /* continue */ );
/* Destroy all sessions in the hash table, and the hash table itself? -- How to do it without a race condition ? */
return;
}
/* Create a new handler */
int fd_sess_handler_create ( struct session_handler ** handler, void (*cleanup)(struct sess_state *, os0_t, void *), session_state_dump dumper, void * opaque )
{
struct session_handler *new;
TRACE_ENTRY("%p %p", handler, cleanup);
CHECK_PARAMS( handler && cleanup );
CHECK_MALLOC( new = malloc(sizeof(struct session_handler)) );
memset(new, 0, sizeof(struct session_handler));
CHECK_POSIX( pthread_mutex_lock(&hdl_lock) );
new->id = ++hdl_id;
CHECK_POSIX( pthread_mutex_unlock(&hdl_lock) );
new->eyec = SH_EYEC;
new->cleanup = cleanup;
new->state_dump = dumper;
new->opaque = opaque;
*handler = new;
return 0;
}
/* Destroy a handler, and all states attached to this handler. This operation is very slow but we don't care since it's rarely used.
* Note that it's better to call this function after all sessions have been deleted... */
int fd_sess_handler_destroy ( struct session_handler ** handler, void ** opaque )
{
struct session_handler * del;
/* place to save the list of states to be cleaned up. We do it after finding them to avoid deadlocks. the "o" field becomes a copy of the sid. */
struct fd_list deleted_states = FD_LIST_INITIALIZER( deleted_states );
int i;
TRACE_ENTRY("%p", handler);
CHECK_PARAMS( handler && VALIDATE_SH(*handler) );
del = *handler;
*handler = NULL;
del->eyec = 0xdead; /* The handler is not valid anymore for any other operation */
/* Now find all sessions with data registered for this handler, and move this data to the deleted_states list. */
for (i = 0; i < sizeof(sess_hash) / sizeof(sess_hash[0]); i++) {
struct fd_list * li_si;
CHECK_POSIX( pthread_mutex_lock(&sess_hash[i].lock) );
for (li_si = sess_hash[i].sentinel.next; li_si != &sess_hash[i].sentinel; li_si = li_si->next) { /* for each session in the hash line */
struct fd_list * li_st;
struct session * sess = (struct session *)(li_si->o);
CHECK_POSIX( pthread_mutex_lock(&sess->stlock) );
for (li_st = sess->states.next; li_st != &sess->states; li_st = li_st->next) { /* for each state in this session */
struct state * st = (struct state *)(li_st->o);
/* The list is ordered */
if (st->hdl->id < del->id)
continue;
if (st->hdl->id == del->id) {
/* This state belongs to the handler we are deleting, move the item to the deleted_states list */
fd_list_unlink(&st->chain);
st->sid = sess->sid;
fd_list_insert_before(&deleted_states, &st->chain);
}
break;
}
CHECK_POSIX( pthread_mutex_unlock(&sess->stlock) );
}
CHECK_POSIX( pthread_mutex_unlock(&sess_hash[i].lock) );
}
/* Now, delete all states after calling their cleanup handler */
while (!FD_IS_LIST_EMPTY(&deleted_states)) {
struct state * st = (struct state *)(deleted_states.next->o);
TRACE_DEBUG(FULL, "Calling cleanup handler for session '%s' and data %p", st->sid, st->state);
(*del->cleanup)(st->state, st->sid, del->opaque);
fd_list_unlink(&st->chain);
free(st);
}
if (opaque)
*opaque = del->opaque;
/* Free the handler */
free(del);
return 0;
}
/* Create a new session object with the default timeout value, and link it. The refcount is increased by 1, whether the session existed or not */
int fd_sess_new ( struct session ** session, DiamId_t diamid, size_t diamidlen, uint8_t * opt, size_t optlen )
{
os0_t sid = NULL;
size_t sidlen;
uint32_t hash;
struct session * sess;
struct fd_list * li;
int found = 0;
int ret = 0;
TRACE_ENTRY("%p %p %zd %p %zd", session, diamid, diamidlen, opt, optlen);
CHECK_PARAMS( session && (diamid || opt) );
if (diamid) {
if (!diamidlen) {
diamidlen = strlen(diamid);
}
/* We check if the string is a valid DiameterIdentity */
CHECK_PARAMS( fd_os_is_valid_DiameterIdentity((uint8_t *)diamid, diamidlen) );
} else {
diamidlen = 0;
}
if (opt) {
if (!optlen) {
optlen = strlen((char *)opt);
} else {
CHECK_PARAMS( fd_os_is_valid_os0(opt, optlen) );
}
} else {
optlen = 0;
}
/* Ok, first create the identifier for the string */
if (diamid == NULL) {
/* opt is the full string */
CHECK_MALLOC( sid = os0dup(opt, optlen) );
sidlen = optlen;
} else {
uint32_t sid_h_cpy;
uint32_t sid_l_cpy;
/* "<diamId>;<high32>;<low32>[;opt]" */
sidlen = diamidlen;
sidlen += 22; /* max size of ';<high32>;<low32>' */
if (opt)
sidlen += 1 + optlen; /* ';opt' */
sidlen++; /* space for the final \0 also */
CHECK_MALLOC( sid = malloc(sidlen) );
CHECK_POSIX( pthread_mutex_lock(&sid_lock) );
if ( ++sid_l == 0 ) /* overflow */
++sid_h;
sid_h_cpy = sid_h;
sid_l_cpy = sid_l;
CHECK_POSIX( pthread_mutex_unlock(&sid_lock) );
if (opt) {
sidlen = snprintf((char*)sid, sidlen, "%.*s;%u;%u;%.*s", (int)diamidlen, diamid, sid_h_cpy, sid_l_cpy, (int)optlen, opt);
} else {
sidlen = snprintf((char*)sid, sidlen, "%.*s;%u;%u", (int)diamidlen, diamid, sid_h_cpy, sid_l_cpy);
}
}
hash = fd_os_hash(sid, sidlen);
/* Now find the place to add this object in the hash table. */
CHECK_POSIX( pthread_mutex_lock( H_LOCK(hash) ) );
pthread_cleanup_push( fd_cleanup_mutex, H_LOCK(hash) );
for (li = H_LIST(hash)->next; li != H_LIST(hash); li = li->next) {
int cmp;
struct session * s = (struct session *)(li->o);
/* The list is ordered by hash and sid (in case of collisions) */
if (s->hash < hash)
continue;
if (s->hash > hash)
break;
cmp = fd_os_cmp(s->sid, s->sidlen, sid, sidlen);
if (cmp < 0)
continue;
if (cmp > 0)
break;
/* A session with the same sid was already in the hash table */
found = 1;
*session = s;
break;
}
/* If the session did not exist, we can create it & link it in global tables */
if (!found) {
CHECK_MALLOC_DO(sess = new_session(sid, sidlen, hash),
{
ret = ENOMEM;
free(sid);
goto out;
} );
fd_list_insert_before(li, &sess->chain_h); /* hash table */
sess->msg_cnt++;
} else {
free(sid);
CHECK_POSIX( pthread_mutex_lock(&(*session)->stlock) );
(*session)->msg_cnt++;
CHECK_POSIX( pthread_mutex_unlock(&(*session)->stlock) );
/* it was found: was it previously destroyed? */
if ((*session)->is_destroyed == 0) {
ret = EALREADY;
goto out;
} else {
/* the session was marked destroyed, let's re-activate it. */
sess = *session;
sess->is_destroyed = 0;
/* update the expiry time */
CHECK_SYS_DO( clock_gettime(CLOCK_REALTIME, &sess->timeout), { ASSERT(0); } );
sess->timeout.tv_sec += SESS_DEFAULT_LIFETIME;
}
}
/* We must insert in the expiry list */
CHECK_POSIX( pthread_mutex_lock( &exp_lock ) );
pthread_cleanup_push( fd_cleanup_mutex, &exp_lock );
/* Find the position in that list. We take it in reverse order */
for (li = exp_sentinel.prev; li != &exp_sentinel; li = li->prev) {
struct session * s = (struct session *)(li->o);
if (TS_IS_INFERIOR( &s->timeout, &sess->timeout ) )
break;
}
fd_list_insert_after( li, &sess->expire );
sess_cnt++;
/* We added a new expiring element, we must signal */
if (li == &exp_sentinel) {
CHECK_POSIX_DO( pthread_cond_signal(&exp_cond), { ASSERT(0); } ); /* if it fails, we might not pop the cleanup handlers, but this should not happen -- and we'd have a serious problem otherwise */
}
/* We're done with the locked part */
pthread_cleanup_pop(0);
CHECK_POSIX_DO( pthread_mutex_unlock( &exp_lock ), { ASSERT(0); } ); /* if it fails, we might not pop the cleanup handler, but this should not happen -- and we'd have a serious problem otherwise */
out:
;
pthread_cleanup_pop(0);
CHECK_POSIX( pthread_mutex_unlock( H_LOCK(hash) ) );
if (ret) /* in case of error */
return ret;
*session = sess;
return 0;
}
/* Find or create a session -- the msg refcount is increased */
int fd_sess_fromsid_msg ( uint8_t * sid, size_t len, struct session ** session, int * new)
{
int ret;
TRACE_ENTRY("%p %zd %p %p", sid, len, session, new);
CHECK_PARAMS( sid && session );
if (!fd_os_is_valid_os0(sid,len)) {
TRACE_DEBUG(INFO, "Warning: a Session-Id value contains \\0 chars... (len:%zd, begin:'%.*s') => Debug messages may be truncated.", len, (int)len, sid);
}
/* All the work is done in sess_new */
ret = fd_sess_new ( session, NULL, 0, sid, len );
switch (ret) {
case 0:
case EALREADY:
break;
default:
CHECK_FCT(ret);
}
if (new)
*new = ret ? 0 : 1;
return 0;
}
/* Get the sid of a session */
int fd_sess_getsid ( struct session * session, os0_t * sid, size_t * sidlen )
{
TRACE_ENTRY("%p %p", session, sid);
CHECK_PARAMS( VALIDATE_SI(session) && sid );
*sid = session->sid;
if (sidlen)
*sidlen = session->sidlen;
return 0;
}
/* Change the timeout value of a session */
int fd_sess_settimeout( struct session * session, const struct timespec * timeout )
{
struct fd_list * li;
TRACE_ENTRY("%p %p", session, timeout);
CHECK_PARAMS( VALIDATE_SI(session) && timeout );
/* Lock -- do we need to lock the hash table as well? I don't think so... */
CHECK_POSIX( pthread_mutex_lock( &exp_lock ) );
pthread_cleanup_push( fd_cleanup_mutex, &exp_lock );
/* Update the timeout */
fd_list_unlink(&session->expire);
memcpy(&session->timeout, timeout, sizeof(struct timespec));
/* Find the new position in expire list. We take it in normal order */
for (li = exp_sentinel.next; li != &exp_sentinel; li = li->next) {
struct session * s = (struct session *)(li->o);
if (TS_IS_INFERIOR( &s->timeout, &session->timeout ) )
continue;
break;
}
fd_list_insert_before( li, &session->expire );
/* We added a new expiring element, we must signal if it was in first position */
if (session->expire.prev == &exp_sentinel) {
CHECK_POSIX_DO( pthread_cond_signal(&exp_cond), { ASSERT(0); /* so that we don't have a pending cancellation handler */ } );
}
/* We're done */
pthread_cleanup_pop(0);
CHECK_POSIX( pthread_mutex_unlock( &exp_lock ) );
return 0;
}
/* Destroy the states associated to a session, and mark it destroyed. */
int fd_sess_destroy ( struct session ** session )
{
struct session * sess;
int destroy_now;
os0_t sid;
int ret = 0;
/* place to save the list of states to be cleaned up. We do it after finding them to avoid deadlocks. the "o" field becomes a copy of the sid. */
struct fd_list deleted_states = FD_LIST_INITIALIZER( deleted_states );
TRACE_ENTRY("%p", session);
CHECK_PARAMS( session && VALIDATE_SI(*session) );
sess = *session;
*session = NULL;
/* Lock the hash line */
CHECK_POSIX( pthread_mutex_lock( H_LOCK(sess->hash) ) );
pthread_cleanup_push( fd_cleanup_mutex, H_LOCK(sess->hash) );
/* Unlink from the expiry list */
CHECK_POSIX_DO( pthread_mutex_lock( &exp_lock ), { ASSERT(0); /* otherwise cleanup handler is not pop'd */ } );
if (!FD_IS_LIST_EMPTY(&sess->expire)) {
sess_cnt--;
fd_list_unlink( &sess->expire ); /* no need to signal the condition here */
}
CHECK_POSIX_DO( pthread_mutex_unlock( &exp_lock ), { ASSERT(0); /* otherwise cleanup handler is not pop'd */ } );
/* Now move all states associated to this session into deleted_states */
CHECK_POSIX_DO( pthread_mutex_lock( &sess->stlock ), { ASSERT(0); /* otherwise cleanup handler is not pop'd */ } );
while (!FD_IS_LIST_EMPTY(&sess->states)) {
struct state * st = (struct state *)(sess->states.next->o);
fd_list_unlink(&st->chain);
fd_list_insert_before(&deleted_states, &st->chain);
}
CHECK_POSIX_DO( pthread_mutex_unlock( &sess->stlock ), { ASSERT(0); /* otherwise cleanup handler is not pop'd */ } );
/* Mark the session as destroyed */
destroy_now = (sess->msg_cnt == 0);
if (destroy_now) {
fd_list_unlink( &sess->chain_h );
sid = sess->sid;
} else {
sess->is_destroyed = 1;
CHECK_MALLOC_DO( sid = os0dup(sess->sid, sess->sidlen), ret = ENOMEM );
}
pthread_cleanup_pop(0);
CHECK_POSIX( pthread_mutex_unlock( H_LOCK(sess->hash) ) );
if (ret)
return ret;
/* Now, really delete the states */
while (!FD_IS_LIST_EMPTY(&deleted_states)) {
struct state * st = (struct state *)(deleted_states.next->o);
fd_list_unlink(&st->chain);
TRACE_DEBUG(FULL, "Calling handler %p cleanup for state %p registered with session '%s'", st->hdl, st, sid);
(*st->hdl->cleanup)(st->state, sid, st->hdl->opaque);
free(st);
}
/* Finally, destroy the session itself, if it is not referrenced by any message anymore */
if (destroy_now) {
del_session(sess);
} else {
free(sid);
}
return 0;
}
/* Destroy a session if it is not used */
int fd_sess_reclaim ( struct session ** session )
{
struct session * sess;
uint32_t hash;
int destroy_now = 0;
TRACE_ENTRY("%p", session);
CHECK_PARAMS( session && VALIDATE_SI(*session) );
sess = *session;
hash = sess->hash;
*session = NULL;
CHECK_POSIX( pthread_mutex_lock( H_LOCK(hash) ) );
pthread_cleanup_push( fd_cleanup_mutex, H_LOCK(hash) );
CHECK_POSIX_DO( pthread_mutex_lock( &sess->stlock ), { ASSERT(0); /* otherwise, cleanup not poped on FreeBSD */ } );
pthread_cleanup_push( fd_cleanup_mutex, &sess->stlock );
CHECK_POSIX_DO( pthread_mutex_lock( &exp_lock ), { ASSERT(0); /* otherwise, cleanup not poped on FreeBSD */ } );
/* We only do something if the states list is empty */
if (FD_IS_LIST_EMPTY(&sess->states)) {
/* In this case, we do as in destroy */
fd_list_unlink( &sess->expire );
destroy_now = (sess->msg_cnt == 0);
if (destroy_now) {
fd_list_unlink(&sess->chain_h);
} else {
/* just mark it as destroyed, it will be freed when the last message stops referencing it */
sess->is_destroyed = 1;
}
}
CHECK_POSIX_DO( pthread_mutex_unlock( &exp_lock ), { ASSERT(0); /* otherwise, cleanup not poped on FreeBSD */ } );
pthread_cleanup_pop(0);
CHECK_POSIX_DO( pthread_mutex_unlock( &sess->stlock ), { ASSERT(0); /* otherwise, cleanup not poped on FreeBSD */ } );
pthread_cleanup_pop(0);
CHECK_POSIX( pthread_mutex_unlock( H_LOCK(hash) ) );
if (destroy_now)
del_session(sess);
return 0;
}
/* Save a state information with a session */
int fd_sess_state_store ( struct session_handler * handler, struct session * session, struct sess_state ** state )
{
struct state *new;
struct fd_list * li;
int already = 0;
int ret = 0;
TRACE_ENTRY("%p %p %p", handler, session, state);
CHECK_PARAMS( handler && VALIDATE_SH(handler) && session && VALIDATE_SI(session) && (!session->is_destroyed) && state );
/* Lock the session state list */
CHECK_POSIX( pthread_mutex_lock(&session->stlock) );
pthread_cleanup_push( fd_cleanup_mutex, &session->stlock );
/* Create the new state object */
CHECK_MALLOC_DO(new = malloc(sizeof(struct state)), { ret = ENOMEM; goto out; } );
memset(new, 0, sizeof(struct state));
new->eyec = SD_EYEC;
new->state= *state;
fd_list_init(&new->chain, new);
new->hdl = handler;
/* find place for this state in the list */
for (li = session->states.next; li != &session->states; li = li->next) {
struct state * st = (struct state *)(li->o);
/* The list is ordered by handler's id */
if (st->hdl->id < handler->id)
continue;
if (st->hdl->id == handler->id) {
TRACE_DEBUG(INFO, "A state was already stored for session '%s' and handler '%p', at location %p", session->sid, st->hdl, st->state);
already = EALREADY;
}
break;
}
if (!already) {
fd_list_insert_before(li, &new->chain);
*state = NULL;
} else {
free(new);
}
out:
;
pthread_cleanup_pop(0);
CHECK_POSIX( pthread_mutex_unlock(&session->stlock) );
return ret ?: already;
}
/* Get the data back */
int fd_sess_state_retrieve ( struct session_handler * handler, struct session * session, struct sess_state ** state )
{
struct fd_list * li;
struct state * st = NULL;
TRACE_ENTRY("%p %p %p", handler, session, state);
CHECK_PARAMS( handler && VALIDATE_SH(handler) && session && VALIDATE_SI(session) && state );
*state = NULL;
/* Lock the session state list */
CHECK_POSIX( pthread_mutex_lock(&session->stlock) );
pthread_cleanup_push( fd_cleanup_mutex, &session->stlock );
/* find the state in the list */
for (li = session->states.next; li != &session->states; li = li->next) {
st = (struct state *)(li->o);
/* The list is ordered by handler's id */
if (st->hdl->id > handler->id)
break;
}
/* If we found the state */
if (st && (st->hdl == handler)) {
fd_list_unlink(&st->chain);
*state = st->state;
free(st);
}
pthread_cleanup_pop(0);
CHECK_POSIX( pthread_mutex_unlock(&session->stlock) );
return 0;
}
/* For the messages module */
int fd_sess_fromsid ( uint8_t * sid, size_t len, struct session ** session, int * new)
{
TRACE_ENTRY("%p %zd %p %p", sid, len, session, new);
CHECK_PARAMS( sid && len && session );
/* Get the session object */
CHECK_FCT( fd_sess_fromsid_msg ( sid, len, session, new) );
/* Decrease the refcount */
CHECK_POSIX( pthread_mutex_lock(&(*session)->stlock) );
(*session)->msg_cnt--; /* was increased in fd_sess_new */
CHECK_POSIX( pthread_mutex_unlock(&(*session)->stlock) );
/* Done */
return 0;
}
int fd_sess_ref_msg ( struct session * session )
{
TRACE_ENTRY("%p", session);
CHECK_PARAMS( VALIDATE_SI(session) );
/* Update the msg refcount */
CHECK_POSIX( pthread_mutex_lock(&session->stlock) );
session->msg_cnt++;
CHECK_POSIX( pthread_mutex_unlock(&session->stlock) );
return 0;
}
int fd_sess_reclaim_msg ( struct session ** session )
{
int reclaim;
uint32_t hash;
TRACE_ENTRY("%p", session);
CHECK_PARAMS( session && VALIDATE_SI(*session) );
/* Lock the hash line to avoid possibility that session is freed while we are reclaiming */
hash = (*session)->hash;
CHECK_POSIX( pthread_mutex_lock( H_LOCK(hash)) );
pthread_cleanup_push( fd_cleanup_mutex, H_LOCK(hash) );
/* Update the msg refcount */
CHECK_POSIX( pthread_mutex_lock(&(*session)->stlock) );
reclaim = (*session)->msg_cnt;
(*session)->msg_cnt = reclaim - 1;
CHECK_POSIX( pthread_mutex_unlock(&(*session)->stlock) );
/* Ok, now unlock the hash line */
pthread_cleanup_pop( 0 );
CHECK_POSIX( pthread_mutex_unlock( H_LOCK(hash) ) );
/* and reclaim if no message references the session anymore */
if (reclaim == 1) {
CHECK_FCT(fd_sess_reclaim ( session ));
} else {
*session = NULL;
}
return 0;
}
/* Dump functions */
DECLARE_FD_DUMP_PROTOTYPE(fd_sess_dump, struct session * session, int with_states)
{
FD_DUMP_HANDLE_OFFSET();
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "{session}(@%p): ", session), return NULL);
if (!VALIDATE_SI(session)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "INVALID/NULL"), return NULL);
} else {
char timebuf[30];
struct tm tm;
strftime(timebuf, sizeof(timebuf), "%D,%T", localtime_r( &session->timeout.tv_sec , &tm ));
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "'%s'(%zd) h:%x m:%d d:%d to:%s.%06ld",
session->sid, session->sidlen, session->hash, session->msg_cnt, session->is_destroyed,
timebuf, session->timeout.tv_nsec/1000),
return NULL);
if (with_states) {
struct fd_list * li;
CHECK_POSIX_DO( pthread_mutex_lock(&session->stlock), /* ignore */ );
pthread_cleanup_push( fd_cleanup_mutex, &session->stlock );
for (li = session->states.next; li != &session->states; li = li->next) {
struct state * st = (struct state *)(li->o);
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "\n {state i:%d}(@%p): ", st->hdl->id, st), return NULL);
if (st->hdl->state_dump) {
CHECK_MALLOC_DO( (*st->hdl->state_dump)( FD_DUMP_STD_PARAMS, st->state),
fd_dump_extend( FD_DUMP_STD_PARAMS, "[dumper error]"));
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "<%p>", st->state), return NULL);
}
}
pthread_cleanup_pop(0);
CHECK_POSIX_DO( pthread_mutex_unlock(&session->stlock), /* ignore */ );
}
}
return *buf;
}
DECLARE_FD_DUMP_PROTOTYPE(fd_sess_dump_hdl, struct session_handler * handler)
{
FD_DUMP_HANDLE_OFFSET();
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "{sesshdl}(@%p): ", handler), return NULL);
if (!VALIDATE_SH(handler)) {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "INVALID/NULL"), return NULL);
} else {
CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "i:%d cl:%p d:%p o:%p", handler->id, handler->cleanup, handler->state_dump, handler->opaque), return NULL);
}
return *buf;
}
int fd_sess_getcount(uint32_t *cnt)
{
CHECK_PARAMS(cnt);
CHECK_POSIX( pthread_mutex_lock( &exp_lock ) );
*cnt = sess_cnt;
CHECK_POSIX( pthread_mutex_unlock( &exp_lock ) );
return 0;
}