Brian Waters | 13d9601 | 2017-12-08 16:53:31 -0600 | [diff] [blame] | 1 | /*********************************************************************************/ |
| 2 | /* freeDiameter author note: |
| 3 | * The content from this file comes directly from the hostap project. |
| 4 | * It is redistributed under the terms of the BSD license, as allowed |
| 5 | * by the original copyright reproduced below. |
| 6 | * In addition to this notice, only the #include directives have been modified. |
| 7 | */ |
| 8 | #include "rgw_common.h" |
| 9 | /*********************************************************************************/ |
| 10 | |
| 11 | |
| 12 | /* |
| 13 | * MD5 hash implementation and interface functions |
| 14 | * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi> |
| 15 | * |
| 16 | * This program is free software; you can redistribute it and/or modify |
| 17 | * it under the terms of the GNU General Public License version 2 as |
| 18 | * published by the Free Software Foundation. |
| 19 | * |
| 20 | * Alternatively, this software may be distributed under the terms of BSD |
| 21 | * license. |
| 22 | * |
| 23 | * See README and COPYING for more details. |
| 24 | */ |
| 25 | |
| 26 | |
| 27 | /** |
| 28 | * hmac_md5_vector - HMAC-MD5 over data vector (RFC 2104) |
| 29 | * @key: Key for HMAC operations |
| 30 | * @key_len: Length of the key in bytes |
| 31 | * @num_elem: Number of elements in the data vector |
| 32 | * @addr: Pointers to the data areas |
| 33 | * @len: Lengths of the data blocks |
| 34 | * @mac: Buffer for the hash (16 bytes) |
| 35 | */ |
| 36 | void hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem, |
| 37 | const u8 *addr[], const size_t *len, u8 *mac) |
| 38 | { |
| 39 | u8 k_pad[64]; /* padding - key XORd with ipad/opad */ |
| 40 | u8 tk[16]; |
| 41 | const u8 *_addr[6]; |
| 42 | size_t i, _len[6]; |
| 43 | |
| 44 | if (num_elem > 5) { |
| 45 | /* |
| 46 | * Fixed limit on the number of fragments to avoid having to |
| 47 | * allocate memory (which could fail). |
| 48 | */ |
| 49 | return; |
| 50 | } |
| 51 | |
| 52 | /* if key is longer than 64 bytes reset it to key = MD5(key) */ |
| 53 | if (key_len > 64) { |
| 54 | md5_vector(1, &key, &key_len, tk); |
| 55 | key = tk; |
| 56 | key_len = 16; |
| 57 | } |
| 58 | |
| 59 | /* the HMAC_MD5 transform looks like: |
| 60 | * |
| 61 | * MD5(K XOR opad, MD5(K XOR ipad, text)) |
| 62 | * |
| 63 | * where K is an n byte key |
| 64 | * ipad is the byte 0x36 repeated 64 times |
| 65 | * opad is the byte 0x5c repeated 64 times |
| 66 | * and text is the data being protected */ |
| 67 | |
| 68 | /* start out by storing key in ipad */ |
| 69 | os_memset(k_pad, 0, sizeof(k_pad)); |
| 70 | os_memcpy(k_pad, key, key_len); |
| 71 | |
| 72 | /* XOR key with ipad values */ |
| 73 | for (i = 0; i < 64; i++) |
| 74 | k_pad[i] ^= 0x36; |
| 75 | |
| 76 | /* perform inner MD5 */ |
| 77 | _addr[0] = k_pad; |
| 78 | _len[0] = 64; |
| 79 | for (i = 0; i < num_elem; i++) { |
| 80 | _addr[i + 1] = addr[i]; |
| 81 | _len[i + 1] = len[i]; |
| 82 | } |
| 83 | md5_vector(1 + num_elem, _addr, _len, mac); |
| 84 | |
| 85 | os_memset(k_pad, 0, sizeof(k_pad)); |
| 86 | os_memcpy(k_pad, key, key_len); |
| 87 | /* XOR key with opad values */ |
| 88 | for (i = 0; i < 64; i++) |
| 89 | k_pad[i] ^= 0x5c; |
| 90 | |
| 91 | /* perform outer MD5 */ |
| 92 | _addr[0] = k_pad; |
| 93 | _len[0] = 64; |
| 94 | _addr[1] = mac; |
| 95 | _len[1] = MD5_MAC_LEN; |
| 96 | md5_vector(2, _addr, _len, mac); |
| 97 | } |
| 98 | |
| 99 | |
| 100 | /** |
| 101 | * hmac_md5 - HMAC-MD5 over data buffer (RFC 2104) |
| 102 | * @key: Key for HMAC operations |
| 103 | * @key_len: Length of the key in bytes |
| 104 | * @data: Pointers to the data area |
| 105 | * @data_len: Length of the data area |
| 106 | * @mac: Buffer for the hash (16 bytes) |
| 107 | */ |
| 108 | void hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len, |
| 109 | u8 *mac) |
| 110 | { |
| 111 | hmac_md5_vector(key, key_len, 1, &data, &data_len, mac); |
| 112 | } |
| 113 | |
| 114 | |
| 115 | #ifdef INTERNAL_MD5 |
| 116 | |
| 117 | struct MD5Context { |
| 118 | u32 buf[4]; |
| 119 | u32 bits[2]; |
| 120 | u8 in[64]; |
| 121 | }; |
| 122 | |
| 123 | #ifndef CONFIG_CRYPTO_INTERNAL |
| 124 | static void MD5Init(struct MD5Context *context); |
| 125 | static void MD5Update(struct MD5Context *context, unsigned char const *buf, |
| 126 | unsigned len); |
| 127 | static void MD5Final(unsigned char digest[16], struct MD5Context *context); |
| 128 | #endif /* CONFIG_CRYPTO_INTERNAL */ |
| 129 | static void MD5Transform(u32 buf[4], u32 const in[16]); |
| 130 | |
| 131 | |
| 132 | typedef struct MD5Context MD5_CTX; |
| 133 | |
| 134 | |
| 135 | /** |
| 136 | * md5_vector - MD5 hash for data vector |
| 137 | * @num_elem: Number of elements in the data vector |
| 138 | * @addr: Pointers to the data areas |
| 139 | * @len: Lengths of the data blocks |
| 140 | * @mac: Buffer for the hash |
| 141 | */ |
| 142 | void md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) |
| 143 | { |
| 144 | MD5_CTX ctx; |
| 145 | size_t i; |
| 146 | |
| 147 | MD5Init(&ctx); |
| 148 | for (i = 0; i < num_elem; i++) |
| 149 | MD5Update(&ctx, addr[i], len[i]); |
| 150 | MD5Final(mac, &ctx); |
| 151 | } |
| 152 | |
| 153 | |
| 154 | /* ===== start - public domain MD5 implementation ===== */ |
| 155 | /* |
| 156 | * This code implements the MD5 message-digest algorithm. |
| 157 | * The algorithm is due to Ron Rivest. This code was |
| 158 | * written by Colin Plumb in 1993, no copyright is claimed. |
| 159 | * This code is in the public domain; do with it what you wish. |
| 160 | * |
| 161 | * Equivalent code is available from RSA Data Security, Inc. |
| 162 | * This code has been tested against that, and is equivalent, |
| 163 | * except that you don't need to include two pages of legalese |
| 164 | * with every copy. |
| 165 | * |
| 166 | * To compute the message digest of a chunk of bytes, declare an |
| 167 | * MD5Context structure, pass it to MD5Init, call MD5Update as |
| 168 | * needed on buffers full of bytes, and then call MD5Final, which |
| 169 | * will fill a supplied 16-byte array with the digest. |
| 170 | */ |
| 171 | |
| 172 | #ifndef WORDS_BIGENDIAN |
| 173 | #define byteReverse(buf, len) /* Nothing */ |
| 174 | #else |
| 175 | /* |
| 176 | * Note: this code is harmless on little-endian machines. |
| 177 | */ |
| 178 | static void byteReverse(unsigned char *buf, unsigned longs) |
| 179 | { |
| 180 | u32 t; |
| 181 | do { |
| 182 | t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 | |
| 183 | ((unsigned) buf[1] << 8 | buf[0]); |
| 184 | *(u32 *) buf = t; |
| 185 | buf += 4; |
| 186 | } while (--longs); |
| 187 | } |
| 188 | #endif |
| 189 | |
| 190 | /* |
| 191 | * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
| 192 | * initialization constants. |
| 193 | */ |
| 194 | void MD5Init(struct MD5Context *ctx) |
| 195 | { |
| 196 | ctx->buf[0] = 0x67452301; |
| 197 | ctx->buf[1] = 0xefcdab89; |
| 198 | ctx->buf[2] = 0x98badcfe; |
| 199 | ctx->buf[3] = 0x10325476; |
| 200 | |
| 201 | ctx->bits[0] = 0; |
| 202 | ctx->bits[1] = 0; |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * Update context to reflect the concatenation of another buffer full |
| 207 | * of bytes. |
| 208 | */ |
| 209 | void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len) |
| 210 | { |
| 211 | u32 t; |
| 212 | |
| 213 | /* Update bitcount */ |
| 214 | |
| 215 | t = ctx->bits[0]; |
| 216 | if ((ctx->bits[0] = t + ((u32) len << 3)) < t) |
| 217 | ctx->bits[1]++; /* Carry from low to high */ |
| 218 | ctx->bits[1] += len >> 29; |
| 219 | |
| 220 | t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ |
| 221 | |
| 222 | /* Handle any leading odd-sized chunks */ |
| 223 | |
| 224 | if (t) { |
| 225 | unsigned char *p = (unsigned char *) ctx->in + t; |
| 226 | |
| 227 | t = 64 - t; |
| 228 | if (len < t) { |
| 229 | os_memcpy(p, buf, len); |
| 230 | return; |
| 231 | } |
| 232 | os_memcpy(p, buf, t); |
| 233 | byteReverse(ctx->in, 16); |
| 234 | MD5Transform(ctx->buf, (u32 *) ctx->in); |
| 235 | buf += t; |
| 236 | len -= t; |
| 237 | } |
| 238 | /* Process data in 64-byte chunks */ |
| 239 | |
| 240 | while (len >= 64) { |
| 241 | os_memcpy(ctx->in, buf, 64); |
| 242 | byteReverse(ctx->in, 16); |
| 243 | MD5Transform(ctx->buf, (u32 *) ctx->in); |
| 244 | buf += 64; |
| 245 | len -= 64; |
| 246 | } |
| 247 | |
| 248 | /* Handle any remaining bytes of data. */ |
| 249 | |
| 250 | os_memcpy(ctx->in, buf, len); |
| 251 | } |
| 252 | |
| 253 | /* |
| 254 | * Final wrapup - pad to 64-byte boundary with the bit pattern |
| 255 | * 1 0* (64-bit count of bits processed, MSB-first) |
| 256 | */ |
| 257 | void MD5Final(unsigned char digest[16], struct MD5Context *ctx) |
| 258 | { |
| 259 | unsigned count; |
| 260 | unsigned char *p; |
| 261 | |
| 262 | /* Compute number of bytes mod 64 */ |
| 263 | count = (ctx->bits[0] >> 3) & 0x3F; |
| 264 | |
| 265 | /* Set the first char of padding to 0x80. This is safe since there is |
| 266 | always at least one byte free */ |
| 267 | p = ctx->in + count; |
| 268 | *p++ = 0x80; |
| 269 | |
| 270 | /* Bytes of padding needed to make 64 bytes */ |
| 271 | count = 64 - 1 - count; |
| 272 | |
| 273 | /* Pad out to 56 mod 64 */ |
| 274 | if (count < 8) { |
| 275 | /* Two lots of padding: Pad the first block to 64 bytes */ |
| 276 | os_memset(p, 0, count); |
| 277 | byteReverse(ctx->in, 16); |
| 278 | MD5Transform(ctx->buf, (u32 *) ctx->in); |
| 279 | |
| 280 | /* Now fill the next block with 56 bytes */ |
| 281 | os_memset(ctx->in, 0, 56); |
| 282 | } else { |
| 283 | /* Pad block to 56 bytes */ |
| 284 | os_memset(p, 0, count - 8); |
| 285 | } |
| 286 | byteReverse(ctx->in, 14); |
| 287 | |
| 288 | /* Append length in bits and transform */ |
| 289 | ((u32 *) ctx->in)[14] = ctx->bits[0]; |
| 290 | ((u32 *) ctx->in)[15] = ctx->bits[1]; |
| 291 | |
| 292 | MD5Transform(ctx->buf, (u32 *) ctx->in); |
| 293 | byteReverse((unsigned char *) ctx->buf, 4); |
| 294 | os_memcpy(digest, ctx->buf, 16); |
| 295 | os_memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ |
| 296 | } |
| 297 | |
| 298 | /* The four core functions - F1 is optimized somewhat */ |
| 299 | |
| 300 | /* #define F1(x, y, z) (x & y | ~x & z) */ |
| 301 | #define F1(x, y, z) (z ^ (x & (y ^ z))) |
| 302 | #define F2(x, y, z) F1(z, x, y) |
| 303 | #define F3(x, y, z) (x ^ y ^ z) |
| 304 | #define F4(x, y, z) (y ^ (x | ~z)) |
| 305 | |
| 306 | /* This is the central step in the MD5 algorithm. */ |
| 307 | #define MD5STEP(f, w, x, y, z, data, s) \ |
| 308 | ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) |
| 309 | |
| 310 | /* |
| 311 | * The core of the MD5 algorithm, this alters an existing MD5 hash to |
| 312 | * reflect the addition of 16 longwords of new data. MD5Update blocks |
| 313 | * the data and converts bytes into longwords for this routine. |
| 314 | */ |
| 315 | static void MD5Transform(u32 buf[4], u32 const in[16]) |
| 316 | { |
| 317 | register u32 a, b, c, d; |
| 318 | |
| 319 | a = buf[0]; |
| 320 | b = buf[1]; |
| 321 | c = buf[2]; |
| 322 | d = buf[3]; |
| 323 | |
| 324 | MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
| 325 | MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
| 326 | MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
| 327 | MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
| 328 | MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
| 329 | MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
| 330 | MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
| 331 | MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
| 332 | MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
| 333 | MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
| 334 | MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
| 335 | MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
| 336 | MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
| 337 | MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
| 338 | MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
| 339 | MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
| 340 | |
| 341 | MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
| 342 | MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
| 343 | MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
| 344 | MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
| 345 | MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
| 346 | MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
| 347 | MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
| 348 | MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
| 349 | MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
| 350 | MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
| 351 | MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
| 352 | MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
| 353 | MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
| 354 | MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
| 355 | MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
| 356 | MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
| 357 | |
| 358 | MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
| 359 | MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
| 360 | MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
| 361 | MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
| 362 | MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
| 363 | MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
| 364 | MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
| 365 | MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
| 366 | MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
| 367 | MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
| 368 | MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
| 369 | MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
| 370 | MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
| 371 | MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
| 372 | MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
| 373 | MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
| 374 | |
| 375 | MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
| 376 | MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
| 377 | MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
| 378 | MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
| 379 | MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
| 380 | MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
| 381 | MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
| 382 | MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
| 383 | MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
| 384 | MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
| 385 | MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
| 386 | MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
| 387 | MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
| 388 | MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
| 389 | MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
| 390 | MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
| 391 | |
| 392 | buf[0] += a; |
| 393 | buf[1] += b; |
| 394 | buf[2] += c; |
| 395 | buf[3] += d; |
| 396 | } |
| 397 | /* ===== end - public domain MD5 implementation ===== */ |
| 398 | |
| 399 | #endif /* INTERNAL_MD5 */ |