blob: 80db1c155b5979302b3fb092013443b546a1c8da [file] [log] [blame]
divyadesai81bb7ba2020-03-11 11:45:23 +00001// Go support for Protocol Buffers - Google's data interchange format
2//
3// Copyright 2010 The Go Authors. All rights reserved.
4// https://github.com/golang/protobuf
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met:
9//
10// * Redistributions of source code must retain the above copyright
11// notice, this list of conditions and the following disclaimer.
12// * Redistributions in binary form must reproduce the above
13// copyright notice, this list of conditions and the following disclaimer
14// in the documentation and/or other materials provided with the
15// distribution.
16// * Neither the name of Google Inc. nor the names of its
17// contributors may be used to endorse or promote products derived from
18// this software without specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32/*
33Package proto converts data structures to and from the wire format of
34protocol buffers. It works in concert with the Go source code generated
35for .proto files by the protocol compiler.
36
37A summary of the properties of the protocol buffer interface
38for a protocol buffer variable v:
39
40 - Names are turned from camel_case to CamelCase for export.
41 - There are no methods on v to set fields; just treat
42 them as structure fields.
43 - There are getters that return a field's value if set,
44 and return the field's default value if unset.
45 The getters work even if the receiver is a nil message.
46 - The zero value for a struct is its correct initialization state.
47 All desired fields must be set before marshaling.
48 - A Reset() method will restore a protobuf struct to its zero state.
49 - Non-repeated fields are pointers to the values; nil means unset.
50 That is, optional or required field int32 f becomes F *int32.
51 - Repeated fields are slices.
52 - Helper functions are available to aid the setting of fields.
53 msg.Foo = proto.String("hello") // set field
54 - Constants are defined to hold the default values of all fields that
55 have them. They have the form Default_StructName_FieldName.
56 Because the getter methods handle defaulted values,
57 direct use of these constants should be rare.
58 - Enums are given type names and maps from names to values.
59 Enum values are prefixed by the enclosing message's name, or by the
60 enum's type name if it is a top-level enum. Enum types have a String
61 method, and a Enum method to assist in message construction.
62 - Nested messages, groups and enums have type names prefixed with the name of
63 the surrounding message type.
64 - Extensions are given descriptor names that start with E_,
65 followed by an underscore-delimited list of the nested messages
66 that contain it (if any) followed by the CamelCased name of the
67 extension field itself. HasExtension, ClearExtension, GetExtension
68 and SetExtension are functions for manipulating extensions.
69 - Oneof field sets are given a single field in their message,
70 with distinguished wrapper types for each possible field value.
71 - Marshal and Unmarshal are functions to encode and decode the wire format.
72
73When the .proto file specifies `syntax="proto3"`, there are some differences:
74
75 - Non-repeated fields of non-message type are values instead of pointers.
76 - Enum types do not get an Enum method.
77
78The simplest way to describe this is to see an example.
79Given file test.proto, containing
80
81 package example;
82
83 enum FOO { X = 17; }
84
85 message Test {
86 required string label = 1;
87 optional int32 type = 2 [default=77];
88 repeated int64 reps = 3;
89 optional group OptionalGroup = 4 {
90 required string RequiredField = 5;
91 }
92 oneof union {
93 int32 number = 6;
94 string name = 7;
95 }
96 }
97
98The resulting file, test.pb.go, is:
99
100 package example
101
102 import proto "github.com/gogo/protobuf/proto"
103 import math "math"
104
105 type FOO int32
106 const (
107 FOO_X FOO = 17
108 )
109 var FOO_name = map[int32]string{
110 17: "X",
111 }
112 var FOO_value = map[string]int32{
113 "X": 17,
114 }
115
116 func (x FOO) Enum() *FOO {
117 p := new(FOO)
118 *p = x
119 return p
120 }
121 func (x FOO) String() string {
122 return proto.EnumName(FOO_name, int32(x))
123 }
124 func (x *FOO) UnmarshalJSON(data []byte) error {
125 value, err := proto.UnmarshalJSONEnum(FOO_value, data)
126 if err != nil {
127 return err
128 }
129 *x = FOO(value)
130 return nil
131 }
132
133 type Test struct {
134 Label *string `protobuf:"bytes,1,req,name=label" json:"label,omitempty"`
135 Type *int32 `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"`
136 Reps []int64 `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"`
137 Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"`
138 // Types that are valid to be assigned to Union:
139 // *Test_Number
140 // *Test_Name
141 Union isTest_Union `protobuf_oneof:"union"`
142 XXX_unrecognized []byte `json:"-"`
143 }
144 func (m *Test) Reset() { *m = Test{} }
145 func (m *Test) String() string { return proto.CompactTextString(m) }
146 func (*Test) ProtoMessage() {}
147
148 type isTest_Union interface {
149 isTest_Union()
150 }
151
152 type Test_Number struct {
153 Number int32 `protobuf:"varint,6,opt,name=number"`
154 }
155 type Test_Name struct {
156 Name string `protobuf:"bytes,7,opt,name=name"`
157 }
158
159 func (*Test_Number) isTest_Union() {}
160 func (*Test_Name) isTest_Union() {}
161
162 func (m *Test) GetUnion() isTest_Union {
163 if m != nil {
164 return m.Union
165 }
166 return nil
167 }
168 const Default_Test_Type int32 = 77
169
170 func (m *Test) GetLabel() string {
171 if m != nil && m.Label != nil {
172 return *m.Label
173 }
174 return ""
175 }
176
177 func (m *Test) GetType() int32 {
178 if m != nil && m.Type != nil {
179 return *m.Type
180 }
181 return Default_Test_Type
182 }
183
184 func (m *Test) GetOptionalgroup() *Test_OptionalGroup {
185 if m != nil {
186 return m.Optionalgroup
187 }
188 return nil
189 }
190
191 type Test_OptionalGroup struct {
192 RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"`
193 }
194 func (m *Test_OptionalGroup) Reset() { *m = Test_OptionalGroup{} }
195 func (m *Test_OptionalGroup) String() string { return proto.CompactTextString(m) }
196
197 func (m *Test_OptionalGroup) GetRequiredField() string {
198 if m != nil && m.RequiredField != nil {
199 return *m.RequiredField
200 }
201 return ""
202 }
203
204 func (m *Test) GetNumber() int32 {
205 if x, ok := m.GetUnion().(*Test_Number); ok {
206 return x.Number
207 }
208 return 0
209 }
210
211 func (m *Test) GetName() string {
212 if x, ok := m.GetUnion().(*Test_Name); ok {
213 return x.Name
214 }
215 return ""
216 }
217
218 func init() {
219 proto.RegisterEnum("example.FOO", FOO_name, FOO_value)
220 }
221
222To create and play with a Test object:
223
224 package main
225
226 import (
227 "log"
228
229 "github.com/gogo/protobuf/proto"
230 pb "./example.pb"
231 )
232
233 func main() {
234 test := &pb.Test{
235 Label: proto.String("hello"),
236 Type: proto.Int32(17),
237 Reps: []int64{1, 2, 3},
238 Optionalgroup: &pb.Test_OptionalGroup{
239 RequiredField: proto.String("good bye"),
240 },
241 Union: &pb.Test_Name{"fred"},
242 }
243 data, err := proto.Marshal(test)
244 if err != nil {
245 log.Fatal("marshaling error: ", err)
246 }
247 newTest := &pb.Test{}
248 err = proto.Unmarshal(data, newTest)
249 if err != nil {
250 log.Fatal("unmarshaling error: ", err)
251 }
252 // Now test and newTest contain the same data.
253 if test.GetLabel() != newTest.GetLabel() {
254 log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
255 }
256 // Use a type switch to determine which oneof was set.
257 switch u := test.Union.(type) {
258 case *pb.Test_Number: // u.Number contains the number.
259 case *pb.Test_Name: // u.Name contains the string.
260 }
261 // etc.
262 }
263*/
264package proto
265
266import (
267 "encoding/json"
268 "fmt"
269 "log"
270 "reflect"
271 "sort"
272 "strconv"
273 "sync"
274)
275
276// RequiredNotSetError is an error type returned by either Marshal or Unmarshal.
277// Marshal reports this when a required field is not initialized.
278// Unmarshal reports this when a required field is missing from the wire data.
279type RequiredNotSetError struct{ field string }
280
281func (e *RequiredNotSetError) Error() string {
282 if e.field == "" {
283 return fmt.Sprintf("proto: required field not set")
284 }
285 return fmt.Sprintf("proto: required field %q not set", e.field)
286}
287func (e *RequiredNotSetError) RequiredNotSet() bool {
288 return true
289}
290
291type invalidUTF8Error struct{ field string }
292
293func (e *invalidUTF8Error) Error() string {
294 if e.field == "" {
295 return "proto: invalid UTF-8 detected"
296 }
297 return fmt.Sprintf("proto: field %q contains invalid UTF-8", e.field)
298}
299func (e *invalidUTF8Error) InvalidUTF8() bool {
300 return true
301}
302
303// errInvalidUTF8 is a sentinel error to identify fields with invalid UTF-8.
304// This error should not be exposed to the external API as such errors should
305// be recreated with the field information.
306var errInvalidUTF8 = &invalidUTF8Error{}
307
308// isNonFatal reports whether the error is either a RequiredNotSet error
309// or a InvalidUTF8 error.
310func isNonFatal(err error) bool {
311 if re, ok := err.(interface{ RequiredNotSet() bool }); ok && re.RequiredNotSet() {
312 return true
313 }
314 if re, ok := err.(interface{ InvalidUTF8() bool }); ok && re.InvalidUTF8() {
315 return true
316 }
317 return false
318}
319
320type nonFatal struct{ E error }
321
322// Merge merges err into nf and reports whether it was successful.
323// Otherwise it returns false for any fatal non-nil errors.
324func (nf *nonFatal) Merge(err error) (ok bool) {
325 if err == nil {
326 return true // not an error
327 }
328 if !isNonFatal(err) {
329 return false // fatal error
330 }
331 if nf.E == nil {
332 nf.E = err // store first instance of non-fatal error
333 }
334 return true
335}
336
337// Message is implemented by generated protocol buffer messages.
338type Message interface {
339 Reset()
340 String() string
341 ProtoMessage()
342}
343
344// A Buffer is a buffer manager for marshaling and unmarshaling
345// protocol buffers. It may be reused between invocations to
346// reduce memory usage. It is not necessary to use a Buffer;
347// the global functions Marshal and Unmarshal create a
348// temporary Buffer and are fine for most applications.
349type Buffer struct {
350 buf []byte // encode/decode byte stream
351 index int // read point
352
353 deterministic bool
354}
355
356// NewBuffer allocates a new Buffer and initializes its internal data to
357// the contents of the argument slice.
358func NewBuffer(e []byte) *Buffer {
359 return &Buffer{buf: e}
360}
361
362// Reset resets the Buffer, ready for marshaling a new protocol buffer.
363func (p *Buffer) Reset() {
364 p.buf = p.buf[0:0] // for reading/writing
365 p.index = 0 // for reading
366}
367
368// SetBuf replaces the internal buffer with the slice,
369// ready for unmarshaling the contents of the slice.
370func (p *Buffer) SetBuf(s []byte) {
371 p.buf = s
372 p.index = 0
373}
374
375// Bytes returns the contents of the Buffer.
376func (p *Buffer) Bytes() []byte { return p.buf }
377
378// SetDeterministic sets whether to use deterministic serialization.
379//
380// Deterministic serialization guarantees that for a given binary, equal
381// messages will always be serialized to the same bytes. This implies:
382//
383// - Repeated serialization of a message will return the same bytes.
384// - Different processes of the same binary (which may be executing on
385// different machines) will serialize equal messages to the same bytes.
386//
387// Note that the deterministic serialization is NOT canonical across
388// languages. It is not guaranteed to remain stable over time. It is unstable
389// across different builds with schema changes due to unknown fields.
390// Users who need canonical serialization (e.g., persistent storage in a
391// canonical form, fingerprinting, etc.) should define their own
392// canonicalization specification and implement their own serializer rather
393// than relying on this API.
394//
395// If deterministic serialization is requested, map entries will be sorted
396// by keys in lexographical order. This is an implementation detail and
397// subject to change.
398func (p *Buffer) SetDeterministic(deterministic bool) {
399 p.deterministic = deterministic
400}
401
402/*
403 * Helper routines for simplifying the creation of optional fields of basic type.
404 */
405
406// Bool is a helper routine that allocates a new bool value
407// to store v and returns a pointer to it.
408func Bool(v bool) *bool {
409 return &v
410}
411
412// Int32 is a helper routine that allocates a new int32 value
413// to store v and returns a pointer to it.
414func Int32(v int32) *int32 {
415 return &v
416}
417
418// Int is a helper routine that allocates a new int32 value
419// to store v and returns a pointer to it, but unlike Int32
420// its argument value is an int.
421func Int(v int) *int32 {
422 p := new(int32)
423 *p = int32(v)
424 return p
425}
426
427// Int64 is a helper routine that allocates a new int64 value
428// to store v and returns a pointer to it.
429func Int64(v int64) *int64 {
430 return &v
431}
432
433// Float32 is a helper routine that allocates a new float32 value
434// to store v and returns a pointer to it.
435func Float32(v float32) *float32 {
436 return &v
437}
438
439// Float64 is a helper routine that allocates a new float64 value
440// to store v and returns a pointer to it.
441func Float64(v float64) *float64 {
442 return &v
443}
444
445// Uint32 is a helper routine that allocates a new uint32 value
446// to store v and returns a pointer to it.
447func Uint32(v uint32) *uint32 {
448 return &v
449}
450
451// Uint64 is a helper routine that allocates a new uint64 value
452// to store v and returns a pointer to it.
453func Uint64(v uint64) *uint64 {
454 return &v
455}
456
457// String is a helper routine that allocates a new string value
458// to store v and returns a pointer to it.
459func String(v string) *string {
460 return &v
461}
462
463// EnumName is a helper function to simplify printing protocol buffer enums
464// by name. Given an enum map and a value, it returns a useful string.
465func EnumName(m map[int32]string, v int32) string {
466 s, ok := m[v]
467 if ok {
468 return s
469 }
470 return strconv.Itoa(int(v))
471}
472
473// UnmarshalJSONEnum is a helper function to simplify recovering enum int values
474// from their JSON-encoded representation. Given a map from the enum's symbolic
475// names to its int values, and a byte buffer containing the JSON-encoded
476// value, it returns an int32 that can be cast to the enum type by the caller.
477//
478// The function can deal with both JSON representations, numeric and symbolic.
479func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) {
480 if data[0] == '"' {
481 // New style: enums are strings.
482 var repr string
483 if err := json.Unmarshal(data, &repr); err != nil {
484 return -1, err
485 }
486 val, ok := m[repr]
487 if !ok {
488 return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr)
489 }
490 return val, nil
491 }
492 // Old style: enums are ints.
493 var val int32
494 if err := json.Unmarshal(data, &val); err != nil {
495 return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName)
496 }
497 return val, nil
498}
499
500// DebugPrint dumps the encoded data in b in a debugging format with a header
501// including the string s. Used in testing but made available for general debugging.
502func (p *Buffer) DebugPrint(s string, b []byte) {
503 var u uint64
504
505 obuf := p.buf
506 sindex := p.index
507 p.buf = b
508 p.index = 0
509 depth := 0
510
511 fmt.Printf("\n--- %s ---\n", s)
512
513out:
514 for {
515 for i := 0; i < depth; i++ {
516 fmt.Print(" ")
517 }
518
519 index := p.index
520 if index == len(p.buf) {
521 break
522 }
523
524 op, err := p.DecodeVarint()
525 if err != nil {
526 fmt.Printf("%3d: fetching op err %v\n", index, err)
527 break out
528 }
529 tag := op >> 3
530 wire := op & 7
531
532 switch wire {
533 default:
534 fmt.Printf("%3d: t=%3d unknown wire=%d\n",
535 index, tag, wire)
536 break out
537
538 case WireBytes:
539 var r []byte
540
541 r, err = p.DecodeRawBytes(false)
542 if err != nil {
543 break out
544 }
545 fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r))
546 if len(r) <= 6 {
547 for i := 0; i < len(r); i++ {
548 fmt.Printf(" %.2x", r[i])
549 }
550 } else {
551 for i := 0; i < 3; i++ {
552 fmt.Printf(" %.2x", r[i])
553 }
554 fmt.Printf(" ..")
555 for i := len(r) - 3; i < len(r); i++ {
556 fmt.Printf(" %.2x", r[i])
557 }
558 }
559 fmt.Printf("\n")
560
561 case WireFixed32:
562 u, err = p.DecodeFixed32()
563 if err != nil {
564 fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err)
565 break out
566 }
567 fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u)
568
569 case WireFixed64:
570 u, err = p.DecodeFixed64()
571 if err != nil {
572 fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err)
573 break out
574 }
575 fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u)
576
577 case WireVarint:
578 u, err = p.DecodeVarint()
579 if err != nil {
580 fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err)
581 break out
582 }
583 fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u)
584
585 case WireStartGroup:
586 fmt.Printf("%3d: t=%3d start\n", index, tag)
587 depth++
588
589 case WireEndGroup:
590 depth--
591 fmt.Printf("%3d: t=%3d end\n", index, tag)
592 }
593 }
594
595 if depth != 0 {
596 fmt.Printf("%3d: start-end not balanced %d\n", p.index, depth)
597 }
598 fmt.Printf("\n")
599
600 p.buf = obuf
601 p.index = sindex
602}
603
604// SetDefaults sets unset protocol buffer fields to their default values.
605// It only modifies fields that are both unset and have defined defaults.
606// It recursively sets default values in any non-nil sub-messages.
607func SetDefaults(pb Message) {
608 setDefaults(reflect.ValueOf(pb), true, false)
609}
610
611// v is a struct.
612func setDefaults(v reflect.Value, recur, zeros bool) {
613 if v.Kind() == reflect.Ptr {
614 v = v.Elem()
615 }
616
617 defaultMu.RLock()
618 dm, ok := defaults[v.Type()]
619 defaultMu.RUnlock()
620 if !ok {
621 dm = buildDefaultMessage(v.Type())
622 defaultMu.Lock()
623 defaults[v.Type()] = dm
624 defaultMu.Unlock()
625 }
626
627 for _, sf := range dm.scalars {
628 f := v.Field(sf.index)
629 if !f.IsNil() {
630 // field already set
631 continue
632 }
633 dv := sf.value
634 if dv == nil && !zeros {
635 // no explicit default, and don't want to set zeros
636 continue
637 }
638 fptr := f.Addr().Interface() // **T
639 // TODO: Consider batching the allocations we do here.
640 switch sf.kind {
641 case reflect.Bool:
642 b := new(bool)
643 if dv != nil {
644 *b = dv.(bool)
645 }
646 *(fptr.(**bool)) = b
647 case reflect.Float32:
648 f := new(float32)
649 if dv != nil {
650 *f = dv.(float32)
651 }
652 *(fptr.(**float32)) = f
653 case reflect.Float64:
654 f := new(float64)
655 if dv != nil {
656 *f = dv.(float64)
657 }
658 *(fptr.(**float64)) = f
659 case reflect.Int32:
660 // might be an enum
661 if ft := f.Type(); ft != int32PtrType {
662 // enum
663 f.Set(reflect.New(ft.Elem()))
664 if dv != nil {
665 f.Elem().SetInt(int64(dv.(int32)))
666 }
667 } else {
668 // int32 field
669 i := new(int32)
670 if dv != nil {
671 *i = dv.(int32)
672 }
673 *(fptr.(**int32)) = i
674 }
675 case reflect.Int64:
676 i := new(int64)
677 if dv != nil {
678 *i = dv.(int64)
679 }
680 *(fptr.(**int64)) = i
681 case reflect.String:
682 s := new(string)
683 if dv != nil {
684 *s = dv.(string)
685 }
686 *(fptr.(**string)) = s
687 case reflect.Uint8:
688 // exceptional case: []byte
689 var b []byte
690 if dv != nil {
691 db := dv.([]byte)
692 b = make([]byte, len(db))
693 copy(b, db)
694 } else {
695 b = []byte{}
696 }
697 *(fptr.(*[]byte)) = b
698 case reflect.Uint32:
699 u := new(uint32)
700 if dv != nil {
701 *u = dv.(uint32)
702 }
703 *(fptr.(**uint32)) = u
704 case reflect.Uint64:
705 u := new(uint64)
706 if dv != nil {
707 *u = dv.(uint64)
708 }
709 *(fptr.(**uint64)) = u
710 default:
711 log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind)
712 }
713 }
714
715 for _, ni := range dm.nested {
716 f := v.Field(ni)
717 // f is *T or T or []*T or []T
718 switch f.Kind() {
719 case reflect.Struct:
720 setDefaults(f, recur, zeros)
721
722 case reflect.Ptr:
723 if f.IsNil() {
724 continue
725 }
726 setDefaults(f, recur, zeros)
727
728 case reflect.Slice:
729 for i := 0; i < f.Len(); i++ {
730 e := f.Index(i)
731 if e.Kind() == reflect.Ptr && e.IsNil() {
732 continue
733 }
734 setDefaults(e, recur, zeros)
735 }
736
737 case reflect.Map:
738 for _, k := range f.MapKeys() {
739 e := f.MapIndex(k)
740 if e.IsNil() {
741 continue
742 }
743 setDefaults(e, recur, zeros)
744 }
745 }
746 }
747}
748
749var (
750 // defaults maps a protocol buffer struct type to a slice of the fields,
751 // with its scalar fields set to their proto-declared non-zero default values.
752 defaultMu sync.RWMutex
753 defaults = make(map[reflect.Type]defaultMessage)
754
755 int32PtrType = reflect.TypeOf((*int32)(nil))
756)
757
758// defaultMessage represents information about the default values of a message.
759type defaultMessage struct {
760 scalars []scalarField
761 nested []int // struct field index of nested messages
762}
763
764type scalarField struct {
765 index int // struct field index
766 kind reflect.Kind // element type (the T in *T or []T)
767 value interface{} // the proto-declared default value, or nil
768}
769
770// t is a struct type.
771func buildDefaultMessage(t reflect.Type) (dm defaultMessage) {
772 sprop := GetProperties(t)
773 for _, prop := range sprop.Prop {
774 fi, ok := sprop.decoderTags.get(prop.Tag)
775 if !ok {
776 // XXX_unrecognized
777 continue
778 }
779 ft := t.Field(fi).Type
780
781 sf, nested, err := fieldDefault(ft, prop)
782 switch {
783 case err != nil:
784 log.Print(err)
785 case nested:
786 dm.nested = append(dm.nested, fi)
787 case sf != nil:
788 sf.index = fi
789 dm.scalars = append(dm.scalars, *sf)
790 }
791 }
792
793 return dm
794}
795
796// fieldDefault returns the scalarField for field type ft.
797// sf will be nil if the field can not have a default.
798// nestedMessage will be true if this is a nested message.
799// Note that sf.index is not set on return.
800func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) {
801 var canHaveDefault bool
802 switch ft.Kind() {
803 case reflect.Struct:
804 nestedMessage = true // non-nullable
805
806 case reflect.Ptr:
807 if ft.Elem().Kind() == reflect.Struct {
808 nestedMessage = true
809 } else {
810 canHaveDefault = true // proto2 scalar field
811 }
812
813 case reflect.Slice:
814 switch ft.Elem().Kind() {
815 case reflect.Ptr, reflect.Struct:
816 nestedMessage = true // repeated message
817 case reflect.Uint8:
818 canHaveDefault = true // bytes field
819 }
820
821 case reflect.Map:
822 if ft.Elem().Kind() == reflect.Ptr {
823 nestedMessage = true // map with message values
824 }
825 }
826
827 if !canHaveDefault {
828 if nestedMessage {
829 return nil, true, nil
830 }
831 return nil, false, nil
832 }
833
834 // We now know that ft is a pointer or slice.
835 sf = &scalarField{kind: ft.Elem().Kind()}
836
837 // scalar fields without defaults
838 if !prop.HasDefault {
839 return sf, false, nil
840 }
841
842 // a scalar field: either *T or []byte
843 switch ft.Elem().Kind() {
844 case reflect.Bool:
845 x, err := strconv.ParseBool(prop.Default)
846 if err != nil {
847 return nil, false, fmt.Errorf("proto: bad default bool %q: %v", prop.Default, err)
848 }
849 sf.value = x
850 case reflect.Float32:
851 x, err := strconv.ParseFloat(prop.Default, 32)
852 if err != nil {
853 return nil, false, fmt.Errorf("proto: bad default float32 %q: %v", prop.Default, err)
854 }
855 sf.value = float32(x)
856 case reflect.Float64:
857 x, err := strconv.ParseFloat(prop.Default, 64)
858 if err != nil {
859 return nil, false, fmt.Errorf("proto: bad default float64 %q: %v", prop.Default, err)
860 }
861 sf.value = x
862 case reflect.Int32:
863 x, err := strconv.ParseInt(prop.Default, 10, 32)
864 if err != nil {
865 return nil, false, fmt.Errorf("proto: bad default int32 %q: %v", prop.Default, err)
866 }
867 sf.value = int32(x)
868 case reflect.Int64:
869 x, err := strconv.ParseInt(prop.Default, 10, 64)
870 if err != nil {
871 return nil, false, fmt.Errorf("proto: bad default int64 %q: %v", prop.Default, err)
872 }
873 sf.value = x
874 case reflect.String:
875 sf.value = prop.Default
876 case reflect.Uint8:
877 // []byte (not *uint8)
878 sf.value = []byte(prop.Default)
879 case reflect.Uint32:
880 x, err := strconv.ParseUint(prop.Default, 10, 32)
881 if err != nil {
882 return nil, false, fmt.Errorf("proto: bad default uint32 %q: %v", prop.Default, err)
883 }
884 sf.value = uint32(x)
885 case reflect.Uint64:
886 x, err := strconv.ParseUint(prop.Default, 10, 64)
887 if err != nil {
888 return nil, false, fmt.Errorf("proto: bad default uint64 %q: %v", prop.Default, err)
889 }
890 sf.value = x
891 default:
892 return nil, false, fmt.Errorf("proto: unhandled def kind %v", ft.Elem().Kind())
893 }
894
895 return sf, false, nil
896}
897
898// mapKeys returns a sort.Interface to be used for sorting the map keys.
899// Map fields may have key types of non-float scalars, strings and enums.
900func mapKeys(vs []reflect.Value) sort.Interface {
901 s := mapKeySorter{vs: vs}
902
903 // Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps.
904 if len(vs) == 0 {
905 return s
906 }
907 switch vs[0].Kind() {
908 case reflect.Int32, reflect.Int64:
909 s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
910 case reflect.Uint32, reflect.Uint64:
911 s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
912 case reflect.Bool:
913 s.less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } // false < true
914 case reflect.String:
915 s.less = func(a, b reflect.Value) bool { return a.String() < b.String() }
916 default:
917 panic(fmt.Sprintf("unsupported map key type: %v", vs[0].Kind()))
918 }
919
920 return s
921}
922
923type mapKeySorter struct {
924 vs []reflect.Value
925 less func(a, b reflect.Value) bool
926}
927
928func (s mapKeySorter) Len() int { return len(s.vs) }
929func (s mapKeySorter) Swap(i, j int) { s.vs[i], s.vs[j] = s.vs[j], s.vs[i] }
930func (s mapKeySorter) Less(i, j int) bool {
931 return s.less(s.vs[i], s.vs[j])
932}
933
934// isProto3Zero reports whether v is a zero proto3 value.
935func isProto3Zero(v reflect.Value) bool {
936 switch v.Kind() {
937 case reflect.Bool:
938 return !v.Bool()
939 case reflect.Int32, reflect.Int64:
940 return v.Int() == 0
941 case reflect.Uint32, reflect.Uint64:
942 return v.Uint() == 0
943 case reflect.Float32, reflect.Float64:
944 return v.Float() == 0
945 case reflect.String:
946 return v.String() == ""
947 }
948 return false
949}
950
951const (
952 // ProtoPackageIsVersion3 is referenced from generated protocol buffer files
953 // to assert that that code is compatible with this version of the proto package.
954 GoGoProtoPackageIsVersion3 = true
955
956 // ProtoPackageIsVersion2 is referenced from generated protocol buffer files
957 // to assert that that code is compatible with this version of the proto package.
958 GoGoProtoPackageIsVersion2 = true
959
960 // ProtoPackageIsVersion1 is referenced from generated protocol buffer files
961 // to assert that that code is compatible with this version of the proto package.
962 GoGoProtoPackageIsVersion1 = true
963)
964
965// InternalMessageInfo is a type used internally by generated .pb.go files.
966// This type is not intended to be used by non-generated code.
967// This type is not subject to any compatibility guarantee.
968type InternalMessageInfo struct {
969 marshal *marshalInfo
970 unmarshal *unmarshalInfo
971 merge *mergeInfo
972 discard *discardInfo
973}