blob: e0d074422bed325ff858ceefedff894d94ccfc6a [file] [log] [blame]
Brian Waters13d96012017-12-08 16:53:31 -06001/*********************************************************************************************************
2* Software License Agreement (BSD License) *
3* Author: Sebastien Decugis <sdecugis@freediameter.net> *
4* *
5* Copyright (c) 2015, WIDE Project and NICT *
6* All rights reserved. *
7* *
8* Redistribution and use of this software in source and binary forms, with or without modification, are *
9* permitted provided that the following conditions are met: *
10* *
11* * Redistributions of source code must retain the above *
12* copyright notice, this list of conditions and the *
13* following disclaimer. *
14* *
15* * Redistributions in binary form must reproduce the above *
16* copyright notice, this list of conditions and the *
17* following disclaimer in the documentation and/or other *
18* materials provided with the distribution. *
19* *
20* * Neither the name of the WIDE Project or NICT nor the *
21* names of its contributors may be used to endorse or *
22* promote products derived from this software without *
23* specific prior written permission of WIDE Project and *
24* NICT. *
25* *
26* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED *
27* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
28* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR *
29* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *
30* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS *
31* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR *
32* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY S_OUT OF THE USE OF THIS SOFTWARE, EVEN IF *
33* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
34*********************************************************************************************************/
35
36/* This file contains the definitions of functions and types used by the libfreeDiameter library.
37 *
38 * This library is meant to be used by both the freeDiameter daemon and its extensions.
39 * It provides the tools to manipulate Diameter messages and related data.
40 * This file should always be included as #include <freeDiameter/libfreeDiameter.h>
41 *
42 * If any change is made to this file, you must increment the FD_PROJECT_VERSION_API version.
43 *
44 * The file contains the following parts:
45 * DEBUG
46 * MACROS
47 * OCTET STRINGS
48 * THREADS
49 * LISTS
50 * DICTIONARY
51 * SESSIONS
52 * MESSAGES
53 * DISPATCH
54 * QUEUES
55 */
56
57#ifndef _LIBFDPROTO_H
58#define _LIBFDPROTO_H
59
60#ifdef __cplusplus
61extern "C" {
62#endif
63
64#ifndef FD_IS_CONFIG
65#error "You must include 'freeDiameter-host.h' before this file."
66#endif /* FD_IS_CONFIG */
67
68#include <pthread.h>
69#include <sched.h>
70#include <string.h>
71#include <assert.h>
72#include <errno.h>
73#include <netinet/in.h>
74#include <arpa/inet.h>
75#include <sys/socket.h>
76#include <netdb.h>
77#include <stdio.h>
78#include <stdlib.h>
79#include <unistd.h>
80#include <stdarg.h>
81
82#include <libgen.h> /* for basename */
83
84#ifdef SWIG
85#define _ATTRIBUTE_PRINTFLIKE_(_f,_v)
86#else
87#define _ATTRIBUTE_PRINTFLIKE_(_f,_v) __attribute__ ((format (printf, _f, _v)))
88#endif /* SWIG */
89
90/* Remove some deprecated warnings from some gnutls versions, when possible */
91#if defined(__GNUC__)
92# define GCC_DIAG_DO_PRAGMA(x) _Pragma (#x)
93# define GCC_DIAG_PRAGMA(x) GCC_DIAG_DO_PRAGMA(GCC diagnostic x)
94# if ((__GNUC__ * 100) + __GNUC_MINOR__) >= 406 /* 4.6.x */
95# define GCC_DIAG_OFF(x) GCC_DIAG_PRAGMA(push) \
96 GCC_DIAG_PRAGMA(ignored x)
97# define GCC_DIAG_ON(x) GCC_DIAG_PRAGMA(pop)
98# else /* older */
99# define GCC_DIAG_OFF(x) GCC_DIAG_PRAGMA(ignored x)
100# define GCC_DIAG_ON(x) GCC_DIAG_PRAGMA(warning x)
101# endif
102#else
103# define GCC_DIAG_OFF(x)
104# define GCC_DIAG_ON(x)
105#endif
106
107/*============================================================*/
108/* CONSTANTS */
109/*============================================================*/
110
111#define DIAMETER_PORT 3868
112#define DIAMETER_SECURE_PORT 5868
113
114
115/*============================================================*/
116/* INIT */
117/*============================================================*/
118
119/* This function must be called first, before any call to another library function */
120int fd_libproto_init(void); /* note if you are using libfdcore, it handles this already */
121
122/* Call this one when the application terminates, to destroy internal threads */
123void fd_libproto_fini(void);
124
125/* Retrieve the version of the binary */
126extern const char fd_libproto_version[];
127
128/*============================================================*/
129/* DEBUG */
130/*============================================================*/
131
132
133/*
134 * FUNCTION: fd_log
135 *
136 * PARAMETERS:
137 * loglevel : Integer, how important the message is. Valid values are macros FD_LOG_*
138 * format : Same format string as in the printf function
139 * ... : Same list as printf
140 *
141 * DESCRIPTION:
142 * Write information to log.
143 * The format and arguments may contain UTF-8 encoded data. The
144 * output medium is expected to support this encoding.
145 *
146 * RETURN VALUE:
147 * None.
148 */
149void fd_log ( int, const char *, ... ) _ATTRIBUTE_PRINTFLIKE_(2,3);
150#ifndef SWIG
151void fd_log_va( int, const char *, va_list);
152#endif /* SWIG */
153
154/* these are internal objects of the debug facility,
155might be useful to control the behavior from outside */
156extern pthread_mutex_t fd_log_lock;
157extern char * fd_debug_one_function;
158extern char * fd_debug_one_file;
159
160/*
161 * FUNCTION: fd_log_threadname
162 *
163 * PARAMETERS:
164 * name : \0-terminated string containing a name to identify the current thread.
165 *
166 * DESCRIPTION:
167 * Name the current thread, useful for debugging multi-threaded problems.
168 *
169 * This function assumes that a global thread-specific key called "fd_log_thname" exists
170 * in the address space of the current process.
171 *
172 * RETURN VALUE:
173 * None.
174 */
175void fd_log_threadname ( const char * name );
176extern pthread_key_t fd_log_thname;
177
178/*
179 * FUNCTION: fd_log_time
180 *
181 * PARAMETERS:
182 * ts : The timestamp to log, or NULL for "now"
183 * buf : An array where the time must be stored
184 * len : size of the buffer
185 * incl_date : The day of year is included in the output
186 * incl_ms : millisecond value is included in the output
187 *
188 * DESCRIPTION:
189 * Writes the timestamp (in human readable format) in a buffer.
190 *
191 * RETURN VALUE:
192 * pointer to buf.
193 */
194char * fd_log_time ( struct timespec * ts, char * buf, size_t len, int incl_date, int incl_ms );
195
196/*
197 * FUNCTION: fd_log_handler_register
198 * MACRO:
199 *
200 * PARAMETERS:
201 * loglevel : priority of the message
202 * format : Same format string as in the printf function
203 * va_list : Argument list
204 *
205 * DESCRIPTION:
206 * Register an external method for logging purposes.
207 *
208 * RETURN VALUE:
209 * int : Success or failure
210 */
211int fd_log_handler_register ( void (*logger)(int loglevel, const char * format, va_list args) );
212
213/*
214 * FUNCTION: fd_log_handler_unregister
215 * MACRO:
216 *
217 * PARAMETERS:
218 *
219 * DESCRIPTION:
220 * Unregister the external logging function.
221 *
222 * RETURN VALUE:
223 * int : Success or failure
224 */
225int fd_log_handler_unregister ( void );
226
227
228/* All dump functions follow this same prototype:
229 * PARAMETERS:
230 * buf : *buf can be NULL on entry, it will be malloc'd. Otherwise it is realloc'd if needed.
231 * len : the current size of the buffer (in/out)
232 * offset: (optional) if provided, starts writing dump at offset in the buffer, and updated upon exit. if NULL, starts at offset O.
233 *
234 * RETURN VALUE:
235 * *buf upon success, NULL upon failure.
236 *
237 * REMARKS:
238 * - After the buffer has been used, it should be freed.
239 * - Depending on the function, the created string may be multi-line. However, it should never be terminated with a '\n'.
240 */
241#define DECLARE_FD_DUMP_PROTOTYPE( function_name, args... ) \
242 char * function_name(char ** buf, size_t *len, size_t *offset, ##args)
243
244#ifdef SWIG
245#define DECLARE_FD_DUMP_PROTOTYPE_simple( function_name ) \
246 char * function_name(char ** buf, size_t *len, size_t *offset)
247#endif /* SWIG */
248
249
250/* Helper functions for the *dump functions that add into a buffer */
251DECLARE_FD_DUMP_PROTOTYPE( fd_dump_extend, const char * format, ... ) _ATTRIBUTE_PRINTFLIKE_(4,5);
252DECLARE_FD_DUMP_PROTOTYPE( fd_dump_extend_hexdump, uint8_t *data, size_t datalen, size_t trunc, size_t wrap );
253
254
255/* Some helpers macro for writing such *_dump routine */
256#define FD_DUMP_STD_PARAMS buf, len, offset
257#define FD_DUMP_HANDLE_OFFSET() size_t o = 0; if (!offset) offset = &o; if (buf && (*buf) && !(*offset)) **buf='\0'
258#define FD_DUMP_HANDLE_TRAIL() while ((*buf) && (*offset > 0) && ((*buf)[*offset - 1] == '\n')) { *offset -= 1; (*buf)[*offset] = '\0'; }
259
260
261
262/*============================================================*/
263/* DEBUG MACROS */
264/*============================================================*/
265
266#ifndef ASSERT
267#define ASSERT(x) assert(x)
268#endif /* ASSERT */
269
270/* log levels definitions, that are passed to the logger */
271#define FD_LOG_ANNOYING 0 /* very verbose loops and such "overkill" traces. Only active when the framework is compiled in DEBUG mode. */
272#define FD_LOG_DEBUG 1 /* Get a detailed sense of what is going on in the framework. Use this level for normal debug */
273#define FD_LOG_NOTICE 3 /* Normal execution states worth noting */
274#define FD_LOG_ERROR 5 /* Recoverable or expected error conditions */
275#define FD_LOG_FATAL 6 /* Unrecoverable error, e.g. malloc fail, etc. that requires the framework to shutdown */
276
277/* The level used by the default logger, can be changed by command-line arguments. Ignored for other loggers. */
278extern int fd_g_debug_lvl;
279
280/* Some portability code to get nice function name in __PRETTY_FUNCTION__ */
281#if (!defined( __func__)) && (__STDC_VERSION__ < 199901L)
282# if __GNUC__ >= 2
283# define __func__ __FUNCTION__
284# else /* __GNUC__ >= 2 */
285# define __func__ "<unknown>"
286# endif /* __GNUC__ >= 2 */
287#endif /*(!defined( __func__)) && (__STDC_VERSION__ < 199901L) */
288#ifndef __PRETTY_FUNCTION__
289#define __PRETTY_FUNCTION__ __func__
290#endif /* __PRETTY_FUNCTION__ */
291
292/* A version of __FILE__ without the full path. This is specific to each C file being compiled */
293static char * file_bname = NULL;
294static char * file_bname_init(char * full) { file_bname = basename(full); return file_bname; }
295#define __STRIPPED_FILE__ (file_bname ?: file_bname_init((char *)__FILE__))
296
297
298
299/* In DEBUG mode, we add meta-information along each trace. This makes multi-threading problems easier to debug. */
300#if (defined(DEBUG) && defined(DEBUG_WITH_META))
301# define STD_TRACE_FMT_STRING "pid:%s in %s@%s:%d: "
302# define STD_TRACE_FMT_ARGS , ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed"), __PRETTY_FUNCTION__, __STRIPPED_FILE__, __LINE__
303#else /* DEBUG && DEBUG_WITH_META */
304# define STD_TRACE_FMT_STRING ""
305# define STD_TRACE_FMT_ARGS
306#endif /* DEBUG && DEBUG_WITH_META */
307
308/*************************
309 The general debug macro
310 *************************/
311#define LOG(printlevel,format,args... ) \
312 fd_log((printlevel), STD_TRACE_FMT_STRING format STD_TRACE_FMT_ARGS, ## args)
313
314/*
315 * Use the following macros in the code to get traces with location & pid in debug mode:
316 */
317#ifdef DEBUG
318# define LOG_A(format,args... ) \
319 do { if ((fd_debug_one_function && !strcmp(fd_debug_one_function, __PRETTY_FUNCTION__)) \
320 || (fd_debug_one_file && !strcmp(fd_debug_one_file, __STRIPPED_FILE__) ) ) { \
321 LOG(FD_LOG_DEBUG,"[DBG_MATCH] " format,##args); \
322 } else { \
323 LOG(FD_LOG_ANNOYING,format,##args); \
324 } } while (0)
325#else /* DEBUG */
326# define LOG_A(format,args... ) /* not defined in release */
327#endif /* DEBUG */
328
329/* Debug information useful to follow in detail what is going on */
330#define LOG_D(format,args... ) \
331 LOG(FD_LOG_DEBUG, format, ##args)
332
333/* Report a normal message that is useful for normal admin monitoring */
334#define LOG_N(format,args... ) \
335 LOG(FD_LOG_NOTICE, format,##args)
336
337/* Report an error */
338#define LOG_E(format,args... ) \
339 LOG(FD_LOG_ERROR, format, ##args)
340
341/* Report a fatal error */
342#define LOG_F(format,args... ) \
343 LOG(FD_LOG_FATAL, format, ##args)
344
345
346/*************
347 Derivatives
348 ************/
349/* Trace a binary buffer content */
350#define LOG_BUFFER(printlevel, prefix, buf, bufsz, suffix ) { \
351 int __i; \
352 size_t __sz = (size_t)(bufsz); \
353 uint8_t * __buf = (uint8_t *)(buf); \
354 char __strbuf[1024+1]; \
355 for (__i = 0; (__i < __sz) && (__i<(sizeof(__strbuf)/2)); __i++) { \
356 sprintf(__strbuf + (2 * __i), "%02hhx", __buf[__i]); \
357 } \
358 fd_log(printlevel, STD_TRACE_FMT_STRING "%s%s%s" STD_TRACE_FMT_ARGS, \
359 (prefix), __strbuf, (suffix)); \
360}
361
362/* Split a multi-line buffer into separate calls to the LOG function. */
363#define LOG_SPLIT(printlevel, per_line_prefix, mlbuf, per_line_suffix ) { \
364 char * __line = (mlbuf), *__next; \
365 char * __p = (per_line_prefix), *__s = (per_line_suffix); \
366 while ((__next = strchr(__line, '\n')) != NULL) { \
367 LOG(printlevel, "%s%.*s%s", __p ?:"", (int)(__next - __line), __line, __s ?:""); \
368 __line = __next + 1; \
369 } \
370 LOG(printlevel, "%s%s%s", __p ?:"", __line, __s ?:""); \
371}
372
373/* Helper for function entry -- for very detailed trace of the execution */
374#define TRACE_ENTRY(_format,_args... ) \
375 LOG_A("[enter] %s(" _format ") {" #_args "}", __PRETTY_FUNCTION__, ##_args );
376
377/* Helper for debugging by adding traces -- for debuging a specific location of the code */
378#define TRACE_HERE() \
379 LOG_F(" -- debug checkpoint %d -- ", fd_breakhere());
380int fd_breakhere(void);
381
382/* Helper for tracing the CHECK_* macros below -- very very verbose code execution! */
383#define TRACE_CALL( str... ) \
384 LOG_A( str )
385
386/* For development only, to keep track of TODO locations in the code */
387#ifndef ERRORS_ON_TODO
388# define TODO( _msg, _args... ) \
389 LOG_F( "TODO: " _msg , ##_args);
390#else /* ERRORS_ON_TODO */
391# define TODO( _msg, _args... ) \
392 "TODO" = _msg ## _args; /* just a stupid compilation error to spot the todo */
393#endif /* ERRORS_ON_TODO */
394
395
396/*============================================================*/
397/* ERROR CHECKING MACRO */
398/*============================================================*/
399
400/* Macros to check a return value and branch out in case of error.
401 * These macro additionally provide the logging information.
402 *
403 * The name "__ret__" is always available in the __fallback__ parameter and contains the error code.
404 */
405
406#define CHECK_PRELUDE(__call__) \
407 int __ret__; \
408 TRACE_CALL("Check: %s", #__call__ ); \
409 __ret__ = (__call__)
410
411#define DEFAULT_FB return __ret__;
412
413/* System check: error case if < 0, error value in errno */
414#define CHECK_SYS_GEN( faillevel, __call__, __fallback__ ) { \
415 CHECK_PRELUDE(__call__); \
416 if (__ret__ < 0) { \
417 __ret__ = errno; \
418 LOG(faillevel, "ERROR: in '%s' :\t%s", #__call__ , strerror(__ret__)); \
419 __fallback__; \
420 } \
421}
422
423
424/* Check the return value of a function and execute fallback in case of error or special value */
425#define CHECK_FCT_GEN2( faillevel, __call__, __speval__, __fallback1__, __fallback2__ ) { \
426 CHECK_PRELUDE(__call__); \
427 if (__ret__ != 0) { \
428 if (__ret__ == (__speval__)) { \
429 __fallback1__; \
430 } else { \
431 LOG(faillevel, "ERROR: in '%s' :\t%s", #__call__ , strerror(__ret__)); \
432 __fallback2__; \
433 } \
434 } \
435}
436
437/* Check the return value of a function and execute fallback in case of error (return value different from 0) */
438#define CHECK_FCT_GEN( faillevel, __call__, __fallback__) \
439 CHECK_FCT_GEN2( faillevel, (__call__), 0, , (__fallback__) )
440
441/* Check that a memory allocator did not return NULL, otherwise log an error and execute fallback */
442#define CHECK_MALLOC_GEN( faillevel, __call__, __fallback__ ) { \
443 void * __ptr__; \
444 TRACE_CALL("Check: %s", #__call__ ); \
445 __ptr__ = (void *)(__call__); \
446 if (__ptr__ == NULL) { \
447 int __ret__ = errno; \
448 LOG(faillevel, "ERROR: in '%s' :\t%s", #__call__ , strerror(__ret__)); \
449 __fallback__; \
450 } \
451}
452
453/* Check parameters at function entry, execute fallback on error */
454#define CHECK_PARAMS_GEN( faillevel, __bool__, __fallback__ ) { \
455 TRACE_CALL("Check: %s", #__bool__ ); \
456 if ( ! (__bool__) ) { \
457 int __ret__ = EINVAL; \
458 LOG(faillevel, "ERROR: invalid parameter '%s'", #__bool__ ); \
459 __fallback__; \
460 } \
461}
462
463
464/*============================================================*/
465/* COMPATIBILITY MACROS, TO BE REMOVED */
466/*============================================================*/
467/* Redefine the old macros for transition of the code */
468#ifndef EXCLUDE_DEPRECATED
469
470#define MARK_DEPRECATED /* __attribute__ ((deprecated)) */
471
472enum old_levels {
473 NONE = 0,
474 INFO = 1,
475 FULL = 2,
476 ANNOYING = 4,
477 FCTS = 6,
478 CALL = 9
479} MARK_DEPRECATED;
480
481static __inline__ int old_TRACE_BOOL( enum old_levels level, const char * file, const char * func ) MARK_DEPRECATED
482{
483 if ((fd_debug_one_function && !strcmp(fd_debug_one_function, func))
484 || (fd_debug_one_file && !strcmp(fd_debug_one_file, file) ))
485 return 2; /* Level override */
486 if ((int)level <= fd_g_debug_lvl)
487 return 1; /* Normal level */
488 return 0; /* No trace */
489}
490#define TRACE_BOOL(level) old_TRACE_BOOL((level), __STRIPPED_FILE__, __PRETTY_FUNCTION__)
491
492#ifndef SWIG
493static __inline__ void fd_log_deprecated( int level, const char *format, ... ) MARK_DEPRECATED
494{
495 va_list ap;
496 va_start(ap, format);
497 fd_log_va(level, format, ap);
498 va_end(ap);
499}
500#else /* SWIG */
501void fd_log_deprecated( int level, const char *format, ... );
502#endif /* SWIG */
503static __inline__ void replace_me() MARK_DEPRECATED { }
504
505#define TRACE_BUFFER(...) replace_me();
506#define TRACE_NOTICE(...) replace_me();
507
508
509/* Use the LOG_* instead, or use the new *_dump functions when dumping an object */
510#define fd_log_debug(format,args...) fd_log_deprecated(FD_LOG_DEBUG, format, ## args)
511#define fd_log_notice(format,args...) fd_log_deprecated(FD_LOG_NOTICE, format, ## args)
512#define fd_log_error(format,args...) fd_log_deprecated(FD_LOG_ERROR, format, ## args)
513
514/* old macro for traces. To be replaced by appropriate LOG_* macros. */
515# define TRACE_DEBUG(oldlevel, format,args... ) { \
516 int __l__; \
517 if ((__l__ = TRACE_BOOL(oldlevel))) { \
518 if (oldlevel <= NONE) { LOG_E(format,##args); } \
519 else if (oldlevel <= INFO) { LOG_N(format,##args); } \
520 else if (__l__ == 2) { LOG_N(format,##args); } \
521 else if (oldlevel <= FULL) { LOG_D(format,##args); } \
522 else { LOG_A(format,##args); } \
523} }
524
525/* the following macro must be replaced with LOG_E or LOG_F */
526# define TRACE_ERROR LOG_E
527
528
529/* The following macros are missing the faillevel information, which indicates at what log level the error case should be displayed. */
530# define CHECK_SYS_DO( __call__, __fallback__ ) { \
531 CHECK_PRELUDE(__call__); \
532 if (__ret__ < 0) { \
533 __ret__ = errno; \
534 TRACE_ERROR("ERROR: in '%s' :\t%s", #__call__ , strerror(__ret__)); \
535 __fallback__; \
536 } \
537}
538
539# define CHECK_SYS( __call__ ) \
540 CHECK_SYS_DO( (__call__), return __ret__ )
541
542
543# define CHECK_POSIX_DO2( __call__, __speval__, __fallback1__, __fallback2__ ) { \
544 CHECK_PRELUDE(__call__); \
545 if (__ret__ != 0) { \
546 if (__ret__ == (__speval__)) { \
547 __fallback1__; \
548 } else { \
549 TRACE_ERROR("ERROR: in '%s' :\t%s", #__call__ , strerror(__ret__)); \
550 __fallback2__; \
551 } \
552 } \
553}
554
555# define CHECK_POSIX_DO( __call__, __fallback__ ) \
556 CHECK_POSIX_DO2( (__call__), 0, , __fallback__ )
557
558# define CHECK_POSIX( __call__ ) \
559 CHECK_POSIX_DO( (__call__), return __ret__ )
560
561# define CHECK_MALLOC_DO( __call__, __fallback__ ) { \
562 void * __ptr__; \
563 TRACE_CALL("Check: %s", #__call__ ); \
564 __ptr__ = (void *)(__call__); \
565 if (__ptr__ == NULL) { \
566 int __ret__ = errno; \
567 TRACE_ERROR("ERROR: in '%s' :\t%s", #__call__ , strerror(__ret__)); \
568 __fallback__; \
569 } \
570}
571
572# define CHECK_MALLOC( __call__ ) \
573 CHECK_MALLOC_DO( (__call__), return __ret__ )
574
575# define CHECK_PARAMS_DO( __bool__, __fallback__ ) { \
576 TRACE_CALL("Check: %s", #__bool__ ); \
577 if ( ! (__bool__) ) { \
578 int __ret__ = EINVAL; \
579 TRACE_ERROR("ERROR: Invalid parameter '%s', %d", #__bool__, __ret__ ); \
580 __fallback__; \
581 } \
582}
583
584# define CHECK_PARAMS( __bool__ ) \
585 CHECK_PARAMS_DO( (__bool__), return __ret__ )
586
587# define CHECK_FCT_DO CHECK_POSIX_DO
588# define CHECK_FCT CHECK_POSIX
589
590#endif /* EXCLUDE_DEPRECATED */
591
592
593/*============================================================*/
594/* Optimized code: remove all debugging code */
595/*============================================================*/
596#ifdef STRIP_DEBUG_CODE
597#undef LOG_D
598#undef LOG_N
599#undef LOG_E
600#undef LOG_F
601#undef LOG_BUFFER
602
603#define LOG_D(format,args... ) /* noop */
604#define LOG_N(format,args...) fd_log(FD_LOG_NOTICE, format, ## args)
605#define LOG_E(format,args...) fd_log(FD_LOG_ERROR, format, ## args)
606#define LOG_F(format,args...) fd_log(FD_LOG_FATAL, format, ## args)
607#define LOG_BUFFER(printlevel, level, prefix, buf, bufsz, suffix ) { \
608 if (printlevel > FD_LOG_DEBUG) { \
609 int __i; \
610 size_t __sz = (size_t)(bufsz); \
611 uint8_t * __buf = (uint8_t *)(buf); \
612 char * __strbuf[1024+1]; \
613 for (__i = 0; (__i < __sz) && (__i<(sizeof(__strbuf)/2); __i++) { \
614 sprintf(__strbuf + (2 * __i), "%02.2hhx", __buf[__i]); \
615 } \
616 fd_log(printlevel, prefix"%s"suffix, __strbuf); \
617 }
618#endif /* STRIP_DEBUG_CODE */
619
620/*============================================================*/
621/* OTHER MACROS */
622/*============================================================*/
623/* helper macros (pre-processor hacks to allow macro arguments) */
624#define __tostr( arg ) #arg
625#define _stringize( arg ) __tostr( arg )
626#define __agr( arg1, arg2 ) arg1 ## arg2
627#define _aggregate( arg1, arg2 ) __agr( arg1, arg2 )
628
629/* Some aliases to socket addresses structures */
630#define sSS struct sockaddr_storage
631#define sSA struct sockaddr
632#define sSA4 struct sockaddr_in
633#define sSA6 struct sockaddr_in6
634
635/* The sockaddr length of a sSS structure */
636#define sSAlen( _sa_ ) \
637 ( (socklen_t) ( (((sSA *)_sa_)->sa_family == AF_INET) ? (sizeof(sSA4)) : \
638 ((((sSA *)_sa_)->sa_family == AF_INET6) ? (sizeof(sSA6)) : \
639 0 ) ) )
640#define sSAport( _sa_ ) \
641 ( (socklen_t) ( (((sSA *)_sa_)->sa_family == AF_INET) ? (((sSA4 *)(_sa_))->sin_port) : \
642 ((((sSA *)_sa_)->sa_family == AF_INET6) ? (((sSA6 *)(_sa_))->sin6_port) : \
643 0 ) ) )
644
645DECLARE_FD_DUMP_PROTOTYPE(fd_sa_dump, sSA * sa, int flags);
646#define sSA_DUMP_STRLEN (INET6_ADDRSTRLEN + 1 + 32 + 2)
647void fd_sa_sdump_numeric(char * buf /* must be at least sSA_DUMP_STRLEN */, sSA * sa);
648
649
650/* A l4 protocol name (TCP / SCTP) */
651#ifdef DISABLE_SCTP
652#define IPPROTO_NAME( _proto ) \
653 (((_proto) == IPPROTO_TCP) ? "TCP" : \
654 "Unknown")
655#else /* DISABLE_SCTP */
656#define IPPROTO_NAME( _proto ) \
657 ( ((_proto) == IPPROTO_TCP) ? "TCP" : \
658 (((_proto) == IPPROTO_SCTP) ? "SCTP" : \
659 "Unknown"))
660#endif /* DISABLE_SCTP */
661
662/* Define the value of IP loopback address */
663#ifndef INADDR_LOOPBACK
664#define INADDR_LOOPBACK inet_addr("127.0.0.1")
665#endif /* INADDR_LOOPBACK */
666
667#ifndef INADDR_BROADCAST
668#define INADDR_BROADCAST ((in_addr_t) 0xffffffff)
669#endif /* INADDR_BROADCAST */
670
671/* An IP equivalent to IN6_IS_ADDR_LOOPBACK */
672#ifndef IN_IS_ADDR_LOOPBACK
673#define IN_IS_ADDR_LOOPBACK(a) \
674 ((((long int) (a)->s_addr) & ntohl(0xff000000)) == ntohl(0x7f000000))
675#endif /* IN_IS_ADDR_LOOPBACK */
676
677/* An IP equivalent to IN6_IS_ADDR_UNSPECIFIED */
678#ifndef IN_IS_ADDR_UNSPECIFIED
679#define IN_IS_ADDR_UNSPECIFIED(a) \
680 (((long int) (a)->s_addr) == 0x00000000)
681#endif /* IN_IS_ADDR_UNSPECIFIED */
682
683/* create a V4MAPPED address */
684#define IN6_ADDR_V4MAP( a6, a4 ) { \
685 ((uint32_t *)(a6))[0] = 0; \
686 ((uint32_t *)(a6))[1] = 0; \
687 ((uint32_t *)(a6))[2] = htonl(0xffff); \
688 ((uint32_t *)(a6))[3] = (uint32_t)(a4); \
689}
690
691/* Retrieve a v4 value from V4MAPPED address ( takes a s6_addr as param) */
692#define IN6_ADDR_V4UNMAP( a6 ) \
693 (((in_addr_t *)(a6))[3])
694
695
696/* We provide macros to convert 64 bit values to and from network byte-order, on systems where it is not already provided. */
697#ifndef HAVE_NTOHLL /* Defined by the cmake step, if the ntohll symbol is defined on the system */
698# if HOST_BIG_ENDIAN
699 /* In big-endian systems, we don't have to change the values, since the order is the same as network */
700# define ntohll(x) (x)
701# define htonll(x) (x)
702# else /* HOST_BIG_ENDIAN */
703 /* For these systems, we must reverse the bytes. Use ntohl and htonl on sub-32 blocs, and inverse these blocs. */
704# define ntohll(x) (typeof (x))( (((uint64_t)ntohl( (uint32_t)(x))) << 32 ) | ((uint64_t) ntohl( ((uint64_t)(x)) >> 32 )))
705# define htonll(x) (typeof (x))( (((uint64_t)htonl( (uint32_t)(x))) << 32 ) | ((uint64_t) htonl( ((uint64_t)(x)) >> 32 )))
706# endif /* HOST_BIG_ENDIAN */
707#endif /* HAVE_NTOHLL */
708
709/* This macro will give the next multiple of 4 for an integer (used for padding sizes of AVP). */
710#define PAD4(_x) ((_x) + ( (4 - (_x)) & 3 ) )
711
712/* Useful to display any value as (safe) ASCII (will garbage UTF-8 output...) */
713#define ASCII(_c) ( ((_c < 32) || (_c > 127)) ? ( _c ? '?' : ' ' ) : _c )
714
715/* Compare timespec structures */
716#define TS_IS_INFERIOR( ts1, ts2 ) \
717 ( ((ts1)->tv_sec < (ts2)->tv_sec ) \
718 || (((ts1)->tv_sec == (ts2)->tv_sec ) && ((ts1)->tv_nsec < (ts2)->tv_nsec) ))
719
720/* Compute diff between two timespecs (pointers) */
721#define TS_DIFFERENCE( tsdiff, tsstart, tsend ) { \
722 if ((tsend)->tv_nsec < (tsstart)->tv_nsec ) { \
723 (tsdiff)->tv_sec = (tsend)->tv_sec - (tsstart)->tv_sec - 1; \
724 (tsdiff)->tv_nsec = (tsend)->tv_nsec + 1000000000 - (tsstart)->tv_nsec; \
725 } else { \
726 (tsdiff)->tv_sec = (tsend)->tv_sec - (tsstart)->tv_sec; \
727 (tsdiff)->tv_nsec = (tsend)->tv_nsec - (tsstart)->tv_nsec; \
728 }}
729
730
731/* This gives a good size for buffered reads */
732#ifndef BUFSIZ
733#define BUFSIZ 96
734#endif /* BUFSIZ */
735
736/* This gives the length of a const string */
737#define CONSTSTRLEN( str ) (sizeof(str) - 1)
738
739
740/*============================================================*/
741/* PORTABILITY */
742/*============================================================*/
743#ifndef HAVE_CLOCK_GETTIME
744 #define CLOCK_REALTIME 0
745 #include <sys/time.h>
746 int clock_gettime(int clk_id, struct timespec* ts);
747#endif /* HAVE_CLOCK_GETTIME */
748
749#ifndef HAVE_STRNDUP
750char * strndup (char *str, size_t len);
751#endif /* HAVE_STRNDUP */
752
753
754/*============================================================*/
755/* BINARY STRINGS */
756/*============================================================*/
757
758/* Compute a hash value of a binary string.
759The hash must remain local to this machine, there is no guarantee that same input
760will give same output on a different system (endianness) */
761uint32_t fd_os_hash ( uint8_t * string, size_t len );
762
763/* This type used for binary strings that contain no \0 except as their last character.
764It means some string operations can be used on it. */
765typedef uint8_t * os0_t;
766
767/* Same as strdup but for os0_t strings */
768os0_t os0dup_int(os0_t s, size_t l);
769#define os0dup( _s, _l) (void *)os0dup_int((os0_t)(_s), _l)
770
771/* Check that an octet string value can be used as os0_t */
772static __inline__ int fd_os_is_valid_os0(uint8_t * os, size_t oslen) {
773 /* The only situation where it is not valid is when it contains a \0 inside the octet string */
774 return (memchr(os, '\0', oslen) == NULL);
775}
776
777/* The following type denotes a verified DiameterIdentity value (that contains only pure letters, digits, hyphen, dot) */
778typedef char * DiamId_t;
779
780/* Maximum length of a hostname we accept */
781#ifndef HOST_NAME_MAX
782#define HOST_NAME_MAX 512
783#endif /* HOST_NAME_MAX */
784
785/* Check if a binary string contains a valid Diameter Identity value.
786 rfc3588 states explicitely that such a Diameter Identity consists only of ASCII characters. */
787int fd_os_is_valid_DiameterIdentity(uint8_t * os, size_t ossz);
788
789/* The following function validates a string as a Diameter Identity or applies the IDNA transformation on it
790 if *inoutsz is != 0 on entry, *id may not be \0-terminated.
791 memory has the following meaning: 0: *id can be realloc'd. 1: *id must be malloc'd on output (was static)
792*/
793int fd_os_validate_DiameterIdentity(char ** id, size_t * inoutsz, int memory);
794
795/* Create an order relationship for binary strings (not needed to be \0 terminated).
796 It does NOT mimic strings relationships so that it is more efficient. It is case sensitive.
797 (the strings are actually first ordered by their lengh, then by their bytes contents)
798 returns: -1 if os1 < os2; +1 if os1 > os2; 0 if they are equal */
799int fd_os_cmp_int(os0_t os1, size_t os1sz, os0_t os2, size_t os2sz);
800#define fd_os_cmp(_o1, _l1, _o2, _l2) fd_os_cmp_int((os0_t)(_o1), _l1, (os0_t)(_o2), _l2)
801
802/* A roughly case-insensitive variant, which actually only compares ASCII chars (0-127) in a case-insentitive maneer
803 -- it does not support locales where a lowercase letter uses more space than upper case, such as ß -> ss
804 It is slower than fd_os_cmp.
805 Note that the result is NOT the same as strcasecmp !!!
806
807 This function gives the same order as fd_os_cmp, except when it finds 2 strings to be equal.
808 However this is not always sufficient:
809 for example fd_os_cmp gives: "Ac" < "aB" < "aa"
810 if you attempt to fd_os_almostcasesrch "Aa" you will actually have to go past "aB" which is > "Aa".
811 Therefore you can use the maybefurther parameter.
812 This parameter is 1 on return if os1 may have been stored further that os2 (assuming os2 values are ordered by fd_os_cmp)
813 and 0 if we are sure that it is not the case.
814 When looping through a list of fd_os_cmp classified values, this parameter must be used to stop looping, in addition to the comp result.
815 */
816int fd_os_almostcasesrch_int(uint8_t * os1, size_t os1sz, uint8_t * os2, size_t os2sz, int * maybefurther);
817#define fd_os_almostcasesrch(_o1, _l1, _o2, _l2, _mb) fd_os_almostcasesrch_int((os0_t)(_o1), _l1, (os0_t)(_o2), _l2, _mb)
818
819/* Analyze a DiameterURI and return its components.
820 Return EINVAL if the URI is not valid.
821 *diamid is malloc'd on function return and must be freed (it is processed by fd_os_validate_DiameterIdentity).
822 *secure is 0 (no security) or 1 (security enabled) on return.
823 *port is 0 (default) or a value in host byte order on return.
824 *transport is 0 (default) or IPPROTO_* on return.
825 *proto is 0 (default) or 'd' (diameter), 'r' (radius), or 't' (tacacs+) on return.
826 */
827int fd_os_parse_DiameterURI(uint8_t * uri, size_t urisz, DiamId_t * diamid, size_t * diamidlen, int * secure, uint16_t * port, int * transport, char *proto);
828
829/*============================================================*/
830/* THREADS */
831/*============================================================*/
832
833/* Terminate a thread */
834static __inline__ int fd_thr_term(pthread_t * th)
835{
836 void * th_ret = NULL;
837
838 CHECK_PARAMS(th);
839
840 /* Test if it was already terminated */
841 if (*th == (pthread_t)NULL)
842 return 0;
843
844 /* Cancel the thread if it is still running - ignore error if it was already terminated */
845 (void) pthread_cancel(*th);
846
847 /* Then join the thread */
848 CHECK_POSIX( pthread_join(*th, &th_ret) );
849
850 if (th_ret == PTHREAD_CANCELED) {
851 TRACE_DEBUG(ANNOYING, "The thread %p was canceled", (void *)*th);
852 } else {
853 TRACE_DEBUG(CALL, "The thread %p returned %p", (void *)*th, th_ret);
854 }
855
856 /* Clean the location */
857 *th = (pthread_t)NULL;
858
859 return 0;
860}
861
862
863/*************
864 Cancelation cleanup handlers for common objects
865 *************/
866static __inline__ void fd_cleanup_mutex( void * mutex )
867{
868 CHECK_POSIX_DO( pthread_mutex_unlock((pthread_mutex_t *)mutex), /* */);
869}
870
871static __inline__ void fd_cleanup_rwlock( void * rwlock )
872{
873 CHECK_POSIX_DO( pthread_rwlock_unlock((pthread_rwlock_t *)rwlock), /* */);
874}
875
876static __inline__ void fd_cleanup_buffer( void * buffer )
877{
878 free(buffer);
879}
880static __inline__ void fd_cleanup_socket(void * sockptr)
881{
882 if (sockptr && (*(int *)sockptr > 0)) {
883 CHECK_SYS_DO( close(*(int *)sockptr), /* ignore */ );
884 *(int *)sockptr = -1;
885 }
886}
887
888
889/*============================================================*/
890/* LISTS */
891/*============================================================*/
892
893/* The following structure represents a chained list element */
894struct fd_list {
895 struct fd_list *next; /* next element in the list */
896 struct fd_list *prev; /* previous element in the list */
897 struct fd_list *head; /* head of the list */
898 void *o; /* additional pointer, used for any purpose (ex: start of the parent object) */
899};
900
901/* Initialize a list element */
902#define FD_LIST_INITIALIZER( _list_name ) \
903 { .next = & _list_name, .prev = & _list_name, .head = & _list_name, .o = NULL }
904#define FD_LIST_INITIALIZER_O( _list_name, _obj ) \
905 { .next = & _list_name, .prev = & _list_name, .head = & _list_name, .o = _obj }
906void fd_list_init ( struct fd_list * list, void * obj );
907
908/* Return boolean, true if the list is empty */
909#define FD_IS_LIST_EMPTY( _list ) ((((struct fd_list *)(_list))->head == (_list)) && (((struct fd_list *)(_list))->next == (_list)))
910
911/* Insert an item in a list at known position */
912void fd_list_insert_after ( struct fd_list * ref, struct fd_list * item );
913void fd_list_insert_before ( struct fd_list * ref, struct fd_list * item );
914
915/* Move all elements from a list at the end of another */
916void fd_list_move_end(struct fd_list * ref, struct fd_list * senti);
917
918/* Insert an item in an ordered list -- ordering function must be provided. If duplicate object found, EEXIST and it is returned in ref_duplicate */
919int fd_list_insert_ordered( struct fd_list * head, struct fd_list * item, int (*cmp_fct)(void *, void *), void ** ref_duplicate);
920
921/* Unlink an item from a list */
922void fd_list_unlink ( struct fd_list * item );
923
924
925
926
927/*============================================================*/
928/* DICTIONARY */
929/*============================================================*/
930
931/* Structure that contains the complete dictionary definitions */
932struct dictionary;
933
934/* Structure that contains a dictionary object */
935struct dict_object;
936
937/* Types of object in the dictionary. */
938enum dict_object_type {
939 DICT_VENDOR = 1, /* Vendor */
940 DICT_APPLICATION, /* Diameter Application */
941 DICT_TYPE, /* AVP data type */
942 DICT_ENUMVAL, /* Named constant (value of an enumerated AVP type) */
943 DICT_AVP, /* AVP */
944 DICT_COMMAND, /* Diameter Command */
945 DICT_RULE /* a Rule for AVP in command or grouped AVP */
946#define DICT_TYPE_MAX DICT_RULE
947};
948
949/* Initialize a dictionary */
950int fd_dict_init(struct dictionary ** dict);
951/* Destroy a dictionary */
952int fd_dict_fini(struct dictionary ** dict);
953
954/*
955 * FUNCTION: fd_dict_new
956 *
957 * PARAMETERS:
958 * dict : Pointer to the dictionnary where the object is created
959 * type : What kind of object must be created
960 * data : pointer to the data for the object.
961 * type parameter is used to determine the type of data (see below for detail).
962 * parent : a reference to a parent object, if needed.
963 * ref : upon successful creation, reference to new object is stored here if !null.
964 *
965 * DESCRIPTION:
966 * Create a new object in the dictionary.
967 * See following object sections in this header file for more information on data and parent parameters format.
968 *
969 * RETURN VALUE:
970 * 0 : The object is created in the dictionary.
971 * EINVAL : A parameter is invalid.
972 * EEXIST : This object is already defined in the dictionary (with conflicting data).
973 * If "ref" is not NULL, it points to the existing element on return.
974 * (other standard errors may be returned, too, with their standard meaning. Example:
975 * ENOMEM : Memory allocation for the new object element failed.)
976 */
977int fd_dict_new ( struct dictionary * dict, enum dict_object_type type, void * data, struct dict_object * parent, struct dict_object ** ref );
978
979/*
980 * FUNCTION: fd_dict_search
981 *
982 * PARAMETERS:
983 * dict : Pointer to the dictionnary where the object is searched
984 * type : type of object that is being searched
985 * criteria : how the object must be searched. See object-related sections below for more information.
986 * what : depending on criteria, the data that must be searched.
987 * result : On successful return, pointer to the object is stored here.
988 * retval : this value is returned if the object is not found and result is not NULL.
989 *
990 * DESCRIPTION:
991 * Perform a search in the dictionary.
992 * See the object-specific sections below to find how to look for each objects.
993 * If the "result" parameter is NULL, the function is used to check if an object is in the dictionary.
994 * Otherwise, a reference to the object is stored in result if found.
995 * If result is not NULL and the object is not found, retval is returned (should be 0 or ENOENT usually)
996 *
997 * RETURN VALUE:
998 * 0 : The object has been found in the dictionary, or *result is NULL.
999 * EINVAL : A parameter is invalid.
1000 * ENOENT : No matching object has been found, and result was NULL.
1001 */
1002int fd_dict_search ( struct dictionary * dict, enum dict_object_type type, int criteria, const void * what, struct dict_object ** result, int retval );
1003
1004/* Special case: get the generic error command object */
1005int fd_dict_get_error_cmd(struct dictionary * dict, struct dict_object ** obj);
1006
1007/*
1008 * FUNCTION: fd_dict_getval
1009 *
1010 * PARAMETERS:
1011 * object : Pointer to a dictionary object.
1012 * data : pointer to a structure to hold the data for the object.
1013 * The type is the same as "data" parameter in fd_dict_new function.
1014 *
1015 * DESCRIPTION:
1016 * Retrieve content of a dictionary object.
1017 * See following object sections in this header file for more information on data and parent parameters format.
1018 *
1019 * RETURN VALUE:
1020 * 0 : The content of the object has been retrieved.
1021 * EINVAL : A parameter is invalid.
1022 */
1023int fd_dict_getval ( struct dict_object * object, void * val);
1024int fd_dict_gettype ( struct dict_object * object, enum dict_object_type * type);
1025int fd_dict_getdict ( struct dict_object * object, struct dictionary ** dict);
1026
1027/* Debug functions */
1028DECLARE_FD_DUMP_PROTOTYPE(fd_dict_dump_object, struct dict_object * obj);
1029DECLARE_FD_DUMP_PROTOTYPE(fd_dict_dump, struct dictionary * dict);
1030
1031/* Function to access full contents of the dictionary, see doc in dictionary.c */
1032int fd_dict_getlistof(int criteria, void * parent, struct fd_list ** sentinel);
1033
1034/* Function to remove an entry from the dictionary.
1035 This cannot be used if the object has children (for example a vendor with vendor-specific AVPs).
1036 In such case, the children must be removed first. */
1037int fd_dict_delete(struct dict_object * obj);
1038
1039/*
1040 ***************************************************************************
1041 *
1042 * Vendor object
1043 *
1044 * These types are used to manage vendors in the dictionary
1045 *
1046 ***************************************************************************
1047 */
1048
1049/* Type to hold a Vendor ID: "SMI Network Management Private Enterprise Codes" (RFC3232) */
1050typedef uint32_t vendor_id_t;
1051
1052/* Type to hold data associated to a vendor */
1053struct dict_vendor_data {
1054 vendor_id_t vendor_id; /* ID of a vendor */
1055 char * vendor_name; /* The name of this vendor */
1056};
1057
1058/* The criteria for searching a vendor object in the dictionary */
1059enum {
1060 VENDOR_BY_ID = 10, /* "what" points to a vendor_id_t */
1061 VENDOR_BY_NAME, /* "what" points to a char * */
1062 VENDOR_OF_APPLICATION, /* "what" points to a struct dict_object containing an application (see below) */
1063 VENDOR_OF_AVP, /* "what" points to a struct dict_object containing an avp (see below) */
1064};
1065
1066/***
1067 * API usage :
1068
1069Note: the value of "vendor_name" is copied when the object is created, and the string may be disposed afterwards.
1070On the other side, when value is retrieved with dict_getval, the string is not copied and MUST NOT be freed. It will
1071be freed automatically along with the object itself with call to dict_fini later.
1072
1073- fd_dict_new:
1074 The "parent" parameter is not used for vendors.
1075 Sample code to create a vendor:
1076 {
1077 int ret;
1078 struct dict_object * myvendor;
1079 struct dict_vendor_data myvendordata = { 23455, "my vendor name" }; -- just an example...
1080 ret = fd_dict_new ( dict, DICT_VENDOR, &myvendordata, NULL, &myvendor );
1081 }
1082
1083- fd_dict_search:
1084 Sample codes to look for a vendor object, by its id or name:
1085 {
1086 int ret;
1087 struct dict_object * vendor_found;
1088 vendor_id_t vendorid = 23455;
1089 ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_ID, &vendorid, &vendor_found, ENOENT);
1090 - or -
1091 ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_NAME, "my vendor name", &vendor_found, ENOENT);
1092 }
1093
1094 - fd_dict_getval:
1095 Sample code to retrieve the data from a vendor object:
1096 {
1097 int ret;
1098 struct dict_object * myvendor;
1099 struct dict_vendor_data myvendordata;
1100 ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_NAME, "my vendor name", &myvendor, ENOENT);
1101 ret = fd_dict_getval ( myvendor, &myvendordata );
1102 printf("my vendor id: %d\n", myvendordata.vendor_id );
1103 }
1104
1105*/
1106
1107/* Special function: */
1108uint32_t * fd_dict_get_vendorid_list(struct dictionary * dict);
1109
1110/*
1111 ***************************************************************************
1112 *
1113 * Application object
1114 *
1115 * These types are used to manage Diameter applications in the dictionary
1116 *
1117 ***************************************************************************
1118 */
1119
1120/* Type to hold a Diameter application ID: IANA assigned value for this application. */
1121typedef uint32_t application_id_t;
1122
1123/* Type to hold data associated to an application */
1124struct dict_application_data {
1125 application_id_t application_id; /* ID of the application */
1126 char * application_name; /* The name of this application */
1127};
1128
1129/* The criteria for searching an application object in the dictionary */
1130enum {
1131 APPLICATION_BY_ID = 20, /* "what" points to a application_id_t */
1132 APPLICATION_BY_NAME, /* "what" points to a char * */
1133 APPLICATION_OF_TYPE, /* "what" points to a struct dict_object containing a type object (see below) */
1134 APPLICATION_OF_COMMAND /* "what" points to a struct dict_object containing a command (see below) */
1135};
1136
1137/***
1138 * API usage :
1139
1140The "parent" parameter of dict_new may point to a vendor object to inform of what vendor defines the application.
1141for standard-track applications, the "parent" parameter should be NULL.
1142The vendor associated to an application is retrieved with VENDOR_OF_APPLICATION search criteria on vendors.
1143
1144- fd_dict_new:
1145 Sample code for application creation:
1146 {
1147 int ret;
1148 struct dict_object * vendor;
1149 struct dict_object * appl;
1150 struct dict_vendor_data vendor_data = {
1151 23455,
1152 "my vendor name"
1153 };
1154 struct dict_application_data app_data = {
1155 9789,
1156 "my vendor's application"
1157 };
1158
1159 ret = fd_dict_new ( dict, DICT_VENDOR, &vendor_data, NULL, &vendor );
1160 ret = fd_dict_new ( dict, DICT_APPLICATION, &app_data, vendor, &appl );
1161 }
1162
1163- fd_dict_search:
1164 Sample code to retrieve the vendor of an application
1165 {
1166 int ret;
1167 struct dict_object * vendor, * appli;
1168
1169 ret = fd_dict_search ( dict, DICT_APPLICATION, APPLICATION_BY_NAME, "my vendor's application", &appli, ENOENT);
1170 ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_OF_APPLICATION, appli, &vendor, ENOENT);
1171 }
1172
1173 - fd_dict_getval:
1174 Sample code to retrieve the data from an application object:
1175 {
1176 int ret;
1177 struct dict_object * appli;
1178 struct dict_application_data appl_data;
1179 ret = fd_dict_search ( dict, DICT_APPLICATION, APPLICATION_BY_NAME, "my vendor's application", &appli, ENOENT);
1180 ret = fd_dict_getval ( appli, &appl_data );
1181 printf("my application id: %s\n", appl_data.application_id );
1182 }
1183
1184*/
1185
1186/*
1187 ***************************************************************************
1188 *
1189 * Type object
1190 *
1191 * These types are used to manage AVP data types in the dictionary
1192 *
1193 ***************************************************************************
1194 */
1195
1196/* Type to store any AVP value */
1197union avp_value {
1198 struct {
1199 uint8_t *data; /* bytes buffer */
1200 size_t len; /* length of the data buffer */
1201 } os; /* Storage for an octet string */
1202 int32_t i32; /* integer 32 */
1203 int64_t i64; /* integer 64 */
1204 uint32_t u32; /* unsigned 32 */
1205 uint64_t u64; /* unsigned 64 */
1206 float f32; /* float 32 */
1207 double f64; /* float 64 */
1208};
1209
1210/* These are the basic AVP types defined in RFC3588bis */
1211enum dict_avp_basetype {
1212 AVP_TYPE_GROUPED,
1213 AVP_TYPE_OCTETSTRING,
1214 AVP_TYPE_INTEGER32,
1215 AVP_TYPE_INTEGER64,
1216 AVP_TYPE_UNSIGNED32,
1217 AVP_TYPE_UNSIGNED64,
1218 AVP_TYPE_FLOAT32,
1219 AVP_TYPE_FLOAT64
1220#define AVP_TYPE_MAX AVP_TYPE_FLOAT64
1221};
1222
1223/* Callbacks that can be associated with a derived type to easily interpret the AVP value. */
1224/*
1225 * CALLBACK: dict_avpdata_interpret
1226 *
1227 * PARAMETERS:
1228 * val : Pointer to the AVP value that must be interpreted.
1229 * interpreted : The result of interpretation is stored here. The format and meaning depends on each type.
1230 *
1231 * DESCRIPTION:
1232 * This callback can be provided with a derived type in order to facilitate the interpretation of formated data.
1233 * For example, when an AVP of type "Address" is received, it can be used to convert the octetstring into a struct sockaddr.
1234 * This callback is not called directly, but through the message's API msg_avp_value_interpret function.
1235 *
1236 * RETURN VALUE:
1237 * 0 : Operation complete.
1238 * !0 : An error occurred, the error code is returned.
1239 */
1240typedef int (*dict_avpdata_interpret) (union avp_value * value, void * interpreted);
1241/*
1242 * CALLBACK: dict_avpdata_encode
1243 *
1244 * PARAMETERS:
1245 * data : The formated data that must be stored in the AVP value.
1246 * val : Pointer to the AVP value storage area where the data must be stored.
1247 *
1248 * DESCRIPTION:
1249 * This callback can be provided with a derived type in order to facilitate the encoding of formated data.
1250 * For example, it can be used to convert a struct sockaddr in an AVP value of type Address.
1251 * This callback is not called directly, but through the message's API msg_avp_value_encode function.
1252 * If the callback is defined for an OctetString based type, the created string must be malloc'd. free will be called
1253 * automatically later.
1254 *
1255 * RETURN VALUE:
1256 * 0 : Operation complete.
1257 * !0 : An error occurred, the error code is returned.
1258 */
1259typedef int (*dict_avpdata_encode) (void * data, union avp_value * val);
1260
1261/*
1262 * CALLBACK: dict_avpdata_check
1263 *
1264 * PARAMETERS:
1265 * val : Pointer to the AVP value that was received and needs to be sanity checked.
1266 * data : a parameter stored in the type structure (to enable more generic check functions)
1267 * error_msg: upon erroneous value, a string describing the error can be returned here (it will be strcpy by caller). This description will be returned in the error message, if any.
1268 *
1269 * DESCRIPTION:
1270 * This callback can be provided with a derived type in order to improve the operation of the
1271 * fd_msg_parse_dict function. When this callback is present, the value of the AVP that has
1272 * been parsed is passed to this function for finer granularity check. For example for some
1273 * speccific AVP, the format of an OCTETSTRING value can be further checked, or the
1274 * interger value can be verified.
1275 *
1276 * RETURN VALUE:
1277 * 0 : The value is valid.
1278 * !0 : An error occurred, the error code is returned. It is advised to return EINVAL on incorrect val
1279 */
1280typedef int (*dict_avpdata_check) (void * data, union avp_value * val, char ** error_msg);
1281
1282
1283
1284/* Type to hold data associated to a derived AVP data type */
1285struct dict_type_data {
1286 enum dict_avp_basetype type_base; /* How the data of such AVP must be interpreted */
1287 char * type_name; /* The name of this type */
1288 dict_avpdata_interpret type_interpret;/* cb to convert the AVP value in more comprehensive format (or NULL) */
1289 dict_avpdata_encode type_encode; /* cb to convert formatted data into an AVP value (or NULL) */
1290 DECLARE_FD_DUMP_PROTOTYPE((*type_dump), union avp_value * val); /* cb called by fd_msg_dump_* for this type of data (if != NULL). Returned string must be freed. */
1291 dict_avpdata_check type_check;
1292 void * type_check_param;
1293};
1294
1295/* The criteria for searching a type object in the dictionary */
1296enum {
1297 TYPE_BY_NAME = 30, /* "what" points to a char * */
1298 TYPE_OF_ENUMVAL, /* "what" points to a struct dict_object containing an enumerated constant (DICT_ENUMVAL, see below). */
1299 TYPE_OF_AVP /* "what" points to a struct dict_object containing an AVP object. */
1300};
1301
1302/****
1303 Callbacks defined in libfdproto/dictionary_functions.c file -- see that file for usage.
1304 */
1305
1306/* Convert an Address type AVP into a struct sockaddr_storage */
1307int fd_dictfct_Address_encode(void * data, union avp_value * avp_value);
1308int fd_dictfct_Address_interpret(union avp_value * avp_value, void * interpreted);
1309DECLARE_FD_DUMP_PROTOTYPE(fd_dictfct_Address_dump, union avp_value * avp_value);
1310
1311/* Display the content of an AVP of type UTF8String in the log file */
1312DECLARE_FD_DUMP_PROTOTYPE(fd_dictfct_UTF8String_dump, union avp_value * avp_value);
1313
1314/* For Time AVPs, map with time_t value directly */
1315int fd_dictfct_Time_encode(void * data, union avp_value * avp_value);
1316int fd_dictfct_Time_interpret(union avp_value * avp_value, void * interpreted);
1317DECLARE_FD_DUMP_PROTOTYPE(fd_dictfct_Time_dump, union avp_value * avp_value);
1318
1319
1320/* For string AVP, the following type_check function provides simple basic check for specific characters presence, e.g. use "@." for trivial email address check */
1321int fd_dictfct_CharInOS_check(void * data, union avp_value * val, char ** error_msg);
1322
1323
1324/****/
1325
1326/***
1327 * API usage :
1328
1329- fd_dict_new:
1330 The "parent" parameter may point to an application object, when a type is defined by a Diameter application.
1331
1332 Sample code:
1333 {
1334 int ret;
1335 struct dict_object * mytype;
1336 struct dict_type_data mytypedata =
1337 {
1338 AVP_TYPE_OCTETSTRING,
1339 "Address",
1340 NULL,
1341 NULL
1342 };
1343 ret = fd_dict_new ( dict, DICT_TYPE, &mytypedata, NULL, &mytype );
1344 }
1345
1346- fd_dict_search:
1347 Sample code:
1348 {
1349 int ret;
1350 struct dict_object * address_type;
1351 ret = fd_dict_search ( dict, DICT_TYPE, TYPE_BY_NAME, "Address", &address_type, ENOENT);
1352 }
1353
1354*/
1355
1356/*
1357 ***************************************************************************
1358 *
1359 * Enumerated values object
1360 *
1361 * These types are used to manage named constants of some AVP,
1362 * for enumerated types. freeDiameter allows constants for types others than Unsigned32
1363 *
1364 ***************************************************************************
1365 */
1366
1367/* Type to hold data of named constants for AVP */
1368struct dict_enumval_data {
1369 char * enum_name; /* The name of this constant */
1370 union avp_value enum_value; /* Value of the constant. Union term depends on parent type's base type. */
1371};
1372
1373/* The criteria for searching a constant in the dictionary */
1374enum {
1375 ENUMVAL_BY_STRUCT = 40, /* "what" points to a struct dict_enumval_request as defined below */
1376 ENUMVAL_BY_NAME, /* This cannot be used for researches */
1377 ENUMVAL_BY_VALUE /* This cannot be used for researches */
1378};
1379
1380struct dict_enumval_request {
1381 /* Identifier of the parent type, one of the following must not be NULL */
1382 struct dict_object *type_obj;
1383 char * type_name;
1384
1385 /* Search criteria for the constant */
1386 struct dict_enumval_data search; /* search.enum_value is used only if search.enum_name == NULL */
1387};
1388
1389/***
1390 * API usage :
1391
1392- fd_dict_new:
1393 The "parent" parameter must point to a derived type object.
1394 Sample code to create a type "Boolean" with two constants "True" and "False":
1395 {
1396 int ret;
1397 struct dict_object * type_boolean;
1398 struct dict_type_data type_boolean_data =
1399 {
1400 AVP_TYPE_INTEGER32,
1401 "Boolean",
1402 NULL,
1403 NULL
1404 };
1405 struct dict_enumval_data boolean_false =
1406 {
1407 .enum_name="False",
1408 .enum_value.i32 = 0
1409 };
1410 struct dict_enumval_data boolean_true =
1411 {
1412 .enum_name="True",
1413 .enum_value.i32 = -1
1414 };
1415 ret = fd_dict_new ( dict, DICT_TYPE, &type_boolean_data, NULL, &type_boolean );
1416 ret = fd_dict_new ( dict, DICT_ENUMVAL, &boolean_false, type_boolean, NULL );
1417 ret = fd_dict_new ( dict, DICT_ENUMVAL, &boolean_true , type_boolean, NULL );
1418
1419 }
1420
1421- fd_dict_search:
1422 Sample code to look for a constant name, by its value:
1423 {
1424 int ret;
1425 struct dict_object * value_found;
1426 struct dict_enumval_request boolean_by_value =
1427 {
1428 .type_name = "Boolean",
1429 .search.enum_name=NULL,
1430 .search.enum_value.i32 = -1
1431 };
1432
1433 ret = fd_dict_search ( dict, DICT_ENUMVAL, ENUMVAL_BY_STRUCT, &boolean_by_value, &value_found, ENOENT);
1434 }
1435
1436 - fd_dict_getval:
1437 Sample code to retrieve the data from a constant object:
1438 {
1439 int ret;
1440 struct dict_object * value_found;
1441 struct dict_enumval_data boolean_data = NULL;
1442 struct dict_enumval_request boolean_by_value =
1443 {
1444 .type_name = "Boolean",
1445 .search.enum_name=NULL,
1446 .search.enum_value.i32 = 0
1447 };
1448
1449 ret = fd_dict_search ( dict, DICT_ENUMVAL, ENUMVAL_BY_STRUCT, &boolean_by_value, &value_found, ENOENT);
1450 ret = fd_dict_getval ( value_found, &boolean_data );
1451 printf(" Boolean with value 0: %s", boolean_data.enum_name );
1452 }
1453*/
1454
1455/*
1456 ***************************************************************************
1457 *
1458 * AVP object
1459 *
1460 * These objects are used to manage AVP definitions in the dictionary
1461 *
1462 ***************************************************************************
1463 */
1464
1465/* Type to hold an AVP code. For vendor 0, these codes are assigned by IANA. Otherwise, it is managed by the vendor */
1466typedef uint32_t avp_code_t;
1467
1468/* Values of AVP flags */
1469#define AVP_FLAG_VENDOR 0x80
1470#define AVP_FLAG_MANDATORY 0x40
1471#define AVP_FLAG_RESERVED3 0x20
1472#define AVP_FLAG_RESERVED4 0x10
1473#define AVP_FLAG_RESERVED5 0x08
1474#define AVP_FLAG_RESERVED6 0x04
1475#define AVP_FLAG_RESERVED7 0x02
1476#define AVP_FLAG_RESERVED8 0x01
1477
1478/* For dumping flags and values */
1479#define DUMP_AVPFL_str "%c%c%s%s%s%s%s%s"
1480#define DUMP_AVPFL_val(_val) (_val & AVP_FLAG_VENDOR)?'V':'-' , (_val & AVP_FLAG_MANDATORY)?'M':'-', \
1481 (_val & AVP_FLAG_RESERVED3)?"3":"", (_val & AVP_FLAG_RESERVED4)?"4":"", \
1482 (_val & AVP_FLAG_RESERVED5)?"5":"", (_val & AVP_FLAG_RESERVED6)?"6":"", (_val & AVP_FLAG_RESERVED7)?"7":"", (_val & AVP_FLAG_RESERVED8)?"8":""
1483
1484/* Type to hold data associated to an avp */
1485struct dict_avp_data {
1486 avp_code_t avp_code; /* Code of the avp */
1487 vendor_id_t avp_vendor; /* Vendor of the AVP, or 0 */
1488 char * avp_name; /* Name of this AVP */
1489 uint8_t avp_flag_mask; /* Mask of fixed AVP flags */
1490 uint8_t avp_flag_val; /* Values of the fixed flags */
1491 enum dict_avp_basetype avp_basetype; /* Basic type of data found in the AVP */
1492};
1493
1494/* The criteria for searching an avp object in the dictionary */
1495enum {
1496 AVP_BY_CODE = 50, /* "what" points to an avp_code_t, vendor is always 0 */
1497 AVP_BY_NAME, /* "what" points to a char *, vendor is always 0 */
1498 AVP_BY_NAME_ALL_VENDORS,/* "what" points to a string. Might be quite slow... */
1499 AVP_BY_STRUCT, /* "what" points to a struct dict_avp_request_ex (see below) */
1500
1501 /* kept for backward compatibility, better use AVP_BY_STRUCT above instead */
1502 AVP_BY_CODE_AND_VENDOR, /* "what" points to a struct dict_avp_request (see below), where avp_vendor and avp_code are set */
1503 AVP_BY_NAME_AND_VENDOR /* "what" points to a struct dict_avp_request (see below), where avp_vendor and avp_name are set */
1504};
1505
1506/* Struct used for some researchs */
1507struct dict_avp_request_ex {
1508 struct {
1509 /* Only one of the following fields must be set. */
1510 struct dict_object * vendor; /* most efficient if already known, set to NULL to ignore */
1511 vendor_id_t vendor_id; /* set to 0 to ignore -- prefer AVP_BY_CODE or AVP_BY_NAME for vendor 0 */
1512 const char * vendor_name; /* set to NULL to ignore */
1513 } avp_vendor;
1514
1515 struct {
1516 /* Only one of the following fields must be set */
1517 avp_code_t avp_code; /* set to 0 to ignore */
1518 const char * avp_name; /* set to NULL to ignore */
1519 } avp_data;
1520};
1521
1522struct dict_avp_request {
1523 vendor_id_t avp_vendor;
1524 avp_code_t avp_code;
1525 char * avp_name;
1526};
1527
1528
1529
1530/***
1531 * API usage :
1532
1533If "parent" parameter is not NULL during AVP creation, it must point to a DICT_TYPE object.
1534The extended type is then attached to the AVP. In case where it is an enumerated type, the value of
1535AVP is automatically interpreted in debug messages, and in message checks.
1536The derived type of an AVP can be retrieved with: dict_search ( DICT_TYPE, TYPE_OF_AVP, avp, ... )
1537
1538To create the rules (ABNF) for children of Grouped AVP, see the DICT_RULE related part.
1539
1540- fd_dict_new:
1541 Sample code for AVP creation:
1542 {
1543 int ret;
1544 struct dict_object * user_name_avp;
1545 struct dict_object * boolean_type;
1546 struct dict_object * sample_boolean_avp;
1547 struct dict_avp_data user_name_data = {
1548 1, // code
1549 0, // vendor
1550 "User-Name", // name
1551 AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, // fixed mask: V and M values must always be defined as follow. other flags can be set or cleared
1552 AVP_FLAG_MANDATORY, // the V flag must be cleared, the M flag must be set.
1553 AVP_TYPE_OCTETSTRING // User-Name AVP contains OctetString data (further precision such as UTF8String can be given with a parent derived type)
1554 };
1555 struct dict_avp_data sample_boolean_data = {
1556 31337,
1557 23455,
1558 "Sample-Boolean",
1559 AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY,
1560 AVP_FLAG_VENDOR,
1561 AVP_TYPE_INTEGER32 // This MUST be the same as parent type's
1562 };
1563
1564 -- Create an AVP with a base type --
1565 ret = fd_dict_new ( dict, DICT_AVP, &user_name_data, NULL, &user_name_avp );
1566
1567 -- Create an AVP with a derived type --
1568 ret = fd_dict_search ( dict, DICT_TYPE, TYPE_BY_NAME, "Boolean", &boolean_type, ENOENT);
1569 ret = fd_dict_new ( dict, DICT_AVP, &sample_boolean_data , boolean_type, &sample_boolean_avp );
1570
1571 }
1572
1573- fd_dict_search:
1574 Sample code to look for an AVP
1575 {
1576 int ret;
1577 struct dict_object * avp_username;
1578 struct dict_object * avp_sampleboolean;
1579 struct dict_avp_request avpvendorboolean =
1580 {
1581 .avp_vendor = 23455,
1582 .avp_name = "Sample-Boolean"
1583 };
1584
1585 ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME, "User-Name", &avp_username, ENOENT);
1586
1587 ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME_AND_VENDOR, &avpvendorboolean, &avp_sampleboolean, ENOENT);
1588
1589 -- this would also work, but be slower, because it has to search all vendor dictionaries --
1590 ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME_ALL_VENDORS, "Sample-Boolean", &avp_sampleboolean, ENOENT);
1591
1592 }
1593
1594 - fd_dict_getval:
1595 Sample code to retrieve the data from an AVP object:
1596 {
1597 int ret;
1598 struct dict_object * avp_username;
1599 struct dict_avp_data user_name_data;
1600 ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME, "User-Name", &avp_username, ENOENT);
1601 ret = fd_dict_getval ( avp_username, &user_name_data );
1602 printf("User-Name code: %d\n", user_name_data.avp_code );
1603 }
1604
1605*/
1606
1607/*
1608 ***************************************************************************
1609 *
1610 * Command object
1611 *
1612 * These types are used to manage commands objects in the dictionary
1613 *
1614 ***************************************************************************
1615 */
1616
1617/* Type to hold a Diameter command code: IANA assigned values. 0x0-0x7fffff=standard, 0x800000-0xfffffd=vendors, 0xfffffe-0xffffff=experimental */
1618typedef uint32_t command_code_t;
1619
1620/* Values of command flags */
1621#define CMD_FLAG_REQUEST 0x80
1622#define CMD_FLAG_PROXIABLE 0x40
1623#define CMD_FLAG_ERROR 0x20
1624#define CMD_FLAG_RETRANSMIT 0x10
1625#define CMD_FLAG_RESERVED5 0x08
1626#define CMD_FLAG_RESERVED6 0x04
1627#define CMD_FLAG_RESERVED7 0x02
1628#define CMD_FLAG_RESERVED8 0x01
1629
1630/* For dumping flags and values */
1631#define DUMP_CMDFL_str "%c%c%c%c%s%s%s%s"
1632#define DUMP_CMDFL_val(_val) (_val & CMD_FLAG_REQUEST)?'R':'-' , (_val & CMD_FLAG_PROXIABLE)?'P':'-' , (_val & CMD_FLAG_ERROR)?'E':'-' , (_val & CMD_FLAG_RETRANSMIT)?'T':'-', \
1633 (_val & CMD_FLAG_RESERVED5)?"5":"", (_val & CMD_FLAG_RESERVED6)?"6":"", (_val & CMD_FLAG_RESERVED7)?"7":"", (_val & CMD_FLAG_RESERVED8)?"8":""
1634
1635/* Type to hold data associated to a command */
1636struct dict_cmd_data {
1637 command_code_t cmd_code; /* code of the command */
1638 char * cmd_name; /* Name of the command */
1639 uint8_t cmd_flag_mask; /* Mask of fixed-value flags */
1640 uint8_t cmd_flag_val; /* values of the fixed flags */
1641};
1642
1643/* The criteria for searching an avp object in the dictionary */
1644enum {
1645 CMD_BY_NAME = 60, /* "what" points to a char * */
1646 CMD_BY_CODE_R, /* "what" points to a command_code_t. The "Request" command is returned. */
1647 CMD_BY_CODE_A, /* "what" points to a command_code_t. The "Answer" command is returned. */
1648 CMD_ANSWER /* "what" points to a struct dict_object of a request command. The corresponding "Answer" command is returned. */
1649};
1650
1651
1652/***
1653 * API usage :
1654
1655The "parent" parameter of dict_new may point to an application object to inform of what application defines the command.
1656The application associated to a command is retrieved with APPLICATION_OF_COMMAND search criteria on applications.
1657
1658To create the rules for children of commands, see the DICT_RULE related part.
1659
1660Note that the "Request" and "Answer" commands are two independant objects. This allows to have different rules for each.
1661
1662- fd_dict_new:
1663 Sample code for command creation:
1664 {
1665 int ret;
1666 struct dict_object * cer;
1667 struct dict_object * cea;
1668 struct dict_cmd_data ce_data = {
1669 257, // code
1670 "Capabilities-Exchange-Request", // name
1671 CMD_FLAG_REQUEST, // mask
1672 CMD_FLAG_REQUEST // value. Only the "R" flag is constrained here, set.
1673 };
1674
1675 ret = fd_dict_new (dict, DICT_COMMAND, &ce_data, NULL, &cer );
1676
1677 ce_data.cmd_name = "Capabilities-Exchange-Answer";
1678 ce_data.cmd_flag_val = 0; // Same constraint on "R" flag, but this time it must be cleared.
1679
1680 ret = fd_dict_new ( dict, DICT_COMMAND, &ce_data, NULL, &cea );
1681 }
1682
1683- fd_dict_search:
1684 Sample code to look for a command
1685 {
1686 int ret;
1687 struct dict_object * cer, * cea;
1688 command_code_t code = 257;
1689 ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_NAME, "Capabilities-Exchange-Request", &cer, ENOENT);
1690 ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_CODE_R, &code, &cer, ENOENT);
1691 }
1692
1693 - fd_dict_getval:
1694 Sample code to retrieve the data from a command object:
1695 {
1696 int ret;
1697 struct dict_object * cer;
1698 struct dict_object * cea;
1699 struct dict_cmd_data cea_data;
1700 ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_NAME, "Capabilities-Exchange-Request", &cer, ENOENT);
1701 ret = fd_dict_search ( dict, DICT_COMMAND, CMD_ANSWER, cer, &cea, ENOENT);
1702 ret = fd_dict_getval ( cea, &cea_data );
1703 printf("Answer to CER: %s\n", cea_data.cmd_name );
1704 }
1705
1706*/
1707
1708/*
1709 ***************************************************************************
1710 *
1711 * Rule object
1712 *
1713 * These objects are used to manage rules in the dictionary (ABNF implementation)
1714 * This is used for checking messages validity (more powerful than a DTD)
1715 *
1716 ***************************************************************************
1717 */
1718
1719/* This defines the kind of rule that is defined */
1720enum rule_position {
1721 RULE_FIXED_HEAD = 1, /* The AVP must be at the head of the group. The rule_order field is used to specify the position. */
1722 RULE_REQUIRED, /* The AVP must be present in the parent, but its position is not defined. */
1723 RULE_OPTIONAL, /* The AVP may be present in the message. Used to specify a max number of occurences for example */
1724 RULE_FIXED_TAIL /* The AVP must be at the end of the group. The rule_order field is used to specify the position. */
1725};
1726
1727/* Content of a RULE object data */
1728struct dict_rule_data {
1729 struct dict_object *rule_avp; /* Pointer to the AVP object that is concerned by this rule */
1730 enum rule_position rule_position; /* The position in which the rule_avp must appear in the parent */
1731 unsigned rule_order; /* for RULE_FIXED_* rules, the place. 1,2,3.. for HEAD rules; ...,3,2,1 for TAIL rules. */
1732 int rule_min; /* Minimum number of occurences. -1 means "default": 0 for optional rules, 1 for other rules */
1733 int rule_max; /* Maximum number of occurences. -1 means no maximum. 0 means the AVP is forbidden. */
1734};
1735
1736/* The criteria for searching a rule in the dictionary */
1737enum {
1738 RULE_BY_AVP_AND_PARENT = 70 /* "what" points to a struct dict_rule_request -- see below. This is used to query "what is the rule for this AVP in this group?" */
1739};
1740
1741/* Structure for querying the dictionary about a rule */
1742struct dict_rule_request {
1743 struct dict_object *rule_parent; /* The grouped avp or command to which the rule apply */
1744 struct dict_object *rule_avp; /* The AVP concerned by this rule */
1745};
1746
1747
1748/***
1749 * API usage :
1750
1751The "parent" parameter can not be NULL. It points to the object (grouped avp or command) to which this rule apply (i.e. for which the ABNF is defined).
1752
1753- fd_dict_new:
1754 Sample code for rule creation. Let's create the Proxy-Info grouped AVP for example.
1755 {
1756 int ret;
1757 struct dict_object * proxy_info_avp;
1758 struct dict_object * proxy_host_avp;
1759 struct dict_object * proxy_state_avp;
1760 struct dict_object * diameteridentity_type;
1761 struct dict_rule_data rule_data;
1762 struct dict_type_data di_type_data = { AVP_TYPE_OCTETSTRING, "DiameterIdentity", NULL, NULL };
1763 struct dict_avp_data proxy_info_data = { 284, 0, "Proxy-Info", AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_GROUPED };
1764 struct dict_avp_data proxy_host_data = { 280, 0, "Proxy-Host", AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_OCTETSTRING };
1765 struct dict_avp_data proxy_state_data = { 33, 0, "Proxy-State",AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_OCTETSTRING };
1766
1767 -- Create the parent AVP
1768 ret = fd_dict_new ( dict, DICT_AVP, &proxy_info_data, NULL, &proxy_info_avp );
1769
1770 -- Create the first child AVP.
1771 ret = fd_dict_new ( dict, DICT_TYPE, &di_type_data, NULL, &diameteridentity_type );
1772 ret = fd_dict_new ( dict, DICT_AVP, &proxy_host_data, diameteridentity_type, &proxy_host_avp );
1773
1774 -- Create the other child AVP
1775 ret = fd_dict_new ( dict, DICT_AVP, &proxy_state_data, NULL, &proxy_state_avp );
1776
1777 -- Now we can create the rules. Both children AVP are mandatory.
1778 rule_data.rule_position = RULE_REQUIRED;
1779 rule_data.rule_min = -1;
1780 rule_data.rule_max = -1;
1781
1782 rule_data.rule_avp = proxy_host_avp;
1783 ret = fd_dict_new ( dict, DICT_RULE, &rule_data, proxy_info_avp, NULL );
1784
1785 rule_data.rule_avp = proxy_state_avp;
1786 ret = fd_dict_new ( dict, DICT_RULE, &rule_data, proxy_info_avp, NULL );
1787}
1788
1789- fd_dict_search and fd_dict_getval are similar to previous examples.
1790
1791*/
1792
1793/* Define some hard-coded values */
1794/* Application */
1795#define AI_RELAY 0xffffffff
1796
1797/* Commands Codes */
1798#define CC_CAPABILITIES_EXCHANGE 257
1799#define CC_RE_AUTH 258
1800#define CC_ACCOUNTING 271
1801#define CC_ABORT_SESSION 274
1802#define CC_SESSION_TERMINATION 275
1803#define CC_DEVICE_WATCHDOG 280
1804#define CC_DISCONNECT_PEER 282
1805
1806/* AVPs (Vendor 0) */
1807#define AC_USER_NAME 1
1808#define AC_PROXY_STATE 33
1809#define AC_HOST_IP_ADDRESS 257
1810#define AC_AUTH_APPLICATION_ID 258
1811#define AC_ACCT_APPLICATION_ID 259
1812#define AC_VENDOR_SPECIFIC_APPLICATION_ID 260
1813#define AC_REDIRECT_HOST_USAGE 261
1814#define AC_REDIRECT_MAX_CACHE_TIME 262
1815#define AC_SESSION_ID 263
1816#define AC_ORIGIN_HOST 264
1817#define AC_SUPPORTED_VENDOR_ID 265
1818#define AC_VENDOR_ID 266
1819#define AC_FIRMWARE_REVISION 267
1820#define AC_RESULT_CODE 268
1821#define AC_PRODUCT_NAME 269
1822#define AC_DISCONNECT_CAUSE 273
1823#define ACV_DC_REBOOTING 0
1824#define ACV_DC_BUSY 1
1825#define ACV_DC_NOT_FRIEND 2
1826#define AC_ORIGIN_STATE_ID 278
1827#define AC_FAILED_AVP 279
1828#define AC_PROXY_HOST 280
1829#define AC_ERROR_MESSAGE 281
1830#define AC_ROUTE_RECORD 282
1831#define AC_DESTINATION_REALM 283
1832#define AC_PROXY_INFO 284
1833#define AC_REDIRECT_HOST 292
1834#define AC_DESTINATION_HOST 293
1835#define AC_ERROR_REPORTING_HOST 294
1836#define AC_ORIGIN_REALM 296
1837#define AC_INBAND_SECURITY_ID 299
1838#define ACV_ISI_NO_INBAND_SECURITY 0
1839#define ACV_ISI_TLS 1
1840
1841/* Error codes from Base protocol
1842(reference: http://www.iana.org/assignments/aaa-parameters/aaa-parameters.xml#aaa-parameters-4)
1843Note that currently, rfc3588bis-26 has some different values for some of these
1844*/
1845#define ER_DIAMETER_MULTI_ROUND_AUTH 1001
1846
1847#define ER_DIAMETER_SUCCESS 2001
1848#define ER_DIAMETER_LIMITED_SUCCESS 2002
1849
1850#define ER_DIAMETER_COMMAND_UNSUPPORTED 3001 /* 5019 ? */
1851#define ER_DIAMETER_UNABLE_TO_DELIVER 3002
1852#define ER_DIAMETER_REALM_NOT_SERVED 3003
1853#define ER_DIAMETER_TOO_BUSY 3004
1854#define ER_DIAMETER_LOOP_DETECTED 3005
1855#define ER_DIAMETER_REDIRECT_INDICATION 3006
1856#define ER_DIAMETER_APPLICATION_UNSUPPORTED 3007
1857#define ER_DIAMETER_INVALID_HDR_BITS 3008 /* 5020 ? */
1858#define ER_DIAMETER_INVALID_AVP_BITS 3009 /* 5021 ? */
1859#define ER_DIAMETER_UNKNOWN_PEER 3010 /* 5018 ? */
1860
1861#define ER_DIAMETER_AUTHENTICATION_REJECTED 4001
1862#define ER_DIAMETER_OUT_OF_SPACE 4002
1863#define ER_ELECTION_LOST 4003
1864
1865#define ER_DIAMETER_AVP_UNSUPPORTED 5001
1866#define ER_DIAMETER_UNKNOWN_SESSION_ID 5002
1867#define ER_DIAMETER_AUTHORIZATION_REJECTED 5003
1868#define ER_DIAMETER_INVALID_AVP_VALUE 5004
1869#define ER_DIAMETER_MISSING_AVP 5005
1870#define ER_DIAMETER_RESOURCES_EXCEEDED 5006
1871#define ER_DIAMETER_CONTRADICTING_AVPS 5007
1872#define ER_DIAMETER_AVP_NOT_ALLOWED 5008
1873#define ER_DIAMETER_AVP_OCCURS_TOO_MANY_TIMES 5009
1874#define ER_DIAMETER_NO_COMMON_APPLICATION 5010
1875#define ER_DIAMETER_UNSUPPORTED_VERSION 5011
1876#define ER_DIAMETER_UNABLE_TO_COMPLY 5012
1877#define ER_DIAMETER_INVALID_BIT_IN_HEADER 5013 /* 3011 ? */
1878#define ER_DIAMETER_INVALID_AVP_LENGTH 5014
1879#define ER_DIAMETER_INVALID_MESSAGE_LENGTH 5015 /* 3012 ? */
1880#define ER_DIAMETER_INVALID_AVP_BIT_COMBO 5016 /* deprecated? */
1881#define ER_DIAMETER_NO_COMMON_SECURITY 5017
1882
1883
1884/*============================================================*/
1885/* SESSIONS */
1886/*============================================================*/
1887
1888/* Modules that want to associate a state with a Session-Id must first register a handler of this type */
1889struct session_handler;
1890
1891/* This opaque structure represents a session associated with a Session-Id */
1892struct session;
1893
1894/* The state information that a module associate with a session -- each module defines its own data format */
1895struct sess_state; /* declare this in your own extension */
1896
1897typedef DECLARE_FD_DUMP_PROTOTYPE((*session_state_dump), struct sess_state * st);
1898
1899/* The following function must be called to activate the session expiry mechanism */
1900int fd_sess_start(void);
1901
1902/*
1903 * FUNCTION: fd_sess_handler_create
1904 *
1905 * PARAMETERS:
1906 * handler : location where the new handler must be stored.
1907 * cleanup : a callback function that must be called when the session with associated data is destroyed.
1908 * dumper : if not NULL, will be called during fd_sess_dump to display the data associated with a session. NULL otherwise.
1909 * opaque : A pointer that is passed to the cleanup callback -- the content is never examined by the framework.
1910 *
1911 * DESCRIPTION:
1912 * Create a new session handler. This is needed by a module to associate a state with a session object.
1913 * The cleanup handler is called when the session timeout expires, or fd_sess_destroy is called. It must free
1914 * the state associated with the session, and eventually trig other actions (send a STR, ...).
1915 *
1916 * RETURN VALUE:
1917 * 0 : The new handler has been created.
1918 * EINVAL : A parameter is invalid.
1919 * ENOMEM : Not enough memory to complete the operation
1920 */
1921int fd_sess_handler_create ( struct session_handler ** handler, void (*cleanup)(struct sess_state * state, os0_t sid, void * opaque), session_state_dump dumper, void * opaque );
1922
1923
1924/*
1925 * FUNCTION: fd_sess_handler_destroy
1926 *
1927 * PARAMETERS:
1928 * handler : location of an handler created by fd_sess_handler_create.
1929 * opaque : the opaque pointer registered with the callback is restored here (if ! NULL).
1930 *
1931 * DESCRIPTION:
1932 * This destroys a session handler (typically called when an application is shutting down).
1933 * If sessions states are registered with this handler, the cleanup callback is called on them.
1934 *
1935 * RETURN VALUE:
1936 * 0 : The handler was destroyed.
1937 * EINVAL : A parameter is invalid.
1938 * ENOMEM : Not enough memory to complete the operation
1939 */
1940int fd_sess_handler_destroy ( struct session_handler ** handler, void **opaque );
1941
1942
1943
1944/*
1945 * FUNCTION: fd_sess_new
1946 *
1947 * PARAMETERS:
1948 * session : The location where the session object will be created upon success.
1949 * diamid : a Diameter Identity, or NULL.
1950 * diamidlen : if diamid is \0-terminated, this can be 0. Otherwise, the length of diamid.
1951 * opt : Additional string, or NULL. Usage is described below.
1952 * optlen : if opt is \0-terminated, this can be 0. Otherwise, the length of opt.
1953 *
1954 * DESCRIPTION:
1955 * Create a new session object. The Session-Id string associated with this session is generated as follow:
1956 * If diamId parameter is provided, the string is created according to the RFC: <diamId>;<high32>;<low32>[;opt] where
1957 * diamId is a Diameter Identity.
1958 * high32 and low32 are the parts of a monotonic 64 bits counter initialized to (time, 0) at startup.
1959 * opt is an optional string that can be concatenated to the identifier.
1960 * If diamId is NULL, the string is exactly the content of opt.
1961 *
1962 * RETURN VALUE:
1963 * 0 : The session is created, the initial msg refcount is 1.
1964 * EINVAL : A parameter is invalid.
1965 * EALREADY : A session with the same name already exists (returned in *session), the msg refcount is increased.
1966 * ENOMEM : Not enough memory to complete the operation
1967 */
1968int fd_sess_new ( struct session ** session, DiamId_t diamid, size_t diamidlen, uint8_t * opt, size_t optlen );
1969
1970/*
1971 * FUNCTION: fd_sess_fromsid
1972 *
1973 * PARAMETERS:
1974 * sid : pointer to a string containing a Session-Id (should be UTF-8).
1975 * len : length of the sid string (which does not need to be '\0'-terminated)
1976 * session : On success, pointer to the session object created / retrieved.
1977 * isnew : if not NULL, set to 1 on return if the session object has been created, 0 if it was simply retrieved.
1978 *
1979 * DESCRIPTION:
1980 * Retrieve a session object from a Session-Id string. In case no session object was previously existing with this
1981 * id, a new object is silently created (equivalent to fd_sess_new with flag SESSION_NEW_FULL).
1982 *
1983 * RETURN VALUE:
1984 * 0 : The session parameter has been updated.
1985 * EINVAL : A parameter is invalid.
1986 * ENOMEM : Not enough memory to complete the operation
1987 */
1988int fd_sess_fromsid ( uint8_t * sid, size_t len, struct session ** session, int * isnew);
1989
1990/* only use the following in specific situations, e.g. app_radgw extension. They are normally handled by the framework only */
1991int fd_sess_fromsid_msg ( uint8_t * sid, size_t len, struct session ** session, int * isnew);
1992int fd_sess_ref_msg ( struct session * session );
1993
1994/*
1995 * FUNCTION: fd_sess_getsid
1996 *
1997 * PARAMETERS:
1998 * session : Pointer to a session object.
1999 * sid : On success, the location of the sid is stored here.
2000 *
2001 * DESCRIPTION:
2002 * Retrieve the session identifier (Session-Id) corresponding to a session object.
2003 * The returned sid is a \0-terminated binary string which might be UTF-8 (but there is no guarantee in the framework).
2004 * It may be used for example to set the value of an AVP.
2005 * Note that the sid string is not copied, just its reference... do not free it!
2006 *
2007 * RETURN VALUE:
2008 * 0 : The sid & len parameters have been updated.
2009 * EINVAL : A parameter is invalid.
2010 */
2011int fd_sess_getsid ( struct session * session, os0_t * sid, size_t * sidlen );
2012
2013/*
2014 * FUNCTION: fd_sess_settimeout
2015 *
2016 * PARAMETERS:
2017 * session : The session for which to set the timeout.
2018 * timeout : The date when the session times out.
2019 *
2020 * DESCRIPTION:
2021 * Set the lifetime for a given session object. This function may be
2022 * called several times on the same object to update the timeout value.
2023 * When the timeout date is reached, the cleanup handler of each
2024 * module that registered data with this session is called, then the
2025 * session is cleared.
2026 *
2027 * There is a possible race condition between cleanup of the session
2028 * and use of its data; applications should ensure that they are not
2029 * using data from a session that is about to expire / expired.
2030 *
2031 * RETURN VALUE:
2032 * 0 : The session timeout has been updated.
2033 * EINVAL : A parameter is invalid.
2034 */
2035int fd_sess_settimeout( struct session * session, const struct timespec * timeout );
2036
2037/*
2038 * FUNCTION: fd_sess_destroy
2039 *
2040 * PARAMETERS:
2041 * session : Pointer to a session object.
2042 *
2043 * DESCRIPTION:
2044 * Destroys all associated states of a session, if any.
2045 * Equivalent to a session timeout expired, but the effect is immediate.
2046 * The session itself is marked as deleted, and will be freed when it is not referenced
2047 * by any message anymore.
2048 *
2049 * RETURN VALUE:
2050 * 0 : The session no longer exists.
2051 * EINVAL : A parameter is invalid.
2052 */
2053int fd_sess_destroy ( struct session ** session );
2054
2055/*
2056 * FUNCTION: fd_sess_reclaim
2057 *
2058 * PARAMETERS:
2059 * session : Pointer to a session object.
2060 *
2061 * DESCRIPTION:
2062 * Equivalent to fd_sess_destroy, only if no session_state is associated with the session.
2063 * Otherwise, this function has no effect (except that it sets *session to NULL).
2064 *
2065 * RETURN VALUE:
2066 * 0 : The session was reclaimed.
2067 * EINVAL : A parameter is invalid.
2068 */
2069int fd_sess_reclaim ( struct session ** session );
2070
2071
2072
2073
2074/*
2075 * FUNCTION: fd_sess_state_store
2076 *
2077 * PARAMETERS:
2078 * handler : The handler with which the state is registered.
2079 * session : The session object with which the state is registered.
2080 * state : An application state (opaque data) to store with the session.
2081 *
2082 * DESCRIPTION:
2083 * Stores an application state with a session. This state can later be retrieved
2084 * with fd_sess_state_retrieve, or implicitly in the cleanup handler when the session
2085 * is destroyed.
2086 *
2087 * RETURN VALUE:
2088 * 0 : The state has been stored.
2089 * EINVAL : A parameter is invalid.
2090 * EALREADY : Data was already associated with this session and client.
2091 * ENOMEM : Not enough memory to complete the operation
2092 */
2093int fd_sess_state_store ( struct session_handler * handler, struct session * session, struct sess_state ** state );
2094
2095/*
2096 * FUNCTION: fd_sess_state_retrieve
2097 *
2098 * PARAMETERS:
2099 * handler : The handler with which the state was registered.
2100 * session : The session object with which the state was registered.
2101 * state : Location where the state must be saved if it is found.
2102 *
2103 * DESCRIPTION:
2104 * Retrieves a state saved by fd_sess_state_store.
2105 * After this function has been called, the state is no longer associated with
2106 * the session. A new call to fd_sess_state_store must be performed in order to
2107 * store again the data with the session.
2108 *
2109 * RETURN VALUE:
2110 * 0 : *state is updated (NULL or points to the state if it was found).
2111 * EINVAL : A parameter is invalid.
2112 */
2113int fd_sess_state_retrieve ( struct session_handler * handler, struct session * session, struct sess_state ** state );
2114
2115
2116/* For debug */
2117DECLARE_FD_DUMP_PROTOTYPE(fd_sess_dump, struct session * session, int with_states);
2118DECLARE_FD_DUMP_PROTOTYPE(fd_sess_dump_hdl, struct session_handler * handler);
2119
2120/* For statistics / monitoring: get the number of struct session in memory */
2121int fd_sess_getcount(uint32_t *cnt);
2122
2123/*============================================================*/
2124/* ROUTING */
2125/*============================================================*/
2126
2127/* The following functions are helpers for the routing module.
2128 The routing data is stored in the message itself. */
2129
2130/* Structure that contains the routing data for a message */
2131struct rt_data;
2132
2133/* Following functions are helpers to create the routing data of a message */
2134int fd_rtd_init(struct rt_data ** rtd);
2135void fd_rtd_free(struct rt_data ** rtd);
2136
2137/* Add a peer to the candidates list. */
2138int fd_rtd_candidate_add(struct rt_data * rtd, DiamId_t peerid, size_t peeridlen, DiamId_t realm, size_t realmlen);
2139
2140/* Remove a peer from the candidates (if it is found). The search is case-insensitive. */
2141void fd_rtd_candidate_del(struct rt_data * rtd, uint8_t * id, size_t idsz);
2142
2143/* Extract the list of valid candidates, and initialize their scores to 0 */
2144void fd_rtd_candidate_extract(struct rt_data * rtd, struct fd_list ** candidates, int ini_score);
2145
2146/* If a peer returned a protocol error for this message, save it so that we don't try to send it there again. Optionally retrieve the current list of candidates. */
2147int fd_rtd_error_add(struct rt_data * rtd, DiamId_t sentto, size_t senttolen, uint8_t * origin, size_t originsz, uint32_t rcode, struct fd_list ** candidates, int * sendingattemtps);
2148
2149/* Only retrieve the number of times this message has been processed by the routing-out mechanism (i.e. number of times it was failed over) */
2150int fd_rtd_get_nb_attempts(struct rt_data * rtd, int * sendingattemtps);
2151
2152/* The extracted list items have the following structure: */
2153struct rtd_candidate {
2154 struct fd_list chain; /* link in the list returned by the previous fcts */
2155 DiamId_t diamid; /* the diameter Id of the peer */
2156 size_t diamidlen; /* cached size of the diamid string */
2157 DiamId_t realm; /* the diameter realm of the peer */
2158 size_t realmlen; /* cached size of realm */
2159 int score; /* the current routing score for this peer, see fd_rt_out_register definition for details */
2160};
2161
2162/* Reorder the list of peers by score */
2163int fd_rtd_candidate_reorder(struct fd_list * candidates);
2164
2165/* Note : it is fine for a callback to add a new entry in the candidates list after the list has been extracted. The diamid must then be malloc'd. */
2166/* Beware that this could lead to routing loops */
2167
2168/*============================================================*/
2169/* MESSAGES */
2170/*============================================================*/
2171
2172/* The following types are opaque */
2173struct msg; /* A message: command with children AVPs (possibly grand children) */
2174struct avp; /* AVP object */
2175
2176/* Some details about chaining:
2177 *
2178 * A message is made of a header ( msg ) and 0 or more AVPs ( avp ).
2179 * The structure is a kind of tree, where some AVPs (grouped AVPs) can contain other AVPs.
2180 * Example:
2181 * msg
2182 * |-avp
2183 * |-gavp
2184 * | |-avp
2185 * | |-avp
2186 * | \-avp
2187 * |-avp
2188 * \-avp
2189 *
2190 */
2191
2192/* The following type is used to point to either a msg or an AVP */
2193typedef void msg_or_avp;
2194
2195/* The Diameter protocol version */
2196#define DIAMETER_VERSION 1
2197
2198/* In the two following types, some fields are marked (READONLY).
2199 * This means that the content of these fields will be overwritten by the daemon so modifying it is useless.
2200 */
2201
2202/* The following structure represents the header of a message. All data is in host byte order. */
2203struct msg_hdr {
2204 uint8_t msg_version; /* (READONLY) Version of Diameter: must be DIAMETER_VERSION. */
2205 uint32_t msg_length; /* (READONLY)(3 bytes) indicates the length of the message */
2206 uint8_t msg_flags; /* Message flags: CMD_FLAG_* */
2207 command_code_t msg_code; /* (3 bytes) the command-code. See dictionary-api.h for more detail */
2208 application_id_t msg_appl; /* The application issuing this message */
2209 uint32_t msg_hbhid; /* The Hop-by-Hop identifier of the message */
2210 uint32_t msg_eteid; /* The End-to-End identifier of the message */
2211};
2212
2213/* The following structure represents the visible content of an AVP. All data is in host byte order. */
2214struct avp_hdr {
2215 avp_code_t avp_code; /* the AVP Code */
2216 uint8_t avp_flags; /* AVP_FLAG_* flags */
2217 uint32_t avp_len; /* (READONLY)(Only 3 bytes are used) the length of the AVP as described in the RFC */
2218 vendor_id_t avp_vendor; /* Only used if AVP_FLAG_VENDOR is present */
2219 union avp_value *avp_value; /* pointer to the value of the AVP. NULL means that the value is not set / not understood.
2220 One should not directly change this value. Use the msg_avp_setvalue function instead.
2221 The content of the pointed structure can be changed directly, with this restriction:
2222 if the AVP is an OctetString, and you change the value of the pointer avp_value->os.data, then
2223 you must call free() on the previous value, and the new one must be free()-able.
2224 */
2225};
2226
2227/* The following enum is used to browse inside message hierarchy (msg, gavp, avp) */
2228enum msg_brw_dir {
2229 MSG_BRW_NEXT = 1, /* Get the next element at the same level, or NULL if this is the last element. */
2230 MSG_BRW_PREV, /* Get the previous element at the same level, or NULL if this is the first element. */
2231 MSG_BRW_FIRST_CHILD, /* Get the first child AVP of this element, if any. */
2232 MSG_BRW_LAST_CHILD, /* Get the last child AVP of this element, if any. */
2233 MSG_BRW_PARENT, /* Get the parent element of this element, if any. Only the msg_t object has no parent. */
2234 MSG_BRW_WALK /* This is equivalent to FIRST_CHILD or NEXT or PARENT->next, first that is not NULL. Use this to walk inside all AVPs. */
2235};
2236
2237/* Some flags used in the functions below */
2238#define AVPFL_SET_BLANK_VALUE 0x01 /* When creating an AVP, initialize its value to a blank area */
2239#define AVPFL_SET_RAWDATA_FROM_AVP 0x02 /* When creating an AVP, initialize its rawdata area from an existing AVP -- it is only blank padding (for error reporting) */
2240#define AVPFL_MAX AVPFL_SET_RAWDATA_FROM_AVP /* The biggest valid flag value */
2241
2242#define MSGFL_ALLOC_ETEID 0x01 /* When creating a message, a new end-to-end ID is allocated and set in the message */
2243#define MSGFL_ANSW_ERROR 0x02 /* When creating an answer message, set the 'E' bit and use the generic error ABNF instead of command-specific ABNF */
2244#define MSGFL_ANSW_NOSID 0x04 /* When creating an answer message, do not add the Session-Id even if present in request */
2245#define MSGFL_ANSW_NOPROXYINFO 0x08 /* When creating an answer message, do not add the Proxy-Info AVPs presents in request */
2246#define MSGFL_MAX MSGFL_ANSW_NOPROXYINFO /* The biggest valid flag value */
2247
2248/**************************************************/
2249/* Message creation, manipulation, disposal */
2250/**************************************************/
2251/*
2252 * FUNCTION: fd_msg_avp_new
2253 *
2254 * PARAMETERS:
2255 * model : Pointer to a DICT_AVP dictionary object describing the avp to create, or NULL if flags are used.
2256 * flags : Flags to use in creation (AVPFL_*, see above).
2257 * avp : Upon success, pointer to the new avp is stored here. It points to reference AVP upon function call when flags are used.
2258 *
2259 * DESCRIPTION:
2260 * Create a new AVP instance.
2261 *
2262 * RETURN VALUE:
2263 * 0 : The AVP is created.
2264 * EINVAL : A parameter is invalid.
2265 * (other standard errors may be returned, too, with their standard meaning. Example:
2266 * ENOMEM : Memory allocation for the new avp failed.)
2267 */
2268int fd_msg_avp_new ( struct dict_object * model, int flags, struct avp ** avp );
2269
2270/*
2271 * FUNCTION: fd_msg_new
2272 *
2273 * PARAMETERS:
2274 * model : Pointer to a DICT_COMMAND dictionary object describing the message to create, or NULL.
2275 * flags : combination of MSGFL_* flags.
2276 * msg : Upon success, pointer to the new message is stored here.
2277 *
2278 * DESCRIPTION:
2279 * Create a new empty Diameter message.
2280 *
2281 * RETURN VALUE:
2282 * 0 : The message is created.
2283 * EINVAL : A parameter is invalid.
2284 * (other standard errors may be returned, too, with their standard meaning. Example:
2285 * ENOMEM : Memory allocation for the new message failed.)
2286 */
2287int fd_msg_new ( struct dict_object * model, int flags, struct msg ** msg );
2288int fd_msg_new_appl ( struct dict_object * model, struct dict_object * appl, int flags, struct msg ** msg );
2289
2290/*
2291 * FUNCTION: msg_new_answer_from_req
2292 *
2293 * PARAMETERS:
2294 * dict : Pointer to the dictionary containing the model of the query.
2295 * msg : The location of the query on function call. Updated by the location of answer message on return.
2296 * flag : Pass MSGFL_ANSW_ERROR to indicate if the answer is an error message (will set the 'E' bit)
2297 * : See other MSGFL_ANSW_* definition above for other flags.
2298 *
2299 * DESCRIPTION:
2300 * This function creates the empty answer message corresponding to a request.
2301 * The header is set properly (R flag, ccode, appid, hbhid, eteid)
2302 * The Session-Id AVP is copied if present.
2303 * The calling code should usually call fd_msg_rescode_set function on the answer.
2304 * Upon return, the original query may be retrieved by calling fd_msg_answ_getq on the message.
2305 *
2306 * RETURN VALUE:
2307 * 0 : Operation complete.
2308 * !0 : an error occurred.
2309 */
2310int fd_msg_new_answer_from_req ( struct dictionary * dict, struct msg ** msg, int flag );
2311
2312/*
2313 * FUNCTION: fd_msg_browse
2314 *
2315 * PARAMETERS:
2316 * reference : Pointer to a struct msg or struct avp.
2317 * dir : Direction for browsing
2318 * found : If not NULL, updated with the element that has been found, if any, or NULL if no element was found / an error occurred.
2319 * depth : If not NULL, points to an integer representing the "depth" of this object in the tree. This is a relative value, updated on return.
2320 *
2321 * DESCRIPTION:
2322 * Explore the content of a message object (hierarchy). If "found" is null, only error checking is performed.
2323 * If "depth" is provided, it is updated as follow on successful function return:
2324 * - not modified for MSG_BRW_NEXT and MSG_BRW_PREV.
2325 * - *depth = *depth + 1 for MSG_BRW_FIRST_CHILD and MSG_BRW_LAST_CHILD.
2326 * - *depth = *depth - 1 for MSG_BRW_PARENT.
2327 * - *depth = *depth + X for MSG_BRW_WALK, with X between 1 (returned the 1st child) and -N (returned the Nth parent's next).
2328 *
2329 * RETURN VALUE:
2330 * 0 : found has been updated (if non NULL).
2331 * EINVAL : A parameter is invalid.
2332 * ENOENT : No element has been found where requested, and "found" was NULL (otherwise, *found is set to NULL and 0 is returned).
2333 */
2334int fd_msg_browse_internal ( msg_or_avp * reference, enum msg_brw_dir dir, msg_or_avp ** found, int * depth );
2335/* Macro to avoid having to cast the third parameter everywhere */
2336#define fd_msg_browse( ref, dir, found, depth ) \
2337 fd_msg_browse_internal( (ref), (dir), (void *)(found), (depth) )
2338
2339
2340/*
2341 * FUNCTION: fd_msg_avp_add
2342 *
2343 * PARAMETERS:
2344 * reference : Pointer to a valid msg or avp.
2345 * dir : location where the new AVP should be inserted, relative to the reference. MSG_BRW_PARENT and MSG_BRW_WALK are not valid.
2346 * avp : pointer to the AVP object that must be inserted.
2347 *
2348 * DESCRIPTION:
2349 * Adds an AVP into an object that can contain it: grouped AVP or message.
2350 * Note that the added AVP will be freed at the same time as the object it is added to,
2351 * so it should not be freed after the call to this function.
2352 *
2353 * RETURN VALUE:
2354 * 0 : The AVP has been added.
2355 * EINVAL : A parameter is invalid.
2356 */
2357int fd_msg_avp_add ( msg_or_avp * reference, enum msg_brw_dir dir, struct avp *avp);
2358
2359/*
2360 * FUNCTION: fd_msg_search_avp
2361 *
2362 * PARAMETERS:
2363 * msg : The message structure in which to search the AVP.
2364 * what : The dictionary model of the AVP to search.
2365 * avp : location where the AVP reference is stored if found.
2366 *
2367 * DESCRIPTION:
2368 * Search the first top-level AVP of a given model inside a message.
2369 * Note: only the first instance of the AVP is returned by this function.
2370 * Note: only top-level AVPs are searched, not inside grouped AVPs.
2371 * Use msg_browse if you need more advanced research features.
2372 *
2373 * RETURN VALUE:
2374 * 0 : The AVP has been found.
2375 * EINVAL : A parameter is invalid.
2376 * ENOENT : No AVP has been found, and "avp" was NULL (otherwise, *avp is set to NULL and 0 returned).
2377 */
2378int fd_msg_search_avp ( struct msg * msg, struct dict_object * what, struct avp ** avp );
2379
2380/*
2381 * FUNCTION: fd_msg_free
2382 *
2383 * PARAMETERS:
2384 * object : pointer to the message or AVP object that must be unlinked and freed.
2385 *
2386 * DESCRIPTION:
2387 * Unlink and free a message or AVP object and its children.
2388 * If the object is an AVP linked into a message, the AVP is removed before being freed.
2389 *
2390 * RETURN VALUE:
2391 * 0 : The message has been freed.
2392 * EINVAL : A parameter is invalid.
2393 */
2394int fd_msg_free ( msg_or_avp * object );
2395
2396/***************************************/
2397/* Dump functions */
2398/***************************************/
2399/*
2400 * FUNCTION: fd_msg_dump_*
2401 *
2402 * PARAMETERS:
2403 * see definition of DECLARE_FD_DUMP_PROTOTYPE,
2404 * obj : A msg or avp object to dump.
2405 * dict : the dictionary to use if parsing is requested (optional)
2406 * force_parsing: by default these functions do not parse the object but dump hexa values in that case.
2407 * use !0 to force parsing. If parsing fails, the hexa dump is still provided.
2408 * recurse : allow the function to go through the children objects if any to dump more information. might require parsing.
2409 *
2410 * DESCRIPTION:
2411 * These functions dump the content of a message or avp into a buffer
2412 * either recursively or only the object itself.
2413 *
2414 * RETURN VALUE:
2415 * - see DECLARE_FD_DUMP_PROTOTYPE,
2416 */
2417/* one-line dump with only short information */
2418DECLARE_FD_DUMP_PROTOTYPE( fd_msg_dump_summary, msg_or_avp *obj, struct dictionary *dict, int force_parsing, int recurse );
2419/* one-line dump with all the contents of the message */
2420DECLARE_FD_DUMP_PROTOTYPE( fd_msg_dump_full, msg_or_avp *obj, struct dictionary *dict, int force_parsing, int recurse );
2421/* multi-line human-readable dump similar to wireshark output */
2422DECLARE_FD_DUMP_PROTOTYPE( fd_msg_dump_treeview, msg_or_avp *obj, struct dictionary *dict, int force_parsing, int recurse );
2423
2424
2425/*********************************************/
2426/* Message metadata management functions */
2427/*********************************************/
2428/*
2429 * FUNCTION: fd_msg_model
2430 *
2431 * PARAMETERS:
2432 * reference : Pointer to a valid msg or avp.
2433 * model : on success, pointer to the dictionary model of this command or AVP. NULL if the model is unknown.
2434 *
2435 * DESCRIPTION:
2436 * Retrieve the dictionary object describing this message or avp. If the object is unknown or the fd_msg_parse_dict has not been called,
2437 * *model is set to NULL.
2438 *
2439 * RETURN VALUE:
2440 * 0 : The model has been set.
2441 * EINVAL : A parameter is invalid.
2442 */
2443int fd_msg_model ( msg_or_avp * reference, struct dict_object ** model );
2444
2445/*
2446 * FUNCTION: fd_msg_hdr
2447 *
2448 * PARAMETERS:
2449 * msg : Pointer to a valid message object.
2450 * pdata : Upon success, pointer to the msg_hdr structure of this message. The fields may be modified.
2451 *
2452 * DESCRIPTION:
2453 * Retrieve location of modifiable section of a message.
2454 *
2455 * RETURN VALUE:
2456 * 0 : The location has been written.
2457 * EINVAL : A parameter is invalid.
2458 */
2459int fd_msg_hdr ( struct msg *msg, struct msg_hdr ** pdata );
2460
2461/*
2462 * FUNCTION: fd_msg_avp_hdr
2463 *
2464 * PARAMETERS:
2465 * avp : Pointer to a valid avp object.
2466 * pdata : Upon success, pointer to the avp_hdr structure of this avp. The fields may be modified.
2467 *
2468 * DESCRIPTION:
2469 * Retrieve location of modifiable data of an avp.
2470 *
2471 * RETURN VALUE:
2472 * 0 : The location has been written.
2473 * EINVAL : A parameter is invalid.
2474 */
2475int fd_msg_avp_hdr ( struct avp *avp, struct avp_hdr ** pdata );
2476
2477/*
2478 * FUNCTION: fd_msg_answ_associate, fd_msg_answ_getq, fd_msg_answ_detach
2479 *
2480 * PARAMETERS:
2481 * answer : the received answer message
2482 * query : the corresponding query that had been sent
2483 *
2484 * DESCRIPTION:
2485 * fd_msg_answ_associate associates a query msg with the received answer.
2486 * Query is retrieved with fd_msg_answ_getq.
2487 * If answer message is freed, the query is also freed.
2488 * If the msg_answ_detach function is called, the association is removed.
2489 * This is meant to be called from the daemon only.
2490 *
2491 * RETURN VALUE:
2492 * 0 : ok
2493 * EINVAL: a parameter is invalid
2494 */
2495int fd_msg_answ_associate( struct msg * answer, struct msg * query );
2496int fd_msg_answ_getq ( struct msg * answer, struct msg ** query );
2497int fd_msg_answ_detach ( struct msg * answer );
2498
2499/*
2500 * FUNCTION: fd_msg_anscb_associate, fd_msg_anscb_get
2501 *
2502 * PARAMETERS:
2503 * msg : the request message
2504 * anscb : the callback to associate with the message
2505 * data : the data to pass to the callback
2506 * expirecb : the expiration callback to associate with the message
2507 * timeout : (optional, use NULL if no timeout) a timeout associated with calling the cb.
2508 *
2509 * DESCRIPTION:
2510 * Associate or retrieve callbacks with an message.
2511 * This is meant to be called from the daemon only.
2512 *
2513 * RETURN VALUE:
2514 * 0 : ok
2515 * EINVAL: a parameter is invalid
2516 */
2517int fd_msg_anscb_associate( struct msg * msg, void ( *anscb)(void *, struct msg **), void * data, void (*expirecb)(void *, DiamId_t, size_t, struct msg **), const struct timespec *timeout );
2518int fd_msg_anscb_get( struct msg * msg, void (**anscb)(void *, struct msg **), void (**expirecb)(void *, DiamId_t, size_t, struct msg **), void ** data );
2519int fd_msg_anscb_reset(struct msg * msg, int clear_anscb, int clear_expirecb);
2520struct timespec *fd_msg_anscb_gettimeout( struct msg * msg ); /* returns NULL or a valid non-0 timespec */
2521
2522/*
2523 * FUNCTION: fd_msg_rt_associate, fd_msg_rt_get
2524 *
2525 * PARAMETERS:
2526 * msg : the query message to be sent
2527 * list : the ordered list of possible next-peers
2528 *
2529 * DESCRIPTION:
2530 * Associate a routing list with a query, and retrieve it.
2531 * If the message is freed, the list is also freed.
2532 *
2533 * RETURN VALUE:
2534 * 0 : ok
2535 * EINVAL: a parameter is invalid
2536 */
2537int fd_msg_rt_associate( struct msg * msg, struct rt_data * rtd );
2538int fd_msg_rt_get ( struct msg * msg, struct rt_data ** rtd );
2539
2540/*
2541 * FUNCTION: fd_msg_is_routable
2542 *
2543 * PARAMETERS:
2544 * msg : A msg object.
2545 *
2546 * DESCRIPTION:
2547 * This function returns a boolean telling if a given message is routable in the Diameter network,
2548 * or if it is a local link message only (ex: CER/CEA, DWR/DWA, ...).
2549 *
2550 * RETURN VALUE:
2551 * 0 : The message is not routable / an error occurred.
2552 * 1 : The message is routable.
2553 */
2554int fd_msg_is_routable ( struct msg * msg );
2555
2556/*
2557 * FUNCTION: fd_msg_source_(g/s)et
2558 *
2559 * PARAMETERS:
2560 * msg : A msg object.
2561 * diamid,len : The diameter id of the peer from which this message was received.
2562 * dict : a dictionary with definition of Route-Record AVP (for fd_msg_source_setrr)
2563 *
2564 * DESCRIPTION:
2565 * Store or retrieve the diameted id of the peer from which this message was received.
2566 * Will be used for example by the routing module to add the Route-Record AVP in forwarded requests,
2567 * or to direct answers to the appropriate peer.
2568 *
2569 * RETURN VALUE:
2570 * 0 : Operation complete.
2571 * !0 : an error occurred.
2572 */
2573int fd_msg_source_set( struct msg * msg, DiamId_t diamid, size_t diamidlen );
2574int fd_msg_source_setrr( struct msg * msg, DiamId_t diamid, size_t diamidlen, struct dictionary * dict );
2575int fd_msg_source_get( struct msg * msg, DiamId_t *diamid, size_t * diamidlen );
2576
2577/*
2578 * FUNCTION: fd_msg_eteid_get
2579 *
2580 * PARAMETERS:
2581 * -
2582 *
2583 * DESCRIPTION:
2584 * Get a new unique end-to-end id value for the local peer.
2585 *
2586 * RETURN VALUE:
2587 * The new assigned value. No error code is defined.
2588 */
2589uint32_t fd_msg_eteid_get ( void );
2590
2591
2592/*
2593 * FUNCTION: fd_msg_sess_get
2594 *
2595 * PARAMETERS:
2596 * dict : the dictionary that contains the Session-Id AVP definition
2597 * msg : A valid message.
2598 * session : Location to store the session pointer when retrieved.
2599 * isnew : Indicates if the session has been created.
2600 *
2601 * DESCRIPTION:
2602 * This function retrieves or creates the session object corresponding to a message.
2603 * If the message does not contain a Session-Id AVP, *session == NULL on return.
2604 * Note that the Session-Id AVP must never be modified after created in a message.
2605 *
2606 * RETURN VALUE:
2607 * 0 : success
2608 * !0 : standard error code.
2609 */
2610int fd_msg_sess_get(struct dictionary * dict, struct msg * msg, struct session ** session, int * isnew);
2611
2612/* This one is used by the libfdcore, you should use fd_msg_new_session rather than fd_sess_new, when possible */
2613int fd_msg_sess_set(struct msg * msg, struct session * session);
2614
2615
2616/* Helper for the hooks mechanism, for use from libfdcore */
2617struct fd_msg_pmdl {
2618 struct fd_list sentinel; /* if the sentinel.o field is NULL, the structure is not initialized. Otherwise it points to the cleanup function in libfdcore. */
2619 pthread_mutex_t lock;
2620};
2621struct fd_msg_pmdl * fd_msg_pmdl_get(struct msg * msg);
2622
2623
2624/***************************************/
2625/* Manage AVP values */
2626/***************************************/
2627
2628/*
2629 * FUNCTION: fd_msg_avp_setvalue
2630 *
2631 * PARAMETERS:
2632 * avp : Pointer to a valid avp object with a NULL avp_value pointer. The model must be known.
2633 * value : pointer to an avp_value. The content will be COPIED into the internal storage area.
2634 * If data type is an octetstring, the data is also copied.
2635 * If value is a NULL pointer, the previous data is erased and value is unset in the AVP.
2636 *
2637 * DESCRIPTION:
2638 * Initialize the avp_value field of an AVP header.
2639 *
2640 * RETURN VALUE:
2641 * 0 : The avp_value pointer has been set.
2642 * EINVAL : A parameter is invalid.
2643 */
2644int fd_msg_avp_setvalue ( struct avp *avp, union avp_value *value );
2645
2646/*
2647 * FUNCTION: fd_msg_avp_value_encode
2648 *
2649 * PARAMETERS:
2650 * avp : Pointer to a valid avp object with a NULL avp_value. The model must be known.
2651 * data : Pointer to the data that must be encoded as AVP value and stored in the AVP.
2652 * This is only valid for AVPs of derived type for which type_data_encode callback is set. (ex: Address type)
2653 *
2654 * DESCRIPTION:
2655 * Initialize the avp_value field of an AVP object from formatted data, using the AVP's type "type_data_encode" callback.
2656 *
2657 * RETURN VALUE:
2658 * 0 : The avp_value has been set.
2659 * EINVAL : A parameter is invalid.
2660 * ENOTSUP : There is no appropriate callback registered with this AVP's type.
2661 */
2662int fd_msg_avp_value_encode ( void *data, struct avp *avp );
2663/*
2664 * FUNCTION: fd_msg_avp_value_interpret
2665 *
2666 * PARAMETERS:
2667 * avp : Pointer to a valid avp object with a non-NULL avp_value value.
2668 * data : Upon success, formatted interpretation of the AVP value is stored here.
2669 *
2670 * DESCRIPTION:
2671 * Interpret the content of an AVP of Derived type and store the result in data pointer. The structure
2672 * of the data pointer is dependent on the AVP type. This function calls the "type_data_interpret" callback
2673 * of the type.
2674 *
2675 * RETURN VALUE:
2676 * 0 : The avp_value has been set.
2677 * EINVAL : A parameter is invalid.
2678 * ENOTSUP : There is no appropriate callback registered with this AVP's type.
2679 */
2680int fd_msg_avp_value_interpret ( struct avp *avp, void *data );
2681
2682
2683/***************************************/
2684/* Message parsing functions */
2685/***************************************/
2686
2687/*
2688 * FUNCTION: fd_msg_bufferize
2689 *
2690 * PARAMETERS:
2691 * msg : A valid msg object. All AVPs must have a value set.
2692 * buffer : Upon success, this points to a buffer (malloc'd) containing the message ready for network transmission (or security transformations).
2693 * The buffer may be freed after use.
2694 * len : if not NULL, the size of the buffer is written here. In any case, this size is updated in the msg header.
2695 *
2696 * DESCRIPTION:
2697 * Renders a message in memory as a buffer that can be sent over the network to the next peer.
2698 *
2699 * RETURN VALUE:
2700 * 0 : The location has been written.
2701 * EINVAL : The buffer does not contain a valid Diameter message.
2702 * ENOMEM : Unable to allocate enough memory to create the buffer object.
2703 */
2704int fd_msg_bufferize ( struct msg * msg, uint8_t ** buffer, size_t * len );
2705
2706/*
2707 * FUNCTION: fd_msg_parse_buffer
2708 *
2709 * PARAMETERS:
2710 * buffer : Pointer to a buffer containing a message received from the network.
2711 * buflen : the size in bytes of the buffer.
2712 * msg : Upon success, this points to a valid msg object. No AVP value is resolved in this object, nor grouped AVP.
2713 *
2714 * DESCRIPTION:
2715 * This function parses a buffer an creates a msg object to represent the structure of the message.
2716 * Since no dictionary lookup is performed, the values of the AVPs are not interpreted. To interpret the values,
2717 * the returned message object must be passed to fd_msg_parse_dict function.
2718 * The buffer pointer is saved inside the message and will be freed when not needed anymore.
2719 *
2720 * RETURN VALUE:
2721 * 0 : The location has been written.
2722 * ENOMEM : Unable to allocate enough memory to create the msg object.
2723 * EBADMSG : The buffer does not contain a valid Diameter message (or is truncated).
2724 * EINVAL : A parameter is invalid.
2725 */
2726int fd_msg_parse_buffer ( uint8_t ** buffer, size_t buflen, struct msg ** msg );
2727
2728/* Parsing Error Information structure */
2729struct fd_pei {
2730 char * pei_errcode; /* name of the error code to use */
2731 struct avp * pei_avp; /* pointer to invalid (in original message) or missing AVP (to be freed) */
2732 int pei_avp_free; /* Set to 1 if the pei_avp must be freed */
2733 char * pei_message; /* Overwrite default message if needed */
2734 int pei_protoerr; /* do we set the 'E' bit in the error message ? */
2735};
2736
2737/*
2738 * FUNCTION: fd_msg_parse_dict
2739 *
2740 * PARAMETERS:
2741 * object : A msg or AVP object as returned by fd_msg_parse_buffer.
2742 * dict : the dictionary containing the objects definitions to use for resolving all AVPs.
2743 * error_info : If not NULL, will contain the detail about error upon return. May be used to generate an error reply.
2744 *
2745 * DESCRIPTION:
2746 * This function looks up for the command and each children AVP definitions in the dictionary.
2747 * If the dictionary definition is found, avp_model is set and the value of the AVP is interpreted accordingly and:
2748 * - for grouped AVPs, the children AVP are created and interpreted also.
2749 * - for numerical AVPs, the value is converted to host byte order and saved in the avp_value field.
2750 * - for octetstring AVPs, the string is copied into a new buffer and its address is saved in avp_value.
2751 * If the dictionary definition is not found, avp_model is set to NULL and
2752 * the content of the AVP is saved as an octetstring in an internal structure. avp_value is NULL.
2753 * As a result, after this function has been called, there is no more dependency of the msg object to the message buffer, that is freed.
2754 *
2755 * RETURN VALUE:
2756 * 0 : The message has been fully parsed as described.
2757 * EINVAL : The msg parameter is invalid for this operation.
2758 * ENOMEM : Unable to allocate enough memory to complete the operation.
2759 * ENOTSUP : No dictionary definition for the command or one of the mandatory AVP was found.
2760 */
2761int fd_msg_parse_dict ( msg_or_avp * object, struct dictionary * dict, struct fd_pei * error_info );
2762
2763/*
2764 * FUNCTION: fd_msg_parse_rules
2765 *
2766 * PARAMETERS:
2767 * object : A msg or grouped avp object that must be verified.
2768 * dict : The dictionary containing the rules definitions.
2769 * error_info : If not NULL, the first problem information will be saved here.
2770 *
2771 * DESCRIPTION:
2772 * Check that the children of the object do not conflict with the dictionary rules (ABNF compliance).
2773 *
2774 * RETURN VALUE:
2775 * 0 : The message has been fully parsed and complies to the defined rules.
2776 * EBADMSG : A conflict was detected, or a mandatory AVP is unknown in the dictionary.
2777 * EINVAL : The msg or avp object is invalid for this operation.
2778 * ENOMEM : Unable to allocate enough memory to complete the operation.
2779 */
2780int fd_msg_parse_rules ( msg_or_avp * object, struct dictionary * dict, struct fd_pei * error_info);
2781
2782
2783
2784/*
2785 * FUNCTION: fd_msg_update_length
2786 *
2787 * PARAMETERS:
2788 * object : Pointer to a valid msg or avp.
2789 *
2790 * DESCRIPTION:
2791 * Update the length field of the object passed as parameter.
2792 * As a side effect, all children objects are also updated. Therefore, all avp_value fields of
2793 * the children AVPs must be set, or an error will occur.
2794 *
2795 * RETURN VALUE:
2796 * 0 : The size has been recomputed.
2797 * EINVAL : A parameter is invalid.
2798 */
2799int fd_msg_update_length ( msg_or_avp * object );
2800
2801
2802/*============================================================*/
2803/* DISPATCH */
2804/*============================================================*/
2805
2806/* Dispatch module (passing incoming messages to extensions registered callbacks)
2807 * is split between the library and the daemon.
2808 *
2809 * The library provides the support for associating dispatch callbacks with
2810 * dictionary objects.
2811 *
2812 * The daemon is responsible for calling the callbacks for a message when appropriate.
2813 *
2814 *
2815 * The dispatch module has two main roles:
2816 * - help determine if a message can be handled locally (during the routing step)
2817 * This decision involves only the application-id of the message.
2818 * - pass the message to the callback(s) that will handle it (during the dispatch step)
2819 *
2820 * The first role is handled by the daemon.
2821 *
2822 * About the second, these are the possibilities for registering a dispatch callback:
2823 *
2824 * -> For All messages.
2825 * This callback is called for all messages that are handled locally. This should be used only
2826 * for debug purpose.
2827 *
2828 * -> by AVP value (constants only).
2829 * This callback will be called when a message is received and contains an AVP with a specified enumerated value.
2830 *
2831 * -> by AVP.
2832 * This callback will be called when the received message contains a certain AVP.
2833 *
2834 * -> by command-code.
2835 * This callback will be called when the message is a specific command (and 'R' flag).
2836 *
2837 * -> by application.
2838 * This callback will be called when the message has a specific application-id.
2839 *
2840 * ( by vendor: would this be useful? it may be added later)
2841 */
2842enum disp_how {
2843 DISP_HOW_ANY = 1, /* Any message. This should be only used for debug. */
2844 DISP_HOW_APPID, /* Any message with the specified application-id */
2845 DISP_HOW_CC, /* Messages of the specified command-code (request or answer). App id may be specified. */
2846 DISP_HOW_AVP, /* Messages containing a specific AVP. Command-code and App id may be specified. */
2847 DISP_HOW_AVP_ENUMVAL /* Messages containing a specific AVP with a specific enumerated value. Command-code and App id may be specified. */
2848};
2849/*
2850 * Several criteria may be selected at the same time, for example command-code AND application id.
2851 *
2852 * If several callbacks are registered for the same object, they are called in the order they were registered.
2853 * The order in which the callbacks are called is:
2854 * DISP_HOW_ANY
2855 * DISP_HOW_AVP_ENUMVAL & DISP_HOW_AVP
2856 * DISP_HOW_CC
2857 * DISP_HOW_APPID
2858 */
2859
2860/* When a callback is registered, a "when" argument is passed in addition to the disp_how value,
2861 * to specify which values the criteria must match. */
2862struct disp_when {
2863 struct dict_object * app;
2864 struct dict_object * command;
2865 struct dict_object * avp;
2866 struct dict_object * value;
2867};
2868
2869/* Note that all the dictionary objects should really belong to the same dictionary!
2870 *
2871 * Here is the details on this "when" argument, depending on the disp_how value.
2872 *
2873 * DISP_HOW_ANY.
2874 * In this case, "when" must be NULL.
2875 *
2876 * DISP_HOW_APPID.
2877 * Only the "app_id" field must be set, other fields are ignored. It points to a dictionary object of type DICT_APPLICATION.
2878 *
2879 * DISP_HOW_CC.
2880 * The "command" field must be defined and point to a dictionary object of type DICT_COMMAND.
2881 * The "app_id" may be also set. In the case it is set, it restricts the callback to be called only with this command-code and app id.
2882 * The other fields are ignored.
2883 *
2884 * DISP_HOW_AVP.
2885 * The "avp" field of the structure must be set and point to a dictionary object of type DICT_AVP.
2886 * The "app_id" field may be set to restrict the messages matching to a specific app id.
2887 * The "command" field may also be set to a valid DICT_COMMAND object.
2888 * The content of the "value" field is ignored.
2889 *
2890 * DISP_HOW_AVP_ENUMVAL.
2891 * All fields have the same constraints and meaning as in DISP_REG_AVP. In addition, the "value" field must be set
2892 * and points to a valid DICT_ENUMVAL object.
2893 *
2894 * Here is a sumary of the fields: ( M : must be set; m : may be set; 0 : ignored )
2895 * field: app_id command avp value
2896 * APPID : M 0 0 0
2897 * CC : m M 0 0
2898 * AVP : m m M 0
2899 * ENUMVA: m m M M
2900 */
2901
2902enum disp_action {
2903 DISP_ACT_CONT, /* The next handler should be called, unless *msg == NULL. */
2904 DISP_ACT_SEND, /* The updated message must be sent. No further callback is called. */
2905 DISP_ACT_ERROR /* An error must be created and sent as a reply -- not valid for callbacks, only for fd_msg_dispatch. */
2906};
2907/* The callbacks that are registered have the following prototype:
2908 * int dispatch_callback( struct msg ** msg, struct avp * avp, struct session * session, enum disp_action * action );
2909 *
2910 * CALLBACK: dispatch_callback
2911 *
2912 * PARAMETERS:
2913 * msg : the received message on function entry. may be updated to answer on return (see description)
2914 * avp : for callbacks registered with DISP_HOW_AVP or DISP_HOW_AVP_ENUMVAL, direct link to the triggering AVP.
2915 * session : if the message contains a Session-Id AVP, the corresponding session object, NULL otherwise.
2916 * opaque : An opaque pointer that is registered along the session handler.
2917 * action : upon return, this tells the daemon what to do next.
2918 *
2919 * DESCRIPTION:
2920 * Called when a received message matchs the condition for which the callback was registered.
2921 * This callback may do any kind of processing on the message, including:
2922 * - create an answer for a request.
2923 * - proxy a request or message, add / remove the Proxy-Info AVP, then forward the message.
2924 * - update a routing table or start a connection with a new peer, then forward the message.
2925 * - ...
2926 *
2927 * When *action == DISP_ACT_SEND on callback return, the msg pointed by *msg is passed to the routing module for sending.
2928 * When *action == DISP_ACT_CONT, the next registered callback is called.
2929 * When the last callback gives also DISP_ACT_CONT action value, a default handler is called. It's behavior is as follow:
2930 * - if the message is an answer, it is discarded.
2931 * - if the message is a request, it is passed again to the routing stack, and marked as non-local handling.
2932 *
2933 * RETURN VALUE:
2934 * 0 : The callback executed successfully and updated *action appropriately.
2935 * !0 : standard errors. In case of error, the message is discarded.
2936 */
2937
2938/* This structure represents a handler for a registered callback, allowing its de-registration */
2939struct disp_hdl;
2940
2941/*
2942 * FUNCTION: fd_disp_register
2943 *
2944 * PARAMETERS:
2945 * cb : The callback function to register (see dispatch_callback description above).
2946 * how : How the callback must be registered.
2947 * when : Values that must match, depending on the how argument.
2948 * opaque : A pointer that is passed back to the handler. The content is not interpreted by the framework.
2949 * handle : On success, a handler to the registered callback is stored here if not NULL.
2950 * This handler can be used to unregister the cb.
2951 *
2952 * DESCRIPTION:
2953 * Register a new callback to handle messages delivered locally.
2954 *
2955 * RETURN VALUE:
2956 * 0 : The callback is registered.
2957 * EINVAL : A parameter is invalid.
2958 * ENOMEM : Not enough memory to complete the operation
2959 */
2960int fd_disp_register ( int (*cb)( struct msg **, struct avp *, struct session *, void *, enum disp_action *),
2961 enum disp_how how, struct disp_when * when, void * opaque, struct disp_hdl ** handle );
2962
2963/*
2964 * FUNCTION: fd_disp_unregister
2965 *
2966 * PARAMETERS:
2967 * handle : Location of the handle of the callback that must be unregistered.
2968 * opaque : If not NULL, the opaque data that was registered is restored here.
2969 *
2970 * DESCRIPTION:
2971 * Removes a callback previously registered by fd_disp_register.
2972 *
2973 * RETURN VALUE:
2974 * 0 : The callback is unregistered.
2975 * EINVAL : A parameter is invalid.
2976 */
2977int fd_disp_unregister ( struct disp_hdl ** handle, void ** opaque );
2978
2979/* Destroy all handlers */
2980void fd_disp_unregister_all ( void );
2981
2982/*
2983 * FUNCTION: fd_msg_dispatch
2984 *
2985 * PARAMETERS:
2986 * msg : A msg object that have already been fd_msg_parse_dict.
2987 * session : The session corresponding to this object, if any.
2988 * action : Upon return, the action that must be taken on the message
2989 * error_code : Upon return with action == DISP_ACT_ERROR, contains the error (such as "DIAMETER_UNABLE_TO_COMPLY")
2990 * drop_reason : if set on return, the message must be freed for this reason.
2991 * drop_msg : if drop_reason is set, this points to the message to be freed while *msg is NULL.
2992 *
2993 * DESCRIPTION:
2994 * Call all handlers registered for a given message.
2995 * The session must have already been resolved on entry.
2996 * The msg pointed may be updated during this process.
2997 * Upon return, the action parameter points to what must be done next.
2998 *
2999 * RETURN VALUE:
3000 * 0 : Success.
3001 * EINVAL : A parameter is invalid.
3002 * (other errors)
3003 */
3004int fd_msg_dispatch ( struct msg ** msg, struct session * session, enum disp_action *action, char ** error_code, char ** drop_reason, struct msg ** drop_msg );
3005
3006
3007
3008/*============================================================*/
3009/* QUEUES */
3010/*============================================================*/
3011
3012/* Management of FIFO queues of elements */
3013
3014/* A queue is an opaque object */
3015struct fifo;
3016
3017/*
3018 * FUNCTION: fd_fifo_new
3019 *
3020 * PARAMETERS:
3021 * queue : Upon success, a pointer to the new queue is saved here.
3022 * max : max number of items in the queue. Above this number, adding a new item becomes a
3023 * blocking operation. Use 0 to disable this maximum.
3024 *
3025 * DESCRIPTION:
3026 * Create a new empty queue.
3027 *
3028 * RETURN VALUE :
3029 * 0 : The queue has been initialized successfully.
3030 * EINVAL : The parameter is invalid.
3031 * ENOMEM : Not enough memory to complete the creation.
3032 */
3033int fd_fifo_new ( struct fifo ** queue, int max );
3034
3035/*
3036 * FUNCTION: fd_fifo_del
3037 *
3038 * PARAMETERS:
3039 * queue : Pointer to an empty queue to delete.
3040 *
3041 * DESCRIPTION:
3042 * Destroys a queue. This is only possible if no thread is waiting for an element,
3043 * and the queue is empty.
3044 *
3045 * RETURN VALUE:
3046 * 0 : The queue has been destroyed successfully.
3047 * EINVAL : The parameter is invalid.
3048 */
3049int fd_fifo_del ( struct fifo ** queue );
3050
3051/*
3052 * FUNCTION: fd_fifo_move
3053 *
3054 * PARAMETERS:
3055 * oldq : Location of a FIFO that is to be emptied.
3056 * newq : A FIFO that will receive the old data.
3057 * loc_update : if non NULL, a place to store the pointer to new FIFO atomically with the move.
3058 *
3059 * DESCRIPTION:
3060 * Empties a queue and move its content to another one atomically.
3061 *
3062 * RETURN VALUE:
3063 * 0 : The queue has been destroyed successfully.
3064 * EINVAL : A parameter is invalid.
3065 */
3066int fd_fifo_move ( struct fifo * oldq, struct fifo * newq, struct fifo ** loc_update );
3067
3068/*
3069 * FUNCTION: fd_fifo_getstats
3070 *
3071 * PARAMETERS:
3072 * queue : The queue from which to retrieve the information.
3073 * current_count : How many items in the queue at the time of execution. This changes each time an item is pushed or poped.
3074 * limit_count : The maximum number of items allowed in this queue. This is specified during queue creation.
3075 * highest_count : The maximum number of items this queue has contained. This enables to see if limit_count count was reached.
3076 * total_count : the total number of items that went through the queue (already pop'd). Always increasing.
3077 * total : Cumulated time all items spent in this queue, including blocking time (always growing, use deltas for monitoring)
3078 * blocking : Cumulated time threads trying to post new items were blocked (queue full).
3079 * last : For the last element retrieved from the queue, how long it take between posting (including blocking) and poping
3080 *
3081 * DESCRIPTION:
3082 * Retrieve the timing information associated with a queue, for monitoring purpose.
3083 *
3084 * RETURN VALUE:
3085 * 0 : The statistics have been updated.
3086 * EINVAL : A parameter is invalid.
3087 */
3088int fd_fifo_getstats( struct fifo * queue, int * current_count, int * limit_count, int * highest_count, long long * total_count,
3089 struct timespec * total, struct timespec * blocking, struct timespec * last);
3090
3091/*
3092 * FUNCTION: fd_fifo_length
3093 *
3094 * PARAMETERS:
3095 * queue : The queue from which to retrieve the number of elements.
3096 *
3097 * DESCRIPTION:
3098 * Retrieve the number of elements in a queue, without error checking.
3099 *
3100 * RETURN VALUE:
3101 * The number of items currently queued.
3102 */
3103int fd_fifo_length ( struct fifo * queue );
3104
3105/*
3106 * FUNCTION: fd_fifo_setthrhd
3107 *
3108 * PARAMETERS:
3109 * queue : The queue for which the thresholds are being set.
3110 * data : An opaque pointer that is passed to h_cb and l_cb callbacks.
3111 * high : The high-level threshold. If the number of elements in the queue increase to this value, h_cb is called.
3112 * h_cb : if not NULL, a callback to call when the queue lengh is bigger than "high".
3113 * low : The low-level threshold. Must be < high.
3114 * l_cb : If the number of elements decrease to low, this callback is called.
3115 *
3116 * DESCRIPTION:
3117 * This function allows to adjust the number of producer / consumer threads of a queue.
3118 * If the consumer are slower than the producers, the number of elements in the queue increase.
3119 * By setting a "high" value, we allow a callback to be called when this number is too high.
3120 * The typical use would be to create an additional consumer thread in this callback.
3121 * If the queue continues to grow, the callback will be called again when the length is 2 * high, then 3*high, ... N * high
3122 * (the callback itself should implement a limit on the number of consumers that can be created)
3123 * When the queue starts to decrease, and the number of elements go under ((N - 1) * high + low, the l_cb callback is called
3124 * and would typially stop one of the consumer threads. If the queue continues to reduce, l_cb is again called at (N-2)*high + low,
3125 * and so on.
3126 *
3127 * Since there is no destructor for the data pointer, if cleanup operations are required, they should be performed in
3128 * l_cb when the length of the queue is becoming < low.
3129 *
3130 * Note that the callbacks are called synchronously, during fd_fifo_post or fd_fifo_get. Their operation should be quick.
3131 *
3132 * RETURN VALUE:
3133 * 0 : The thresholds have been set
3134 * EINVAL : A parameter is invalid.
3135 */
3136int fd_fifo_setthrhd ( struct fifo * queue, void * data, uint16_t high, void (*h_cb)(struct fifo *, void **), uint16_t low, void (*l_cb)(struct fifo *, void **) );
3137
3138/*
3139 * FUNCTION: fd_fifo_post
3140 *
3141 * PARAMETERS:
3142 * queue : The queue in which the element must be posted.
3143 * item : The element that is put in the queue.
3144 *
3145 * DESCRIPTION:
3146 * An element is added in a queue. Elements are retrieved from the queue in FIFO order
3147 * with the fd_fifo_get, fd_fifo_tryget, or fd_fifo_timedget functions.
3148 *
3149 * RETURN VALUE:
3150 * 0 : The element is queued.
3151 * EINVAL : A parameter is invalid.
3152 * ENOMEM : Not enough memory to complete the operation.
3153 */
3154int fd_fifo_post_int ( struct fifo * queue, void ** item );
3155#define fd_fifo_post(queue, item) \
3156 fd_fifo_post_int((queue), (void *)(item))
3157
3158/* Similar function but does not block. It can cause the number of items in the queue to exceed the maximum set. Do not use for normal operation,
3159only for failure recovery for example. */
3160int fd_fifo_post_noblock( struct fifo * queue, void ** item );
3161
3162/*
3163 * FUNCTION: fd_fifo_get
3164 *
3165 * PARAMETERS:
3166 * queue : The queue from which the first element must be retrieved.
3167 * item : On return, the first element of the queue is stored here.
3168 *
3169 * DESCRIPTION:
3170 * This function retrieves the first element from a queue. If the queue is empty, the function will block the
3171 * thread until a new element is posted to the queue, or until the thread is canceled (in which case the
3172 * function does not return).
3173 *
3174 * RETURN VALUE:
3175 * 0 : A new element has been retrieved.
3176 * EINVAL : A parameter is invalid.
3177 */
3178int fd_fifo_get_int ( struct fifo * queue, void ** item );
3179#define fd_fifo_get(queue, item) \
3180 fd_fifo_get_int((queue), (void *)(item))
3181
3182/*
3183 * FUNCTION: fd_fifo_tryget
3184 *
3185 * PARAMETERS:
3186 * queue : The queue from which the element must be retrieved.
3187 * item : On return, the first element of the queue is stored here.
3188 *
3189 * DESCRIPTION:
3190 * This function is similar to fd_fifo_get, except that it will not block if
3191 * the queue is empty, but return EWOULDBLOCK instead.
3192 *
3193 * RETURN VALUE:
3194 * 0 : A new element has been retrieved.
3195 * EINVAL : A parameter is invalid.
3196 * EWOULDBLOCK : The queue was empty.
3197 */
3198int fd_fifo_tryget_int ( struct fifo * queue, void ** item );
3199#define fd_fifo_tryget(queue, item) \
3200 fd_fifo_tryget_int((queue), (void *)(item))
3201
3202/*
3203 * FUNCTION: fd_fifo_timedget
3204 *
3205 * PARAMETERS:
3206 * queue : The queue from which the element must be retrieved.
3207 * item : On return, the element is stored here.
3208 * abstime : the absolute time until which we allow waiting for an item.
3209 *
3210 * DESCRIPTION:
3211 * This function is similar to fd_fifo_get, except that it will block if the queue is empty
3212 * only until the absolute time abstime (see pthread_cond_timedwait for + info).
3213 * If the queue is still empty when the time expires, the function returns ETIMEDOUT
3214 *
3215 * RETURN VALUE:
3216 * 0 : A new item has been retrieved.
3217 * EINVAL : A parameter is invalid.
3218 * ETIMEDOUT : The time out has passed and no item has been received.
3219 */
3220int fd_fifo_timedget_int ( struct fifo * queue, void ** item, const struct timespec *abstime );
3221#define fd_fifo_timedget(queue, item, abstime) \
3222 fd_fifo_timedget_int((queue), (void *)(item), (abstime))
3223
3224
3225/*
3226 * FUNCTION: fd_fifo_select
3227 *
3228 * PARAMETERS:
3229 * queue : The queue to test.
3230 * abstime : the absolute time until which we can block waiting for an item. If NULL, the function returns immediatly.
3231 *
3232 * DESCRIPTION:
3233 * This function is similar to select(), it waits for data to be available in the queue
3234 * until the abstime is expired.
3235 * Upon function entry, even if abstime is already expired the data availability is tested.
3236 *
3237 * RETURN VALUE:
3238 * 0 : timeout expired without available data.
3239 * <0 : An error occurred (e.g., -EINVAL...)
3240 * >0 : data is available. The next call to fd_fifo_get will not block.
3241 */
3242int fd_fifo_select ( struct fifo * queue, const struct timespec *abstime );
3243
3244
3245
3246/* Dump a fifo list and optionally its inner elements -- beware of deadlocks! */
3247typedef DECLARE_FD_DUMP_PROTOTYPE((*fd_fifo_dump_item_cb), void * item); /* This function should be 1 line if possible, or use indent level. Ends with '\n' */
3248DECLARE_FD_DUMP_PROTOTYPE(fd_fifo_dump, char * name, struct fifo * queue, fd_fifo_dump_item_cb dump_item);
3249
3250#ifdef __cplusplus
3251}
3252#endif
3253
3254#endif /* _LIBFDPROTO_H */