blob: 1bff64cc103f4c3511d26ed4ed2dc8770858ccfb [file] [log] [blame]
/*********************************************************************************************************
* Software License Agreement (BSD License) *
* Author: Sebastien Decugis <sdecugis@freediameter.net> *
* *
* Copyright (c) 2013, WIDE Project and NICT *
* All rights reserved. *
* *
* Redistribution and use of this software in source and binary forms, with or without modification, are *
* permitted provided that the following conditions are met: *
* *
* * Redistributions of source code must retain the above *
* copyright notice, this list of conditions and the *
* following disclaimer. *
* *
* * Redistributions in binary form must reproduce the above *
* copyright notice, this list of conditions and the *
* following disclaimer in the documentation and/or other *
* materials provided with the distribution. *
* *
* * Neither the name of the WIDE Project or NICT nor the *
* names of its contributors may be used to endorse or *
* promote products derived from this software without *
* specific prior written permission of WIDE Project and *
* NICT. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR *
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS *
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR *
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF *
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
*********************************************************************************************************/
#include "test_netemul.h"
#include <math.h>
/* This file implements the real processing of the message.
The entry point is tne_process_message().
First, the duplicate filter is applied: with the configured
probability, a copy of the message is created. Then, with
the tenth probability, a second copy is created, and so on,
until the random value tells not to create a copy.
The original message + all copies are stored in a list, for next step.
Second step is the latency filter. For each message in the list, a
latency value is randomly generated (with a lognormal shape of the
random distribution) and stored in the list.
Finally, when the latency time is over, the message is sent.
*/
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cnd = PTHREAD_COND_INITIALIZER;
static pthread_t thr = (pthread_t)NULL;
/* The lists below are all protected by the same mutex mtx */
static struct fd_list input = FD_LIST_INITIALIZER(input); /* messages received from network */
static struct fd_list forlat = FD_LIST_INITIALIZER(forlat); /* messages after duplicate filter */
static struct fd_list waitlist = FD_LIST_INITIALIZER(waitlist); /* messages waiting for sending */
struct process_item {
struct fd_list chain; /* link into one of the lists. "o" points to the message. */
struct timespec ts; /* when the message must be sent */
};
/******************************************************************/
/* helper functions */
/* Process all pi in input list and queue in forlat, duplicating when needed */
static int do_duplicates()
{
TRACE_ENTRY("");
while (!FD_IS_LIST_EMPTY(&input)) {
struct msg * m;
struct process_item * pi = (struct process_item *)(input.next);
/* Take out this pi from input */
fd_list_unlink(&pi->chain);
/* store it in forlat */
fd_list_insert_before(&forlat, &pi->chain);
/* Duplicate eventually, unless deactivated */
if (tne_conf.dupl_proba != 0.0) {
DiamId_t src;
size_t srclen;
/* Pick a random value in [0, 1] */
double my_rand = drand48();
m = pi->chain.o;
CHECK_FCT( fd_msg_source_get(m, &src, &srclen) );
while (my_rand < (double) tne_conf.dupl_proba) {
/* create the duplicate */
struct process_item * npi;
struct msg * nm;
struct msg_hdr * nh;
unsigned char * buf;
size_t len;
/* Duplicate the message */
CHECK_FCT( fd_msg_bufferize(m, &buf, &len) );
CHECK_FCT( fd_msg_parse_buffer(&buf, len, &nm) );
CHECK_FCT( fd_msg_source_set(nm, src, srclen) );
CHECK_FCT( fd_msg_hdr(nm, &nh) );
nh->msg_flags |= CMD_FLAG_RETRANSMIT; /* Add the 'T' flag */
TRACE_DEBUG(FULL, "[tne] Duplicated message %p as %p", m, nm);
/* Duplicate the pi */
CHECK_MALLOC( npi = malloc(sizeof(struct process_item)) );
memset(npi, 0, sizeof(struct process_item));
fd_list_init(&npi->chain, nm);
memcpy(&npi->ts, &pi->ts, sizeof(struct timespec));
/* Enqueue the candidate in forlat */
fd_list_insert_before(&forlat, &npi->chain);
/* loop for another duplicate */
if (!my_rand)
break; /* otherwise, infinite loop */
my_rand *= 10.0;
}
}
}
/* Done */
return 0;
}
/* Generate a random value with a normal distribution, mean 0, variance 1 */
/* Using Box-Muller algo from Numerical Recipes in C++, 2nd Ed. */
static double get_rand_norm()
{
double ru1, ru2; /* two random uniform values in -1..1 */
double rsq; /* ru1^2 + ru2^2, to ensure we are in the circle */
/* Get our appropriate 2 random uniform values */
do {
ru1 = 2.0 * drand48() - 1.0;
ru2 = 2.0 * drand48() - 1.0;
rsq = ru1 * ru1 + ru2 * ru2;
} while ((rsq >= 1.0) || (rsq == 0.0));
/* Do the Box-Muller transform -- we don't use the 2nd value generated */
return ru1 * sqrt( -2.0 * log(rsq) / rsq );
}
/* Return the latency to add, in ms. */
static __inline__ unsigned long get_latency()
{
unsigned long lat = tne_conf.lat_avg;
if (tne_conf.lat_dev) {
/* We randomize the value to add */
double rn;
rn = get_rand_norm(); /* this is normal random value with mean = 0 and variance = 1 */
rn = rn * ((double)tne_conf.lat_dev) / 100.0; /* now the variance is lat_dev */
rn = exp(rn); /* and now, we have a lognormal random value, with geometric mean = 1 */
lat = (unsigned long)(rn * (double)lat); /* Apply to our mean latency */
}
return lat;
}
/* Process all pi in forlat and add a random latency, then requeue in order into waitlist */
static int do_latency()
{
TRACE_ENTRY("");
while (!FD_IS_LIST_EMPTY(&forlat)) {
struct process_item * pi = (struct process_item *)(forlat.next);
struct fd_list * li;
/* Take out this pi from forlat */
fd_list_unlink(&pi->chain);
/* If there is a latency to add */
if (tne_conf.lat_avg) {
unsigned long l = get_latency();
TRACE_DEBUG(FULL, "[tne] Set %lu ms latency for %p", l, pi->chain.o);
pi->ts.tv_sec += l / 1000;
l %= 1000;
pi->ts.tv_nsec += l * 1000000;
if (pi->ts.tv_nsec >= 1000000000) {
pi->ts.tv_sec += 1;
pi->ts.tv_nsec -= 1000000000;
}
}
for (li = waitlist.prev; li != &waitlist; li=li->prev) {
struct process_item * p = (struct process_item *)li;
if (TS_IS_INFERIOR( &p->ts, &pi->ts ))
break; /* we must insert after this one */
}
/* store it */
fd_list_insert_after(li, &pi->chain);
}
/* Done */
return 0;
}
/* Send all messages in waitlist that have passed their latency period */
static int send_all_ready()
{
struct timespec now;
TRACE_ENTRY("");
CHECK_SYS( clock_gettime(CLOCK_REALTIME, &now) );
while (!FD_IS_LIST_EMPTY(&waitlist)) {
struct msg * m;
struct process_item * pi = (struct process_item *)(waitlist.next);
if (!TS_IS_INFERIOR( &pi->ts, &now))
break; /* We sent already all we could */
/* Take out this pi and send the message */
fd_list_unlink(&pi->chain);
m = pi->chain.o;
free(pi);
TRACE_DEBUG(FULL, "[tne] Sending now %p", m);
CHECK_FCT( fd_msg_send(&m, NULL, NULL) );
}
return 0;
}
/******************************************************************/
/* the processing thread */
static void * tne_process_th(void * arg)
{
TRACE_ENTRY("%p", arg);
/* Name the thread */
fd_log_threadname ( "test_netemul/process" );
CHECK_POSIX_DO( pthread_mutex_lock(&mtx), goto error );
pthread_cleanup_push( fd_cleanup_mutex, &mtx );
/* The loop */
while (1) {
/* First, test if we are canceled */
pthread_testcancel();
/* Send all messages that are ready (free resources before using new ones) */
CHECK_FCT_DO( send_all_ready(), break );
/* Now process the new messages in input list for duplicate filter */
CHECK_FCT_DO( do_duplicates(), break );
/* Now compute the latency for each new item */
CHECK_FCT_DO( do_latency(), break );
/* Now, wait then loop */
if (FD_IS_LIST_EMPTY(&waitlist)) {
CHECK_POSIX_DO( pthread_cond_wait(&cnd, &mtx), break );
} else {
CHECK_POSIX_DO2( pthread_cond_timedwait(&cnd, &mtx, &((struct process_item *)(waitlist.next))->ts),
ETIMEDOUT, /* ETIMEDOUT is a normal return value, continue */,
/* on other error, */ break );
}
/* loop */
}
pthread_cleanup_pop( 0 );
CHECK_POSIX_DO( pthread_mutex_unlock(&mtx), );
error:
TRACE_DEBUG(INFO, "A fatal error occurred in test_netemul/process thread!");
ASSERT(0);
CHECK_FCT_DO(fd_core_shutdown(), );
return NULL;
}
/******************************************************************/
/* functions visible from outside this file */
int tne_process_init()
{
CHECK_POSIX( pthread_create(&thr, NULL, tne_process_th, NULL) );
#if 0 /* debug */
int i;
for (i=0; i< 20; i++) {
printf("LAT: %lu\n", get_latency());
}
#endif /* 0 */
return 0;
}
int tne_process_fini()
{
CHECK_FCT( fd_thr_term(&thr) );
return 0;
}
int tne_process_message(struct msg * msg)
{
struct process_item * pi;
TRACE_ENTRY("%p", msg);
/* Create a new pi for this message */
CHECK_MALLOC( pi = malloc(sizeof(struct process_item)) );
memset(pi, 0, sizeof(struct process_item));
fd_list_init(&pi->chain, msg);
CHECK_SYS(clock_gettime(CLOCK_REALTIME, &pi->ts));
/* Store it in the input list */
CHECK_POSIX( pthread_mutex_lock(&mtx) );
fd_list_insert_before(&input, &pi->chain);
CHECK_POSIX( pthread_mutex_unlock(&mtx) );
/* Wake up the process thread so that it processes the message */
CHECK_POSIX( pthread_cond_signal(&cnd) );
/* done */
return 0;
}