blob: f432b0684b8c3e7869e70c2d18f40847bc7ea072 [file] [log] [blame]
kesavand2cde6582020-06-22 04:56:23 -04001// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15 "encoding/binary"
kesavand2cde6582020-06-22 04:56:23 -040016 "syscall"
17 "unsafe"
18)
19
20/*
21 * Wrapped
22 */
23
24func Access(path string, mode uint32) (err error) {
25 return Faccessat(AT_FDCWD, path, mode, 0)
26}
27
28func Chmod(path string, mode uint32) (err error) {
29 return Fchmodat(AT_FDCWD, path, mode, 0)
30}
31
32func Chown(path string, uid int, gid int) (err error) {
33 return Fchownat(AT_FDCWD, path, uid, gid, 0)
34}
35
36func Creat(path string, mode uint32) (fd int, err error) {
37 return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
38}
39
kesavandc71914f2022-03-25 11:19:03 +053040func EpollCreate(size int) (fd int, err error) {
41 if size <= 0 {
42 return -1, EINVAL
43 }
44 return EpollCreate1(0)
45}
46
kesavand2cde6582020-06-22 04:56:23 -040047//sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
48//sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
49
50func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
51 if pathname == "" {
52 return fanotifyMark(fd, flags, mask, dirFd, nil)
53 }
54 p, err := BytePtrFromString(pathname)
55 if err != nil {
56 return err
57 }
58 return fanotifyMark(fd, flags, mask, dirFd, p)
59}
60
61//sys fchmodat(dirfd int, path string, mode uint32) (err error)
62
63func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
64 // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
65 // and check the flags. Otherwise the mode would be applied to the symlink
66 // destination which is not what the user expects.
67 if flags&^AT_SYMLINK_NOFOLLOW != 0 {
68 return EINVAL
69 } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
70 return EOPNOTSUPP
71 }
72 return fchmodat(dirfd, path, mode)
73}
74
kesavandc71914f2022-03-25 11:19:03 +053075func InotifyInit() (fd int, err error) {
76 return InotifyInit1(0)
77}
kesavand2cde6582020-06-22 04:56:23 -040078
kesavandc71914f2022-03-25 11:19:03 +053079//sys ioctl(fd int, req uint, arg uintptr) (err error) = SYS_IOCTL
80//sys ioctlPtr(fd int, req uint, arg unsafe.Pointer) (err error) = SYS_IOCTL
81
82// ioctl itself should not be exposed directly, but additional get/set functions
83// for specific types are permissible. These are defined in ioctl.go and
84// ioctl_linux.go.
85//
86// The third argument to ioctl is often a pointer but sometimes an integer.
87// Callers should use ioctlPtr when the third argument is a pointer and ioctl
88// when the third argument is an integer.
89//
90// TODO: some existing code incorrectly uses ioctl when it should use ioctlPtr.
kesavand2cde6582020-06-22 04:56:23 -040091
92//sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
93
94func Link(oldpath string, newpath string) (err error) {
95 return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
96}
97
98func Mkdir(path string, mode uint32) (err error) {
99 return Mkdirat(AT_FDCWD, path, mode)
100}
101
102func Mknod(path string, mode uint32, dev int) (err error) {
103 return Mknodat(AT_FDCWD, path, mode, dev)
104}
105
106func Open(path string, mode int, perm uint32) (fd int, err error) {
107 return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
108}
109
110//sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
111
112func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
113 return openat(dirfd, path, flags|O_LARGEFILE, mode)
114}
115
Andrea Campanella764f1ed2022-03-24 11:46:38 +0100116//sys openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
117
118func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
119 return openat2(dirfd, path, how, SizeofOpenHow)
120}
121
kesavandc71914f2022-03-25 11:19:03 +0530122func Pipe(p []int) error {
123 return Pipe2(p, 0)
124}
125
126//sysnb pipe2(p *[2]_C_int, flags int) (err error)
127
128func Pipe2(p []int, flags int) error {
129 if len(p) != 2 {
130 return EINVAL
131 }
132 var pp [2]_C_int
133 err := pipe2(&pp, flags)
134 if err == nil {
135 p[0] = int(pp[0])
136 p[1] = int(pp[1])
137 }
138 return err
139}
140
kesavand2cde6582020-06-22 04:56:23 -0400141//sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
142
143func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
144 if len(fds) == 0 {
145 return ppoll(nil, 0, timeout, sigmask)
146 }
147 return ppoll(&fds[0], len(fds), timeout, sigmask)
148}
149
kesavandc71914f2022-03-25 11:19:03 +0530150func Poll(fds []PollFd, timeout int) (n int, err error) {
151 var ts *Timespec
152 if timeout >= 0 {
153 ts = new(Timespec)
154 *ts = NsecToTimespec(int64(timeout) * 1e6)
155 }
156 return Ppoll(fds, ts, nil)
157}
158
kesavand2cde6582020-06-22 04:56:23 -0400159//sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
160
161func Readlink(path string, buf []byte) (n int, err error) {
162 return Readlinkat(AT_FDCWD, path, buf)
163}
164
165func Rename(oldpath string, newpath string) (err error) {
166 return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
167}
168
169func Rmdir(path string) error {
170 return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
171}
172
173//sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
174
175func Symlink(oldpath string, newpath string) (err error) {
176 return Symlinkat(oldpath, AT_FDCWD, newpath)
177}
178
179func Unlink(path string) error {
180 return Unlinkat(AT_FDCWD, path, 0)
181}
182
183//sys Unlinkat(dirfd int, path string, flags int) (err error)
184
185func Utimes(path string, tv []Timeval) error {
186 if tv == nil {
187 err := utimensat(AT_FDCWD, path, nil, 0)
188 if err != ENOSYS {
189 return err
190 }
191 return utimes(path, nil)
192 }
193 if len(tv) != 2 {
194 return EINVAL
195 }
196 var ts [2]Timespec
197 ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
198 ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
199 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
200 if err != ENOSYS {
201 return err
202 }
203 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
204}
205
206//sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
207
208func UtimesNano(path string, ts []Timespec) error {
kesavandc71914f2022-03-25 11:19:03 +0530209 return UtimesNanoAt(AT_FDCWD, path, ts, 0)
kesavand2cde6582020-06-22 04:56:23 -0400210}
211
212func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
213 if ts == nil {
214 return utimensat(dirfd, path, nil, flags)
215 }
216 if len(ts) != 2 {
217 return EINVAL
218 }
219 return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
220}
221
222func Futimesat(dirfd int, path string, tv []Timeval) error {
223 if tv == nil {
224 return futimesat(dirfd, path, nil)
225 }
226 if len(tv) != 2 {
227 return EINVAL
228 }
229 return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
230}
231
232func Futimes(fd int, tv []Timeval) (err error) {
233 // Believe it or not, this is the best we can do on Linux
234 // (and is what glibc does).
235 return Utimes("/proc/self/fd/"+itoa(fd), tv)
236}
237
238const ImplementsGetwd = true
239
240//sys Getcwd(buf []byte) (n int, err error)
241
242func Getwd() (wd string, err error) {
243 var buf [PathMax]byte
244 n, err := Getcwd(buf[0:])
245 if err != nil {
246 return "", err
247 }
248 // Getcwd returns the number of bytes written to buf, including the NUL.
249 if n < 1 || n > len(buf) || buf[n-1] != 0 {
250 return "", EINVAL
251 }
252 return string(buf[0 : n-1]), nil
253}
254
255func Getgroups() (gids []int, err error) {
256 n, err := getgroups(0, nil)
257 if err != nil {
258 return nil, err
259 }
260 if n == 0 {
261 return nil, nil
262 }
263
264 // Sanity check group count. Max is 1<<16 on Linux.
265 if n < 0 || n > 1<<20 {
266 return nil, EINVAL
267 }
268
269 a := make([]_Gid_t, n)
270 n, err = getgroups(n, &a[0])
271 if err != nil {
272 return nil, err
273 }
274 gids = make([]int, n)
275 for i, v := range a[0:n] {
276 gids[i] = int(v)
277 }
278 return
279}
280
281func Setgroups(gids []int) (err error) {
282 if len(gids) == 0 {
283 return setgroups(0, nil)
284 }
285
286 a := make([]_Gid_t, len(gids))
287 for i, v := range gids {
288 a[i] = _Gid_t(v)
289 }
290 return setgroups(len(a), &a[0])
291}
292
293type WaitStatus uint32
294
295// Wait status is 7 bits at bottom, either 0 (exited),
296// 0x7F (stopped), or a signal number that caused an exit.
297// The 0x80 bit is whether there was a core dump.
298// An extra number (exit code, signal causing a stop)
299// is in the high bits. At least that's the idea.
300// There are various irregularities. For example, the
301// "continued" status is 0xFFFF, distinguishing itself
302// from stopped via the core dump bit.
303
304const (
305 mask = 0x7F
306 core = 0x80
307 exited = 0x00
308 stopped = 0x7F
309 shift = 8
310)
311
312func (w WaitStatus) Exited() bool { return w&mask == exited }
313
314func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
315
316func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
317
318func (w WaitStatus) Continued() bool { return w == 0xFFFF }
319
320func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
321
322func (w WaitStatus) ExitStatus() int {
323 if !w.Exited() {
324 return -1
325 }
326 return int(w>>shift) & 0xFF
327}
328
329func (w WaitStatus) Signal() syscall.Signal {
330 if !w.Signaled() {
331 return -1
332 }
333 return syscall.Signal(w & mask)
334}
335
336func (w WaitStatus) StopSignal() syscall.Signal {
337 if !w.Stopped() {
338 return -1
339 }
340 return syscall.Signal(w>>shift) & 0xFF
341}
342
343func (w WaitStatus) TrapCause() int {
344 if w.StopSignal() != SIGTRAP {
345 return -1
346 }
347 return int(w>>shift) >> 8
348}
349
350//sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
351
352func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
353 var status _C_int
354 wpid, err = wait4(pid, &status, options, rusage)
355 if wstatus != nil {
356 *wstatus = WaitStatus(status)
357 }
358 return
359}
360
361func Mkfifo(path string, mode uint32) error {
362 return Mknod(path, mode|S_IFIFO, 0)
363}
364
365func Mkfifoat(dirfd int, path string, mode uint32) error {
366 return Mknodat(dirfd, path, mode|S_IFIFO, 0)
367}
368
369func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
370 if sa.Port < 0 || sa.Port > 0xFFFF {
371 return nil, 0, EINVAL
372 }
373 sa.raw.Family = AF_INET
374 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
375 p[0] = byte(sa.Port >> 8)
376 p[1] = byte(sa.Port)
kesavandc71914f2022-03-25 11:19:03 +0530377 sa.raw.Addr = sa.Addr
kesavand2cde6582020-06-22 04:56:23 -0400378 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
379}
380
381func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
382 if sa.Port < 0 || sa.Port > 0xFFFF {
383 return nil, 0, EINVAL
384 }
385 sa.raw.Family = AF_INET6
386 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
387 p[0] = byte(sa.Port >> 8)
388 p[1] = byte(sa.Port)
389 sa.raw.Scope_id = sa.ZoneId
kesavandc71914f2022-03-25 11:19:03 +0530390 sa.raw.Addr = sa.Addr
kesavand2cde6582020-06-22 04:56:23 -0400391 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
392}
393
394func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
395 name := sa.Name
396 n := len(name)
397 if n >= len(sa.raw.Path) {
398 return nil, 0, EINVAL
399 }
400 sa.raw.Family = AF_UNIX
401 for i := 0; i < n; i++ {
402 sa.raw.Path[i] = int8(name[i])
403 }
404 // length is family (uint16), name, NUL.
405 sl := _Socklen(2)
406 if n > 0 {
407 sl += _Socklen(n) + 1
408 }
409 if sa.raw.Path[0] == '@' {
410 sa.raw.Path[0] = 0
411 // Don't count trailing NUL for abstract address.
412 sl--
413 }
414
415 return unsafe.Pointer(&sa.raw), sl, nil
416}
417
418// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
419type SockaddrLinklayer struct {
420 Protocol uint16
421 Ifindex int
422 Hatype uint16
423 Pkttype uint8
424 Halen uint8
425 Addr [8]byte
426 raw RawSockaddrLinklayer
427}
428
429func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
430 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
431 return nil, 0, EINVAL
432 }
433 sa.raw.Family = AF_PACKET
434 sa.raw.Protocol = sa.Protocol
435 sa.raw.Ifindex = int32(sa.Ifindex)
436 sa.raw.Hatype = sa.Hatype
437 sa.raw.Pkttype = sa.Pkttype
438 sa.raw.Halen = sa.Halen
kesavandc71914f2022-03-25 11:19:03 +0530439 sa.raw.Addr = sa.Addr
kesavand2cde6582020-06-22 04:56:23 -0400440 return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
441}
442
443// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
444type SockaddrNetlink struct {
445 Family uint16
446 Pad uint16
447 Pid uint32
448 Groups uint32
449 raw RawSockaddrNetlink
450}
451
452func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
453 sa.raw.Family = AF_NETLINK
454 sa.raw.Pad = sa.Pad
455 sa.raw.Pid = sa.Pid
456 sa.raw.Groups = sa.Groups
457 return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
458}
459
460// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
461// using the HCI protocol.
462type SockaddrHCI struct {
463 Dev uint16
464 Channel uint16
465 raw RawSockaddrHCI
466}
467
468func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
469 sa.raw.Family = AF_BLUETOOTH
470 sa.raw.Dev = sa.Dev
471 sa.raw.Channel = sa.Channel
472 return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
473}
474
475// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
476// using the L2CAP protocol.
477type SockaddrL2 struct {
478 PSM uint16
479 CID uint16
480 Addr [6]uint8
481 AddrType uint8
482 raw RawSockaddrL2
483}
484
485func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
486 sa.raw.Family = AF_BLUETOOTH
487 psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
488 psm[0] = byte(sa.PSM)
489 psm[1] = byte(sa.PSM >> 8)
490 for i := 0; i < len(sa.Addr); i++ {
491 sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
492 }
493 cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
494 cid[0] = byte(sa.CID)
495 cid[1] = byte(sa.CID >> 8)
496 sa.raw.Bdaddr_type = sa.AddrType
497 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
498}
499
500// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
501// using the RFCOMM protocol.
502//
503// Server example:
504//
505// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
506// _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
507// Channel: 1,
508// Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
509// })
510// _ = Listen(fd, 1)
511// nfd, sa, _ := Accept(fd)
512// fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
513// Read(nfd, buf)
514//
515// Client example:
516//
517// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
518// _ = Connect(fd, &SockaddrRFCOMM{
519// Channel: 1,
520// Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
521// })
522// Write(fd, []byte(`hello`))
523type SockaddrRFCOMM struct {
524 // Addr represents a bluetooth address, byte ordering is little-endian.
525 Addr [6]uint8
526
527 // Channel is a designated bluetooth channel, only 1-30 are available for use.
528 // Since Linux 2.6.7 and further zero value is the first available channel.
529 Channel uint8
530
531 raw RawSockaddrRFCOMM
532}
533
534func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
535 sa.raw.Family = AF_BLUETOOTH
536 sa.raw.Channel = sa.Channel
537 sa.raw.Bdaddr = sa.Addr
538 return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
539}
540
541// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
542// The RxID and TxID fields are used for transport protocol addressing in
543// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
544// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
545//
546// The SockaddrCAN struct must be bound to the socket file descriptor
547// using Bind before the CAN socket can be used.
548//
549// // Read one raw CAN frame
550// fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
551// addr := &SockaddrCAN{Ifindex: index}
552// Bind(fd, addr)
553// frame := make([]byte, 16)
554// Read(fd, frame)
555//
556// The full SocketCAN documentation can be found in the linux kernel
557// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
558type SockaddrCAN struct {
559 Ifindex int
560 RxID uint32
561 TxID uint32
562 raw RawSockaddrCAN
563}
564
565func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
566 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
567 return nil, 0, EINVAL
568 }
569 sa.raw.Family = AF_CAN
570 sa.raw.Ifindex = int32(sa.Ifindex)
571 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
572 for i := 0; i < 4; i++ {
573 sa.raw.Addr[i] = rx[i]
574 }
575 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
576 for i := 0; i < 4; i++ {
577 sa.raw.Addr[i+4] = tx[i]
578 }
579 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
580}
581
Andrea Campanella764f1ed2022-03-24 11:46:38 +0100582// SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
583// protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
584// on the purposes of the fields, check the official linux kernel documentation
585// available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
586type SockaddrCANJ1939 struct {
587 Ifindex int
588 Name uint64
589 PGN uint32
590 Addr uint8
591 raw RawSockaddrCAN
592}
593
594func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
595 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
596 return nil, 0, EINVAL
597 }
598 sa.raw.Family = AF_CAN
599 sa.raw.Ifindex = int32(sa.Ifindex)
600 n := (*[8]byte)(unsafe.Pointer(&sa.Name))
601 for i := 0; i < 8; i++ {
602 sa.raw.Addr[i] = n[i]
603 }
604 p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
605 for i := 0; i < 4; i++ {
606 sa.raw.Addr[i+8] = p[i]
607 }
608 sa.raw.Addr[12] = sa.Addr
609 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
610}
611
kesavand2cde6582020-06-22 04:56:23 -0400612// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
613// SockaddrALG enables userspace access to the Linux kernel's cryptography
614// subsystem. The Type and Name fields specify which type of hash or cipher
615// should be used with a given socket.
616//
617// To create a file descriptor that provides access to a hash or cipher, both
618// Bind and Accept must be used. Once the setup process is complete, input
619// data can be written to the socket, processed by the kernel, and then read
620// back as hash output or ciphertext.
621//
622// Here is an example of using an AF_ALG socket with SHA1 hashing.
623// The initial socket setup process is as follows:
624//
625// // Open a socket to perform SHA1 hashing.
626// fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
627// addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
628// unix.Bind(fd, addr)
629// // Note: unix.Accept does not work at this time; must invoke accept()
630// // manually using unix.Syscall.
631// hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
632//
633// Once a file descriptor has been returned from Accept, it may be used to
634// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
635// may be re-used repeatedly with subsequent Write and Read operations.
636//
637// When hashing a small byte slice or string, a single Write and Read may
638// be used:
639//
640// // Assume hashfd is already configured using the setup process.
641// hash := os.NewFile(hashfd, "sha1")
642// // Hash an input string and read the results. Each Write discards
643// // previous hash state. Read always reads the current state.
644// b := make([]byte, 20)
645// for i := 0; i < 2; i++ {
646// io.WriteString(hash, "Hello, world.")
647// hash.Read(b)
648// fmt.Println(hex.EncodeToString(b))
649// }
650// // Output:
651// // 2ae01472317d1935a84797ec1983ae243fc6aa28
652// // 2ae01472317d1935a84797ec1983ae243fc6aa28
653//
654// For hashing larger byte slices, or byte streams such as those read from
655// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
656// the hash digest instead of creating a new one for a given chunk and finalizing it.
657//
658// // Assume hashfd and addr are already configured using the setup process.
659// hash := os.NewFile(hashfd, "sha1")
660// // Hash the contents of a file.
661// f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
662// b := make([]byte, 4096)
663// for {
664// n, err := f.Read(b)
665// if err == io.EOF {
666// break
667// }
668// unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
669// }
670// hash.Read(b)
671// fmt.Println(hex.EncodeToString(b))
672// // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
673//
674// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
675type SockaddrALG struct {
676 Type string
677 Name string
678 Feature uint32
679 Mask uint32
680 raw RawSockaddrALG
681}
682
683func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
684 // Leave room for NUL byte terminator.
685 if len(sa.Type) > 13 {
686 return nil, 0, EINVAL
687 }
688 if len(sa.Name) > 63 {
689 return nil, 0, EINVAL
690 }
691
692 sa.raw.Family = AF_ALG
693 sa.raw.Feat = sa.Feature
694 sa.raw.Mask = sa.Mask
695
696 typ, err := ByteSliceFromString(sa.Type)
697 if err != nil {
698 return nil, 0, err
699 }
700 name, err := ByteSliceFromString(sa.Name)
701 if err != nil {
702 return nil, 0, err
703 }
704
705 copy(sa.raw.Type[:], typ)
706 copy(sa.raw.Name[:], name)
707
708 return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
709}
710
711// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
712// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
713// bidirectional communication between a hypervisor and its guest virtual
714// machines.
715type SockaddrVM struct {
716 // CID and Port specify a context ID and port address for a VM socket.
717 // Guests have a unique CID, and hosts may have a well-known CID of:
718 // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
Andrea Campanella764f1ed2022-03-24 11:46:38 +0100719 // - VMADDR_CID_LOCAL: refers to local communication (loopback).
kesavand2cde6582020-06-22 04:56:23 -0400720 // - VMADDR_CID_HOST: refers to other processes on the host.
Andrea Campanella764f1ed2022-03-24 11:46:38 +0100721 CID uint32
722 Port uint32
723 Flags uint8
724 raw RawSockaddrVM
kesavand2cde6582020-06-22 04:56:23 -0400725}
726
727func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
728 sa.raw.Family = AF_VSOCK
729 sa.raw.Port = sa.Port
730 sa.raw.Cid = sa.CID
Andrea Campanella764f1ed2022-03-24 11:46:38 +0100731 sa.raw.Flags = sa.Flags
kesavand2cde6582020-06-22 04:56:23 -0400732
733 return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
734}
735
736type SockaddrXDP struct {
737 Flags uint16
738 Ifindex uint32
739 QueueID uint32
740 SharedUmemFD uint32
741 raw RawSockaddrXDP
742}
743
744func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
745 sa.raw.Family = AF_XDP
746 sa.raw.Flags = sa.Flags
747 sa.raw.Ifindex = sa.Ifindex
748 sa.raw.Queue_id = sa.QueueID
749 sa.raw.Shared_umem_fd = sa.SharedUmemFD
750
751 return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
752}
753
754// This constant mirrors the #define of PX_PROTO_OE in
755// linux/if_pppox.h. We're defining this by hand here instead of
756// autogenerating through mkerrors.sh because including
757// linux/if_pppox.h causes some declaration conflicts with other
758// includes (linux/if_pppox.h includes linux/in.h, which conflicts
759// with netinet/in.h). Given that we only need a single zero constant
760// out of that file, it's cleaner to just define it by hand here.
761const px_proto_oe = 0
762
763type SockaddrPPPoE struct {
764 SID uint16
765 Remote []byte
766 Dev string
767 raw RawSockaddrPPPoX
768}
769
770func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
771 if len(sa.Remote) != 6 {
772 return nil, 0, EINVAL
773 }
774 if len(sa.Dev) > IFNAMSIZ-1 {
775 return nil, 0, EINVAL
776 }
777
778 *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
779 // This next field is in host-endian byte order. We can't use the
780 // same unsafe pointer cast as above, because this value is not
781 // 32-bit aligned and some architectures don't allow unaligned
782 // access.
783 //
784 // However, the value of px_proto_oe is 0, so we can use
785 // encoding/binary helpers to write the bytes without worrying
786 // about the ordering.
787 binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
788 // This field is deliberately big-endian, unlike the previous
789 // one. The kernel expects SID to be in network byte order.
790 binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
791 copy(sa.raw[8:14], sa.Remote)
792 for i := 14; i < 14+IFNAMSIZ; i++ {
793 sa.raw[i] = 0
794 }
795 copy(sa.raw[14:], sa.Dev)
796 return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
797}
798
Andrea Campanella764f1ed2022-03-24 11:46:38 +0100799// SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
800// For more information on TIPC, see: http://tipc.sourceforge.net/.
801type SockaddrTIPC struct {
802 // Scope is the publication scopes when binding service/service range.
803 // Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
804 Scope int
805
806 // Addr is the type of address used to manipulate a socket. Addr must be
807 // one of:
808 // - *TIPCSocketAddr: "id" variant in the C addr union
809 // - *TIPCServiceRange: "nameseq" variant in the C addr union
810 // - *TIPCServiceName: "name" variant in the C addr union
811 //
812 // If nil, EINVAL will be returned when the structure is used.
813 Addr TIPCAddr
814
815 raw RawSockaddrTIPC
816}
817
818// TIPCAddr is implemented by types that can be used as an address for
819// SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
820// and *TIPCServiceName.
821type TIPCAddr interface {
822 tipcAddrtype() uint8
823 tipcAddr() [12]byte
824}
825
826func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
827 var out [12]byte
828 copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
829 return out
830}
831
832func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
833
834func (sa *TIPCServiceRange) tipcAddr() [12]byte {
835 var out [12]byte
836 copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
837 return out
838}
839
840func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
841
842func (sa *TIPCServiceName) tipcAddr() [12]byte {
843 var out [12]byte
844 copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
845 return out
846}
847
848func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
849
850func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
851 if sa.Addr == nil {
852 return nil, 0, EINVAL
853 }
Andrea Campanella764f1ed2022-03-24 11:46:38 +0100854 sa.raw.Family = AF_TIPC
855 sa.raw.Scope = int8(sa.Scope)
856 sa.raw.Addrtype = sa.Addr.tipcAddrtype()
857 sa.raw.Addr = sa.Addr.tipcAddr()
Andrea Campanella764f1ed2022-03-24 11:46:38 +0100858 return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
859}
860
861// SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
862type SockaddrL2TPIP struct {
863 Addr [4]byte
864 ConnId uint32
865 raw RawSockaddrL2TPIP
866}
867
868func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
869 sa.raw.Family = AF_INET
870 sa.raw.Conn_id = sa.ConnId
kesavandc71914f2022-03-25 11:19:03 +0530871 sa.raw.Addr = sa.Addr
Andrea Campanella764f1ed2022-03-24 11:46:38 +0100872 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
873}
874
875// SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
876type SockaddrL2TPIP6 struct {
877 Addr [16]byte
878 ZoneId uint32
879 ConnId uint32
880 raw RawSockaddrL2TPIP6
881}
882
883func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
884 sa.raw.Family = AF_INET6
885 sa.raw.Conn_id = sa.ConnId
886 sa.raw.Scope_id = sa.ZoneId
kesavandc71914f2022-03-25 11:19:03 +0530887 sa.raw.Addr = sa.Addr
Andrea Campanella764f1ed2022-03-24 11:46:38 +0100888 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
889}
890
891// SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
892type SockaddrIUCV struct {
893 UserID string
894 Name string
895 raw RawSockaddrIUCV
896}
897
898func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
899 sa.raw.Family = AF_IUCV
900 // These are EBCDIC encoded by the kernel, but we still need to pad them
901 // with blanks. Initializing with blanks allows the caller to feed in either
902 // a padded or an unpadded string.
903 for i := 0; i < 8; i++ {
904 sa.raw.Nodeid[i] = ' '
905 sa.raw.User_id[i] = ' '
906 sa.raw.Name[i] = ' '
907 }
908 if len(sa.UserID) > 8 || len(sa.Name) > 8 {
909 return nil, 0, EINVAL
910 }
911 for i, b := range []byte(sa.UserID[:]) {
912 sa.raw.User_id[i] = int8(b)
913 }
914 for i, b := range []byte(sa.Name[:]) {
915 sa.raw.Name[i] = int8(b)
916 }
917 return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
918}
919
kesavandc71914f2022-03-25 11:19:03 +0530920type SockaddrNFC struct {
921 DeviceIdx uint32
922 TargetIdx uint32
923 NFCProtocol uint32
924 raw RawSockaddrNFC
925}
926
927func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) {
928 sa.raw.Sa_family = AF_NFC
929 sa.raw.Dev_idx = sa.DeviceIdx
930 sa.raw.Target_idx = sa.TargetIdx
931 sa.raw.Nfc_protocol = sa.NFCProtocol
932 return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil
933}
934
935type SockaddrNFCLLCP struct {
936 DeviceIdx uint32
937 TargetIdx uint32
938 NFCProtocol uint32
939 DestinationSAP uint8
940 SourceSAP uint8
941 ServiceName string
942 raw RawSockaddrNFCLLCP
943}
944
945func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) {
946 sa.raw.Sa_family = AF_NFC
947 sa.raw.Dev_idx = sa.DeviceIdx
948 sa.raw.Target_idx = sa.TargetIdx
949 sa.raw.Nfc_protocol = sa.NFCProtocol
950 sa.raw.Dsap = sa.DestinationSAP
951 sa.raw.Ssap = sa.SourceSAP
952 if len(sa.ServiceName) > len(sa.raw.Service_name) {
953 return nil, 0, EINVAL
954 }
955 copy(sa.raw.Service_name[:], sa.ServiceName)
956 sa.raw.SetServiceNameLen(len(sa.ServiceName))
957 return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil
958}
959
Andrea Campanella764f1ed2022-03-24 11:46:38 +0100960var socketProtocol = func(fd int) (int, error) {
961 return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
962}
963
kesavand2cde6582020-06-22 04:56:23 -0400964func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
965 switch rsa.Addr.Family {
966 case AF_NETLINK:
967 pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
968 sa := new(SockaddrNetlink)
969 sa.Family = pp.Family
970 sa.Pad = pp.Pad
971 sa.Pid = pp.Pid
972 sa.Groups = pp.Groups
973 return sa, nil
974
975 case AF_PACKET:
976 pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
977 sa := new(SockaddrLinklayer)
978 sa.Protocol = pp.Protocol
979 sa.Ifindex = int(pp.Ifindex)
980 sa.Hatype = pp.Hatype
981 sa.Pkttype = pp.Pkttype
982 sa.Halen = pp.Halen
kesavandc71914f2022-03-25 11:19:03 +0530983 sa.Addr = pp.Addr
kesavand2cde6582020-06-22 04:56:23 -0400984 return sa, nil
985
986 case AF_UNIX:
987 pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
988 sa := new(SockaddrUnix)
989 if pp.Path[0] == 0 {
990 // "Abstract" Unix domain socket.
991 // Rewrite leading NUL as @ for textual display.
992 // (This is the standard convention.)
993 // Not friendly to overwrite in place,
994 // but the callers below don't care.
995 pp.Path[0] = '@'
996 }
997
998 // Assume path ends at NUL.
999 // This is not technically the Linux semantics for
1000 // abstract Unix domain sockets--they are supposed
1001 // to be uninterpreted fixed-size binary blobs--but
1002 // everyone uses this convention.
1003 n := 0
1004 for n < len(pp.Path) && pp.Path[n] != 0 {
1005 n++
1006 }
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001007 bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
kesavand2cde6582020-06-22 04:56:23 -04001008 sa.Name = string(bytes)
1009 return sa, nil
1010
1011 case AF_INET:
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001012 proto, err := socketProtocol(fd)
1013 if err != nil {
1014 return nil, err
kesavand2cde6582020-06-22 04:56:23 -04001015 }
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001016
1017 switch proto {
1018 case IPPROTO_L2TP:
1019 pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
1020 sa := new(SockaddrL2TPIP)
1021 sa.ConnId = pp.Conn_id
kesavandc71914f2022-03-25 11:19:03 +05301022 sa.Addr = pp.Addr
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001023 return sa, nil
1024 default:
1025 pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
1026 sa := new(SockaddrInet4)
1027 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1028 sa.Port = int(p[0])<<8 + int(p[1])
kesavandc71914f2022-03-25 11:19:03 +05301029 sa.Addr = pp.Addr
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001030 return sa, nil
1031 }
kesavand2cde6582020-06-22 04:56:23 -04001032
1033 case AF_INET6:
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001034 proto, err := socketProtocol(fd)
1035 if err != nil {
1036 return nil, err
kesavand2cde6582020-06-22 04:56:23 -04001037 }
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001038
1039 switch proto {
1040 case IPPROTO_L2TP:
1041 pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
1042 sa := new(SockaddrL2TPIP6)
1043 sa.ConnId = pp.Conn_id
1044 sa.ZoneId = pp.Scope_id
kesavandc71914f2022-03-25 11:19:03 +05301045 sa.Addr = pp.Addr
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001046 return sa, nil
1047 default:
1048 pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
1049 sa := new(SockaddrInet6)
1050 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1051 sa.Port = int(p[0])<<8 + int(p[1])
1052 sa.ZoneId = pp.Scope_id
kesavandc71914f2022-03-25 11:19:03 +05301053 sa.Addr = pp.Addr
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001054 return sa, nil
1055 }
kesavand2cde6582020-06-22 04:56:23 -04001056
1057 case AF_VSOCK:
1058 pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
1059 sa := &SockaddrVM{
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001060 CID: pp.Cid,
1061 Port: pp.Port,
1062 Flags: pp.Flags,
kesavand2cde6582020-06-22 04:56:23 -04001063 }
1064 return sa, nil
1065 case AF_BLUETOOTH:
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001066 proto, err := socketProtocol(fd)
kesavand2cde6582020-06-22 04:56:23 -04001067 if err != nil {
1068 return nil, err
1069 }
1070 // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
1071 switch proto {
1072 case BTPROTO_L2CAP:
1073 pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
1074 sa := &SockaddrL2{
1075 PSM: pp.Psm,
1076 CID: pp.Cid,
1077 Addr: pp.Bdaddr,
1078 AddrType: pp.Bdaddr_type,
1079 }
1080 return sa, nil
1081 case BTPROTO_RFCOMM:
1082 pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
1083 sa := &SockaddrRFCOMM{
1084 Channel: pp.Channel,
1085 Addr: pp.Bdaddr,
1086 }
1087 return sa, nil
1088 }
1089 case AF_XDP:
1090 pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
1091 sa := &SockaddrXDP{
1092 Flags: pp.Flags,
1093 Ifindex: pp.Ifindex,
1094 QueueID: pp.Queue_id,
1095 SharedUmemFD: pp.Shared_umem_fd,
1096 }
1097 return sa, nil
1098 case AF_PPPOX:
1099 pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
1100 if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
1101 return nil, EINVAL
1102 }
1103 sa := &SockaddrPPPoE{
1104 SID: binary.BigEndian.Uint16(pp[6:8]),
1105 Remote: pp[8:14],
1106 }
1107 for i := 14; i < 14+IFNAMSIZ; i++ {
1108 if pp[i] == 0 {
1109 sa.Dev = string(pp[14:i])
1110 break
1111 }
1112 }
1113 return sa, nil
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001114 case AF_TIPC:
1115 pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
1116
1117 sa := &SockaddrTIPC{
1118 Scope: int(pp.Scope),
1119 }
1120
1121 // Determine which union variant is present in pp.Addr by checking
1122 // pp.Addrtype.
1123 switch pp.Addrtype {
1124 case TIPC_SERVICE_RANGE:
1125 sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
1126 case TIPC_SERVICE_ADDR:
1127 sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
1128 case TIPC_SOCKET_ADDR:
1129 sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
1130 default:
1131 return nil, EINVAL
1132 }
1133
1134 return sa, nil
1135 case AF_IUCV:
1136 pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
1137
1138 var user [8]byte
1139 var name [8]byte
1140
1141 for i := 0; i < 8; i++ {
1142 user[i] = byte(pp.User_id[i])
1143 name[i] = byte(pp.Name[i])
1144 }
1145
1146 sa := &SockaddrIUCV{
1147 UserID: string(user[:]),
1148 Name: string(name[:]),
1149 }
1150 return sa, nil
1151
1152 case AF_CAN:
1153 proto, err := socketProtocol(fd)
1154 if err != nil {
1155 return nil, err
1156 }
1157
1158 pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
1159
1160 switch proto {
1161 case CAN_J1939:
1162 sa := &SockaddrCANJ1939{
1163 Ifindex: int(pp.Ifindex),
1164 }
1165 name := (*[8]byte)(unsafe.Pointer(&sa.Name))
1166 for i := 0; i < 8; i++ {
1167 name[i] = pp.Addr[i]
1168 }
1169 pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
1170 for i := 0; i < 4; i++ {
1171 pgn[i] = pp.Addr[i+8]
1172 }
1173 addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
1174 addr[0] = pp.Addr[12]
1175 return sa, nil
1176 default:
1177 sa := &SockaddrCAN{
1178 Ifindex: int(pp.Ifindex),
1179 }
1180 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
1181 for i := 0; i < 4; i++ {
1182 rx[i] = pp.Addr[i]
1183 }
1184 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
1185 for i := 0; i < 4; i++ {
1186 tx[i] = pp.Addr[i+4]
1187 }
1188 return sa, nil
1189 }
kesavandc71914f2022-03-25 11:19:03 +05301190 case AF_NFC:
1191 proto, err := socketProtocol(fd)
1192 if err != nil {
1193 return nil, err
1194 }
1195 switch proto {
1196 case NFC_SOCKPROTO_RAW:
1197 pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa))
1198 sa := &SockaddrNFC{
1199 DeviceIdx: pp.Dev_idx,
1200 TargetIdx: pp.Target_idx,
1201 NFCProtocol: pp.Nfc_protocol,
1202 }
1203 return sa, nil
1204 case NFC_SOCKPROTO_LLCP:
1205 pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa))
1206 if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) {
1207 return nil, EINVAL
1208 }
1209 sa := &SockaddrNFCLLCP{
1210 DeviceIdx: pp.Dev_idx,
1211 TargetIdx: pp.Target_idx,
1212 NFCProtocol: pp.Nfc_protocol,
1213 DestinationSAP: pp.Dsap,
1214 SourceSAP: pp.Ssap,
1215 ServiceName: string(pp.Service_name[:pp.Service_name_len]),
1216 }
1217 return sa, nil
1218 default:
1219 return nil, EINVAL
1220 }
kesavand2cde6582020-06-22 04:56:23 -04001221 }
1222 return nil, EAFNOSUPPORT
1223}
1224
1225func Accept(fd int) (nfd int, sa Sockaddr, err error) {
1226 var rsa RawSockaddrAny
1227 var len _Socklen = SizeofSockaddrAny
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001228 nfd, err = accept4(fd, &rsa, &len, 0)
kesavand2cde6582020-06-22 04:56:23 -04001229 if err != nil {
1230 return
1231 }
1232 sa, err = anyToSockaddr(fd, &rsa)
1233 if err != nil {
1234 Close(nfd)
1235 nfd = 0
1236 }
1237 return
1238}
1239
1240func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
1241 var rsa RawSockaddrAny
1242 var len _Socklen = SizeofSockaddrAny
1243 nfd, err = accept4(fd, &rsa, &len, flags)
1244 if err != nil {
1245 return
1246 }
1247 if len > SizeofSockaddrAny {
1248 panic("RawSockaddrAny too small")
1249 }
1250 sa, err = anyToSockaddr(fd, &rsa)
1251 if err != nil {
1252 Close(nfd)
1253 nfd = 0
1254 }
1255 return
1256}
1257
1258func Getsockname(fd int) (sa Sockaddr, err error) {
1259 var rsa RawSockaddrAny
1260 var len _Socklen = SizeofSockaddrAny
1261 if err = getsockname(fd, &rsa, &len); err != nil {
1262 return
1263 }
1264 return anyToSockaddr(fd, &rsa)
1265}
1266
1267func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
1268 var value IPMreqn
1269 vallen := _Socklen(SizeofIPMreqn)
1270 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1271 return &value, err
1272}
1273
1274func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
1275 var value Ucred
1276 vallen := _Socklen(SizeofUcred)
1277 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1278 return &value, err
1279}
1280
1281func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
1282 var value TCPInfo
1283 vallen := _Socklen(SizeofTCPInfo)
1284 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1285 return &value, err
1286}
1287
1288// GetsockoptString returns the string value of the socket option opt for the
1289// socket associated with fd at the given socket level.
1290func GetsockoptString(fd, level, opt int) (string, error) {
1291 buf := make([]byte, 256)
1292 vallen := _Socklen(len(buf))
1293 err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1294 if err != nil {
1295 if err == ERANGE {
1296 buf = make([]byte, vallen)
1297 err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1298 }
1299 if err != nil {
1300 return "", err
1301 }
1302 }
1303 return string(buf[:vallen-1]), nil
1304}
1305
1306func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
1307 var value TpacketStats
1308 vallen := _Socklen(SizeofTpacketStats)
1309 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1310 return &value, err
1311}
1312
1313func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
1314 var value TpacketStatsV3
1315 vallen := _Socklen(SizeofTpacketStatsV3)
1316 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1317 return &value, err
1318}
1319
1320func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
1321 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1322}
1323
1324func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
1325 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1326}
1327
1328// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
1329// socket to filter incoming packets. See 'man 7 socket' for usage information.
1330func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1331 return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1332}
1333
1334func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1335 var p unsafe.Pointer
1336 if len(filter) > 0 {
1337 p = unsafe.Pointer(&filter[0])
1338 }
1339 return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1340}
1341
1342func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
1343 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1344}
1345
1346func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
1347 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1348}
1349
kesavandc71914f2022-03-25 11:19:03 +05301350func SetsockoptTCPRepairOpt(fd, level, opt int, o []TCPRepairOpt) (err error) {
1351 if len(o) == 0 {
1352 return EINVAL
1353 }
1354 return setsockopt(fd, level, opt, unsafe.Pointer(&o[0]), uintptr(SizeofTCPRepairOpt*len(o)))
1355}
1356
kesavand2cde6582020-06-22 04:56:23 -04001357// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1358
1359// KeyctlInt calls keyctl commands in which each argument is an int.
1360// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1361// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1362// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1363// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1364//sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1365
1366// KeyctlBuffer calls keyctl commands in which the third and fourth
1367// arguments are a buffer and its length, respectively.
1368// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1369//sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1370
1371// KeyctlString calls keyctl commands which return a string.
1372// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1373func KeyctlString(cmd int, id int) (string, error) {
1374 // We must loop as the string data may change in between the syscalls.
1375 // We could allocate a large buffer here to reduce the chance that the
1376 // syscall needs to be called twice; however, this is unnecessary as
1377 // the performance loss is negligible.
1378 var buffer []byte
1379 for {
1380 // Try to fill the buffer with data
1381 length, err := KeyctlBuffer(cmd, id, buffer, 0)
1382 if err != nil {
1383 return "", err
1384 }
1385
1386 // Check if the data was written
1387 if length <= len(buffer) {
1388 // Exclude the null terminator
1389 return string(buffer[:length-1]), nil
1390 }
1391
1392 // Make a bigger buffer if needed
1393 buffer = make([]byte, length)
1394 }
1395}
1396
1397// Keyctl commands with special signatures.
1398
1399// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1400// See the full documentation at:
1401// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1402func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1403 createInt := 0
1404 if create {
1405 createInt = 1
1406 }
1407 return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1408}
1409
1410// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1411// key handle permission mask as described in the "keyctl setperm" section of
1412// http://man7.org/linux/man-pages/man1/keyctl.1.html.
1413// See the full documentation at:
1414// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1415func KeyctlSetperm(id int, perm uint32) error {
1416 _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1417 return err
1418}
1419
1420//sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1421
1422// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1423// See the full documentation at:
1424// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1425func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1426 return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1427}
1428
1429//sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1430
1431// KeyctlSearch implements the KEYCTL_SEARCH command.
1432// See the full documentation at:
1433// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1434func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1435 return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1436}
1437
1438//sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1439
1440// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1441// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1442// of Iovec (each of which represents a buffer) instead of a single buffer.
1443// See the full documentation at:
1444// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1445func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1446 return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1447}
1448
1449//sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1450
1451// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1452// computes a Diffie-Hellman shared secret based on the provide params. The
1453// secret is written to the provided buffer and the returned size is the number
1454// of bytes written (returning an error if there is insufficient space in the
1455// buffer). If a nil buffer is passed in, this function returns the minimum
1456// buffer length needed to store the appropriate data. Note that this differs
1457// from KEYCTL_READ's behavior which always returns the requested payload size.
1458// See the full documentation at:
1459// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1460func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1461 return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1462}
1463
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001464// KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
1465// command limits the set of keys that can be linked to the keyring, regardless
1466// of keyring permissions. The command requires the "setattr" permission.
1467//
1468// When called with an empty keyType the command locks the keyring, preventing
1469// any further keys from being linked to the keyring.
1470//
1471// The "asymmetric" keyType defines restrictions requiring key payloads to be
1472// DER encoded X.509 certificates signed by keys in another keyring. Restrictions
1473// for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
1474// "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
1475//
1476// As of Linux 4.12, only the "asymmetric" keyType defines type-specific
1477// restrictions.
1478//
1479// See the full documentation at:
1480// http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
1481// http://man7.org/linux/man-pages/man2/keyctl.2.html
1482func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
1483 if keyType == "" {
1484 return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
1485 }
1486 return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
1487}
1488
1489//sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
1490//sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
1491
kesavand2cde6582020-06-22 04:56:23 -04001492func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
1493 var msg Msghdr
1494 var rsa RawSockaddrAny
1495 msg.Name = (*byte)(unsafe.Pointer(&rsa))
1496 msg.Namelen = uint32(SizeofSockaddrAny)
1497 var iov Iovec
1498 if len(p) > 0 {
1499 iov.Base = &p[0]
1500 iov.SetLen(len(p))
1501 }
1502 var dummy byte
1503 if len(oob) > 0 {
1504 if len(p) == 0 {
1505 var sockType int
1506 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1507 if err != nil {
1508 return
1509 }
1510 // receive at least one normal byte
1511 if sockType != SOCK_DGRAM {
1512 iov.Base = &dummy
1513 iov.SetLen(1)
1514 }
1515 }
1516 msg.Control = &oob[0]
1517 msg.SetControllen(len(oob))
1518 }
1519 msg.Iov = &iov
1520 msg.Iovlen = 1
1521 if n, err = recvmsg(fd, &msg, flags); err != nil {
1522 return
1523 }
1524 oobn = int(msg.Controllen)
1525 recvflags = int(msg.Flags)
1526 // source address is only specified if the socket is unconnected
1527 if rsa.Addr.Family != AF_UNSPEC {
1528 from, err = anyToSockaddr(fd, &rsa)
1529 }
1530 return
1531}
1532
1533func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1534 _, err = SendmsgN(fd, p, oob, to, flags)
1535 return
1536}
1537
1538func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1539 var ptr unsafe.Pointer
1540 var salen _Socklen
1541 if to != nil {
1542 var err error
1543 ptr, salen, err = to.sockaddr()
1544 if err != nil {
1545 return 0, err
1546 }
1547 }
1548 var msg Msghdr
1549 msg.Name = (*byte)(ptr)
1550 msg.Namelen = uint32(salen)
1551 var iov Iovec
1552 if len(p) > 0 {
1553 iov.Base = &p[0]
1554 iov.SetLen(len(p))
1555 }
1556 var dummy byte
1557 if len(oob) > 0 {
1558 if len(p) == 0 {
1559 var sockType int
1560 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1561 if err != nil {
1562 return 0, err
1563 }
1564 // send at least one normal byte
1565 if sockType != SOCK_DGRAM {
1566 iov.Base = &dummy
1567 iov.SetLen(1)
1568 }
1569 }
1570 msg.Control = &oob[0]
1571 msg.SetControllen(len(oob))
1572 }
1573 msg.Iov = &iov
1574 msg.Iovlen = 1
1575 if n, err = sendmsg(fd, &msg, flags); err != nil {
1576 return 0, err
1577 }
1578 if len(oob) > 0 && len(p) == 0 {
1579 n = 0
1580 }
1581 return n, nil
1582}
1583
1584// BindToDevice binds the socket associated with fd to device.
1585func BindToDevice(fd int, device string) (err error) {
1586 return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1587}
1588
1589//sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1590
1591func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1592 // The peek requests are machine-size oriented, so we wrap it
1593 // to retrieve arbitrary-length data.
1594
1595 // The ptrace syscall differs from glibc's ptrace.
1596 // Peeks returns the word in *data, not as the return value.
1597
1598 var buf [SizeofPtr]byte
1599
1600 // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1601 // access (PEEKUSER warns that it might), but if we don't
1602 // align our reads, we might straddle an unmapped page
1603 // boundary and not get the bytes leading up to the page
1604 // boundary.
1605 n := 0
1606 if addr%SizeofPtr != 0 {
1607 err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1608 if err != nil {
1609 return 0, err
1610 }
1611 n += copy(out, buf[addr%SizeofPtr:])
1612 out = out[n:]
1613 }
1614
1615 // Remainder.
1616 for len(out) > 0 {
1617 // We use an internal buffer to guarantee alignment.
1618 // It's not documented if this is necessary, but we're paranoid.
1619 err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1620 if err != nil {
1621 return n, err
1622 }
1623 copied := copy(out, buf[0:])
1624 n += copied
1625 out = out[copied:]
1626 }
1627
1628 return n, nil
1629}
1630
1631func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1632 return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1633}
1634
1635func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1636 return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1637}
1638
1639func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1640 return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1641}
1642
1643func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1644 // As for ptracePeek, we need to align our accesses to deal
1645 // with the possibility of straddling an invalid page.
1646
1647 // Leading edge.
1648 n := 0
1649 if addr%SizeofPtr != 0 {
1650 var buf [SizeofPtr]byte
1651 err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1652 if err != nil {
1653 return 0, err
1654 }
1655 n += copy(buf[addr%SizeofPtr:], data)
1656 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1657 err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1658 if err != nil {
1659 return 0, err
1660 }
1661 data = data[n:]
1662 }
1663
1664 // Interior.
1665 for len(data) > SizeofPtr {
1666 word := *((*uintptr)(unsafe.Pointer(&data[0])))
1667 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1668 if err != nil {
1669 return n, err
1670 }
1671 n += SizeofPtr
1672 data = data[SizeofPtr:]
1673 }
1674
1675 // Trailing edge.
1676 if len(data) > 0 {
1677 var buf [SizeofPtr]byte
1678 err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1679 if err != nil {
1680 return n, err
1681 }
1682 copy(buf[0:], data)
1683 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1684 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1685 if err != nil {
1686 return n, err
1687 }
1688 n += len(data)
1689 }
1690
1691 return n, nil
1692}
1693
1694func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1695 return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1696}
1697
1698func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1699 return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1700}
1701
1702func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1703 return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1704}
1705
1706func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1707 return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1708}
1709
1710func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1711 return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1712}
1713
1714func PtraceSetOptions(pid int, options int) (err error) {
1715 return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1716}
1717
1718func PtraceGetEventMsg(pid int) (msg uint, err error) {
1719 var data _C_long
1720 err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1721 msg = uint(data)
1722 return
1723}
1724
1725func PtraceCont(pid int, signal int) (err error) {
1726 return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1727}
1728
1729func PtraceSyscall(pid int, signal int) (err error) {
1730 return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1731}
1732
1733func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1734
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001735func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
1736
kesavand2cde6582020-06-22 04:56:23 -04001737func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1738
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001739func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
1740
kesavand2cde6582020-06-22 04:56:23 -04001741func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1742
1743//sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1744
1745func Reboot(cmd int) (err error) {
1746 return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1747}
1748
1749func direntIno(buf []byte) (uint64, bool) {
1750 return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
1751}
1752
1753func direntReclen(buf []byte) (uint64, bool) {
1754 return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
1755}
1756
1757func direntNamlen(buf []byte) (uint64, bool) {
1758 reclen, ok := direntReclen(buf)
1759 if !ok {
1760 return 0, false
1761 }
1762 return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
1763}
1764
1765//sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1766
1767func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1768 // Certain file systems get rather angry and EINVAL if you give
1769 // them an empty string of data, rather than NULL.
1770 if data == "" {
1771 return mount(source, target, fstype, flags, nil)
1772 }
1773 datap, err := BytePtrFromString(data)
1774 if err != nil {
1775 return err
1776 }
1777 return mount(source, target, fstype, flags, datap)
1778}
1779
kesavandc71914f2022-03-25 11:19:03 +05301780//sys mountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr, size uintptr) (err error) = SYS_MOUNT_SETATTR
1781
1782// MountSetattr is a wrapper for mount_setattr(2).
1783// https://man7.org/linux/man-pages/man2/mount_setattr.2.html
1784//
1785// Requires kernel >= 5.12.
1786func MountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr) error {
1787 return mountSetattr(dirfd, pathname, flags, attr, unsafe.Sizeof(*attr))
1788}
1789
kesavand2cde6582020-06-22 04:56:23 -04001790func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1791 if raceenabled {
1792 raceReleaseMerge(unsafe.Pointer(&ioSync))
1793 }
1794 return sendfile(outfd, infd, offset, count)
1795}
1796
1797// Sendto
1798// Recvfrom
1799// Socketpair
1800
1801/*
1802 * Direct access
1803 */
1804//sys Acct(path string) (err error)
1805//sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1806//sys Adjtimex(buf *Timex) (state int, err error)
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001807//sysnb Capget(hdr *CapUserHeader, data *CapUserData) (err error)
1808//sysnb Capset(hdr *CapUserHeader, data *CapUserData) (err error)
kesavand2cde6582020-06-22 04:56:23 -04001809//sys Chdir(path string) (err error)
1810//sys Chroot(path string) (err error)
1811//sys ClockGetres(clockid int32, res *Timespec) (err error)
1812//sys ClockGettime(clockid int32, time *Timespec) (err error)
1813//sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1814//sys Close(fd int) (err error)
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001815//sys CloseRange(first uint, last uint, flags uint) (err error)
kesavand2cde6582020-06-22 04:56:23 -04001816//sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1817//sys DeleteModule(name string, flags int) (err error)
1818//sys Dup(oldfd int) (fd int, err error)
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001819
1820func Dup2(oldfd, newfd int) error {
kesavandc71914f2022-03-25 11:19:03 +05301821 return Dup3(oldfd, newfd, 0)
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001822}
1823
kesavand2cde6582020-06-22 04:56:23 -04001824//sys Dup3(oldfd int, newfd int, flags int) (err error)
1825//sysnb EpollCreate1(flag int) (fd int, err error)
1826//sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1827//sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1828//sys Exit(code int) = SYS_EXIT_GROUP
1829//sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1830//sys Fchdir(fd int) (err error)
1831//sys Fchmod(fd int, mode uint32) (err error)
1832//sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
kesavand2cde6582020-06-22 04:56:23 -04001833//sys Fdatasync(fd int) (err error)
1834//sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1835//sys FinitModule(fd int, params string, flags int) (err error)
1836//sys Flistxattr(fd int, dest []byte) (sz int, err error)
1837//sys Flock(fd int, how int) (err error)
1838//sys Fremovexattr(fd int, attr string) (err error)
1839//sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1840//sys Fsync(fd int) (err error)
1841//sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1842//sysnb Getpgid(pid int) (pgid int, err error)
1843
1844func Getpgrp() (pid int) {
1845 pid, _ = Getpgid(0)
1846 return
1847}
1848
1849//sysnb Getpid() (pid int)
1850//sysnb Getppid() (ppid int)
1851//sys Getpriority(which int, who int) (prio int, err error)
1852//sys Getrandom(buf []byte, flags int) (n int, err error)
1853//sysnb Getrusage(who int, rusage *Rusage) (err error)
1854//sysnb Getsid(pid int) (sid int, err error)
1855//sysnb Gettid() (tid int)
1856//sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
1857//sys InitModule(moduleImage []byte, params string) (err error)
1858//sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1859//sysnb InotifyInit1(flags int) (fd int, err error)
1860//sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1861//sysnb Kill(pid int, sig syscall.Signal) (err error)
1862//sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1863//sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1864//sys Listxattr(path string, dest []byte) (sz int, err error)
1865//sys Llistxattr(path string, dest []byte) (sz int, err error)
1866//sys Lremovexattr(path string, attr string) (err error)
1867//sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1868//sys MemfdCreate(name string, flags int) (fd int, err error)
1869//sys Mkdirat(dirfd int, path string, mode uint32) (err error)
1870//sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1871//sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
1872//sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1873//sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
kesavandc71914f2022-03-25 11:19:03 +05301874//sysnb Prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001875//sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
kesavand2cde6582020-06-22 04:56:23 -04001876//sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1877//sys read(fd int, p []byte) (n int, err error)
1878//sys Removexattr(path string, attr string) (err error)
1879//sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1880//sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1881//sys Setdomainname(p []byte) (err error)
1882//sys Sethostname(p []byte) (err error)
1883//sysnb Setpgid(pid int, pgid int) (err error)
1884//sysnb Setsid() (pid int, err error)
1885//sysnb Settimeofday(tv *Timeval) (err error)
1886//sys Setns(fd int, nstype int) (err error)
1887
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001888// PrctlRetInt performs a prctl operation specified by option and further
1889// optional arguments arg2 through arg5 depending on option. It returns a
1890// non-negative integer that is returned by the prctl syscall.
1891func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
1892 ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
1893 if err != 0 {
1894 return 0, err
1895 }
1896 return int(ret), nil
1897}
1898
kesavand2cde6582020-06-22 04:56:23 -04001899// issue 1435.
1900// On linux Setuid and Setgid only affects the current thread, not the process.
1901// This does not match what most callers expect so we must return an error
1902// here rather than letting the caller think that the call succeeded.
1903
1904func Setuid(uid int) (err error) {
1905 return EOPNOTSUPP
1906}
1907
1908func Setgid(uid int) (err error) {
1909 return EOPNOTSUPP
1910}
1911
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001912// SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
1913// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
1914// If the call fails due to other reasons, current fsgid will be returned.
1915func SetfsgidRetGid(gid int) (int, error) {
1916 return setfsgid(gid)
1917}
1918
1919// SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
1920// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
1921// If the call fails due to other reasons, current fsuid will be returned.
1922func SetfsuidRetUid(uid int) (int, error) {
1923 return setfsuid(uid)
1924}
1925
1926func Setfsgid(gid int) error {
1927 _, err := setfsgid(gid)
1928 return err
1929}
1930
1931func Setfsuid(uid int) error {
1932 _, err := setfsuid(uid)
1933 return err
1934}
1935
kesavand2cde6582020-06-22 04:56:23 -04001936func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
1937 return signalfd(fd, sigmask, _C__NSIG/8, flags)
1938}
1939
1940//sys Setpriority(which int, who int, prio int) (err error)
1941//sys Setxattr(path string, attr string, data []byte, flags int) (err error)
1942//sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
1943//sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1944//sys Sync()
1945//sys Syncfs(fd int) (err error)
1946//sysnb Sysinfo(info *Sysinfo_t) (err error)
1947//sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001948//sysnb TimerfdCreate(clockid int, flags int) (fd int, err error)
1949//sysnb TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
1950//sysnb TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
kesavand2cde6582020-06-22 04:56:23 -04001951//sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1952//sysnb Times(tms *Tms) (ticks uintptr, err error)
1953//sysnb Umask(mask int) (oldmask int)
1954//sysnb Uname(buf *Utsname) (err error)
1955//sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1956//sys Unshare(flags int) (err error)
1957//sys write(fd int, p []byte) (n int, err error)
1958//sys exitThread(code int) (err error) = SYS_EXIT
1959//sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1960//sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
Andrea Campanella764f1ed2022-03-24 11:46:38 +01001961//sys readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
1962//sys writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
1963//sys preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
1964//sys pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
1965//sys preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
1966//sys pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
1967
1968func bytes2iovec(bs [][]byte) []Iovec {
1969 iovecs := make([]Iovec, len(bs))
1970 for i, b := range bs {
1971 iovecs[i].SetLen(len(b))
1972 if len(b) > 0 {
1973 iovecs[i].Base = &b[0]
1974 } else {
1975 iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
1976 }
1977 }
1978 return iovecs
1979}
1980
1981// offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
1982// systems, hi will always be 0. On 32-bit systems, offs will be split in half.
1983// preadv/pwritev chose this calling convention so they don't need to add a
1984// padding-register for alignment on ARM.
1985func offs2lohi(offs int64) (lo, hi uintptr) {
1986 return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
1987}
1988
1989func Readv(fd int, iovs [][]byte) (n int, err error) {
1990 iovecs := bytes2iovec(iovs)
1991 n, err = readv(fd, iovecs)
1992 readvRacedetect(iovecs, n, err)
1993 return n, err
1994}
1995
1996func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
1997 iovecs := bytes2iovec(iovs)
1998 lo, hi := offs2lohi(offset)
1999 n, err = preadv(fd, iovecs, lo, hi)
2000 readvRacedetect(iovecs, n, err)
2001 return n, err
2002}
2003
2004func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2005 iovecs := bytes2iovec(iovs)
2006 lo, hi := offs2lohi(offset)
2007 n, err = preadv2(fd, iovecs, lo, hi, flags)
2008 readvRacedetect(iovecs, n, err)
2009 return n, err
2010}
2011
2012func readvRacedetect(iovecs []Iovec, n int, err error) {
2013 if !raceenabled {
2014 return
2015 }
2016 for i := 0; n > 0 && i < len(iovecs); i++ {
2017 m := int(iovecs[i].Len)
2018 if m > n {
2019 m = n
2020 }
2021 n -= m
2022 if m > 0 {
2023 raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
2024 }
2025 }
2026 if err == nil {
2027 raceAcquire(unsafe.Pointer(&ioSync))
2028 }
2029}
2030
2031func Writev(fd int, iovs [][]byte) (n int, err error) {
2032 iovecs := bytes2iovec(iovs)
2033 if raceenabled {
2034 raceReleaseMerge(unsafe.Pointer(&ioSync))
2035 }
2036 n, err = writev(fd, iovecs)
2037 writevRacedetect(iovecs, n)
2038 return n, err
2039}
2040
2041func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
2042 iovecs := bytes2iovec(iovs)
2043 if raceenabled {
2044 raceReleaseMerge(unsafe.Pointer(&ioSync))
2045 }
2046 lo, hi := offs2lohi(offset)
2047 n, err = pwritev(fd, iovecs, lo, hi)
2048 writevRacedetect(iovecs, n)
2049 return n, err
2050}
2051
2052func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2053 iovecs := bytes2iovec(iovs)
2054 if raceenabled {
2055 raceReleaseMerge(unsafe.Pointer(&ioSync))
2056 }
2057 lo, hi := offs2lohi(offset)
2058 n, err = pwritev2(fd, iovecs, lo, hi, flags)
2059 writevRacedetect(iovecs, n)
2060 return n, err
2061}
2062
2063func writevRacedetect(iovecs []Iovec, n int) {
2064 if !raceenabled {
2065 return
2066 }
2067 for i := 0; n > 0 && i < len(iovecs); i++ {
2068 m := int(iovecs[i].Len)
2069 if m > n {
2070 m = n
2071 }
2072 n -= m
2073 if m > 0 {
2074 raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
2075 }
2076 }
2077}
kesavand2cde6582020-06-22 04:56:23 -04002078
2079// mmap varies by architecture; see syscall_linux_*.go.
2080//sys munmap(addr uintptr, length uintptr) (err error)
2081
2082var mapper = &mmapper{
2083 active: make(map[*byte][]byte),
2084 mmap: mmap,
2085 munmap: munmap,
2086}
2087
2088func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
2089 return mapper.Mmap(fd, offset, length, prot, flags)
2090}
2091
2092func Munmap(b []byte) (err error) {
2093 return mapper.Munmap(b)
2094}
2095
2096//sys Madvise(b []byte, advice int) (err error)
2097//sys Mprotect(b []byte, prot int) (err error)
2098//sys Mlock(b []byte) (err error)
2099//sys Mlockall(flags int) (err error)
2100//sys Msync(b []byte, flags int) (err error)
2101//sys Munlock(b []byte) (err error)
2102//sys Munlockall() (err error)
2103
2104// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
2105// using the specified flags.
2106func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
2107 var p unsafe.Pointer
2108 if len(iovs) > 0 {
2109 p = unsafe.Pointer(&iovs[0])
2110 }
2111
2112 n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
2113 if errno != 0 {
2114 return 0, syscall.Errno(errno)
2115 }
2116
2117 return int(n), nil
2118}
2119
Andrea Campanella764f1ed2022-03-24 11:46:38 +01002120func isGroupMember(gid int) bool {
2121 groups, err := Getgroups()
2122 if err != nil {
2123 return false
2124 }
2125
2126 for _, g := range groups {
2127 if g == gid {
2128 return true
2129 }
2130 }
2131 return false
2132}
2133
kesavand2cde6582020-06-22 04:56:23 -04002134//sys faccessat(dirfd int, path string, mode uint32) (err error)
Andrea Campanella764f1ed2022-03-24 11:46:38 +01002135//sys Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
kesavand2cde6582020-06-22 04:56:23 -04002136
2137func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
Andrea Campanella764f1ed2022-03-24 11:46:38 +01002138 if flags == 0 {
2139 return faccessat(dirfd, path, mode)
2140 }
2141
2142 if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
2143 return err
kesavand2cde6582020-06-22 04:56:23 -04002144 }
2145
2146 // The Linux kernel faccessat system call does not take any flags.
2147 // The glibc faccessat implements the flags itself; see
2148 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
2149 // Because people naturally expect syscall.Faccessat to act
2150 // like C faccessat, we do the same.
2151
Andrea Campanella764f1ed2022-03-24 11:46:38 +01002152 if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
2153 return EINVAL
kesavand2cde6582020-06-22 04:56:23 -04002154 }
2155
2156 var st Stat_t
2157 if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
2158 return err
2159 }
2160
2161 mode &= 7
2162 if mode == 0 {
2163 return nil
2164 }
2165
2166 var uid int
2167 if flags&AT_EACCESS != 0 {
2168 uid = Geteuid()
2169 } else {
2170 uid = Getuid()
2171 }
2172
2173 if uid == 0 {
2174 if mode&1 == 0 {
2175 // Root can read and write any file.
2176 return nil
2177 }
2178 if st.Mode&0111 != 0 {
2179 // Root can execute any file that anybody can execute.
2180 return nil
2181 }
2182 return EACCES
2183 }
2184
2185 var fmode uint32
2186 if uint32(uid) == st.Uid {
2187 fmode = (st.Mode >> 6) & 7
2188 } else {
2189 var gid int
2190 if flags&AT_EACCESS != 0 {
2191 gid = Getegid()
2192 } else {
2193 gid = Getgid()
2194 }
2195
Andrea Campanella764f1ed2022-03-24 11:46:38 +01002196 if uint32(gid) == st.Gid || isGroupMember(gid) {
kesavand2cde6582020-06-22 04:56:23 -04002197 fmode = (st.Mode >> 3) & 7
2198 } else {
2199 fmode = st.Mode & 7
2200 }
2201 }
2202
2203 if fmode&mode == mode {
2204 return nil
2205 }
2206
2207 return EACCES
2208}
2209
Andrea Campanella764f1ed2022-03-24 11:46:38 +01002210//sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
2211//sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
kesavand2cde6582020-06-22 04:56:23 -04002212
2213// fileHandle is the argument to nameToHandleAt and openByHandleAt. We
2214// originally tried to generate it via unix/linux/types.go with "type
2215// fileHandle C.struct_file_handle" but that generated empty structs
2216// for mips64 and mips64le. Instead, hard code it for now (it's the
2217// same everywhere else) until the mips64 generator issue is fixed.
2218type fileHandle struct {
2219 Bytes uint32
2220 Type int32
2221}
2222
2223// FileHandle represents the C struct file_handle used by
2224// name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
2225// OpenByHandleAt).
2226type FileHandle struct {
2227 *fileHandle
2228}
2229
2230// NewFileHandle constructs a FileHandle.
2231func NewFileHandle(handleType int32, handle []byte) FileHandle {
2232 const hdrSize = unsafe.Sizeof(fileHandle{})
2233 buf := make([]byte, hdrSize+uintptr(len(handle)))
2234 copy(buf[hdrSize:], handle)
2235 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2236 fh.Type = handleType
2237 fh.Bytes = uint32(len(handle))
2238 return FileHandle{fh}
2239}
2240
2241func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) }
2242func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
2243func (fh *FileHandle) Bytes() []byte {
2244 n := fh.Size()
2245 if n == 0 {
2246 return nil
2247 }
2248 return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
2249}
2250
2251// NameToHandleAt wraps the name_to_handle_at system call; it obtains
2252// a handle for a path name.
2253func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
2254 var mid _C_int
2255 // Try first with a small buffer, assuming the handle will
2256 // only be 32 bytes.
2257 size := uint32(32 + unsafe.Sizeof(fileHandle{}))
2258 didResize := false
2259 for {
2260 buf := make([]byte, size)
2261 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2262 fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
2263 err = nameToHandleAt(dirfd, path, fh, &mid, flags)
2264 if err == EOVERFLOW {
2265 if didResize {
2266 // We shouldn't need to resize more than once
2267 return
2268 }
2269 didResize = true
2270 size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
2271 continue
2272 }
2273 if err != nil {
2274 return
2275 }
2276 return FileHandle{fh}, int(mid), nil
2277 }
2278}
2279
2280// OpenByHandleAt wraps the open_by_handle_at system call; it opens a
2281// file via a handle as previously returned by NameToHandleAt.
2282func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
2283 return openByHandleAt(mountFD, handle.fileHandle, flags)
2284}
2285
Andrea Campanella764f1ed2022-03-24 11:46:38 +01002286// Klogset wraps the sys_syslog system call; it sets console_loglevel to
2287// the value specified by arg and passes a dummy pointer to bufp.
2288func Klogset(typ int, arg int) (err error) {
2289 var p unsafe.Pointer
2290 _, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
2291 if errno != 0 {
2292 return errnoErr(errno)
2293 }
2294 return nil
2295}
2296
2297// RemoteIovec is Iovec with the pointer replaced with an integer.
2298// It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
2299// refers to a location in a different process' address space, which
2300// would confuse the Go garbage collector.
2301type RemoteIovec struct {
2302 Base uintptr
2303 Len int
2304}
2305
2306//sys ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
2307//sys ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
2308
kesavandc71914f2022-03-25 11:19:03 +05302309//sys PidfdOpen(pid int, flags int) (fd int, err error) = SYS_PIDFD_OPEN
2310//sys PidfdGetfd(pidfd int, targetfd int, flags int) (fd int, err error) = SYS_PIDFD_GETFD
2311
2312//sys shmat(id int, addr uintptr, flag int) (ret uintptr, err error)
2313//sys shmctl(id int, cmd int, buf *SysvShmDesc) (result int, err error)
2314//sys shmdt(addr uintptr) (err error)
2315//sys shmget(key int, size int, flag int) (id int, err error)
2316
kesavand2cde6582020-06-22 04:56:23 -04002317/*
2318 * Unimplemented
2319 */
2320// AfsSyscall
2321// Alarm
2322// ArchPrctl
2323// Brk
2324// ClockNanosleep
2325// ClockSettime
2326// Clone
2327// EpollCtlOld
2328// EpollPwait
2329// EpollWaitOld
2330// Execve
2331// Fork
2332// Futex
2333// GetKernelSyms
2334// GetMempolicy
2335// GetRobustList
2336// GetThreadArea
2337// Getitimer
2338// Getpmsg
2339// IoCancel
2340// IoDestroy
2341// IoGetevents
2342// IoSetup
2343// IoSubmit
2344// IoprioGet
2345// IoprioSet
2346// KexecLoad
2347// LookupDcookie
2348// Mbind
2349// MigratePages
2350// Mincore
2351// ModifyLdt
2352// Mount
2353// MovePages
2354// MqGetsetattr
2355// MqNotify
2356// MqOpen
2357// MqTimedreceive
2358// MqTimedsend
2359// MqUnlink
2360// Mremap
2361// Msgctl
2362// Msgget
2363// Msgrcv
2364// Msgsnd
2365// Nfsservctl
2366// Personality
2367// Pselect6
2368// Ptrace
2369// Putpmsg
2370// Quotactl
2371// Readahead
2372// Readv
2373// RemapFilePages
2374// RestartSyscall
2375// RtSigaction
2376// RtSigpending
2377// RtSigprocmask
2378// RtSigqueueinfo
2379// RtSigreturn
2380// RtSigsuspend
2381// RtSigtimedwait
2382// SchedGetPriorityMax
2383// SchedGetPriorityMin
2384// SchedGetparam
2385// SchedGetscheduler
2386// SchedRrGetInterval
2387// SchedSetparam
2388// SchedYield
2389// Security
2390// Semctl
2391// Semget
2392// Semop
2393// Semtimedop
2394// SetMempolicy
2395// SetRobustList
2396// SetThreadArea
2397// SetTidAddress
kesavand2cde6582020-06-22 04:56:23 -04002398// Sigaltstack
2399// Swapoff
2400// Swapon
2401// Sysfs
2402// TimerCreate
2403// TimerDelete
2404// TimerGetoverrun
2405// TimerGettime
2406// TimerSettime
kesavand2cde6582020-06-22 04:56:23 -04002407// Tkill (obsolete)
2408// Tuxcall
2409// Umount2
2410// Uselib
2411// Utimensat
2412// Vfork
2413// Vhangup
2414// Vserver
2415// Waitid
2416// _Sysctl